
User's Guide

Borland"
o

User's Guide

Borland®
Turbo Debugger®
Borland'rntemational, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter, in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1988, 1995 Borland International. All rights reserved. All Borland product names are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

IEORI295
9596979899-9 8 7 6 5 4
HI

Contents
Introduction 1
New features and changes for version 5.x . .2

New features and changes for version 4.x2
Hardware requirements.2
Terminology in this manual.3

Module 3
Function 3
Turbo Debugger 3

Typographic and icon conventions 3
Using this manual4

Where to now? .5
First-time Turbo Debugger users 5
Experienced Turbo Debugger users 5

Software registration and technical support . . . 5

Chapter 1
Installing and configuring

Turbo Debugger 7
Installing Turbo Debugger 7
Configuring Turbo Debugger 7

Turbo Debugger's configuration files.8
Searchffig for configuration files. 8

Setting up the Windows video .DLLs 9
Dual-monitor debugging 9
The Options menu9

The Language command. 10
Display Options command. 10

Display Swapping. 10
Integer Format 10
Screen Lines 11
Tab Size 11
Background Delay. 11
User Screen Delay 11

Path for Source command 11
Save Options command. 12
Restore Options command. 12

Files installed with Turbo Debugger. 12
Turbo Debugger's executable and

. support files . 12
Turbo Debugger's utilities 13

Specifying utility command-line options. . . 14
Turbo Debugger's online text files. 14

Chapter 2
Starting Turbo Debugger and

running your program 15

Preparing programs for debugging 15
Compiling from the C++ integrated

environment. 16
Compiling from Delphi 16
Compiling from the command line 16

Starting Turbo Debugger 17
Specifying Turbo Debugger's command-line

options 17
Setting command-line options with Turbo

Debugger's icon properties 18
Setting command-line options from

Borland's C++ integrated environment. .. 18
Launching Turbo Debugger from Delphi ... 18

Running Turbo Debugger 19
Loading your program into the debugger . . . 19

Searching for source code. 21
Specifying program arguments 21
Restarting a debugging session 21
Just-in-time debugging. 22

Controlling program execution. 23
The Run menu. 23

Run 24
Go to Cursor 24
Trace Into . 24
Step Over 24
Execute To. 25
Until Return. 25
Animate 25
Back Trace. 25
Instruction Trace 25
Arguments. 26
Program Reset. 26
Next Pending Status 26
Waitfor Child 27

Interrupting program execution 27
Stopping in Windows code. 27

Reverse execution. 27
The Execution History window

SpeedMenu 28
Inspect 28
Reverse Execute. 28
Full History 29

The Keystroke Recording pane 29
The Keystroke Recording pane SpeedMenu. 29

Inspect' . . 29
Keystroke Restore. 29

Program termination 30
Resetting your program./. 30

Exiting Turbo Debugger. 30

Chapter 3
Debugging with Turbo Debug,ger 31
Debugging basics. 31

Discovering a bug 31
Isolating the bug 32
Finding the bug. 32
Fixing the bug. • 32
. What Turbo Debugger can do for you 33

Turbo Debugger's user interface. 33
Workffigwithmenus 33
Workffig with windows 34

Selecting a window 34
Using window panes 34
Moving and resizing windows. . . . ',' . . . 34
Closing and recovering windows. 35

SpeedMenus. 35
Turbo Debugger's windows 35

The View menu's windows. 35
Breakpoints window 35
Stack window. '.' 36
Log window ... '. 36
Watches window. 36
Variables window 36
Module window. 36
File window.'. 37
CPU window. 37
Dump window. 37
Registers window 37
Numeric Processor window 37
Execution History window. 37
Hierarchy window. 38
Windows Messages window. 38
Clipboard window. 38
Duplicating windows 38

Other windows. . . . '.' 38
Inspector windows. 38
User screen . 39

Turbo Debugger's special features. 39
Automatic name completion 39
Select by typing. 40
Incrementalmatching 40
Keyboard macros 40

The Macros menu 40
Create " ; 40
Stop Recording. 41
Remove'. 41
Delete All 41

The Clipboard.'. 41
The Pick dialog box 41
The Clipboard window. 42
The Clipboard window SpeedMenu 43
Dynamic updating. 43

ii

The Get Info text box 43
The Attach command. 44
The as Shell command. 45
Getting help.'. 46

Online help . 46
The status line. 46

Chapter 4
Setting and using breakpoints 49
Breakpoints defined 49

Breakpointlocations. 49
Breakpoint conditions. 50
Breakpoint actions. 50

The Breakpoints window 50
The Breakpoints window SpeedMenu. 51

Breakpoint types 51
Setting simple breakpoints. 51
Setting expression-true breakpoints 52
Setting changed-memory breakpoints 54
Setting global breakpoints 55

Global breakpoint shortcuts 55
Setting hardware breakpoints 56

Breakpoint actions'. 56
Break 57
Execute 57
Log 57
Enable group. 57
Disable group 57

Setting breakpoint conditions and actions . . . 58
Creating breakpoint condition sets 58
Creating breakpoint action sets 58
Multiple condition and action sets 59
The scope of breakpoint expressions 59

Breakpoint groups 59
Creating breakpoint groups 60
Deleting breakpoint groups 60
Enabling and disabling breakpoint '

groups. ~ 60
Navigating to a breakpoint location 61
Enabling and disabling breakpoints 61
Removing breakpoints. 61
Setting breakpoints on C++ templates 61
Setting breakpoints on threads 62
The Log window 63

The Log window SpeedMenu. 63
Open Log File 63
Close Log File ;, '. 64
Logging. ,64
Add Comment.64
Erase Log. 64
Display Windows Info 64

ChapterS
Examining and modifying data 65
The Watches window 65

Creating watches 66
The Watches window SpeedMenu 67

Watch 67
Edit 67
Remove 67
Delete All 67
Inspect 67 .
Change 67

The Variables window. '. . 67
The Variable window SpeedMenus. 68

Inspect 68
Change 68
Watch 69
Show 69

Viewing variables from the Stack window. . . 69
Inspector windows. 69

Opening Inspector windows 70
Scalar Inspector windows. 70
Pointer Inspector windows 71
C+-: Structure and Union Inspector

wmdows 71
Object Pascal Record Inspector windows. . . . 72
Array Inspector windows. 72
Function Inspector windows 73
The' Inspector window SpeedMenu 73

Range .. '.' 73
Change 74
Inspect 74
Descend 74
New Expression 74
Type Cast ~ 74

The Stack window 74
The Stack window SpeedMenu 75

Inspect 75
Locals 75

The Evaluate/Modify command 75
Evaluating C++ expressions 76
Evaluating Object Pascal expressions 77

Function Return command 78

Chapter 6
Evaluating' expressions 79
Turbo Debugger's expression evaluator 79

Selecting an evaluator 79
Expression limitations. 80

Types of expressions. 80
Specifying hexadecimal values. 80
Specifying memory addresses . . . '. 81
Entering line numbers. 81

iii

Entering byte lists 81
Calling functions. 82

Expressions with side effects 82
Format specifiers 83
Accessing symbols outside the current

scope ' 83
How Turbo Debugger searches for

symbols 83
Implied scope for expression evaluation. . . . 84
Scope override syntax. 84

Overriding scope in C, C++, and assembler
programs. 84

Scope override examples using C. 85
Overriding scope in Object Pascal

programs. '. 86
Scobe override examples using
o ject Pascal. 86

Scope and DLLs 87

Chapter 7
Examining disk files 89
Examining program source files 89

Loading source files. 90
The Module window SpeedMenu 90

Inspect 90
Watch 91
Thread 91
Module 91
File 91
Previous : 91
Line 91
Search 92
Next 92
Origin 92
Goto 92
Edit 92
Exceptions 93

Examining other disk files. 93
The File window SpeedMenu 94

Goto 94
Search 94
Next 94
Display As ; . . . 94
File 95
Edit 95

Chapter 8
Assembly-level debugging 97
The CPU window. : 97

Opening the CPU window 98
The Code pane. 99

Displaying source code 99
Setting breakpoints. ;'100

The Code pane SpeedMenu 100
Goto . . . : ; 100
Origin 100
Follow 100
Caller 100
Previous 100
Search 100
View Source 101
Mixed 101
Thread 101
OS Exceptions 101
NewEIP 102
New CS:IP. 102
Assemble 102
I/O 102

The Registers pane 103
The Registers pane SpeedMenu . ',' 103

Increment. 103
Decrement 103
Zero ... ' 103
Change 103
Registers 32-bit. ;. 103

The Flags pane 103
The Flags pane SpeedMenu. 104

The Dump pane. 104
The Dump pane SpeedMenu. 104

Goto 105·
Search 105
Next .. " ;' 105
Change 105
Follow 105
Previous 105
Display As 106
Block 106

The Stack pane 106
The Stack pane SpeedMenu·, . 106

Goto ; 107
Origin 107
Follow 107
Previous. 107
Change 107

The Selector pane. 107
The Selector pane SpeedMenu.107

Selector 108
Examine. 108

The Dump window 108
The Registers window., 108

Chapter 9
Windows debugging features 111
Monitoring window messages. 111,

Specifyillg a wmdow to monitor. 112
Specifying a window procedure. 113
Specifying a window handle. 113

Deleting window selections 113

iv

Specifying the messages to track114
Specifying a message class to track114

Specifying the message action.115
Breaking on messages115
Logging messages 116
Deleting message class and action

settings. .116
Message tracking tips.116

Debugging dynamic-linklibraries 117
Stepping into DLL code ',' 117

Returning from a DLL ' 117
Accessing DLLs and source-code modules . .118

Changing source modules118
Changing executable files .. '.' 119
Adding DLLs to the DLLs & Programs

list 119
Stepping over DLLs.119
Debugging DLL startup code120

Debugging multithreaded programs 121
The Threads Information pane121
The Threads List pane.122

Threads List pane SpeedMenu.122
Options. .122
Make Current122
Inspect .123
All Threads.123
Step 123

The Threads Detail pane '.123
Tracking operating-system exceptions 124

Specifying user-defined exceptions.125
Obtaining memory and module lists 125

Listing the contents of the global heap126
Listing the contents of the local heap.127
Listing the Windows modules.127

Converting memory handles to
addresses 128

Chapter 10
Debugging object-oriented
programs 129

The Hierarchy window 129
The Classes pane 130

The Classes pane SpeedMenu130
Inspect ','130
Tree ' ... 130

The Hierarchy pane.130
The Hierarchy pane SpeedMenu 130

Inspect130
Parents .130

The Parents pane 131
The Parent pane SpeedMenu.131

Class Inspector windows 131

The Class Inspector window
SpeedMenus. 132

Inspect. 132
Hierarchy 132
Show Inherited. 132

Object Inspector windows. 132
The Object Inspector window -

SpeedMenus. 133
Range 133
Change 133
Methods. 133
Show Inherited. 133
Inspect. 133
Descend. 134
New Expression 134
Type Cast 134
Hierarchy 134

Object Pascal property inspection 134
Exceptions . 135

C++ exception handling. 135
C exception handling 136
Object Pascal exception handling 136

Chapter 11
Debugging TSRs and device
drivers 137

What's a TSR? 137
Debugging a TSR. 138

What's a device driver? 140
Debugging a device driver 140

Mouse support (disabling/enabling) 145
Remote debugging (-r options)145
Source code handling (-s options)146
Starting directory (-t) 146
Video hardware handling (-v options).146
Windows crash message checking (-we). . . .147
WindowsDLL checking (-wd) 147

Command-line option summary 147

AppendixB
Remote debugging 149
Hardware and software requirements. 149
Starting the remote debugging session 150

Setting up the remote system150
Configuring and starting WREMOTE150

Serial configuration151
LAN configuration 151
Saving the communication settings152
Starting WREMOTE 152
WREMOTE command-line options 152

Starting and configuring TDW153
Serial configuration 153
LAN configuration 153
Initiating the remote link154
Automatic file transfer 154
TDW's remote debugging command-line

options. .155
Local and remote system names155

Remote DOS debugging. 156
Differences between TDREMOTE and

WREMOTE 156
Appendix A
Command-line options

Transferring files to the remote system 157
143 Troubleshooting.................. 157

Command-line option details 143
Attaching to a running process 144
Loading a specific configuration file (-c) ... 144
Display updating (-d options) 144
Getting help(-h-and -? options) 145
Session restart modes (-j options) 145
Keystroke recording (-k) 145
Assembler-mode startup (-1) 145

v

AppendixC
Turbo Debugger error messages 159
TD, TDW, and TD32 messages. 159
Status messages " .. 169
TDREMOTE messages. 170
WREMOTE messages 171

Index 173

Tables
1.1 Turbo Debugger's exerutable and

support files . 12
1.2 Turbo Debugger's utilities ' 13
1.3 Turbo Debugger's online files 14
2.1 Turbo Debugger programs ; . 17
2.2 Starting Turbo Debugger 17
3.1 Turbo Debugger's debuggmg functions ... 33
3.2 Clipboard item ~es. 42
3.3 TDW's System Information text box. 44
3.4 Windows NT System Information

text box. . , '. 44
4.1 Breakpomt types 51
5.1 Evaluate/Modify dialog box fields 76
6.1 Hexadecimal notation 81
6.2 Segment:Offset address notation; 81
6.3 Byte lists 82
6.4 Expression format specifiers 83

8.1 CPU window panes 98
8.2 CPU window positionillg ~ . '.99
8.3 Mixed command options. 101
8.4 I/O commands 102
8.5 The CPU Flags 103
8.6 Follow command options 105
8.7 Display As command options. 106
8.8 Block command options 106
9.1 Wmdow$ Messages wmdow panes 112
9.2 Format of a global heap list 126
9;3 Format of a local heap list 127
9.4 Format of a Wmdows module list 128
A.1 Turbo Debugger's command-line options .147
B.1 WREMOTE command-line options 152
B.2 TDW's remote debuggmg command-line

options. 155
B.3 TDREMOTE command-line options. 156

Figures
1.1 The Display Options dialog box 10
2.1 The Load a New Program to Debug

dialog box. 19
2.2 The Enter Program Name to Load .

dialog box., . . . '.' 20
2.3 The Set Restart Options dialog box. . . . ~ . . 22
2.4 The Execution History wmdow 28
3.1 The Pick dialog box. 41
3.2 The Clipboard window 42
3.3 The Get Info text box. 43
3.4 The Attach to and Debug a Running

Process dialog box. 45
3.5 The normal status line 47
3.6 The status line with Alt pressed. : 47
3.7 The status line with Ctrl pressed 47
4.1 TheBreakpomtswmdow 50
4.2 The Breakpomt Options dialog box 53
4.3 The Conditions and Actions dialog box. . . . 53
4.4 The Edit Breakpomt'Groups dialog box. ; . . 60
4.5 The Log window 63
5.1 The Watches window 66
5.2 The Variables window " 68
5.3 A Scalar fuspector window 70
5.4 A Pointer fuspector wmdow 71
5.5 A C Structure and Union Inspector

window 72
5.6 A C Array fuspector window. 73

vi

5.7 A Function fuspector window.73
5.8 The Stack wmdow. 75
5.9 The Evaluate/Modify dialog box. 76
7.1 The Module window89
7.2 The File window.93
7.3 The File window showing hex data 93
8.1 TheCPUwindow 98
8.2 The Dump window. 108
8.3 The Registers window 109
9.1 The Windows Messages window. 112
9.2 The Set Message Filter dialog box. 114
9.3 The Load Module Source or DLL

Symbols dialog box 118
9.4 The Threads window " 121
9.5 The Thread Options dialog box. 122
9.6 The Specify Exception Handling

dialog box.". 124
9.7 TDWs Wmdows Information

dialog box. 126
10.1 The Hierarchy window 129
10.2 A Class Inspector window. 131
10.3 An Object Inspector window -133
10.4 The Specify C and C++ Exception

Handling dialog box. 135
B.1 WRSETUP mam window and Settings

dialog box. 151

Introduction

Turbo Debugger® is a set of tools designed to help you debug the programs you write
with Borland's line of compilers and assemblers. The Turbo Debugger package consists
of a set of executable files, utilities, online text files, example programs, and this manual.

Turbo Debugger lets you debug the programs you're writing for Win16, Win32, and
DOS. When you load your program into Turbo Debugger, you can use the debugger to
control your program's execution and to view different aspects of your program as it
runs. By monitoring your program's output, source code, data structures, and program
values, you can quickly track down the hardest-to-find bugs.

Turbo Debugger uses menus, multiple windows, dialog boxes, and online context
sensitive help system to provide you with an easy-to-use, interactive debugging
environment. In addition, Turbo Debugger provides a comprehensive set of debugging
features:

• Full C, C++, Object Pascal (Delphi), and assembler expression evaluation.

• Full program execution control, including program animation.

• Low-level access to the CPU registers and system memory.

• Complete data inspection capabilities.

• Powerful breakpoint and logging facilities.

• Windows message tracking, including breakpoints on window messages.

• Full object-oriented programming support, including class browsing and object
inspecting.

• Reverse execution.

• Remote debugging support.

• Macro recording of keystrokes to speed up repeated series of commands.

• Copying and pasting between windows and dialog boxes.

• Incremental matching, automatic name completion, and select-by-typing (to
minimize keyboard entries).

Introduction 1

• -Context-sensitive SpeedMenus throughout the product.

• Dialog boxes that let you customize the debugger's options.

New features and changes for version 5.x
Turbo Debugger 5.x provides several feature enhancements over version 4.x:

• TDW.EXE can now be hosted on a 32-bit Windows system, which lets you debug
your 16-bit applications on Windows 95 or Windows NT (described in "'Setting up
the Windows video .DLLs" on page 9).

• Delphi (Object Pascal) support:

• Object Pascal property inspection (described on page 134).

• Object Pascal exception handling (described on page 136).

• Just -in-time debugging under Windows NT (described on page 22).

New features and changes for version 4.x
In addition, Turbo Debugger 4.x provided many enhancements over version 3.x:

_. Ability to debug both 16- and 32-bit Windows programs (Win32 debugging is
supported with the addition of TD32, the 32-:-bit debugger).

• Operating-system exception handling (described in section "Tracking operating-
system exceptions" on page 124). _.

• C++ and C exception handling (described in section "Exceptions" on page 135).

• Session-state saving (described in section "Restarting a debugging session" on
page 21) .

• 1 Thread support for multithreaded Windows NT programs (described in section
"Debugging multithreaded programs" on page 121).

• Ability to attach to processes that' are already running in Windows NT (described in
section "The Attach command" on page 44).

• Ability to shell out to a selected editor while running Windows NT (described in
section "Edit" on page 92). .

• Ability to choose a Windows international sort order for items displayed in
Turbo Debugger (use Turbo Debugger's configuration programs to access this
feature).

Hardware requirements
Turbo Debugger's hardware requirements are the same as those of your Borland
language compiler.

2 Turbo Debugger User's Guide

In addition, Turbo Debugger supports the following graphics modes and adapters:
EGA, VGA, Super VGA (SVGA), TIGA, and 8514. You can use standard drivers with
everything except SVGA, TIGA, and 8514.

Terminology in this manual
For convenience and brevity, several terms in this manual are used in slightly more
generic ways than usual:

Module
This term module refers to what is usually called an object module in C++ and assembler,
and also to what is called a unit in Pascal. .

Function
For readability, this manual uses the term function to refer to assembler, C, and c++
functions; c++ member functions; and to Object Pascal functions, procedures, and
object methods.

Turbo Debugger
In this manual, the term Turbo Debugger refers to the collective set of Turbo Debugger
programs: TD.EXE, TDW.EXE, and TD32.EXE. However, there are times when the text
refers to a specific Turbo Debugger program. In these cases, the term "TDW" refers to
TDW.EXE, "TD32" refers to TD32.EXE, and "TD" refers to TD.EXE.

Typographic and icon conventions
Boldface

Italics

Monospace

Key 1

Key 1 +Key2

Menul
Command

Note

Screen
shots

Boldface type indicates language keywords (such as char, switch, and begin) and
command-line options (such as -m).

Italic type indicates program variables, constants, and functions. This manual also uses
italics to emphasize certain words, such as new terms.

Monospace type represents text as it appears onscreen or in a program. It is also used for
anything you must type literally (such as TDW to start up Turbo Debugger for Windows).

This typeface indicates a key on your keyboard. For example, "Press Esc to exit a menu."

Key combinations produced by holding down one or more keys simultaneously are
represented as Key 1 +Key2. For example, you can execute the Program Reset command by
holding down the Ctrl key and pressing F2 (which is represented as Ctrl+F2).

This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command "File I Open" represents the Open command on the
File menu. .

This indicates material you should take special notice of.

Unless otherwise noted, all screen shots in this manual depict TD32 while running
under Windows NT.

Introduction 3

This manual also uses the following icons to indicate sections that pertain to specific
Windows operating environments:

Windows3.x Windows 95 and NT Windows NT only

Using this manual
Here is a brief description of the chapters and appendixes in this manual:

Chapter 1, HInstalling and configuring Turbo Debugger," describes the files that are
installed with the Turbo Debugger package and how to customize Turbo Debugger
once it is installed.

Chapter 2, HStarting Turbo Debugger and running your program," describes how to
prepare your program for debugging, and how to run Turbo Debugger and load your
program. This chapter also discusses the different ways to control your program's
execution while you are running it in Turbo Debugger.

Chapter 3, HDebugging with Turbo Debugger," introduces you to Turbo Debugger's
environment-its global and SpeedMenu system, dialog boxes, and debugging
windows. This chapter also discusses the basics of debugging, and the special features
that Turbo Debugger provides to make your debugging session run smoothly.

Chapter 4, HSetting and using breakpoints," describes Turbo Debugger's breakpoint
capability.

Chapter 5, "Examining and modifying data," explains the various ways you can
examine and modify the data used by your program.

Chapter 6, "Evaluating expressions," describes the types of expressions that Turbo
Debugger accepts, how to specify a display format of the expression results, and how to
override the scope in expressions.

Chapter 7, "Examining disk files," describes how to examine program source files, and
how to examine other disk files in either a text or binary format.

Chapter 8," Assembly-level debugging," describes Turbo Debugger's CPU window.
Additional information about this window and about assembler-level debugging is in
the file TD _ASM.TXT.

Chapter 9, "Windows debugging features," describes the Turbo Debugger features .
you can use to debug Windows programs.

Chapter 10, "Debugging object-oriented programs," explains Turbo Debugger'~
special features that let you examine object oriented classes and objects.

Chapter 11, "Debugging TSRs and device drivers," describes how to use TD.EXE to
debug terminate and stay resident (TSR) programs and DOS device drivers.

Appendix A, "Command-line options," describes all the command-line options that
are available with Turbo Debugger.

4 Turbo Debugger User's Guide

Appendix B, JlRemote debugging," describes the remote debugging capabilities of
Turbo Debugger.

Appendix C, JlTurbo Debugger error messages," lists all the error messages and
prompts generated by Turbo Debugger. The list also gives suggestions on how to
respond to the prompts and error messages.

Where to now?
The following reading guidelines are proposed to help first-time and experienced Turbo
Debugger users. .

First-time Turbo Debugger users
New Turbo Debugger users should read the first four chapters of this manual to get a
basic understanding of how the debugger works. Once you become familiar with the
basics of Turbo Debugger, read Chapters 4,5, and 6 to become proficient with the
debugger's most-often used features: breakpoints, data inspection, and expression
evaluation.

The remaining chapters in the book provide information about specific debugger
features (such as the CPU window), and provide help when you encounter problems
debugging a specific area of your program (such as with an object-oriented class or a
Windows .DLL). Browse through these chapters to get an overview of the more
advanced debugger features.

If, while using Turbo Debugger, you have questions about a certain feature or menu
command, press F1 to access the debugger's context-sensitive help system.

Experienced Turbo Debugger users
Users farrliliar with Turbo Debugger should read the "New features and changes for
version 5.x" on page 2 to get an overview of items new to this release. Experienced users
should also read Chapter 2, "Starting Turbo Debugger and running your program,"
which lists the files installed with Turbo Debugger. In addition, you should also read
"Turbo Debugger's special features" on page 39, which describes the features that make
Turbo Debugger especially easy to use. Even experienced Turbo Debugger users might
be surprised at some of the features they've previously overlooked.

Software registration and technical support
The Borland Assist program offers a range of technical support plans to fit the different
needs of individuals, consultants, large corporations, and developers. To receive help
with this product, send in the registration card and select the Borland Assist plan that.
best suits your needs. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147. For additional details on these and other Borland services, see
the Borland Assist Support and Services Guide included with this product.

Introduction 5

6 Turbo Debugger User's Guide

Installing and configuring
Turbo Debugger

This chapter describes how to install Turbo Debugger and how to customize its default
options and display settings. Also described in this chapter are the many files that are
installed with the debugger. '

Installing Turbo Debugger
The SETVP.EXE program supplied with your Borland compiler installs the entire
Turbo Debugger package, which includes executable files, configuration files, utilities,
example programs, and online text files. A detailed listing of all files included with
Turbo Debugger starts on page 12.

The install program creates icons for your Borland compiler and language tools, and
places them inside a new Windows program group. Directions for using SETUP.EXE
can be found in the INSTALL.TXT file of your Borland language product.

For general installation information, refer to the README file on your compiler's
Installation disk.

Configuring Turbo Debugger
You can configure Turbo Debugger's display options and program settings with
customized configuration files and with the debugger's Options menu. Settings in the
configuration files become effective when you load Turbo Debugger. To change the
debugger's settings after you've loaded it, use the commands on the Options menu.

Chap t e r 1, I n,s t a II i n 9 and con fig uri n 9 T u r boD e bug 9 e r 7

Turbo Debugger's configuration files
Turbo Debugger uses the following configuration, initialization, and session-state files
when it starts: .

• TDCONFIG.TD
• TDCONFIG.TDW
• TDCONFIG.TD2
• TDW.INI
• XXXX.TR
• XXXX.TRW
• XXXX.TR2

The configuration files TDCONFIG.TD, TDCONFIG.TDW, and TDCONFIG.TD2 are
created and used by TD, TDW, and TD32, respectively. The settings in these files
override the default configuration settings of the debuggers. You can modify the
configuration files using the installation programs TDINST.EXE, TDWINST.EXE, and
TD32INST.

TDW.INI is the initialization file used by TDW.EXE and TD32.EXE. It contains settings
for the video driver used with Turbo Debugger, the location of TDWINTH.DLL (the
Windows-debugging .DLL), and the remote debugging settings you specify using
WRSETUP.EXE.

The installation program places a copy of TDW.INI in the main Windows directory. In
this copy of TDW;INI, the video driver setting ([VideoDLL 1) is set to SVGA.DLL, and the
DebuggerDLL setting indicates the path to TDWINTH.DLL.

Files ending with .TR, .TRW, and .TR2 extensions contain the session-state settings for
the debuggers. For information on session-state saving, refer to "Restarting a debugging
session" on page 21.

Searching for configuration files
When you start Turbo Debugger, it looks for its configuration files in the following
order:

In the current directory.

2 In the directory you specify in the Turbo Directory setting of the Turbo Debugger
installation program.

3 In the directory that contains the Turbo Debugger executable file.

If Turbo Debugger finds a configuration file, the settings in that file override any built-in
defaults. If you supply any command-line options when you start Turbo Debugger,
they override any corresponding default options or values specified in the configuration
file.

8 Turbo Debugger User's Guide

Setting up the Windows video .Dlls
TDW and TD32 use different videQ .DLLs to support the available types of video
adapters and monitors. After you've installed Turbo Debugger, run the utility program
TDWINLEXE to help you select or modify the video .DLL that the debuggers use.

By default, TDW and TD32 use the SVGA.DLL and SVGA32.DLL video drivers, which
support most video adapters and monitors. For more information on the available video
.DLLs, refer to the entries for DUAL8514.DLL, STB.DLL, SVGA.DLL, and
TDWGUI.DLL in Table 1.1 on page 12, and the online Help system provided with
TDWINIEXE.

Note TDW now runs in a console window under Windows NT. When you run TDW in this
mode, it does not use the video .DLLs (SVGA.DLL, TDWGULDLL, and so on). Because
of this, there is no reason to configure the video .DLLs with TDWINLEXE when you're
running TDW under Windows NT.

Dual-monitor debugging
Turbo Debugger supports dual-monitor debugging on the following system
configurations:

• TD running in DOS
• TDW running on Windows 3.1 or Windows 95
• TD32 running on Windows 95

NOie Windows NT does not support a dual-monitor setup.

To create a dual-monitor system, you need a color monitor and video adapter, and a
monochrome monitor and video adapter. When you debug with two monitors, Turbo
Debugger appears on the monochrome monitor, and Windows and the program you're
debugging appears on the color monitor. The advantage of this system setup is that you
can see your program's output while you're debugging it with TUrbo Debugger.

If your video adapters can use the Windows 8514 video driver, you can use Turbo
Debugger's DUAL8514.DLL driver to set up dual color monitors for debugging.

Once your hardware setup is complete, use the -do command-line option to load TD or
TDW in dual-monitor mode. If you are debugging with TD32 under Windows 95, use
the -vd command-line option to start Turbo Debugger. For example, the command:

td32 -vd myprog.exe

causes Turbo Debugger to load SVGA32.DLL as the video .DLL, which detects that you
are running Windows 95 with a dual-monitor setup. For more information on
command-line options, see Appendix A.

The Options menu
The Options menu contains commands that let you set and adjust the parameters that
control the overall appearance of Turbo Debugger.

Chapter 1, Installing and configuring Turbo Debugger 9

The Language command
Use the Options I Language command to select the programming language evaluator
that the debugger uses. Chapter 6 describes how to set the expression evaluator and
how it affects the way Turbo Debugger evaluates expressions.

Display Options command
The Option I Display Options command opens the Display Options dialog box. You use
the settings in this dialog box to control the appearance of Turbo Debugger's display.
While TD, TDW, and TD32 share most display options, TD32 has several additional
options to provide support for the Windows NT multitasking operating system.

Figure 1.1 The Display Options dialog box

Display Swapping
You can use the Display Swapping radio buttons to control the way Turbo Debugger
swaps your applications' screens with the debugger' s ~indows.

None Found in TD32 only, this option specifies that no screen-swapping is to take
place. This option provides the fastest and smoothest screen updating when
you're single-stepping through a program and should be used if you're
using dual-monitor debugging. Beware, however, that this option can cause
your display to become corrupted. If this happens, use the Repaint Desktop
on the System menu to repaint the screen. .

Smart Turbo Debugger activates the user screen when it detects that your program
is going to display output and when you step over routines.

Always Turbo Debugger activates the user screen every time your program runs.
Use this option if the Smart option isn't finding all the times the program
writes to the screen. If you choose this option, the screen flickers ev~ry time
you step through your program because Turbo Debugger's screen is
replaced for a short time with the User screen.

Integer Format
The Integer Format radio buttons let you choose the way integers are displayed in
Turbo Debugger.

Hex Shows integers as hexadecimal numbers, displayed in a format appropriate
to the current language evaluator.

10 T u r boD e bug 9 e r Use r' s G u ide

Decimal Displays integers in decimal notation.

Both Displays integers in both decimal and hexadecimal notation (the
hexadecimal numbers are placed in parentheses after the decimal value).

Screen Lines
Use the Screen Lines radio buttons to select either a 25-line display or a 43- or 50-line
display available with EGA and VGA display adapters.

Tab Size
The Tab Size input box lets you set the number of columns each tab stop occupies. To
see more text in source files that use tab indents, reduce the tab column width. You can
set the tab column width from 1 to 32.

Background Delay
Found only in TD32.EXE, the Background Delay input box lets you specify how often
Turbo Debugger's screens get updated. When you use this setting in conjunction with
the Run I Wait for Child command, you can watch the effects of your program through
Turbo Debugger's windows, while your program is running.

User Screen Delay
Found only in TD32, User Screen Delay lets you specify how long your program's
screen is displayed when you press Alt+FS (the Window I User Screen command). This
command is useful when you're using TD32 in full-screen mode, and you need to see
your application's windows. By setting the delay, you can specify how long your
program's screens will be displayed before Turbo Debugger regains control.

Path for Source command
Use the Path for Source command to specify the directories that Turbo Debugger
searches for your program's source files. To enter multiple directories, separate each
directory with a semicolon.

Although the Enter Source Directory Path input box holds a maximum of 256
characters, you can use a response file to specify longer search paths. A response file
contains a single line that specifies the directories that should be searched for source
code. Each directory listed must be separated by a semicolon. For example, a response
file could contain the following line to specify three different search directories:

c:\my_proj\modl\sourceic:\my_proj\mod2\sourceic:\my_proj\mod3\source

To specify a response file in the Enter Source Directory Path input box, enter anat
character (@) followed by the path and name of the response file. For example, the
following entry specifies the SRC_PATH.TXT response file:

@C:\my_proj\src_path.txt

For more information on how Turbo Debugger conducts its search for source code, refer
to "Searching for source code" on page 21.

Chapter 1, Installing and configuring Turbo Debugger 11

Save Options command
The Save Options command opens a dialog box that lets you save your Option menu
settings to a configuration file. You can save any or all of the following options:

Options Saves all settings made in the Options menu.

Layout Saves the current window layout and pane formats.

Macros Saves the currently defined keyboard macros.

You can specify the name of the configuration file by using the Save To input box. By
default, TDW.EXE uses the file name TDCONFIG.TDW, TD.EXE uses the file name
TDCONFIG.TD, and TD32.EXE uses the file name TDCONFIG.TD2.

By creating different names for your configuration files, you can have a different
debugger setup for each programming project you're working on. Each setup can
specify unique macros, window layouts, source directories, and so on.

Restore Options command
The Restore Options command restores a configuration from a disk file. The file loaded
must be a configuration file that was created with the Options I Save Options command
or with Turbo Debugger's installation program (TDWINST for TDW.EXE and
TDINST32 for TD32.EXE).

Files installed with Turbo Debugger
The following tables list the files installed with Turbo Debugger, arranged into the
following categories:

I

• Turbo Debugger's executable and support files
• Turbo Debugger's utilities
• Turbo Debugger's online text files
• Turbo Debugger's C++ demonstration program

Turbo Debugger's executable and support files
Table 1.1 lists all the executable and support files you need to runTD, TDW, and TD32.

Table 1.1 . Turbo Debugger's executable and support files

DUAL8514.DLL

STB.DLL

SVGA.DLL

SVGA32.DLL

TD.EXE

TD.PIF

TDDOS.lCO

Video .DLL that supports dual-monitor debugging with 8514 monitors.

Video .DLL that supports ~ideo adapters produced by STB.

Video .DLL that supports most adapters and monitors.

Video .DLL that supports TD32.EXE in Windows 95 monochrome mode.

Executable program used to debug DOS applications.

.PIF file used to run TD.EXE in a Windows DOS box.

Icon used with TD.EXE.

12 T u r boD e bug 9 e r Use r 's G u ide

Table 1.1 Turbo Debugger's executable and support files (continued)

File name Description
TDDEBUG386

TDHELP.TDH

TDKBD32.DLL

TDREMOTE.EXE

TD32.EXE

TD32.ICO

TD32HELP.TDH

TDVID16DLL

TDW.EXE

TDW.ICO

TDW.INI

TDWGULDLL

TDWHELP.TDH

TDWINTHDLL

WREMOTE.EXE

TDW.EXE uses the device driver TDDEBUG386 to access the special debug
registers of 80386 (and higher) processors. See page 56 for information on hardware
debugging.

Help file for TD.EXE.

Support file used with Windows NT.

Driver used on remote system to support DOS remote debugging.

Executable program used to debug 32-bit programs written for Windows 95 and
Windows NT.

Icon used with TD32.EXE.

Help file for TD32.EXE.

Support file used with Windows NT.

Executable program used to debug 16-bit Windows programs.

Icon used with TDW.EXE

Initialization file used by TDW.EXE and TD32.EXE. This file is created by the install
program and placed in your main Windows directory.

Video DLL that places Turbo Debugger in a window while using TDW under
Windows 95.

Help file for TDW.EXE.

Support DLL required by TDW.EXE. TDW.INI is set up to point to
TDWINTHDLL.

Driver used on remote system to support Windows remote debugging.

Turbo Debugger's utilities
The Turbo Debugger package includes utilities to help with the debugging process.
Table 1.2 lists the utilities and gives a general description of each one. For a more
detailed description of these utilities, refer to the online text file TD_UTILS.TXT.

Table 1.2 Turbo Debugger's utilities

File name Description
JITIME.EXE Utility program used to set up Just In Time debugging with TD32.EXE.

TDOSINST.ICO

TDINST.EXE

TDMEM.EXE

TDRF.EXE

TD32INST.EXE

TD32INST.ICO

TDSTRIP.EXE

TDSTRP32.EXE

TDVMP.EXE

Icon used with TDINST.EXE program.

Creates and modifies TD's configuration file, TDCONFIGTD.

Displays the current availability of your computer's memory, including Expanded
and Extended memory. Used for checking the programs and device drivers that are
loaded, and the addresses that they're loaded into.

File transfer utility used to transfer files to remote system.

Creates and modifies TD32's configuration file, TDCONFIGTD2.

Icon used with TD32INST.EXE.

Strips Turbo Debugger's debugging information (the symbol table) from 16-bit .EXEs
and DLLs, without relinking.

Strips Turbo Debugger's debugging information (the symbol table) from 32-bit .EXEs
and DLLs, without relinking.

Displays the file structure of 16-bit and 32-bit .EXE, DLL; and .oBJ files. Also displays
the contents of the symbolic debug information.

Chapter 1, Ins t a II i n ga n d configuring Turbo Debugger 13

Table 1.2 Turbo Debugger's utilities (continued)

TDWINIHLP

TDWINST.EXE

TDWINST.lCO

WRSETUP.EXE

Lets you change and customize Turbo Debugger's video DLL

Windows help file for TDWINl.EXE.

Creates and modifiesTDW's configuration file, TDCONFIG.TDW. Configures things
like the display options and screen colors of TDW.

Icon used with TDWINST.EXE.

Configuration file used to configure WREMOTE, the remote driver used with remote
debugging.

Specifying utility command-line options
Each Turbo Debugger utility can be started using special command-line options. For a
list of the command-line options available for the TDUMP, TDUMP32, and TDSTRIP
utility programs, type the program name at the DOS command-line and press Enter. To
see the command-line options for TDWINST and TDINST32, type the program name
followed by -?", then press Enter. For example,

TDWINST -?

Turbo Debugger's online text files
The installation program places several text files in the DOC subdirectory of your main
language directory.

Although you might not ne~d to .access all online files, it's important for you to look at
TD _RDME.TXT, which contains last-minute information not available in the manual.

Table 1.3 Turbo Debugger's online files

This file also contains information on using Turbo Debugger's Numeric
Processor window.

This file cOhtains information on how to configure Turbo Debugger so that it
takes advantage of the hardware debugging registers.

Contains last-minute information not contained in the manuaL It also contains
answers to commonly encountered problems. Among other things,
TD_RDME.TXT discusses the syntactic and parsing differences between
Turbo Debugger and your language compiler, the TDW.INI file, debugging
multi-language programs, and common questions and answers concerning
Turbo Debugger.

This file describes the command-line utilities included with Turbo Debugger.

All of Turbo Debugger's online files are unformatted ASCII files, so you can use your
program editor to access them.

14 Turbo Debugger User's Guide

Starting Turbo Debugger and
• running your program

A debugging session begins when you load your program into Turbo Debugger. After
you load your program, you can run it under the debugger's control, pausing its
execution at various places to look for where things have gone wrong. Before you can
load your program into Turbo Debugger, however, you must prepare it for debugging.

This chapter describes

• Preparing programs for debugging
• Starting Turbo Debugger
• Loading your program into the debugger
• Controlling program execution
• Interrupting program execution
• Reverse execution
• Program termination
• Exiting Turbo Debugger

Preparing programs for debugging
When you're developing a program, whether it's written in C, C++, Object Pascal, or
assembler, it's best to compile and link it with debug information. Although debugging
information adds to the size of your executable files, it lets you see your program's
source code and use its symbols to reference values while you're in the debugger. After
your program is fully debugged and ready for distribution, compile and link your
program without debug information to reduce the size of your final program files.

Unless you have a very large project, it's usually best to compile your entire project with
debug information turned on. This way, you'll have access to all your program modules
from within the debugger. With larger projects, however, you might want to add debug
information only to the modules you intend to load into the debugger.

C hap t e r 2, S tar tin 9 T u r boD e bug 9 era n d run n i n 9 you r pro 9 ram 15

'While you're developing C and C++ programs, you might find it best to compile
without compiler optimizations turned on. When certain optimizations are turned on,
the object code produced by the compiler might not exactly match your program source
code; this can make stepping through code confusing. Because of this, you should
compile your program with optimizations turned on only after you've fully debugged
your program.

Compiling from the C++ integrated environment
If you're compiling your program from within the Borland C++ integrated
environment, you must be sure to include symbolic debug information in both your
.OBJ files and your final executable files.

To include debug information in your .OBJ and .EXE files,

1 Choose the Options I Project command to open the Project Options dialog box.
2 Choose the Compiler I Debugging topic to access the Debugging options.
3 Check Debug Information in OBJs.
4 Choose the Linker I General topics to access the linker options.
5 Check Include Debug Information.

Compiling from Delphi
If you're compiling your program from within Delphi, you must be sure to include
symbolic debug information in both your unit files and your final executable files if you
,want to use Turbo Debugger.,

To include debug information in your unit files,

1 Choose Options I Project to open the Project Options dialog box.
2 Click the Compiler tab to open the Compiler options page.
3 Check both the Debug'Information and Local Symbols check boxes.

To include debug information in your final .EXE files,

,1 Open the Project Options dialog box, then click the Linker tab to open the Linker
options page.

2 Check the Include TDW Debug Info check box.

Compiling from the command line
If you compile your programs with the Borland C++ command-line compiler, use the-v
compiler directive to add debug information to each of your modules. When linking, be
sure to use the Iv linker switch to include the debug information in your final executable
files.

If you compile your programs with Borland's Delphi command-line compiler, use the
N compiler directive to add debug information to the final .EXE file: For more
information on this Delphi compiler directive, see the I?elphi online Help.

16 T u r boD e bug 9 e r Use r' s G u ide

Starting Turbo Debugger
After you've compiled and linked your program with debug information, you can begin
the debugging process by starting Turbo Debugger and loading your program into the
debugger.

The following table describes the appropriate debugger to use for the application you've
built:

Table 2.1 Turbo Debugger programs

. TutboDebtlggerl't9~am
TO.EXE

TOW.EXE

T032.EXE

'Appll~a6~itB::d.~h~gg¢d· .
16-bit OOS applications

16-bit Windows applications

32-bit Windows applications

While TD must be started from the DOS command line, TDW and TD32 can be started
from the Windows locations listed in the following table:

Table 2.2 Starting Turbo Debugger

Windows

The C++ integrated
environment

Delphi

Windows' Program Manager
File I Run dialog box

Windows File Manager

Open your Borland compiler's group from the Program Manager, and
choose the TOW or T032 icon.

Choose Tools I Turbo Debugger to debug the program in the active Edit
window.

Choose Tools I Turbo Debugger to debug the applications the active Code
Edit window.

From the Command input box, type TDW or TD32, followed by any
command-line options.

Double-click either the TOW.EXE or T032.EXE executable file icon from
the directory' containing Turbo Debugger.

Specifying Turbo Debugger's command-line options
Turbo Debugger uses command-line options to specify special start-up parameters and
debugging modes. The command-line options must be specified before you start
Turbo Debugger; you can't specify them once Turbo Debugger is loaded.

The command-line syntax for starting Turbo Debugger is as follows:

TD I TDW I TD32 [options] [progname [progargs] 1

The items enclosed in brackets are optional. The options are Turbo Debugger command
line options, and are described in AppendixA. The item progname refers to the name of
the program you're debugging, and progargs are optional arguments supplied to your
program. When using this syntax, be sure to supply a correct path for the program
you're debugging.

For example, the following command line starts TD32 with the -jp command-line
option, and loads mY...Jlrog with the arguments mammal and river:

C hap t e r 2, S tar tin 9 T u r boD e bug 9 era n d run n i n 9 you r pro 9 ram 17

TD32 -jp rny_prog rnqrnrnal river

Setting command-line options with Turbo Debugger's icon properties
If you start Turbo Debugger using the TDW or TD32 icons, you can specify command
line options using the icon' s Property dialog box. This is usually the best way to specify
command-line options because the options you specify are saved with the icon's
property settings.

You can also specify your program (and optional program arguments) in the command
you enter into the Properties dialog box. If you specify your program it'll be loaded into
Turbo Debugger when you double-click the debugger's icon. This is the best way to
load your program if you're working on an ongoing project.

To specify an icon's Property settings, dick the icon, then choose File I Properties from
the Windows Program Manager. In the Command Line input box, type the executable
name of the debugger, followed by the desired command-line option(s). Choose.OK
when you're done.

Setting command-line options from Borland's C++ integrated environment
If you transfer to Turbo Debugger from Borland's C++ for Windows integrated
environment, you can specify Turbo Debugger's command-line options using the
following procedure:

From the C++ integrated environment, choose Options I Tools to access the Tools
dialog box.

2 Select TDStartupfrom the Tools list box.

3 Click the Edit button to open the Tools Options dialog box.

4 In the Command Line input box, enter Turbo Debugger's command-line options
after the $TD transfer macro setting.

The $ARG transfer macro in the Command Line input box indicates the arguments that
are passed to your program when you transfer to Turbo Debugger from the integrated
environment. To specify program ar~ents,

From the integrated environment, choose Options I Environment to open the
Environment Options dialog box.

2 Select Debugger in the Topics list box.

3 Enter the program arguments in Run Arguments list box.

Launching Turbo Debugger from Delphi
To laUnch Turbo Debugger from Delphi, place Turbo Debugger onthe Delphi Tools
menu:

1 Choose Options I Tools I Add to access the Tool Property dialog box.

2 Type TDW (or TD32) into the Title input box (this places "TDW" (or TD32) on the Tools
menu).

18 r u r boD e bug 9 e r Use r' s G u ide

3 Use the Browse button to fill in the Program and Working Directory input boxes.
(Choose Browse, then navigate to the directory that contains Turbo Debugger and
double-click on the appropriate Turbo Debugger file name.)

4 To fill in the Parameters input box, choose the Macros button, then select the
$EXENAME and the $TDW macros:

.. $EXENAME expands to the full path and file name of the current project
executable file.

• $TDW saves, closes, and compiles the current project, complete with debug
information.

5 Choose Close to close the Tools Options dialog box and add TDW to the Tools menu.

With Turbo Debugger on the Tools menu, all you need to do is choose this entry to
compile the current project and launch Turbo Debugger on the resulting executable file.

Running Turbo Debugger
When you run TDW, the debugger opens in full-screen character mode. However,
unlike other applications, you cannot access the Windows shortcut keys Alt+Esc and
Ctrl+Esc from Turbo Debugger. Although you can access the Windows task list from
your program, you should not change tasks when Turbo Debugger is running because
of the special way the debugger uses system resources.

This is different from running TD32 under a 32-bit Windows system. In this case, TD32
activates in a command-prompt window, and it has all the features of a normal
Windows application.

To debug 16-bit Windows code on a 32-bit Windows operating system, run TDW on the
32-bit system.

Loading your program into the debugger
You can load your program into Turbo Debugger using its command-line syntax (which
is described on page 17) or from within Turbo Debugger once it has started.

To load a new program into Turbo Debugger (or to change the currently loaded
program), use the File I Open command. This command opens a two-tiered set of dialog
boxes, the first being the Load a New Program to Debug dialog box.

Figure 2.1 The Load a New Program to Debug dialog box

Chapter 2, Starting Turbo Debugger and running your program 19

TD and TDWs' Load a New Program to Debug dialog box contains an additional
button, Session, to support its remote debugging feature. For more information on the_
Session button, see "Starting and configuring TDW" on page 153.

If you know the name of the program you want to load, enter the executable name into
the Program Name input box and press Enter.

To search through directories for your program, click the Browse button to open the
second dialog box (the Enter Program Name to Load dialog box):

Figure 2.2 The Enter Program Name to Load dialog box

The Files list box displays the files in the currently selected directory. By entering a file
mask into the File Name input box (such as *.EXE), you can specify which files should be
listed. You can also use the File Name input box to change disk drives.

To "walk" through disk directories, double-click the entries listed in the Directories list
box (the .. entry steps you back one directory level). Once you've selected a directory,
choose a file to load from the Files list box. To quickly search for a file, type a file name
into the Files list box. Turbo Debugger's incremental matching feature moves the
highlight bar to the file that begins with the letters you type. Once you've selected a file,
press OK. This action returns you to the Load a New Program to Debug dialog box.

After you've specified a program in the Load a New Program to Debug dialog box,
specify whether or not you want the debugger to run its startup code. If you check the
Execute Startup Code check box, Turbo Debugger runs the program to WinMain (or its
C program equivalent) or Application.CreateO (for Delphi programs) when you load the
program. If you leave this box unchecked, Turbo Debugger will not run any code. when
you load the program.

To support remote debugging, TDW contains a set of radio buttons in the Load a New
Program to Debug dialog box. The Session radio buttons specify whether or not the
program you're debugging is on a local or remote system. If it's located on a remote
system, select the Remote Windows radio button; if it's not on a remote system, select
Local. See Appendix B for complete instructions on remote debugging.

Note Before loading a program into the debugger, be sure to compile your source code into
an executable file (.EXE or .DLL) with full debugging information. Although you can
load programs that don't,have debug information, you will not be able to use the
Module window to view the program's source code. (The debugger cannot reference

20 T u r b 0 -Deb u 9 9 e r Use r 's G u ide

the source code of executable modules that lack debug information. If you load a
module that doesn't contain debug information, Turbo Debugger opens the CPU
window to show the disassembled machine instructions of that module.)

When you run a program under the control of Turbo Debugger, the program's
executable files (including all.DLL files) and original source files must be available. In
addition, all .EXE and.DLL files for the application must be located in the same
directory.

Searching for source code
When you load a program or module into Turbo Debugger, the debugger searches for
the program's source code in the following order:

1 In the directory where the compiler found the source files.
2 In the directory specified in the Options I Path for Source command.
3 In the current directory.
4 In the directory where the .EXE and .DLL files reside.

Note Directories specified with the -sd command-line option override any directories set
with the Options I Path for Source command.

Specifying program arguments
Once your program is loaded into Turbo Debugger, you can use the Run I Arguments
command to set or change the arguments supplied to your program. See page 26 for
more information on this command.

If Y9u load your program using Turbo Debugger's command-line syntax (as described
on page 17), you can supply arguments to the program you're debugging by placing
them after the program name in the command line. For instance, the following
command loads the program myprog into TD32 with the command-line arguments a, b,
andc:

td32 myprog abc

Restarting a debugging session
When you exit Turbo Debugger, it saves to the current directory a session-state file that
contains information about the debugging session you're leaving. When you reload
your program from that directory, Turbo Debugger restores your settings from the last
debugging session.

By default, all history lists, watch expressions, Clipboard items, breakpoints, operating
system exception settings, and C++ and C exception settings are saved to the session
state file. Session-state files are named XXXX.TR, XXXX.TRW, and XXXX.TR2 by TD,
TDW, and TD32, respectively, where XXXX is the name of the P!ogram you're
debugging. If no program is loaded when you exit Turbo Debugger, then XXXX will be
the debugger's executable file name (TD, TDW, or TD32).

Chapter 2, Starting Turbo Debugger and running your program 21

The Options I Set Restart Options command opens the Restart Options dialog box, from
where you can customize how Turbo Debugger handles the session-state files.

Figure 2.3 The Set Restart Options dialog box

The Restore at Restart check boxes specify which debugger settings you want saved to
the session-state file, and the Use Restart Info radio buttons specify when the session
state file should be loaded.

Because breakpoint line numbers and variable names can change when you edit and
recompile your source code, the Use Restart Info radio buttons give you the following
options for loading the session-state file:

Always

Ignore if old

Prompt if old

Never

Always use the session-state file.

Don't' use the session-state file if you've recompiled your program.

Turbo Debugger asks if you want to use the session-state file if
you've changed your program.

Do not use the session-state file.

These options can also be specified using command4ine switches.

Note If, while debugging, you encounter a problem that freezes your system, it is best to
delete any session state files before restarting the Turbo Debugger. This can be done by
either deleting the session state files or by starting the debugger with the -jn command
line option.

Just-in-time debugging
Windows NT gives TD32 the ability to trap application exceptions, even when TD32 is
not running. If your application encounters an exception, the Windows NT Program
Registry can automatically launch TD32. TD32 then displays the source line where the
exception occurred.

To set up just-in-time debugging, you must specify a debugger in the Windows NT
program registry. Once set up, Windows NT starts the registered debugger in the event
of an application error. This, mechanism lets you connect TD32 to any process that fails.

Windows NT displays an Application Error dialog box when an unhan<:Ued exception
occurs. The dialog box provides an OK button, which you can choose to terminate the
application. However, if you register a debugger in the Windows NT program registry,
the dialog box will also contain a CANCEL button. Choosing CANCEL invokes the
registered debugger.

22 ·Turbo Debugger User's Guide

To add TD32 to the program registry:

1 Run the program JITIME.EXE (located in your Borland C++ BIN directory) from
Windows NT.

2 Check one of the following:

• TD32: Registers TD32.EXE as the default debugger
• Dr. Watson: Registers WinSpector as the default debugger
• None: Does not register any debugger
• Other: Registers the debugger of your choice

3 Select Confirm Invocation if you want the Application Error dialog box to display a
Cancel button. If Confirm Invocation is not checked, Windows NT automatically
starts the selected debugger when any application error occurs.

Controlling program execution
The process of debugging-usually entails alternating between times when your program
has control, and times when Turbo Debugger has control. When the debugger has
control, you can use its features to search through your program's source code and data
structures, looking for where things have gone wrong. However, when your program
has control, you can't access the debugger's menus and windows; you must pause your
program's execution and allow the debugger to regain control. (TD32' s Wait for Child
command, explained on page 27, is an exception to this rule.)

Using the debugger's execution control mechanisms, you can specify when and where
you want the execution of your program to pause. Turbo Debugger offers the following
mechanisms to control your program's execution:

• if Single-Step" through machine instructions or source lines.
• Step over calls to functions.
• Run to a specified program location.
• Execute until the current function returns to its caller.
• if Animate" (perform continuous single-stepping).
• Reverse program execution.
• Run until a breakpoint is encountered.
• Run until a specific Windows message is encountered.
• Pause when an Object Pascal or a C++ or C exception is thrown.

Except for breakpoints, Windows messages, and Object Pascal and C++ exceptions, alJ.
execution control mechanisms are located on the Run menu.

The Run menu
The Run menu has a number of options for executing different parts of your program.
Since these commands are frequently used, most are linked to function keys.

C hap t e r 2, S tar tin 9 T u r boD e bug ge ran d run n i n 9 you r pro 9 ram 23

Run
[ill The Run command runs your program at full speed. Control returns to Turbo Debugger

when one of the following ev~nts occurs:

• Your program terminates.
• A breakpoint with a break action is encountered.
• You interrupt execution with the program interrupt key.
• A program error halts execution.
• A C++ or C exception that you have marked is thrown.

Go to Cursor
0J The Go to Cursor command executes your program up to the line containing the cursor

in the current Module window or CPU Code pane. If the current window is a Module
window, the cursor must be on a line of source code.

Trace Into
Known as single-stepping, this command executes a single source line or assembly-level
instruction at a time.

If the current window is a Module window, a single line of source code is.executed; if
it's a CPU window, a single machine instruction is executed. If the current source line
contains a function call, Turbo Debugger traces into the function, provided that it was
compiled with debug information. If the current window is a CPU window, pressing F7
on a CALL instruction steps to the called routine.

When you single-step through machine instructions (using Trace Into in the CPU
window or by pressing Alt+F7), Turbo Debugger treats certain sets of machine
instructions as a single instruction. This causes multiple assembly instructions to be
executed, even though you're single-stepping through the code.

Here is a list of the machine instructions that cause multiple instructions tp be executed
when you are single-stepping at the instruction level:

CALL

INT
LOOP

LOOPNZ

LOOPZ

Also stepped over are REP, REPNZ, or REPZ followed by CMPS, CMPS, CMPSW,
LODSB, LODSW, MOVS, MOVSB, MOVSW, SCAS, SCASB, SCASW, STOS,
STOSB, ot STOSW.

Turbo Debugger treats C++ class member functions and Object Pascal class methods
just like other functions; F7 traces into the source code if it's available.

Step Over
[ill The Step Over command, like the Trace Into command, executes a single line of source

code or machine instruction at a time. However, if you issue the Step Over command
when the instruction pointer is located at a routine call, Turbo Debugger executes that
routine at full speed, and places you at the statement following the routine call.

24 T u r boD e bug 9 e r Use r' s G u ide

When you step over a source line that contains multiple statements, Turbo Debugger
treats any routine calls in that line as part of the line-you don't end up at the start of
one of the routines. If the line contains a return statement, Turbo Debugger returns you
to the previously called routine.

The Run I Step Over command treats a call to a c++ class member function or Object
Pascal class method like a single statement, and steps over it like any other function call.

Execute To
[I[]lliJ Executes your program until the address you specify in the Enter Code Address to

Execute To dialog box is reached. The address you specify might never be reached if a
breakpoint action is encountered first, or if you interrupt execution.

Until Return
[I[][}]] Executes your program until the current routine returns to its caller. This is useful in two

circumstances: when you've accidentally single-stepped into a routine that you don't
need to debug, or when you've determined that the current routine works to your
satisfaction, and you don't want to slowly step through the rest of it.

Animate
Performs a continuous series of Trace Into commands, updating the screen after each
one. The animate command lets you watch your program's execution in "slow motion,"
and see the values of variables as they change. Press any key to interrupt this command.

After you choose Run I Animate, Turbo Debugger prompts you for a time delay
between successive traces. The time delay is measured in tenths of a second; the default
is 3.

Back Trace
[I[](E] If you're tracing through your program using F7 or Alt+F7, you can use Back Trace to

reverse the direction of program execution. Reverse execution is handy if you trace
beyond the point where you think there might be a bug, and you want to return to that
point.

Using the Back Trace command, you can back-trace a single-step at a time or back-trace
to a specified point that's highlighted in the Execution History window. Although
reverse execution is always available in the CPU window, you can execute source code
in reverse only if Full History is turned On in the Execution History window.

For complete instructions on the Execution History window, see page 28.

Instruction Trace
[I[][TI] The Instruction Trace command executes a single machine instruction. Use this

command when you want to trace into an interrupt, or when you're in a Module
window and you want to trace into a routine that doesn't contain debug information
(for example, a library routine).

Since you will no longer be at the start of a source line, issuing this command usually
places you inside a CPU window.

Chapter 2, Starting Turbo Debugger and running your program 25

Arguments
Use the ArguInents command to set or change the command-line arguInents sUpplied
to the program you're debugging. Enter new arguInents exactly as you would following
the name of your program on the command line.

Once you've entered the arguments, Turbo Debugger asks if you want to reload your
program from disk. You should answer "Yes" because most programs read the
argument list only when the program is first loaded.

Program Reset
@ill@' The Program Reset command terminates the program you're running and reloads it

from disk. You might use this command in the following circumstances:

• When you've executed past the place where you think there is a bug.

• When your program has terminated and you want to run it again.

• If you've suspended your application with the program interrupt key and you want
restart it from the beginning. Make sure, however, that you don't interrupt the
execution of your program if Windows kernel code is executing.

• If you want to debug a DLL that's already been loaded. To do so, set the Debug
Startup option in the Load Module Source or DLL Symbols dialog box to Yes for the
DLL you're interested in, and reset your program.

If you choose the Program Reset command while you're in a Module or CPU window,
the Turbo Debugger resets the Instruction Pointer to the beginning of the program.
However, the display is not changed from the location where you issued the Program
Reset command. This behavior makes it easy for you to resume debugging from the
position you were at prior to issuing the Program Reset command.

For example, if you chose Program Reset because you executed a few statements past a
bug, press Ctrl+F2 to reset your program and reposition the cursor up a few lines in your
source file. Pressing F4 will then run to that location.

Note Windows 3.x will free all your application resources only after it receives a WM_QDIT
message. Because of this, make sure you run your program to termination before you
issue the Program Reset command.

Warning! If you reset a dialog application that does not have a parent window, your system might
freeze when Turbo Debugger reloads the application.

Next Pending Status
The Next Pending Status command (available when you're debugging with Windows
NT) can be used when the Run I Wait for Child command is set to No. When Wait for
Child is set to No (and your program is running in the background while you're
accessing Turbo Debugger), you can use the Next Pending Status command to retrieve a
progr:am status message. To indicate that a status message has been sent, Turbo
Debugger's activity indicator displays PENDING. Status messages are sent on the
occurrence of events such as breakpoints and exceptions.

26 T u r boD e bug 9 e r Use r 's G u ide

Wait for Child
Wait for Child (used exclusively by TD32 for debugging Windows NT programs) can be
toggled to either Yes or No. When this option is set to No, you can access Turbo Debugger
while your program is running; you don't have to wait for your program to hit a
breakpoint or exception to access the debugger's views and menus.

This command can be useful when you're debugging interactive programs. For
example, if your program reads a lot of information from the keyboard, you can access
the debugger while the program is waiting for input. You can set breakpoints and
examine your program's data, even though your program has focus. Use the Refresh
option in TD32INST to set the rate that TD32 updates the information in its windows.

Interrupting program execution
If your 'program is running, you can interrupt the program execution to access Turbo
Debugger. Interrupting program execution is useful when you need to access Turbo
Debugger, but haven't set any breakpoints that will interrupt your program's execution.

If you are debugging a 32-bit program on Windows NT, you can press F12 to interrupt
your program and return to TD32. Other methods of interrupting your program are
described in the online file TD_RDME.TXT.,

Stopping in Windows code
If, when you return to Turbo Debugger, you see a CPU window without any
instructions corresponding to your program, you're probably in Windows kernel code.
If this happens, return to Turbo Debugger and set a breakpoint at a location you know
your program will execute. Next, run your program (F9) until it encounters the
breakpoint. You are now out of Windows code, and can resume debugging your
program.

Even though you can access the Module window, set breakpoints, and do other things
inside Turbo Debugger, there are a few things that you should not do while you're
stopped in Windows code:

• Don't single-step through your program. Attempting to single-step through
Windows kernel code can produce unpredictable effects.

• Don't terminate or reload your application or Turbo Debugger-this might cause a
system crash.

If you attempt to reload your application, Turbo Debugger displays a prompt asking
if you want to continue. Select No to return to Turbo Debugger.

Reverse execution
Turbo Debugger's execution history keeps track of each instruction as it's executed,
provided that you're tracing into the code. Using the Execution History window, you
can examine the instructions you've executed and, if you like, return to a point in the

C hap t e r 2, S tar tin 9 T u r boD e bug 9 era n d run n i n 9 you r pro 9 ram 27

program where you think there might be a bug. Turbo Debugger can record about 400
instructions.

Figure 2.4 The Execution History window

The following rules apply to reverse execution: '

• The execution history keeps track only of instructions that have been executed with
the Trace Into command (F7) or the Instruction Trace command (Alt+F7). However, it
will also track Step Over commands if the instructions listed on page 24 (in the "Trace
Into" section) and page 28 (in the "Reverse Execute" section) aren't executed.

• The INT instruction causes the execution history to be thrown out. You can't reverse
back over this instruction, unless you press Alt+F7 to trace into the interrupt.

• As soon as you use the Run command or execute past an interrupt, the execution
history is deleted. (It starts recording again when you resume tracing.)

• If you step over a function call, you won't be able to trace back beyond the instruction
following the return.

• Tracing back through a port-related instruction has no effect, because you can't undo
reads and writes.

• Turbo Debugger cannot execute in reverse any Windows code called by your
program, unless you are in the CPU window and the code is in a DLL you've selected
for debugging.

Although reverse execution is always available in a CPU window; you can only execute
source code in reverse if Full History is On. (Full History is found on the Execution
History SpeedMenu.) .

The Execution History window SpeedMenu
The SpeedMenu for the Execution History window contains the following commands:

Inspect
Takes you to the command highlighted in the Instructions pane. If·it is a line of source
code, you are shown that fine in the Module window. If there is no source code, the CPU
window opens with the instruction highlighted in the Code pane.

Reverse Execute
@J[ill Reverses program execution to the instruction highlighted in the window, and activates

the Code pane of the CPU window. If you selected a line of source code, you are
returned to the Module window. .

28 Turbo Debugger User's Guide

Note The following instructions don't cause the history to be thrown out, but they cannot
have their effects undone. Be prepared for unexpected side effects if you back up over
these instructions:

IN

OUT

Full History

INSB

INSW

OUTSB

OUTSW

Toggles from On to ,Off. If it's set to On, backtracing is enabled. If it's set to Off,
backtracing is disabled.

The Keystroke Recording pane
TD.EXE has an extra pane in the Execution History window that lets you execute back
to a given point in your program if you inadvertently destroy your execution history.

The Keystroke Recording pane at the bottom of the Execution History window becomes
active when you have keystroke recording enabled. The -k command-line option enables
keystroke recording (refer to Appendix A, page 145, for more information on the-k
command-line option). You can also use TDINST to set keystroke recording to On.

When Keystroke Recording is enabled, each line in the Keystroke Recording pane
shows how Turbo Debugger gained control from your running program (breakpoint,
trace, and so forth) and the location of your program at that time. The program location
is followed by the corresponding line of source code or disassembled machine
instruction.

Keystroke recording works in conjunction with reverse execution to let you return to a
previous point in your debugging session. When keystroke recording is turned on,
Turbo Debugger keeps a record of all the keys that you press, including the commands
you issue to the debugger and the keys you press when you're interacting with the
program you ·are debugging. The keystrokes are recorded in a file named XXXX.TDK,
where XXXX is the name of the program you're debugging.

The Keystroke Recording pane SpeedMenu
The local menu for the Keystroke Recording pane contains two commands: Inspect and
Keystroke Restore.

Inspect
When you highlight a line in the Keystroke Recording pane and choose Inspect from the
SpeedMenu, Turbo Debugger activates either the Module window or the CPU window
with the cursor positioned on the line where the keystroke occurred.

Keystroke Restore
If you highlight a line in the Keystroke Recording pane, then choose Keystroke Restore,
Turbo Debugger reloads your program and runs it to the highlighted line. This is
especially useful after you execute a Turbo Debugger command that deletes your
execution history.

C hap t e r 2, S tar tin 9 T u r boD e bug 9 era n d run n i n 9 you r pro 9 ram 29

Program termination
When your program terminates, Turbo Debugger regains control and displays a
message indicating the exit code that your program returned. After this, issuing any of
the Run menu options causes Turbo Debugger to reload your program.

The program segment registers and stack are usually incorrect after your program has
terminated, so don't examine or modify any program variables after termination.

Flesetting your program
When you're debugging a program, it's easy to accidentally step past the cause of the
problem. If you do, you can restart the debugging session by choosing Run I Program
Reset (Ctrl+F2) to reload your program from disk. Resetting a program doesn't affect any
debugging settings, such as breakpoints and watches.

Reloading the program from disk is the safest way to restart a program after it has
terminated. Since many programs initialize variables from the disk image of the
program, some variables might contain incorrect data if you restart the program
without first resetting it.

Exiting Turbo Debugger
~0 You can end your debugging session and return to the Windows Program Manager at

any time (except when you're in a dialog box or when_your program has control) by
pressing Alt+X. You can also choose File I Quit to exit the debugger.

30 Turho Debugger, User's Guide

Debugging with Turbo Debugger
Debugging is the process of finding and correcting errors ("bugs") in the programs you
write. Although debugging is not an exact science (the best debugging tool is your own
"feel" for where a program has gone wrong), you can always profit from developing a
systematic approach to finding and correcting program bugs.

This chapter discusses the basic tasks involved in debugging a program and describes
how you can use Turbo Debugger to accomplish these tasks. This chapter also provides
an overview of Turbo Debugger, including a section on the debugger's special features.

Debugging basics
The debugging process can be broadly divided into four steps:

1 Discovering a bug
2 Isolating the bug
3 Finding the bug
4 Fixing the bug

These four steps offer a simplified model of an actual debugging session. As a general
rule, it's best to divide your program into discrete sections and debug each section
separately. By verifying the functionality of each section before moving on, you can
debug even the largest and most complicated programs.

Regardless of your personal debugging approach, one thing remains constant: testing
and fixing source code is a part of producing software. As your programming projects
become more complex, you'll reduce the June you spend debugging by developing a
systematic method for testing your software.

Discovering a bug
The first debugging step can be painfully obvious. You run your program and the
computer freezes. However, the presence of a bug might not be so obvious. Your

Chapter 3, Debugging with Turbo Debugger 31

program might seem to work fine, until you enter a negative number or until you
examine the output closely. Only then do you notice that the result is off by a factor of .2
or that the middle initials are missing in a list of names.

When you create a schedule for the production of your program, be sure to schedule
time for a systematic test of your finished product. Be aware that if you don't
thoroughly test your software, the users of your program will discover the bugs for you.

Isolating the bug
The second step can sometimes be the most difficult part of the debugging process.
Isolating the bug involves narrowing down your code to the routine that contains the
programming error.

Sometimes you'll be able to determine the general location of the error as soon as you
see the problem. Other times, the error might show up in one place, and then in another.
If you can reproduce the bug (find a consistent series of steps that lead to the bug), you can
usually identify the routine that contains the problem.

If you can't reproduce the bug, you'll need to break your program up into individual
routines and debug and verify each routine separately. Turbo Debugger is the perfect
tool for this because you can check your program's data values before you run a routine,
and then recheck them after the routine runs. If a routine's output is correct, then you
can move on to the next routine in your program. If the output doesn't seem correct,
then it's time to delve deeper into the workings of the routine.

Finding the bug
Uncovering the cause of programming errors is the true test of software engineers.
Sometimes, just discovering the problem leads you to the error. For example, if you find
your name list is missing everyone's middle initial, it's likely that the bug is in the line
that prints the names.

Other bugs can spread themselves out through several routines, requiring that you
rethink the entire design of your program. In these cases, you must trace through
several functions, carefully scrutinizing the variables and data structures used in your
program. This is where Turbo Debugger can help the most. By studying a routine's
behavior while it runs, you can uncover the bugs that are hiding in your code.

Fixing the bug
The final step is fixing the error. Even though Turbo Debugger can help with finding the
bug, you cannot use the debugger to fix your program. Once you've found the bug, you
must exit Turbo Debugger to fix the source code, and then recompile your program for
the fix to take effect. However, you can use Turbo Debugger to test your theory of why
things went wrong; you don't need to recompile your program just to test a simple fix.

32 T u r boD e bug 9 e r Use r ' s, G u ide

What Turbo Debugger can do for you
Turbo Debugger helps with the two hardest parts of the debugging process: isolating
the bug and finding the bug. By controlling your program's execution, you can use
Turbo Debugger to examine the state of your program at any given spot. You can even
test your "bug hypothesis" by changing the values of variables to see how they affect
your program.

With Turbo Debugger, you can perform the following debugging functions:

Table 3.1

Function

Tracing

Stepping

Viewing

Inspecting

Watching

Changing

Back tracing

Turbo Debugger's debugging functions

D~sciip~()n
Executes your program one line at a time (stngle-stepping).

Executes your program one line at a time, but steps over any routine calls. If you're sure
that a routine is error-free, stepping over it speeds up debugging.

Opens special Turbo Debugger windows to see the state of your program from various
perspectives: variables and their values, breakpoints, the contents of the stack, a data file,
a source file, CPU code, memory, registers, numeric coprocessor information, object or
class hierarchies, execution history, or program output.

Delves deeper into the workings of your program by examining the contents of complex
data structures (such as arrays).

Isolates program variables and keeps track of their changing values as the program runs.

Replaces the current value of a variable, either globally or locally, with a value you
specify.

Traces backward through code that has already been executed.

Turbo Debugger's user interface
The Turbo Debugger environment consists of a series of menus, dialog boxes, and
special debugger windows. In addition, the debugger has many special features that
remain hidden to the casual user. To get the most out of Turbo Debugger, you should
become familiar with the features listed here and in the section "Turbo Debugger's
special features" on page 39.

Working with menus
Turbo Debugger's global menu system (called the menu bar), runs along the top of the
screen and lets you access the debugger's commands via menus. The menu bar is
always available, except when a dialog box is active. To open Turbo Debugger's menus,
use one of these methods:

• Press F10, then use Right arrow (~) or Left arrow (f-) to go to the desired menu and
press Enter.

• Press F10, then press the highlighted letter of any menu (press Spacebar for the
== (System) menu).

Chapter 3, Debugging with Turbo Debugger 33

• Press Alt plus the highlighted letter of any menu. The ~ (System) menu opens with
Alt+Spacebar. '

• Click the menu bar command with the mouse.

Once you access a menu, you can choose a command by pressing the highlighted letter
of the command or by clicking the command.

Working with windows
Turbo Debugger uses a number of windows that provide information about the
program you're'debugging. To make debugging easier, Turbo Debugger provides
many window-management commands that let you arrange and move through the
windows you open. The window-management commands are located on the Window
menu and on the == (System) menu.

Selecting a window
Each window that you open is numbered in the upper right comer to allow quick access
to that window. Usually, the Module window is window 1 and the Watches window is
window 2. The window you open next will be window 3; and so on.

You can activate any of the first nine open windows by pressing Alt in combination with
the window number. For example, if you press Alt+2 to make the Watches window
active, any commands you choose will affect that window and the items in it.

The bottom half of the Window menu lists the open windows. To activate a specific
window, open the Window menu and press the window number. If you have more
than nine windows open, the window list will include a Window Pick command;
)choose it to open a menu of all the windows open onscreen.

You can also cycle through the windows onscreen by pressing F6 (or choosing
Window I Next). This is handy if an open window's number is covered up and you
don't know which number to press t~ make it active.

Using window panes
If a window has panes-areas of the window reserved for specific types of data-you
can move from one pane to another by choosing Window I Next Pane or pressing Tab or
Shift+Tab.

As you move from pane to pane, you'll notice that a blinking cursor appears in some
panes and a highlight bar appears in others. If a cursor appears, you can move around
the text using standard keypad commands.

Moving and resizing windows
When you open a new window in Turbo Debugger, it appears near the current cursor
location. If the size or the location of the window is inconvenient, you can use the
Window I Size/Move command to adjust it. Once you give this command, use the
arrow keys to move the window, or use Shift and the arrow keys to resize the window.

, If you want to enlarge or reduce a window quickly, choose Window I Zoom (F5), or click
the mouse on the minimize or maximize box in the upper right comer of the window.

34 Turbo Debugger User's Guide

Closing and recovering windows
When you're through working with a window, you can close it by pressing Alt+F3, by
choosing Window I Close, or by clicking the close button in the upper left comer of the
window.

If you close a window by mistake, you can recover it by choosing Window I Undo Close
(AIt+F6). This works only for the last window you closed.

If your program has overwritten your environment screen with output (because you
turned off screen swapping), you can clean it up again with == (System) I Repaint
Desktop. To restore Turbo Debugger's screen layout to its opening setup, choose the
== (System) I Restore Standard.

SpeedMenus
Each Turbo Debugger window has a special SpeedMenu that contains commands
specific to that window. In addition, individual panes within a window can have
unique SpeedMenus. To access a SpeedMenu in the currently active window (or
window pane), do one of the following:

• Press the right mouse button inside the active window (or window pane).

• Press Alt+F10 to open the currently active window SpeedMenu.

• Press Gtrl and the highlighted letter of the SpeedMenu command to choose that
command (shortcut keys must be enabled for this to be effective).

Turbo Debugger's windows
Turbo Debugger uses windows (or views) to display information relating to the
program you're debugging. The many different windows in Turbo Debugger each
display a different type of information.

Although most of Turbo Debugger's windows are opened from the View menu, several
windows are opened by other means. For example, the Inspector window can be
opened by choosing the Data I Inspect command, or by pressing Gtrl+1 from the Module
window.

The View menu's windows
The View menu provides the entry point to the majority of Turbo Debugger's windows.
A brief outline of each of the View menu's windows is given in the following sections.

Breakpoints window
You use the Breakpoint window to set, modify, or delete breakpoints. A breakpoint
defines a location in your program where the debugger can pause the execution of your
program so you can examine its status.

Chapter 3, Debugging with Turbo Debugger 35

The Breakpoint window contains two panes: the left pane lists all set breakpoints and
the right pane describes the conditions and actions of the breakpoint highlighted in the
left pane. See Chapter 4 for a complete description of the Breakpoint window.

Stack window
The Stack window displays the current state of the program stack. The first function
called is listed on the bottom of window, with each subsequently called function layered
on top.

You can bring up and examine the source code of any function listed in the Stack
window by highlighting it and pressing Ctr/+/. In addition, you can open a Variables
window that displays all local variables and function arguments by highlighting a
function in the Stack window and pressing Ctr/+L. Chapter 5 provides detailed
information on the Stack window.

Log window
The Log window displays the contents of the message log, which contains a scrolling list
of messages and information generated as you work in Turbo Debugger. It tells you
such things as why your program stopped, the results of breakpoints, and the contents
of windows you saved to the log.

You can also use the log window to obtain information about memory usage, modules,
and window messages for your Windows application. For more information on the Log
window, see Chapter 4.

Watches window
The Watches window displays the values of variables and expressions. By entering
expressions into the Watches window, you can track their values as they change during
the program execution. Watches can be easily added to the Watches window by
pressing Ctrl+ W when the cursor is on a variable in the Module window. See Chapter 5
for more about the Watches window.

Variables window
The Variables window displays all the variables within a given scope of your program.
The upper pane of the window lists global variables and the lower pane shows any
variables local to the current function.

This Variables window is helpful when you want to find a routine or symbol whose
name you can't fully remember. By looking in the global Symbol pane, you can quickly
find what you want. Chapter 5 describes the Variables window in more detail.

Module window
The Module window is perhaps the most important window in the debugger, because it
displays the source code for the program module you're currently debugging (this
includes any DLLs your program might call). However, for the source code of a module
to be displayed, the module must be compiled with debug information. Chapter 7
describes the Module window and its commands.

36 T u r boD e bug 9 e r Use r 's G u ide

File window
. The File window displays the contents of any disk file; not just program modules as
with the Module window. You can view the file either as raw hex bytes or as ASCII text,
and you can search for specific text or byte sequences. Chapter 7 contains more
information about the File window.

CPU window
The CPU window (described in Chapter 8) displays the current state of the central
processing unit (CPU). This window has six panes showing: the program's·
disassembled machine instructions, the contents of the Windows selectors (in TDW.EXE
only), data as hex bytes, the stack as hex words, the CPU registers, and the CPU flags.

The CPU window is useful when you want to watch the exact sequence of instructions
that make up a line of source code, or the bytes that comprise a data structure. This view
is also used when you want to debug Assembler programs.

Dump window
The Dump window displays the raw hexadecimal contents of any area of memory.
(This window is the same as the Dump pane of a CPU window.)

Using the Dump window, you can view memory as characters, hex bytes, words,
doublewords, or any floating-point format. In addition, the SpeedMenu has commands
to let you modify the displayed data and manipulate blocks of memory. See Chapter 8
for more on the Dump window.

Registers window
The Registers window displays the contents of the CPU's registers and flags. This .
window has two panes, a registers pane and a flags pane. You can change the value of
any of the registers or flags through this window's SpeedMenu commands. Chapter 8
provides more information on the Registers window.

Numeric Processor window
The current state of the numeric coprocessor is displayed in the Numeric Processor
window. This window has three panes: one shows the contents of the floating-point
registers, one shows the values of the status flag values, and one shows the values of the
control flag.

This window can help you diagnose problems in routines that use the numeric
coprocessor. To reap the benefits of this window, you must have a good understanding
of how the numeric coprocessor works. See the online file TD _ASM. TXT for more
information about the Numeric Processor window.

Execution History window
The Execution History window (described in Chapter 2) displays machine instructions
or program source lines up to the last line executed. You use this view when you want
to execute code in reverse order. The window shows the following information:

C hap t e r 3, Deb u 9 gin 9 wit h T u r boD e bug 9 e r 37

• Whether you are tracing or stepping.
• The line of source code for the instruction about to be executed.
• The line number of the source code.

Hierarchy window
The Hierarchy window displays a hierarchy tree of all classes used by the current
module. The window has two panes: one for the class list, the other for the class
hierarchy tree. This window shows you the relationship of the classes used by the
current module. Using this window's SpeedMenu commands, you can examine the
data members and member functions (for c++ programs) or fields and methods (for
Object Pascal programs) of any class. See Chapter 10 for more information about using
the Hierarchy window.

Windows Messages window
The Windows Messages window (described in Chapter 9) displays a list of messages
sent to the windows in your Windows program. The panes in this window show the
windows th~t you've setup for message tracking, the type of messages you're tracking,
and the messages being tracked. .

Clipboard window
Turbo Debugger's Clipboard is used for clipping and pasting items from one debugger
window to another. The Clipboard window shows the items you have clipped and their

. item types. See page 41 for more information on Turbo Debugger's Clipboard.

Duplicating windows
Use the View I Another command on the Views menu to duplicate the following three
windows: the Dump window, the File window, and the Module window.

Using the Another command lets you keep track of different areas of assembly code,
different program files, or different areas of memory.

Other windows
In addition to the windows listed on the Views menu, Turbo Debugger also lets you
access Inspector windows and the user screen.

Inspector windows
An Inspector window displays the current value of a selected variable. Open it by
choosing Data I Inspect or Inspect from a SpeedMenu. Usually, you close this window
by pressing Esc or clicking the close box with the mouse. If you've opened more than
one Inspector window in succession, as often happens when you examine a complex
da'ta structure, you can remove all the Inspector windows by pressing Alt+F3 or using the
Window I Close command.

You can open an Inspector window to look at an array of items or to examine ,the
contents of a variable or expression. The number of panes in the window depends on

38 T ur boD e bug 9 e r Use r 's G u ide

the nature of the data you are inspecting; Inspector windows adapt to the type of data
being displayed.

Inspectors display simple scalars (for example, C and C++ int, float; or Object Pascal
integer, real), pointers, arrays, structures, records, unions, classes, and objects. Each

. type of data item is displayed in a way that closely mimics the way you're used to
seeing it in your program's source code.

Note You can create additional Inspector windows by choosing the Inspect command from
within an Inspector window.

User screen
The user screen shows your program's full output screen. The screen you see is exactly
the same as the one you would see if your program was running directly under
Windows and not under Turbo Debugger.

You can use this screen to check that your program is at the place in your code that you
expect it to be, and to verify that it's displaying what you want on the screen. To switch
to the user screen, choose Window I User Screen. After viewing the user screen, press
any key to return to the debugger screen.

Alt+FS is the hot key that toggles between the environment and the user screen.

Turbo Debugger's special features
Turbo Debugger has many special features that make debugging easier. To get the most
out of your Turbo Debugger sessions, take the time to become familiar with the
following features:

• Automatic name completion
• Select by typing
• Incremental matching
• Keyboard macro capability
• The Clipboard
• The Get Info text box
• The Attach command (TD32 only) .
• The as Shell command (TD and TD32 only)
• Comprehensive help

Automatic name completion
Whenever an input box prompts you for a symbol name, you can type in just part of the
symbol name and then press Ctrl+N to have Turbo Debugger's automatic name completion
fill in the.rest of!thename for you.

The following rules apply to automatic name completion:

@illffi] • If you have typed enough of a name to uniquely identify it, Turbo Debugger fills in
the rest of it.

C hap t e r 3, Deb u 9 gin 9 wit h T u r boD e bug 9 e r 39

• If the name you have typed so far is not the beginning of any known symbol name,
nothing happens.

• If you type something that matches the beginning of more than a single symbol, a list
of matching names is presented so you can choose the one you need.

Note If READY ••. appears in the upper right comer of the screen, it means the symbol table is
being sorted. Ctrl+N won't work until the ellipsis disappears, indicating that the symbol
table is available for name completion.

Select by typing
A number of windows lets you st~rt typing a new value or search string without first
choosing a SpeedMenu command. Select by typing usually applies to the most frequently
used SpeedMenu commands, like Goto in a Module wirldow, Search ina File window,
or Change in a Registers window. .

Incremental matching
Turbo Debugger's incremental matching. feature helps you find entries in alphabetical
lists. As you type each letter, the highlight bar moves to the first item starting with the
letters you've just typed. The position of the cursor in the highlighted item indicates
how much of the name you have already typed.

Once an item is selected (highlighted) from a list, you can press Alt+F10 or click the right
mouse button to display the SpeedMenu and choose a command relevant to the
highlighted item. In many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local-menu commands.

Keyboard macros
Macros are simply hot keys that you define. You can assign any series of commands and
keystrokes to a single key, and use them whenever you want.

The Macros menu
The Macros command (located on the Options menu) displays a pop-up menu that
provides commands for defining new keystroke macros and deleting ones that you no
longer need. It has the following commands: Create, Stop Recording, Remove,. and
Delete All.

Create
When issued, the Create command starts recording keystrokes to an assigned macro
key. As an alternative, press the Alt+=(Alt+Equal) hot key for Create.

When you choose Create to start recording, you are prompted for a key to assign the
macro to. Respond by typing in a keystroke or combination of keys (for example,
Shift+F9). The message RECORDING will be displayed in the upper right comer of the screen
while you record the macro.

40 Turbo Debugger User's Guide

Stop Recording
The Stop Recording command terminates the macro recording session. Use the Alt+
(Alt+Hyphen) hot key to issue this command or press the macro keystroke that you are
defining to stop recording.

Do not use the Options I Macro I Stop Recording menu selection to stop recording your
macro, because these keystrokes will then be added to your macro.

Remove
Displays a dialog box listing all current macros. To delete a macro, select it from the list
and press Enter.

Delete All .
Removes all keystroke macro definitions and restores all keys to their original meaning.

The Clipboard
Turbo Debugger has an extensive copy and paste feature called the Clipboard. With the
Clipboard you can copy and paste between Turbo Debugger windows and dialog
boxes.

The items copied to the Clipboard are dynamic; if an item has an associated value, the
Clipboard updates the value as it changes during your program's execution.

To copy an item into the Clipboard, position the cursor on the item (or highlight it with
the Ins and arrow keys), then press Shift+F3. To paste something into a window or dialog
box from the Clipboard, press Shift+F4 (or use the Clip button in the dialog box) to bring
up the Clipboard's Pick dialog box.

The Pick dialog box
Pressing Shift+F4 (or a dialog box's Clip button) brings up the Pick dialog box.

Figure 3.1 The Pick dialog box

The Pick dialog box contains a list of the items in the Clipboard and a set of radio
buttons that lets you paste the items in different ways: .

String String pastes the Clipboard item.

Location Location pastes the address of the Clipboard item.

Contents Contents pastes the contents located at the address of the Clipboard item.

C hap t e r 3, 0 e bug gin 9 wit h T u r boD e bug 9 e r 41

To paste an item, highlight it, select how you want to paste it, and click either OK or Paste,
depending on whether you wantto edit the entrY:

• If you want to edit the entry, choose OK to copy the Clipboard item to the input box.
Once the item is copied, you can edit the entry before pressing Enter.

• If you don't need to edit the entry, click Paste to copy the Clipboard item to, the input
box and to cause the dialog box to immediately perform its function.

The Clipboard window
TheClipboard window (opened with the View I Clipboard command) displays the
entire contents of the Clipboard.

Figure 3.2 The Clipboard window

Each listing in the Clipboard window begins with the Clipboard item type. The item
type is followed with the Clipboard item, and (if the item is an expression) the item's
value. The following table shows Turbo Debugger's Clipboard item types:

Table 3.2

Address

Control flag

Coprocessor

CPU code

CPU data

CPU flag

CPU register

CPU stack

Expression

File

Inspector

Module

Status flag

String

Clipboard item types

An address without data or code attached

An SOxS7 control flag value

An SOxsy numeric coprocessor register

An adsiress and byte list of executable instructions from the Code pane of the CPU
window

An address and byte list of data in memory from the Dump pane of the CPU window or
the Dump window

A CPU flag value from the Flags pane of the CPU window

A register name and value from the Register pane of the CPU window or the Registers
window

A source position and stack frame from the Stack pane of the CPU window

An expression from the Watches window

A position in a file (in the File window) that isn't a module in the program

One of the following:
• A variable name from an Inspector window
• A constant value from an Inspector or Watches window
• A register-based variable from an Inspector window
• A bit field from an Inspector window

A module context, including a source code position, like a variable from the Module
window

An SOxS7 status flag value

A text string; like a marked block from the File window

42 Turbo Debugger User's Guide

When pasting items, be careful to match the Clipboard item type with the type that the
input field is expecting.

The Clipboard window SpeedMenu
The Clipboard window SpeedMenu contains the commands Inspect, Remove, Delete
All, and Freeze.

The Inspect command positions the cursor in the window from which the item was
clipped.

Remove deletes the highlighted Clipboard item or items. Del is a shortcut for the
Remove command.

The Delete All command erases the contents of the Clipboard.

Freeze stops the Clipboard item's value from being dynamically updated. When you
freeze an item's value, an asterisk (*) is displayed next to the entry in the Clipboard
window.

Dynamic updating
The Clipboard dynamically updates the values of any items that can be evaluated, such
as expressions from the Watches window. However, the Freeze command on the
Clipboard window SpeedMenu lets you tum off the dynamic updating for specific
Clipboard items. This lets you use the Clipboard as a large Watches window, where you
can freeze and unfreeze items as you like.

The Get Info text box
The File I Get Info command opens the System Information text box, which displays
general system information. Once you've finished examining the system information,
close the text box by pressing Enter, Spacebar, or Esc.

The System Information text boxes display different sets of information, depending on
the operating system in use. The title bar of the System Information text box lists the
operating system: Windows 3.x, Windows 95, or Windows NT. Figure 3.3 shows the Get
Info text box used with Windows NT.

Figure 3.3 The Get Info text box

. All System Information text boxes display the following general information:

Chapter 3, Debugging with Turbo Debugger 43

• The name of the program you're debugging.

• A status line that describes how Turbo Debugger gained controL (A complete listing
of Status line messages is given on page 169.)

• The DOS or Windows version number.

• The current date and time.

In addition to the general information previously listed, TDW's System Information text
box provides the followihg global memory information:

Table 3.3 TOW's System Information text box

Mode Memory modes can be large-frame EMS, small-frame EMS, and non-EMS (extended
memory).

Banked The amount in kilobytes of memory above the EMS bank line (eligible to be swapped to
expanded memory if the system is using it).

Not banked The amount in kilobytes of memory below the EMS bank line (not eligible to be swapped
to expanded memory).

Largest The largest contiguous free block of memory, in kilobytes.

Symbols The amount of RAM used to load you program's symbol table.

TDW's System Information text box contains an additional field located under the
Global Memory information. The Hardware field displays either Hardware or Software,
depending on whether or not the TDDEBUG.386 device driver has been installed. For
information on hardware debugging, see page 56.

In addition to the general information previously listed, the Windows NT System
Information text box displays the following memory statistics:

Table 3.4 Windows NT System Information text box

Memory Load Factor

Physical

Page file

Virtual

Displays the percentage of used RAM.

Displays the available and total amounts of your system's RAM.

Displays the size of the current page file, and th~ file's maximum size.

Displays the available and total amounts of virtual memory.

The Attach command
The File I Attach command lets you connect TD32 to a process that's already running
,under Windows NT. This command is useful when you know where a program
encounters problems, but are having difficulties reproducing the problem when the
program runs under the debugger. By running your program up to the pointof
difficulty, and then attaching to it, you can start your debugging session at the point
where things begin to go wrong.

44 Turbo Debugger User's Guide

When you issue the File I Attach command, the Attach to and Debug a Running Process
dialog box opens.

Figure 3.4 The Attach to and Debug a Running Process dialog box

To attach to a running process,

Run the process you want to debug.

2 Start TD32.

3 Choose File I Change Dir to change to the directory of the running process.

4 Choose File I Attach to open the Attach to and Debug a Running Process dialog box.

5 Check or clear the Stop on Attach check box according to the following criteria:

• Check the Stop on Attach check box if you want Turbo Debugger to pause the
process' execution when you attach to it.

• Clear the Stop on Attach check box if you don't want to pause the process when
you attach to it.

6 Choose a process from the Processes list box (or enter a process identification number
into the Process'ID input box), and choose OK.

If the process contains debug information, and Turbo Debugger can find the source
code, then the Module window opens with the cursor positioned at the instruction
pointer, otherwise the CPU window opens. However, if the process is executing
Windows code when you attach to it, then the cursor is positioned at the beginning of
the program.

Once you attach to a running process, you can access Turbo Debugger and debug the
process as you normally would.

If you disconnect Turbo Debugger from the running process while it's running (by
either resetting the program, exiting Turbo Debugger, or loading a new program), the
process terminates. If you reset or terminate a debugging session that was started with
the Attach command, you must start a new debugging session.

The as Shell command
The File I OS Shell command, found inTD and TD32, works with DOS and the
Windows NT operating systems. When you issue this command, Turbo Debugger'

Chapter 3, Debugging with Turbo Debugger 45

opens a command prompt. To return to the debugger from the command prompt shell,
type Exit.

Getting' help
Turbo Debugger offers several ways to obtain help while you're in the middle of a
debugging session:

[ill - You can access an extensive context-sensitive help system by pressing F1. Press F1
again to bring up an index of help topics from which you can select what you need.

-An activity indicator in the upper right comer always displays the current activity.
'For example, if your cursor is in a window, the ,activity indicator reads READY; if there's
a menu visible, it reads MENU;jf you're in a dialog box, it reads PROMPT. Other activity
indicator modes are SIZE/MOVE, MOVE, ERROR, RECORDING, REMOTE, WAIT, RUNNING, HELP, STATUS,
PENDING, and PLAYBACK.

- The status line at the bottom of the screen always offers a quick reference summary of
keystroke commands. The line changes as the context changes and as you press Alt or
etrl. Whenever you are in the menu system, the status line offers a one-line synopsis
of the current menu command.

Online help
Turbo Debugger offers context-sensitive help at the touch of a key. Help is available
anytime you're in a menu or window, or when an error message or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent to the current context
(window or menu). If you have a mouse, you can also bring up help by clicking F1 on
the status line. Some Help screens contain highlighted keywords that let you get
additional help on that topic. Use the arrow keys to move to any keyword and then
press Enterto get to its screen. Use the Home and End keys to go to the first and last
keywords on the screen, respectively.

You can also access the onscreen help feature by choosing Help from the menu bar
(Alt+H).

To return to a previous Help screen, pressAlt+F1 or choose Previous Topic from the Help
menu. From within the Help system, use PgUp to scroll back through up to 20linked
help screens. (pgDn works only when you're in a group of related screens.) To access the
Help Index, press Shift+F1 (or F1 from within the Help system), or choose Index from the
Help menu. To get help on Help, choose Help I Help on Help. To exit from Help, press
Esc.

The status line
Whenever you're in Turbo Debugger, a quick-reference help line appears at the bottom
of the screen. This status line always provides help for the current context.

When you're in a window, the status line shows the commands performed by the
function keys.

46 Turbo Debugger User's Guide

Figure 3.5 The normal status line

If you hold down the Alt key, the commands performed by the Alt-key combinations are
displayed.

Figure 3.6 The status line with Alt pressed

If you hold down the Ctr! key, the commands performed by the Otrl-key combinations are
displayed on the status line. Because this status line shows the keystroke equivalents of
the current SpeedMenu commands, it changes to reflect the current window and pane.
If there are more SpeedMenu commands than can be described on the status line, only
the first keys are shown.

Figure 3.7 The status line withetrl pressed

Whenever you're in a menu or dialog box, the status line displays an explanation of the
current item. For example, if you have highlighted View I Registers, the status line says
Open a CPU registers window.

C hap t e r 3, Deb u 9 gin 9 wit h T u rb 0 Deb u 9 9 e r 47

48 Turbo Debugger User's Guide

Setting and using breakpoints
Breakpoints are tools that you use to control the execution of your program. By setting
breakpoints in the areas of your program that you want to examine, you can run your
program at full speed, knowing that its execution will pause when the breakpoints are
encountered. Once your program's execution is paused, you can use Turbo Debugger's
features to examine the state of your program.

In this chapter, you'llieam how to set the following types of breakpoints:

• Simple breakpoints
• Expression-true breakpoints
• Changed-memory breakpoints
• Global breakpoints
• Hardware breakpoints

This chapter also describes the Log window (see page 63), which lets you "take notes"
during your debugging session.

Breakpoints defined
Turbo Debugger defines a breakpoint in three ways:

• The location in the program where the breakpoint is set.
• The condition that allows the breakpoint to activate.
• The action that takes place when the breakpoint activates.

Breakpoint locations
A breakpoint is usually set on a specific source line or machine instruction in your
program. When set at a specific location, Turbo Debugger evaluates the breakpoint when
your program's execution encounters the code containing the breakpoint.

C hap t e r 4, Set tin 9 and u sin 9 b rea k poi n t s 49

However, a breakpoint can also be global in context. Turbo Debugger evaluates global
breakpoints after the execution of each line of source code or machine instruction. Global
breakpoints let you pinpoint-where in your program a variable or pointer gets modified.

Breakpoint conditions
When your program's execution encounters a breakpoint, Turbo Debugger checks the
breakpoint's condition to see if the breakpoint should activate. If the condition evaluates
to true, the breakpoint activates, and its actions are carried out.

The condition of a breakpoint can be any of the following:

• Always activate when the breakpoint is encountered.
• Activate when an expression evaluates to true.
• Activate when a data object changes value.

In addition to the breakpoint condition, a pass count can be specified, requiring that a
breakpoint be encountered a designated number of times before it activates.

When you're deb1Jgging programs written for Windows NT, you can also set
breakpoints that relate to specific program threads. For more on setting breakpoints on
program threads, see the section "Setting breakpoints on threads" on page 62.

Breakpoint actions
When a breakpoint activates, it performs a specified action. A breakpoint's action can be
any of the following:

• Pause the program's execution.
• Log the value of an expression.
• Execute an~expression.
• Enable a group of breakpoints.
• Disable a group of breakpoints.

The Breakpoints window
The Breakpoints window, opened with the View I Breakpoints command, lists all
currently set breakpoints.

Figure 4.1 The Breakpoints window

Breakpoints List pane Breakpoints Detail pane

The Breakpoints window has two panes. The List pane (on the left) lists th~ addresses of
all currently s~t breakpoints. The Detail pane (on the right) displays the condition and

50 Turbo Debugger User's Guide

action settings of the breakpoint that's highlighted in the List pane. (Although a
breakpoint can have several sets of conditions and actions, the Detail pane displays only
its first set of details.)

The Breakpoints window SpeedMenu
You access the SpeedMenu of the Breakpoints window through the List pane. The
commands in this menu let you add new breakpoints, delete existing ones, and change a
breakpoint's settings.

Breakpoint types
In Turbo Debugger, you can create the following types of breakpoints:

Table 4.1 Breakpoint types

B~~p~t:tW~,> ..
Simple breakpoints

Expression-true breakpoints

Changed-memory breakpoints

Global breakpoints

Hardware breakpoints

Always pause your program's execution when they're encountered.

Pause your program when an expression you enter evaluates to true
(nonzero).

Pause your program when a specific location in memory changes
value.

Expression-true or changed-memory breakpoints that are evaluated
after the execution of each source line or machine instruction is
executed.

Global changed-memory breakpoints that are hardware assisted.

Note You can also set breakpoints on window messages. For a complete description of
message breakpoints, refer to Chapter 9, page 115.

Setting simple breakpoints
When you first set a breakpoint, Turbo Debugger creates a simple breakpoint by default.
Simple breakpoints are set on specific lines of code and contain a condition of "Always"
and an action of "Break."

When you begin a debugging session, you can quickly reach the sections of code you
want to examine by setting simple breakpoints in the cod~. After setting the
breakpoints, run your program using F9; the program's execution will pause when it
encounters the breakpoints.

Although there are several ways to set simple breakpoints, the Module window and the
Code pane of the CPU window offer the easiest methods:

• If you're using the keyboard, place the cursor on any executable line of source code
(or on any machine instruction in the Code pane of the CPU window) and press F2.
(In the Module window, executable lines of source code are marked with a"·" in the
leftmost column.) The Breakpoint I Toggle command provides the same functionality.

C hap t e r 4, Set tin 9 and us in 9 b rea k poi n t s 51

Whenever you set a breakpoint, the line containing the breakpoint rums red. Pressing
F2 again removes the breakpoint.

• Alternately, if you're using a mouse, click either of the two leftmost columns of the
line where you want the breakpoint set. (When you're in the correct column, an
asterisk (*) appears inside the mouse pointer.) Clicking the line again removes the
breakpoint.

• The Breakpoint I At command also sets a simple breakpoint on the current line in the
Module window or Code pane of the CPU window. However, in addition to setting
the breakpoint, the At command opens the Breakpoint Options dialog box, giving
you quick access to the commands that let you customize the breakpoint. The hot key
for At is Alt+F2.

In addition to setting breakpoints from the Module and CPU windows,
Turbo Debugger offers the following commands for setting simple breakpoints:

• You can set breakpoints on the entry points of all the functions in the currently
loaded module, or on all member functions (or methods) in a class, using the
Breakpoints window SpeedMenu Group command. For more information on this
command, see page 59.

• You can use the Add command on the Breakpoint window SpeedMenu to set
breakpoints. This command opens the Breakpoint Options dialog box and positions
the cursor on an empty Address input box. Enter an address or line number
expression for which you'd like a breakpoint to be set. '

For example, if you'd like to set a breakpoint at line number 3201 in your source code,
type #3201 in the input box. If the line of code is in a module other than the one
displayed in the Module window, type a pound sign (#) followed by the module
name, followed by another pound sign and the line number. For example:
#OTHERMOD#3201.

You can also access the Add command by typing an address directly into the
Breakpoints 'window. After typing the first character of the address, the Breakpoint
Options dialog box opens with the Address input box §lctive.

Once you set a breakpoint, you can modify the action that it will take when it activates.
The default action is "Break"-Turbo Debugger pauses the program's execution when
the breakpoint is activated. For a list of possible breakpoint actions, see page 56. '

Setting expression-true breakpoints
Expression-true breakpoints, like simple breakpoints, are set at specific program locations.
However, unlike simple breakpoints, expression-true breakpoints have special
conditions and actions addedto their definitions.

Sometimes, you will not want a breakpoint to activate every time it's encountered,
especially if the line containing the breakpoint is executed many times before the actual
occurrence you're interested in. Likewise, you might not always want a breakpoint to
pause the program's execution. With Turbo Debugger, you can specify when a
breakpoint should activate and the actions it should take when it does activate.

52 T u r boD e bug 9 e r Use r 's G u ide

Expression-true breakpoints are essentially simple breakpoints that have been
customized. The following steps explain how to create an expression-true breakpoint:

1 Set a simple breakpoint (as described in the previous section).

2 Open the Conditions and Actions dialog box:

1 Open the breakpoints window, and highlight the desired breakpoint in the List
pane.

2 Choose Set Options from the SpeedMenu to open the Breakpoint Options dialog
box.

Figure 4.2 The Breakpoint Options dialog box

The Breakpoint Options dialog box contains commands that let you modify
breakpoint settings. The Conditions and Actions list box displays the current
settings of the selected breakpoint.

3 To modify a breakpoint's condition and action settings, click the Change button to
open the Conditions and Actions dialog box.

Figure 4.3 The Conditions and Actions dialog box

The Conditions and Actions dialog box lets you customize the conditions under
which a breakpoint is activated, and the actions that take place once the conditions
are met.

3 Select the Expression True radio button.

By default, the breakpoint's condition is set to Always-the breakpoint will activate
each time it is encountered by the program's execution. Clicking the Expression True
radio button specifies that the breakpoint should activate when an expression you
supply becomes true (nonzero).

Chapter 4, Setting and using breakpoints 53

4 Enter the expression you want evaluated each time the breakpoint is encountered·
into the Condition Expression input box.

5 If needed, specify a pass count with the breakpoint settings.

The Pass Count input box lets you set the number of times the breakpoint condition
set must be met before the breakpoint is activated. The default number is 1. The pass
count is decremented only when the entire condition set attached to the breakpoint is
true; if you set a pass count to n, the breakpoint is activated the nth time the entire
condition set evaluates to true.

6 If you want to change the breakpoint's default action, click the desired Action radio
button and enter any pertinent action expression into the Action Expression input
box. Page 56 lists the different actions that you can associate with a breakpoint. For a
list of possible breakpoint actions, see page 56.

See page 58 for details on entering breakpoint conditic)fl and action sets.

7 Choose OK or press Esc to exit the Conditions and Actions dialog box.

Setting changed-memory breakpoints
Changed-memory breakpoints (sometimes known as watchpoints) monitor expressions that
evaluate to aspecific data object or memory locati~n. Set on specific lines of code,
changed-memory breakpoints activate if a data object or memory pointer has changed
value.

To set a changed-memory breakpoint, follow the same instructions for setting an
expression-true breakpoint (described in the preceding section), with two exceptions:

In the Conditions and Actions dialog box, click the Changed Memory radio button
instead of the Expression True radio button.

2 In the Condition Expression input box, enter an expression that evaluates to a
memory location (a data object or memory pointer).

Note When your program's execution encounters a line that contains a changed-memory
breakpoint, the condition expression is evaluated before the line of code gets executed.
Because of this, carefully consider the placement of changed-memory breakpoints:

When entering an expression, you can also enter a count of the number of objects you
want monitored. The total number of bytes watched in memory is the size of the object
that the expression references times the object count.

For example, when coding in C, suppose you have declared the following array:

intstring[81li

You can watch for a change in the first ten elements of this array by entering the
following item into the Condition Expression input box:

&string[Ol I 10
. .

The area monitored is thus 20 bytes long-an int is 2 bytes and you instructed
Turbo Debugger to monitor ten of them.

54 Turbo Debugger User's Guide

Or, suppose you declared the following Object Pascal array:

IntArray : ARRAY[1 .. 100] OF integer;

You can watch for a change in the first ten elements of this array by entering the
following item into the Condition Expression input box:

IntArray[l] I 10

The area monitored is thus 20 bytes long-an integer is 2 bytes and you instructed
Turbo Debugger to monitor ten of them.

Setting global breakpoints
Global breakpoints are essentially expression-true or changed-memory breakpoints with
the added characteristic that the breakpoint is monitored continuously during your
program's execution. Because Turbo Debugger checks the breakpoint conditions after
the execution of every line of source code or machine instruction, global breakpoints are
excellent tools for pinpointing code that's corrupting data.

To create a global breakpoint, first set either a changed-memory or expression-true
breakpoint, as described in the previous sections. Then, after you exit the Conditions
and Actions dialog box, check the Global check box in the Breakpoint Options dialog
box to spec,ify that the breakpoint should be global.

When you create a global breakpoint, the Address input box in the Breakpoint Options
dialog box reads <not available>; global breakpoints are not associated with specific
program locations.

Normally, Turbo Debugger checks a global breakpoint after the execution of every line
of source code. However, if you want Turbo Debugger to check the breakpoint after
every machine instruction, press F9 while the CPU window is active.

Because Turbo Debugger evaluates global breakpoints after the execution of every line
of source code or machine instruction, these breakpoints greatly slow the execution of
your program. Be moderate with your use of global breakpoints; use them only when
you need to closely monitor the behavior of your program.

Although it's possible to create a global breakpoint with a condition of" Always," it's
not recommended. Because the breakpoint condition is evaluated after the execution of
each source line, a condition of " Always" will cause the breakpoint to activate after the
execution of each line of code.

Global breakpoint shortcuts
The Breakpoints menu contains two commands that provide fast ways to set global
breakpoints: Changed Memory Global and Expression True Global. When you set a
breakpoint with either of these two commands, the breakpoint action is set to "Break"
by default.

Changed Memory Global sets a global breakpoint that's activated when an area of
memory changes value. When you issue this command, you're prompted for an area of
memory to watch with the Enter Memory Address, Count input box. For information

C hap t e r 4, Set tin 9 and u sin 9 b rea k poi n t s 55

on valid expression types, see the preceding "Setting changed-memory breakpoints"
section. .

Expression True Global sets a global breakpoint that is activated when the value oia
supplied expression becomes true (nonzero). When you select this command, you are
prompted for the expression to evaluate with the Enter Expression for Conditional
Breakpoint input box.

Setting hardware breakpoints
Hardware breakpoints, available with TOW and with TD32 when you debug Windows
NT programs, take advantage of the special debugging registers of Intel 80386 (or
higher) processors and certain hardware debugging boards. Hardware breakpoints let
your hardware monitor the global breakpoints, so you don't have to use CPU-expensive
software for that task.

Before you can set a hardware breakpoint in TOW, the TDDEBUG.386 device driver
must be copied to your hard disk and loaded by your CONFIGSYS file. If you want,
Turbo Debugger's installation program can complete the installation process for you, or
you can install it yourself by following the directions in the online file TO _HDWBP. TXT.
When TDDEBUG.386 is properly installed, the Breakpoints field in TOW's File I Get Info
dialog box reads Hardware; otherwise it reads Software.

To set a hardware breakpoint, choose the Hardware Breakpoint command from the
. Breakpoints menu. This command automatically checks the Global check box in the
Breakpoint Options dialog box, chooses the Hardware radio button in the Conditions
and Actions dialog box, and opens the Hardware Breakpoint Options dialog box. This .
dialog box contains all the hardware breakpoint settings, and is fully described in the
online text file TO _HDWBP.TXT.

You can also create a hardware breakpoint by modifying an existing breakpoint:

1 Check the Global check box in the Breakpoint Options dialog box.

2 Open the Conditions and Actions dialog box and choose the Hardware radio button.

3 Click the Hardware button in the Conditions and Actions dialog box to access the
H9-rdware Breakpoint Options dialog box.

4 Specify the hardware breakpoint settings and choose OK.

5 If needed, Bpecify the action settings in the Conditions and Actions dialog box.

When you set a hardware breakpoint, its listing in the Breakpoint window's List pane
will have an asterisk (*) displayed next to it.

Breakpoint actions
The Action radio buttons in the Conditions and Actions dialog box (Figure 4.3) specify
the actions that you want a breakpoint to perform when it activates. Each of the
following actions can be applied to any of the breakpoints you set.

56 T u r boD e bug 9 e r Use r 's G u ide

Break
The Break button (default) pauses your program when the breakpoint is activated.
When your program pauses, Turbo Debugger becomes active, and you can use its
windows and commands to view your program's state.

Execute
The Execute button executes an expression that you enter into the Action Expression
input box. For best results, use an expression that changes the value of a variable or data
object.

By "splicing in" a piece of code before a given source line, you can effectively test a
simple bug fix; you don't have to go through the trouble of compiling and linking your
program just to test a minor change to a routine. Keep in mind, however, that you
cannot use this technique to directly modify your compiled program.

Log
The Log button writes the value of an expression to the Log window. Enter the
expression you want evaluated into the Action Expression input box. (For more
information on the Log window, see page 63.)

This command is handy when you want to output a value each time you reach a specific
place in your program (this technique is known as instrumentation). By creating a
breakpoint with a Log action, you can log values each time the breakpoint activates.

For example, you can place a breakpoint at the beginning of a routine and set it to log
the values of the routine arguments. Then, after running the program, you can
determine where the routine was called from, and if it was called with erroneous
arguments. .

Note When you log expressions, be careful of expressions that unexpectedly change the
values of variables or data objects.

Enable group
The Enable Group button causes a breakpoint to reactivate a group of breakpoints that
have been previously disabled. Supply the group integer number to enable in the Action
Expression input box. See page 59 for information on breakpoint groups ..

Disable group
The Disable Group button lets you disable a group of breakpoints. When a group of
breakpoints is disabled, the breakpoints are not erased, they are simply hidden from the
debugging session. Supply the group integer number to disable in the Action
Expression input box.

C hap t e r 4, Set tin 9 and us in 9 b rea k poi n t s 57

Setting breakpoint conditions and actions
You use the Conditio~ and Actions dialog box, shown in Figure 4.3, to specify when a
breakpoint should activate, and what it should do when it does activate. Usually, you
will enter a single condition or action expression for any given breakpoint. However,
Turbo Debugger lets you create condition and action sets that contain multiple
expressions. In addition, a single breakpoint can have several condition and actions sets
associated with it. .

The following sections describe how to create· complex breakpoint condition and action
sets.

Creating. breakpoint condition sets
When you create an expression-true or changed-memory breakpoint, you must provide
a condition set so the debugger knows when to activate the breakpoint. A condition set
consists of one or more expressions. For the breakpoint to activatei every expression in
the condition set must evaluate to true. To create a condition set,

1 Choose either the Changed Memory or Expression True radio button.

2 Enter the condition expression into the Condition Expression input box.

3 Choose the Add button under the Condition Expression input box.

To enter more than one condition expression to a breakpoint's definition, repeat steps
2 and 3 until all your expressions have been added to the Condition Expression input
box.

The Delete button located below the Condition Expression input box lets you remove
the currently highlighted expression from the Condition Expression input box ..

Creating breakpoint action sets
When you select either an Execute, Log, Enable Group, or Disable Group Action radio
button, you must provide an action set so Turbo Debugger knows what to do when ,the
breakpoint activates. An action set is composed of one or more expressions. To create an
action set,

1 Choose either the Execute, Log, Enable Group, or Disable Group radio button.

2 Enter the action into the Action Expressi?n input box.

3 Choose the Add button under the Action Expression input box.

To execute more than one expression when the breakpoint activates, repeat steps 1,2,
and 3, until all expressions have been added to the Action Expression input box.

Note If the Enable Group or Disable Group radio button is chosen, type the breakpoint group
number into the Action Expression input box to reference the group of breakpoints you
want enabled or disabled.

58 Tu J boD e bug 9 e r Use r 's G u ide

The Delete button located below the Action Expression input box lets you remove the
currently highlighted expression from the action set.

When you have finished entering actions, choose OK on the Conditions and Actions
dialog box.

Multiple condition and action sets
A single breakpoint can have several condition and action sets associated with it. To
assign multiple condition and action sets to a single breakpoint, choose OK on the
Conditions and Actions dialog box after you have entered the first series of conditions
and actions. This closes the Conditions and Actions dialog box and returns you to the
Breakpoint Options dialog box. From here, choose the Add button to enter a new set of
conditions and actions.

Each condition and action set is evaluated in the order in which it was entered. If any
condition set evaluates to true, then the actions associated with those conditions are
performed.

To delete a condition and action set from a breakpoint's definition, select the Delete
button on the Breakpoint Options dialog box.

The scope of breakpoint expressions
Both the conditions and actions of a breakpoint are controlled by the expressions you
supply. Turbo Debugger evaluates breakpoint expressions with regards to the scope of
the breakpoint location, not the scope of the location where you happen to be when
you're entering the expressions.

Using scope-override syntax, you can access the values of any data objects that are
defined when the breakpoint is encountered. However, breakpoints that reference data
objects that are out of scope execute much more slowly than breakpoints that use only
local or global variables. For a complete discussion of scopes and scope overrides, see
" Accessing symbols outside the current scope" on page 83.

To modify a breakpoint that's set in a module that isn't currently loaded, you must use
scope-overriding syntax to identify the module. However, when setting and modifying
breakpoints, it's easiest to access the desired module using the View I Another I Module
command.

Breakpoint groups
Turbo Debugger lets you group breakpoints together, allowing you to enable, disable,
or remove breakpoints with a single action. In addition, you can set a group of break
points on all functions in a module or all member functions in a class with a single
command.

The Group command on the Breakpoints window SpeedMenu activates the Edit
Breakpoint Groups dialog box. Using this dialog box, you can create and modify
breakpoint groups.

C hap t e r 4, S e tt i n 9 and u sin 9 b rea k poi n t s 59

Figure 4.4 The Edit Breakpoint Groups dialog box

A breakpoint group is identified by a positive integer, generated automatically by
Turbo Debugger or assigned by you. The,debugger automatically assigns a new group
number to each breakpoint as it's created. The gr~)Up number generated is the lowest
number not already in use. Thus, if the numbers 1, 2, and 5 are already used by groups,
the next breakpoint created is automatically given the group number 3.

Once a breakpoint is created, you can modify its group status with the commands in the
Edit Breakpoint Groups dialog box. You can also assign a breakpoint to a new or
existing breakpoint group with the Group ID input box on the Breakpoints window's
Breakpoint Options dialog box.

Creating breakpoint groups
The Add button on the Edit Breakpoint Groups dialog box activates the Add Group
dialog box. The Add Group dialog box contains one list box and a set of radio buttons
that let you add all functions in a single module, or all member functions (or methods)
in a class, to a breakpoint group.

The Module/Class listbox displays a list of the modules or classes contained in the
currently loaded program. Highlight the desired module or class and press OK to set
breakpoints on all routines in that module or class. All breakpoints set in this manner
are collected into a single breakpoint group.

Using the two radio buttons in the Add Group dialog box, you can select the type of
routines that are displayed in the Module/Class list box:

• The Modules radio button selects all modules contained in the current program.
• The Classes radio button selects all the classes contained in the current program.

Deleting breakpoint groups
The Delete button on the Edit Breakpoint Groups dialog box removes the group
currently highlighted in the Groups list box. Use this command with caution; all
breakpoints in the selected group, along with their settings, are permanently erased by
this command.

Enabling and disabling breakpoint groups
The Edit Breakpoint Groups dialog box contains two commands for enabling and
disabling breakpoint groups. The Enable button activates a breakpoint group that has
been previously disabled.

60 Turbo Debugger User's Guide

The Disable button temporarily masks the breakpoint group that is currently
highlighted in the Groups list box. Breakpoints that have been disabled are not erased;
they are merely set aside for the current debugging session. Enabling the group
reactivates all the settings for all the breakpoints in the group.

In addition to the two commands on the Edit Breakpoint Groups dialog box, you can
enable and disable breakpoint groups through the action settings of breakpoints. For
information on this feature, see page 58.

Navigating to a breakpoint location
The Inspect command on the breakpoint window SpeedMenu opens the Module or
CPU window, and positions the display at the location of the breakpoint that's
highlighted in the List pane. '

Note You can also invoke this command by pressing Enter once you have highlighted the
desired breakpoint in the List pane.

Enabling and disabling breakpoints
Checking the Disabled check box in the Breakpoint Options dialog box masks the
current breakpoint, hiding it until you want to reenable it by unchecking this box. When
the breakpoint is reenabled, all settings previously made to the breakpoint become
effective.

Disabling a breakpoint is useful when you have defined a complex breakpoint that you
don't need just now, but will need later. It saves you from having to delete the
breakpoint, and then reenter it along with its complex conditions and actions.

Removing breakpoints
You can erase existing breakpoints from either the Breakpoints window SpeedMenu, or
the Breakpoint menu.

The Remove command on the Breakpoint window SpeedMenu erases the breakpoint
currently highlighted in the List pane. Del is the hot key for this command.

The Delete All command, found on both the Breakpoint menu and the Breakpoints
window SpeedMenu, removes all the currently set breakpoints, including global
breakpoints and those set at specific addresses. Use this command with caution; its
effects cannot be reversed.

Setting breakpoints on C++ templates
Turbo Debugger supports the placement of breakpoints on C++ templates, function
templates, and template class instances and objects.

The method you use to set template breakpoints affects the way the breakpoints are set:

Chapter 4, Setting and using breakpoints 61

• If you set a breakpoint on a template by pressing F2 while in the Module window,
breakpoints are set on all class instances of the template. This lets you debug the
overall template behavior.

• If you press Alt+F2 to set a template breakpoint, the Breakpoint Options ,dialog box
activates, and you can enter the address of a template into the Address input box. A
dialog box opens that lets you choose a specific class instance for the breakpoint.

• You can set a breakpoint on a specific class instance of a template through the CPU
window. Position the cursor on a line of template code in a single class instance and
press F2 to set a breakpoint on that class instance only.

You remove template breakpoints just as you remove other breakpoints; position the
cursor on the breakpoint in the Module window and press F2. All breakpoints on
associated class instances are deleted.

You can remove specific template breakpoints by deleting them from the CPU window.
Position the cursor on the desired breakpoint in the CPU window and press F2 to it.

Setting breakpoints on threads
Programs written for the Windows NT operating system consist of one or more
executable "threads." When debugging a Windows NT program, you can set a
breakpoint on a specific thread, even though the code at the breakpoint location is
shared by multiple threads.

When you set a breakpoint in a Windows NT program, by default, the breakpoint is set
for all program threads. To specify that the, breakpoint should be checked for a single
thread only,

1 Highlight the desired breakpoint in the Breakpoints window's List pane.

2 Choose the List pane Set Options SpeedMenucommand.

3 Click the Change button in the Breakpoint Options dialog box to open the Conditions
and Actions dialog box. Set the b:(eakpoint's conditions and actions as needed.

By default, the All Threads check box is checked, indicating that the breakpoint is set
for all active threads.

4 Clear the All Threads check box; the Threads input box becomes available.

5 Type the Windows NT thread number you want to monitor into the Threads input
box.

To obtain a Windows NT thread number, open the Threads window with the View I
Threads command. The Threads List pane displays all currently active threads,
listing them by the Windows NT thread number and their given name.

6 Choose OK to confirm your breakpomt settings.

For more information on debugging threads, see "Debugging multithreaded programs"
on page 121.

62 , T u r boD e bug 9 e r Use r 's G u ide

The Log window
The Log window keeps track of the significant events that occur during your debugging
session. To open the Log window, choose View I Log.

Figure 4.5 The Log window

By default, the Log window can list 50 lines of text. However, you can change the
default using TDWINST.EXE or TDINST32.EXE.

The following debugging actions are tracked by the Log window:

• When your program pauses, the program location is recorded in the Log window.

• When you use the Log window's Add Comment command, your comment gets
added to the Log window.

• When a breakpoint activates that logs an expression, the value of the expression is
written to the Log window.

• When you choose the Edit I Dump Pane to Log command, the contents of a pane or
window are recorded in the Log window. .

• When you use the Display Windows Info command on the Log window SpeedMenu,
the global or local heap information, or the list of program modules is written to the
Log window.

• When you set Send to Log Window to Yes from the Windows Messages window, all
window messages sent to that window are copied to the Log window.

The Log window SpeedMenu
The commands in the Log window SpeedMenu let you write the log to a disk file, stop
and start logging, add a comment to the log, clear the log, and write information about a
Windows program to the log.

Open Log File
The Open Log File command causes all lines written to the Log window to also be
written to a disk file. When you choose this command, a dialog box prompts you for the
name of the disk file. By default, the log file's name is the name of your program,
followed by a .LOG extension.

When you open a log file, all the lines already displayed in the Log window are written
to the disk file. This lets you open a disk log file after you see something interesting in
the log that you want to record to disk.

Chapter 4, Setting and using breakpoints 63

If you want to start a disk log that doesn't contain the lines already displayed in the Log
window, choose Erase Log bef9re choosing Open Log File.

Close Log File
The Close Log File command closes the log file that you opened with the Open Log File
command.

Logging
The Logging command enables and disables the writing of events to the Log window.
Use this <;:ommand to control when events are logged. When logging is turned off, the
Log window's title bar displays Paused.

Add Comment
Add Comment lets you insert comments into the Log window. When you choose this
command, a dialog box opens, prompting you for a comment.

Erase Log
Erase Log clears the Log window. This command affects only what's in memory; the log
disk file is not erased by this command.

Display Windows Info
The Display Windows Info command, available only with TDW, displays the Windows
Information dialog box. This dialog box lets you list global heap information, local heap
information, or the list of modules making up your application. See page 126 in Chapter
9 for more information on this feature.

64 Turbo Debugger User's Guide

Examining and modifying data
The data in your program consists of global variables, local variables, and defined
constants. Turbo Debugger provides the following ways to view and modify the data
that your program processes:

• The Watches window displays the current values of variables and expressions.

• The Variables window displays your program's local and global variables.

• The Inspector windows display the values of program data items, including
compound data objects.

• The Stack window displays the current functions and procedures located on the
stack, including their argument values.

• The Evaluate/Modify command evaluates expressions and lets you assign new
values to variables.

• The Function Return command displays the value that the currently executing
function is about to return.

The Watches window
The Watches window provides the easiest way to keep track of your program's data
items. In the Watches window, you list the program variables and expressions whose
values you want to track. Each time your program's execution pauses, Turbo Debugger
evaluates all the items listed in the window and updates their displayed values.

With the Watches window, you can watch the value of both simple variables (such as
integers) and compound data objects (such as arrays), In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch the expression x * y + 4.

C hap t e r 5, E x ami n i n 9 and m o,d i f yin 9 d a t a 65

Figure 5.1 The Watches window

'Expressions that you enter as watches are listed on the left side of the Watches window,
and their corresponding data types and values appear on the right. The values of items
in compound data objects (such as arrays; structures, and records) appear with their
values between braces ({ n. The Watches window truncates any expressions or values
that do not fit into the window.

Creating watches
To create a watch, choose one of the following commands:

• The Data I Add Watch command
• The Module window SpeedMenu Watch command
• The Variable window SpeedMenu Watch command
• The Watches window SpeedMenu Watch command

When you choose a command to create a watch, Turbo Debugger opens the Enter
Expression to Watch dialog box. Enter a variable name or expression, and press Enter to
add it to the Watches window.

If the cursor is on a variable in the Module window, that variable is automatically added
to the Watches window when you choose the SpeedMenu Watch command. The same
is true for expressions selected using Ins and the arrow keys.

Unless you use scope override syntax (as described in Chapter 6), Turbo Debugger
evaluates watch expressions with regards to the current instruction pointer. If a watch
expression contains a symbol that isn't accessible from the currently active scope, the
value of the e~pression is undefined, and is,displayed as four question marks (????).

When you enter expressions into the Watches window, you can use variable names that
aren't yet defined; Turbo Debugger lets you set up a watch expression before its scope
becomes active. This is the only situation in Turbo Debugger where you can enter an
expression that can't be immediately evaluated.

Be careful when you enter expressions into the Watches window. If you mistype the
name of a variable, Turbo Debugger won't detect the mistake because it assumes the
variable will become available at a later time during program execution.

When you're tracing inside a C++ member function, you can add the this pointer to the
Watches window. Turbo Debugger knows about the scope and presence of the this
pointer. You can evaluate this and follow it with format specifiers and quantifiers.

66 Turbo Debugger User's Guide

The Watches window SpeedMenu
The Watches window SpeedMenu contains all the commands needed to manage the
items in the window.

Watch
The Watch command prompts you for a variable name or expression to add to the
Watches window. Unless you explicitly enter a scope, Turbo Debugger evaluates the
expression with regards to the current cursor location.

Edit
Edit opens the Edit Watch Expression dialog box, letting you modify the expression
currently highlighted in the Watches window. When you've finished editing the
expression, press Enter or click the OK button.

You can also invoke this command by pressing Enter after you've highlighted the watch
expression you want to change.

Remove
The Remove command removes the currently selected item from the Watches window.

Delete All
Delete All removes all expressions from the Watches window. This command is useful
if you move from one area of your program to another, and the variables you were
watching are no longer relevant.

Inspect
The Inspect command opens an Inspector window that shows the details of the
currently highlighted watch. Thi~ command is useful when the watch expression is a
compound data object, or if the expression is too long to be fully displayed in the
Watches window.

Change
Use the Change command to modify the value of the currently highlighted variable in
the Watches window. When you enter a new value into the Enter New Value dialog
box, Turbo Debugger performs any necessary type conversion, exactly as if the
assignment operator had been used to change the variable.

The Variables window
The Variables window displays the names and values of all the local and global
variables accessible from the current program location. You can use this view to
examine and change the values of variables, and to view the variables local to any
function that has been called. To access this window, choose View I Variables.

C hap t e r 5, E x ami n i n 9 and mod i f yin 9 d a t a 67

Figure 5.2 The Variables window

Global pane

Local pane

The Variables window has two panes:

• The Global pane shows all the global symbols in your program.

• The Local pane shows all the static symbols in the module and all the symbols local to
the current function.

Both panes display the variable names on the left and their data types and values on the
right. If Turbo Debugger can't resolve a symbol's data type, it displays four question
marks (????).

The Variable window SpeedMenus
Each pane of the Variables window has its own SpeedMenu. Both menus contain
Inspect, Change, and Watch commands; the Local pane also has the Show command.

Inspect
The Inspect command opens an Inspector window that displays the contents of the
currently highlighted global, local, or static symbol.

If you inspect a global variable whose name matches a local variable's name,
Turbo Debugger displays the value of the global variable, not the local variable. This
behavior is slightly different from the usual behavior of Inspector windows, which
normally display values from the point of view of your current program location. This
difference gives you a convenient way to look at global variables whose names are also
used as local variables.

If you issue the Inspect command on an entry that's a routine name (in the Global pane),
Turbo Debugger activates the Module window and places the cursor on the routine's
source code. If Turbo Debugger can't find the source code, or if the file wasn't compiled
with debug information, a CPU window opens, showing the disassembled instructions.

Change
The Change command opens the Change dialog box so you can modify the value of the
currently highlighted symbol. Turbo Debugger performs any necessary data type
conversion exactly as if the assignment operator for your current language had been
used to change the variable.

You can also access the Change dialog box by choosing the SpeedMenu Inspect
command and typing the new value into the Inspect window.

68 Turbo Debugger User's Guide

Watch
. The Watch command opens a Watches window and adds the currently highlighted

symbol to that window.

The Watches window doesn't keep track of whether the variable is local or global. If you
insert a global variable using the Watch SpeedMenu command, and later encounter a
local variable by the same name, the local variable takes precedence whenever you're in
the scope of the local variable. The Watches window always displays the value of a
variable from the point of view of your current program location.

Show
The Local pane's Show command brings up the Local Display dialog box. The radio
buttons in this dialog box enable you to change the scope of the variables displayed in
the Local pane and the module from which these variables are selected:

Static

Auto

Both

Module

Show only static variables.

Show only variables local to the current block.

Show both static and local variables (default).

Change the current module. This command brings up a dialog box showing
the list of modules for the program, from which you can select a new
program module.

Viewing variables from the Stack window
Using the Stack window, you can examine the variables of any routine that's located on

.. the stack, including the different version of a recursive routine. To do so, open the Stack
window and highlight the routine you want to examine. Next, press Alt+F10, and choose
Locals. The Static pane of the Variables window opens, showing the argument values of
the selected routine.

Inspector windows
Inspector windows are the best way to view data items because Turbo Debugger
automatically formats Inspector windows according to the type of data it is displaying.
Inspector windows display data differently for scalars (C char or int and Object Pascal
integer or real), pointers, structures, records, arrays, and functions. In addition, there
are special Inspector windows for classes (for a description of class Inspector windows,
see Chapter 10). In the sections that follow, Inspector windows are described as they
appear when you inspect scalar, pointer, structure and union, array, and function data
types.

Inspector windows are especially useful when you want to examine compound data
objects, such as arrays and linked lists. Because you can inspect individual items
displayed in an Inspector window, you can "walk" through compound data objects by
opening an Inspector window on a component of the compound object.

C hap t e r 5, E x ami n i n 9 and mod i f yin 9 d a t a 69

Inspector windows also offer a quick way to view the raw bytes of a data item. To do so,
choose View I Dump when an Inspector window is active. The Dump window opens
with the cursor positioned on the data displayed in the Inspector window.

Opening Inspector windows
Although you cannot open Inspector windows from the View menu, you can open
them from the following debugger locations:

• The Data I Inspect command
. • The Module window SpeedMenu

• Watches window SpeedMenu
• Variables window SpeedMenu
• Inspector window SpeedMenu

When you open an Inspector window, the Enter Variable to Inspect dialog box prompts
you for an expression to inspect. After entering a variable name or expression, an
Inspector window opens, displaying the value of the expression entered.

If the cursor is on a program symbol when you issue the Inspect command, or if you
select an expression using Ins and the arrow keys, Turbo Debugger automatically places
the selected symbol in the input box_

When you open an Inspector window, the title of the window displays the expression
that's being inspected. The first item listed in an Inspector window is always the
memory address of the data item that's detailed in the rest of the window, unless the
data item is a constant or is a variable that has been optimized to a register.

Scalar Inspector windows
Scalar Inspector windows show the values of simple data items, such as C and C++
char, int, long, and Object Pascal Integer, Real, and so on.

Scalar Inspector windows have two lines of information. The first line contains the
address of the variable. The second line displays the type of the scalar on the left and the
current value of the variable on the right. The value can be displayed as decimal,
hexadecimal, or both. Normally, how~ver, the value is displayed first in decimal,
followed by the hexadecimal value enclosed in parentheses.

Figure 5.3 A Scalar Inspector window

If the variable being inspected is of c++ type ch'ar, the equivalent character is displayed
to the left of the numeric values. If the present value doesn't have a printing character
equivalent, Turbo Debugger displays a backslash(\) followed by the hexadecimal value
that represents the character value.

70 T u r boD e bug 9 e r Use r 's G u ide

Pointer Inspector windows
Pointer Inspector windows show the values of variables that point to other data items.
Pointer Inspector windows have a top line that contains the address of the variable,
followed by detailed information regarding the data pointed to. Pointer Inspector
windows also have a lower pane indicating the data type to which the pointer points.

Figure 5.4 A Pointer Inspector window

If the value pointed to is a compound data object (such as a structure or record, or an
array), Turbo Debugger enclosed the values in braces ({}) and displays as much of the
data as possible.

If the pointer appears to be pointing to a null-teiminated character string, Turbo
Debugger displays the value of each item in the character array. The left of each line
displays the array index ([a], [1], [2], and so on), and the values are displayed on the
right. When you're inspecting character strings, the entire string is displayed on the top
line, along with the address of the pointer variable and the address of the string that it
points to.

In addition, you can use the Range command to cause the Inspector window to display
multiple lines of information. This is helpful for Borland C++ programmers who use
pointers to point to arrays of data structures as well as to single items. For example,
suppose you have the following code:

/ / In Ctt
int array[lO] i
int *arrayp = arraYi

{ In Object Pascal }
Type

Tarray = array[O .. 91 of Integeri
arrayp = ATarraYi

To see what arrayp points to, use the Range local command on arrayp, and specify a
starting index of 0 and a range of 10. If you had not done this, you would have seen only
the first item in the array.

c++ Structure and Union Inspector windows
Structure and Union Inspector windows show the values of members contained in
compound data objects.

Chapter 5, Examining and modifying data 71

Figure 5.5 A C Structure and Union Inspector window

Structure and Union Inspector windows have two panes:

• The top pane displays the address of the data object, followed by lines listing the
names and values of the data members contained in the object. This pane contains as
many lines as are necessary tQ show the entire data object.

• The lower pane consists of one line. If you highlight the address of the data object in
the top pane, the lower pane displays the type of the data object (either structure or
union) along with its name. Otherwise, the lower pane displays the data type of the
object member highlighted in the top pane. .

The Structure and Union Inspector window shown in Figure 5.5 was taken from a
program containing the following code:

struct SSHAPE {
RECT
int
int
COLORREF
int

} SHAPE;

Points;
Penwidth;
theShape;
PenColor;
Slope;

II Location of shape.
II Pen width for the shape.
II Type of shape.
II Color of shape.
II Used to draw lines correctly.

Object Pascal Record Inspector windows
Record Inspector windows show the values of members contained in compound data
objects.

Object Pascal Record Inspector windows have two panes:

• The top pane displays the address of the data object, followed by lines listing the
names and values of the fields contained in the object. This pane contains as many
lines as are necessary to show the entire data object.

• The lower pane consists of one line. If you highlight the address of the data object in
the top pane, the lower pane displays the data type of the object member highlighted
in the top pane.

Array Inspector windows
Array Inspector windows show the values of the elements contained in arrays. These
windows contain a line for each element in the array. The left side of each line shows the
index of the array element, and the right side shows the element's value. If the value is a
compound data object, Turbo Debugger displays as much of the object as possible.

72 Turbo Debugger User's Guide

Figure 5.6 A C Array Inspector window

As an example of using the Array Inspector window, suppose your program contains
the following statement:.

/ / In Ctt
MyCounter[TheGrade)++i

{ In Object Pascal }
count := MyCounter[TheGrade)i

Pressing Ctrl+1 when the cursor is at MyCounter in the Module window opens an
Inspector window that displays the contents of the entire array. However, if you press
Ctrl+1 after selecting the entire array name and index (using Ins and the arrow keys),
Turbo Debugger opens an Inspector window that displays only the single element of
the array.

You can also use the Range SpeedMenu command to show any portion of an array.

Function Inspector windows
Function Inspector windows show the memory address of the function, followed by the
arguments with which a function is called; To inspect a function, use the function's
name without parenthesis or arguments.

Figure 5.7 A Function Inspector window

Function Inspector windows also give you information about the return type and
calling conventions of the function you're inspecting. The return type is displayed in the
lower pane.

The Inspector window Speed Menu
The Inspector window SpeedMenu offers a variety of commands.

Range
The Range command sets the starting element and number of elements that you want to
view in an array. Use this command when you have a large array and you need to .
examine only a subset of its elements.

Chapter 5, Examining and modifying data 73

Change
The Change command lets you change the value of the currently highlighted item to the
value you enter in the Enter New Value dialog box. Turbo Debugger performs any
necessary casting exactly as if an assignment operator had been used to change the
variable. .

Inspect
Inspect opens a new Inspector window listing the highlighted item in the current
Inspector window. Use this command if you're inspecting a compound data object
(such as a linked list), and you want to open a new Inspector window on one of the
items in the object. If the current Inspector window is displaying a function, issuing the
Inspect command activates the Module window, and shows you the source code for
that function.

You can also invoke this command by pressing Enter after highlighting the item you
want to inspect.

To return to the previous Inspector window, press Esc. If you are through inspecting a
data structure and want to remove all the Inspector windows, use the Window I Close
command or its hot key, Alt+F3.

Descend
The Descend command works like the Inspect SpeedMenu command, except that it
replaces the current Inspector window with the new item you want to examine. Using
this command reduces the number of Inspector windows onscreen.

Note When you use Descend to expand a data structure, you can't return to previous views of
the data like you can when you use the Inspect command. Use Descend when you want
to work your way through a complicated data structure, and don't need to return to a
previous view of the data.

New Expression
You can inspect a different expression by selecting the New Expression command. The
data m the current Inspector window is replaced with the data relating .to the new
expression you enter.

Type Cast
The Type Cast command lets you specify a different data type for an item you want.to
inspect. Typecasting is useful if the Inspector window contains a symbol for which there
is no type information, and when you want to explicitly set the type for untyped
pointers. Page 128 explains how to use the gh2fp and Ih2fp data types.

The. Stack window
The Stack window deciphers the call stack and lists all active functions and their
argument values in a readable format: The most recently called function is displayed at
the top of the list, followed by its caller, then by that caller's caller, and so on. This
display of called functions continues do~ to the first function in the calling sequence,

74 Turbo Debugger User's Guide

which is displayed at the bottom of the list. Functions that have been called from DLLs
and Windows kernel code are also listed in the Stack window, even though they might
not have symbolic names associated with them.

The View I Stack command opens the Stack window.

Figure 5.8 The Stack window

The Stack window also displays the names of member functions and class methods.
Each class function is prefixed with the name of the class that defines the function; for
example, in C++ it looks like this:

shapes::acircle(174, 360, 7~.0)

In Object Pascal:

shapes.acircle(174, 360, 75.0)

The Stack window $peedMenu
The Stack window SpeedMenu contains the following commands.

Inspect
The Inspect command opens a Module window and positions the cursor at the active
line in the currently highlighted function. If the highlighted function is atthe top.of the
call stack (the most recently called function), the Module window shows the location of
the current instruction pointer. If the highlighted function is not at the top of the call
stack, the cursor is positioned on the line following the related function call ..

You can also invoke this command by pr~ssing Enter when the highlight bar is
positioned over the desired function.

Locals
The Local command opens a Variables window that shows the symbols that are local to
the current module and to the currently highlighted function.

When a function calls itself recursively, the Stack window shows multiple instances of
the function. By positioning the highlight bar on an instance of that function, you can
use the Locals command to look at the local variables of a particular function call.

The Evaluate/Modify command
The Evaluate/Modify command on the Data menu opens the Evaluate/Modify dialog
box, as shown in Figure 5.9. The Expression input box automatically contains the text
located at the cursor position~ or the expression that you have selected using Ins and the

C hap t e r 5, E x ami n i n 9 and mod i f yin 9 d a t a 75

arrow keys. When you choose the Eval button, the expression in the Expression input
bbx is evaluated, and the result is placed in the Result field.

Figure 5.9 The Evaluate/Modify dialog box

The Evaluate/Modify dialog box contains the following .three fields:

Table 5.1 Evaluate/Modify dialog box fields

Expression You enter expressions to evaluate into the Expression input box. This input box contains a history list of all
the expressions you enter.

Result The Result field displays the result of the expression evaluation.
Data strings that are longer than the width of the Result input box are terminated by an arrow (~). You can
see more of the string by scrolling to the right.

New Value The New Value input box is where you enter a new value for the expression highlighted in the Evaluate
input box. This entry takes effect when you choose the Modify button.
If the expression can't be modified, this box reads <Not available>, and you can't move your cursor into it.

When you evaluate expressions, be careful of language expressions that cause side effects.
See "Expressions with side effects" on page 82 for more information on side effects.

If you're debugging an object-oriented program, the Evaluate/Modify dialog box also
lets you display the C++ member functions and Object Pascal methods of a class
instance. You can use any format specifier with an instance that can be used in
evaluating a record.

Evaluating C++ expressions
In C++, you can call member functions from the Evaluate/Modify dialog box by typing
the instance name followed by a dot, followed by the member function name, followed
by the actual parameters (or empty parentheses if there are no parameters). You cannot,
however, execute constructors or destructors from the Evaluate window.

For example, suppose your C++ program contains the following code:

class point {
public:

int X, y, visible;
point ();
-point () ;
int Show () ;
int Hide();

76 Turbo Debugger User's Guide

void MoveTo(int NewX, int NewY);
};

point APoint;

You could then enter any of the following expressions in the Evaluate window:

Expression,
APoint.x

APoint

APoint.MoveTo

APoint.Show

APoint.ShowO

Possibl~result

int 2 (0 x 2)

class point {l,2,274S9}

void () @6B61:0299

int () @6B61:0285

intl (0 x 1)

Evaluating Object Pascal expressions
To call Object Pascal class methods from the Evaluate/Modify dialog box, type the
instance name followed by a dot, followed by the member function name, followed by
the actual parameters (or empty parentheses if there are no parameters). You cannot,
however, execute constructors or destructors from the Evaluate window.

For example, suppose your Delphi program contains the following code:

type
TPint = class

x, y, visible: Integer;
constructor Create;
destructor Destroy:override;
function show;
function Hide;
procedure MoveTo(Newx, NewY: Integer);

end;

var
APoint: TPoint;

You could then enter any of the following expressions in the Evaluate window:

APoint.x

APoint

APoint.MoveTo

APoint.Show

APoint.ShowO

int 2 (0 x 2)

class point {l,2,27489}

void ()@6B61:0299

int () @6B61:0299

int 1 (0 x 1)

Chapter 5, Examining and modifying data 77

Function Return command
The Function Return command, located on the Data menu, displays the value that the
currently executing function is about to return. You should use this command only
when the current function is about to return to its caller.

The return value is displayed in an Inspector window, so you can easily examine return
values that are pointers to compound data objects. This command saves you from
having to use the CPU window to examine return values that are placed in registers.

78 T u r boD e bug 9 e r Use r 's G u ide

Evaluating expressions
An expression is a sequence of program symbols, constants, and language operators that
can be evaluated to produce a value. To be valid, an expression must conform to the
rules and syntax of the selected language. Turbo Debugger's expression evaluator ensures
that the expressions you enter are valid, and it evaluates them to produce a value.

In this chapter, you'll learn how to select an expression evaluator, how to formulate
different types of expressions, and how to use scope override syntax to explicitly
reference a program symbol.

Turbo Debugger's expression evaluator
When you enter an expression into one of Turbo Debugger's input boxes, the expression
is passed to the selected expression evaluator. The evaluator checks the expression's
syntax and resolves the values of any symbols used in the expression. If all the symbols
can be resolved and the syntax of the expression conforms to the syntax of the
expression evaluator, then Turbo Debugger evaluates the expression and returns its
calculated value.

Selecting an evaluator
To select an expression evaluator, choose Options I Language to open the Expression
Language dialog box. The four radio buttons in this dialog box let you choose an
expression evaluator for your debugging session:

• Source

• C
• Object Pascal
• Assembler

Chapter 6, Evaluating expressions 79

By default, Turbo Debugger selects the Source radio button, which automatically
determines which expression evaluator to use (either C, Object Pascal, or Assembler)
according to the source language of the current module being debugged. If Turbo
Debugger can't determine the module's language, it uses the expression rules for inline
assembler.

Usually, you can let Turbo Debugger choose the expression evaluator. Sometimes,
however, you'll find it useful to explicitly set the evaluator. For example, if you're
debugging an assembler module that's called from another language, you might.want
to override the default evaluator.

Also, by manually setting the expression evaluator, you can enter expressions in the
language of your choice. Turbo Debugger can successfully resolve expressions that are
not in your program's language; the debugger retains information about the original
source language and handles the conversions appropriately.

Expression limitations
For the most part, Turbo Debugger supports the full language syntax for C, C++, Object
Pascal, and assembler expressions. However, there are certain language statements and
expressions that are out of ;context while debugging. For example, control structures
such as if/then/else statements ,cannot be entered into the debugger. In addition, data
and function declarations, and expressions that attempt to assign values to more than a
single variable will be flagged as errors. Also be aware that the debugger cannot call
object constructors or destructors. For complete details on language syntax, refer to the
manuals accompanying your Borland language product.

Types of expressions
Although you'll usually use expressions to access the values of program symbols,
calculate values, and change the values of data items, you can also use expressions to:

• Specify hexadecimal values
• Specify memory addresses
• Enter program line numbers
• Enter byte lists
• Call functions '

Specifying hexadecimal values
While debugging, you might need to supply a hexadecimal value to Turbo Debugger.
For example, you'll need to use a hexadecimal address to specify a memory location.

80 Turbo Debugger User's Guide

The notation used to specify hexadecimal values depends upon the expression
evaluator you've selected, as shown in the following table:

Table 6.1 Hexadecimal notation

"l.i#iguag~ 16-'bit
Assembler

C

Object Pascal

Onnnnh
Oxnnnn
$nnnn

nnnnnnnnh
Oxnnnnnnnn
$nnnnnnnn

In assembler, hexadecimal numbers starting with A to F must be prefixed with a zero.

Specifying memory addresses
To specify a 16-bit offset or a 32-bit address, preface the hexadecimal address location
with the formats described in Table 6.1.

If you're debugging 16-bit code, you can use segment:offset notation to specify an exact
memory location. When doing so, use the hexadecimal format of the expression
evaluator you've selected. The following table gives examples:

Table 6.2

Assembler

C

Object Pascal

Segment:Offset address notation

nnnnh
Oxnnnn

. $nnnn

1234h:OBOlOh

Ox1234:0xOOlO

$1234:$0010

In assembler, hexadecimal numbers starting with A to F must be prefixed with a zero.

Entering line numbers
If you're using the C or assembler expression evaluator, you can use an expression to
specify a program line number. To do so, precede the decimal line number with a cross
hatch (#). For more information on this notation, see "Overriding scope in C, C++, and
assembler programs" on page 84.

Entering byte lists
In Turbo Debugger, several commands require that you enter a list of bytes. For
example, the Search command in the File window requires a byte list as the search
criteria when it's displaying a file in hexadecimal format.

A byte list can be any mixture of scalar (non-floating-point) numbers and strings in the
syntax of the current expression evaluator. Scalars are converted into a corresponding
byte sequence. For example, the C long value 123456 becomes a 4-byte hex quantity
40 E2 0100.

C hap t e r 6, E val u at i n 9 ex pre s s ion s 81

The following table gives an example of a byte list for each of the expression evaluators:

Table 6.3

Assembler

C

Object Pascal.

Byte lists

Calling functions

1234 "AB"

"ab" Ox04 "c"

'ab'$04'c'

-34124142

61620463

61620463

You can call functions from expressions exactly as you do in your source code. Turbo
Debugger executes your program code with the function arguments that you supply.
This can be a useful way to quickly test the behavior of a function; simply call the
function with different arguments and check the return values after each call.

If you make specific calls to functions while debugging, be aware that certain functions
can have the side effect of changing program data values. After calling such a function,
you cannot count on your program behaving normally during the rest of your
debugging session. For more information on side effects, see the following section.

Note If you call an Object Pascal function that doesn't use parameters, you must follow the
function name with empty parentheses to indicate to the debugger that you are indeed
making a call to the function. Without the parentheses, Turbo Debugger will return the
address of the function.

Expressions with side effects
An expression is said to have a side effect when the evaluation of the expression changes
the value of a data item. Using expressions to change the values of data items can be a
powerful debugging technique. However, there are times when you should avoid such
expressions. For example, the expressions you enter for breakpoint conditions must not
contain side effects.

In C and C++, expressions that generate side effects are:

• Expressions that use assignment operators (=, +=, and so on).
• Expressions that use the C increment (++) and decrement (- -) operators.

In Object Pascal, expressions that generate side effects are expressions that assign values
to variables and other program objects. Because of this, any expression that contains the
assignment operator (:=) generates a side effect when it is executed.

A more subtle type of side effect occurs when you call a function or procedure that
changes the value of a data item. Because you can't always tell which functions change
the values of program variables, all functions are considered to generate side effects.

82 T u r boD e bug 9 e r Use r 's G u ide

Format specifiers
When Turbo Debugger displays the value of an expression, it displays the value in a
format based on the value's data type. To change the default display format of an
expression, follow the expression with a comma and with one of the following format
specifiers:

Table 6.4

c

d

f[#]

m

md

p

s

xorh

Expression format specifiers

Displays a character or string expression as raw characters. Normally, nonprinting character
values are displayed as some type of escape or numeric format. This option forces the
characters to be displayed using the full IBM extended character set.

Displays an integer as a decimal number.

Displays the number in decimal notation. An integer following the specifier indicates the
number of digits to the right of the decimal point. If you don't supply this number, as many
digits as necessary are used to represent the number.

Displays 'a memory-referencing expression as hex bytes.

Displays a memory-referencing expression as decimal bytes.

Displays a raw pointer value, showing segment as a register name if applicable. Also shows
the object pointed to. This is the default if no format control is specified.

Displays an array or a pointer to an array of characters as a quoted character string.

Displays a value as a hexadecimal number.

Turbo Debugger ignores any format specifier that cannot be applied to the expression's
data type.

Note In addition to a format specifier, you can supply a repeat count to indicate that the
expression relates to repeating data item such as an array or pointer. To specify a repeat
count, follow the expression with a comma, the repeat count, another comma, ~d the
format specifier.

Accessing symbols outside the current scope
The scope of a symbol is the area in your program in which the symbol can be
referenced. The current scope is the area in your program in which defined symbols cart
be referenced. Usually, the current scope is defined with regards to the location of the
instruction pointer. This section describes:.

• How Turbo Debugger searches for symbols
• The implied scope for expression evaluation
• Scope override syntax
• Scope and DLLs

How Turbo Debugger searches for symbols
When you enter an expression that contains symbols, Turbo Debugger tries to resolve
the symbols by searching the following locations in the order shown:

Chapter 6, Evaluating expressions 83

1 The symbols located in the current function's. stack.
2 The symbols local to the module or unit containing the current function.
3 The global symbols for·the entire program.
4 The global symbols of any loaded DLLs, starting with the earliest loaded DLL.

However, using scope override syntax, you can access any program symbol that has a
defined value within the currently loaded .executable module, including symbols that
are private· to a function and symbols that have conflicting names. By specifying an
object module, a file within a module, a function name, or a line number, you can give
explicit directions to where a symbol can be found.

Implied scope for expression evaluation
Whenever you enter an expression into Turbo Debugger, the expression is evaluated
according to the current scope. However, instead of using the instruction pointer to
define the current scope, Turbo Debugger uses the current cursor position to determine
the scope of an expression. Thus, you can set the scope in which an expression will be
evaluated by moving the cursor to a specific line in the Module window. You can also
change the scope of evaluation by either moving\through the Code pane of a CPU
window, moving the cursor to a function in the Stack window, or moving the cursor to a
function name in a Variables window.

If you change the scope from where Turbo Debugger paused your program, you might
get unexpected results when you evaluate expressions. To ensure that expressions are
evaluated relative to the current position of your program, use the Origin command in
the Module window to retumthe text to the location of the instruction pointer.

Scope override syntax
Turbo Debugger uses different syntax to override the scope of a symbol, depending on
the language evaluator specified in the Options I Language dialog box:

• With the C, C++, and assembler evaluators, use a cross hatch (#) to override scope.
(The following section provides more information.)

• With the Object Pascal evaluator, use a period (.) to override scope. (See page 86 for
more information.)

Overriding scope in C, C++, and assembler programs
You can use either of the following two types of scope overriding syntax with C, C++,
and assembler expressions (items enclosed in brackets ([D are optional):

[#module[#filename.extl]#linenumber[#symbolname]
[#module [#filename. ext] #] [[unctionname#l symbolname

The following rules also apply to the scope overrides:

• If you don't specify an object module, the currently loaded object module is assumed.

• If you use a file name in a scope override statement, it must be preceded by an object
module name.

84 Turbo Debugger User's Guide

• If a file name has an extension (such as .ASM, .C, or .CPP), you must specify it;
Turbo Debugger doesn't determine extensions.

• If a function name is the first item in a scope override statement, it must not have a #
in front of it. If there's a #, Turbo Debugger interprets the function name as a module
name.

• Any variable you access through scope override syntax must be initialized. Although
an automatic variable doesn't have to be in scope, it must be located on the stack and
in the currently loaded executable module.

• If you're trying to access an automatic variable that's no longer in scope, you must
use its function name as part of the scope override statement.

• You can't use scope override syntax to access the value of a register variable because
once the scope changes, the register no longer holds the value of the variable.

• The scope of a template depends on the current location in the program. The value of
a template expression depends on the object that is currently instantiated.

Usually, you'll enter expressions that can be evaluated from the current scope.
However, scope overrides are useful when you want to specifically reference a program
symbol. For example, you could set up two watches for the variable nlines. By setting the
watches at different program locations, you can monitor how the variable changes
value. The following expressions could be used to set watches on nlines for both lines 51
and 72:

#51#nlines
#72#nlines

Scope override examples using C
Here are some examples of C and C++ expressions that use scope overrides:

#123

12 3 #myvarl

#mymodule#123

#mymodule#filel.cpp#123

#mymodule#filel.cpp#123#myvar1

#myvar2

#mymodule#myfunc#myvar2

#mymodule#file2.c#myvar2

AnObject#AMemberVar

Line 123 in the current module.

Symbol myvarl accessible from line 123 of the
current module.

Line 123 in module mymodule.

Line 123 in source file filel.cpp, which is part of
the object module mymodule.

Symbol myvarl accessible from line 123 in
source file filel.cpp, which is part of mymodule.

Symbol myvar in the current scope.

Symbol myvar2 accessible from function
myfunc in module mymodule.

Symbol myvar2 accessible from file2.c, which is
defined in mymodule.

Data member AMemberVar accessible in object
AnObject accessible in the current scope.

Chapter 6, Evaluating expressions 85

AnObject#AMernberF Member function AMemberF accessible in
object AnObject accessible in the current scope.

#~odule#AnObject#AMernberVar Data member AMember Var accessible ill object
AnObject accessible in module AModille.

#AModule#AnObject#AClass::AMernberVar Data member AMemberVar of class AClass
accessible in object AnObject accessible in
module AModule.

Note To examine or call ail overloaded member function, enter the name of the function in the
appropriate input box. Turbo Debugger opens the Pick a Symbol Name dialog box, .
which shows a list box of all the functions of that name with their arguments, enabling
you to choose the specific function you want.

Overriding scope in Object Pascal programs
You can use either of the following two types of scope overriding syntax with the Object
Pascal expression evaluator (items enclosed in brackets ([]) are optional):

[unit.] [procedurename.]symbolname

[unit.] [objecttype.lobjectinstance.] [method.]fieldname

The following additional rules apply to the Object Pascal scope override syntax:

• If you don't specify a unit, the current unit is assumed.

• If you're trying to access a local variable that's no longer in scope, you must use its
procedure or function name as part of the scope override statement.

• You can't lise a line number or a file name as part of a Pascal scope override
statement. If you want to use line number syntax, change the expression evaluator to
C with the Options I Language command.

Scope override examples using Object Pascal
Here are some examples of Object Pascal expressions that use scope overrides:

MyVar

MyProc.MyVar

MyUnit.MyVar

MyUnit.MyProc.MyVar

AnInstance

AnInstance.AField

AnObjectType.AMethod

AnInstance.AMethod

86 Turbo Debugger User's Guide

Varia:tJle My Var in the current scope.

. Variable MyVar accessible from the function MyProc.

Variable MyVar accessible from the unit MyUnit.

,Variable MyVar accessible from procedure MyProc in unit
MyUnit.

Instance AnTnstance accessible in the current scope.

Field AField accessible in instance Anlnstance accessible in the
current scope.

Method AMethod accessible in object type AnObjectType
accessible in the current scope.

Method AMethod accessible in instance Anlnstance accessible
in the current scope.

AUni t. AnIns tance . AF i eld Field AField accessible in instance Anlnstance accessible in the
unit AUnit.

AUni t . AnObj ect . AMethod Method AMethod accessible in object type AnObjectType
accessible in unit AUnit.

Scope and DLLs
. When you step into a function that's located in a .DLL, Turbo Debugger loads the
symbol table for the .DLL, if it exists, over the currently loaded symbol table. Because a
DLL's symbol table will be overwritten when your program makes a call to another
executable file, you won't have immediate access to variables that are located in an
executable file that isn't currently loaded.

If a variable has the same name in multiple .EXE or .DLL files, you can access the
desired symbol by loading the executable file in which the symbol is located (press F3,
and use.the Load Modules and DLLs dialog box to load the executable file containing
the symbol). For more information on symbol tables and .DLL files, see page 118.

C hap t e r 6, E val u at i n 9 e x pre s s ion s 87

88 Turbo Debugger User's Guide

Examining disk files
Turbo Debugger provides two ways to view source files, data files, and other files that
you have stored on disk:

•. The Module window displays the source code relating to executable modules that
were compiled with debug information.

• The File window lets you view any disk file as either ASCII text or as hexadecimal
data.

Examining program source files
The Module window is the most frequently used window in Turbo Debugger. You can
use this window to examine the executable source code of any module that was
compiled and linked with debug information.

Figure 7.1 The Module window

When you open the Module window, the title bar displays the name of the currently
loaded module, the name of the current source file, and the cursor's line number.

C hap t e r 7, E x ami n i n 9 dis k f i I e s 89

In the Module window, ex.ecutablelines of code are marked with a bullet (e) in the left
column of the window. You can set breakpoints or step to any of these lines of code. An
arrow (~) in the first column of the window indicates the location of the instruction
pointer. This always points to the next statement to be executed.

As you step through your program, the Module window automatically displays the
source code relating to the current location of the instruction pointer. By navigating to
different source-code locations, you can set breakpoints and watches, and inspect the
values of different program. variables.

When debugging C and c++ programs, the abbreviation opt appears after the file name
in the title bar if your program has been optimized by the compiler. If you compiled
your program with optimizations, you might have trouble finding variables that have
been optimized away. In addition, compiler optimizations can place variables in
registers, meaning that they cannot be linked to memory addresses. Because of this, it is
recommended that you do not optimize your program while you are in the debugging
stage.

If the word modified appears after the file name in the title bar, the file has been changed
since it was last compiled. In this case, the line numbers in the source file might not
correspond to the line numbers in the executable's debug information. If these line
numbers don't match, the debugger will not be able to show the correct program
locations when you step through your code. To correct this problem, recompile your
program with symbol debug information.

loading source files
When you load a program into Turbo Debugger, the file containing the entry point to
the program automatically loads into the Module view.

If you want to change the source file that's currently displayed in the Module window,
choose one of the following two commands from the Module window SpeedMenu:

e The File command lets you change to another source file contained in the current
program module. .

e The Module command lets you change the currently loaded program module.

The Module window SpeedMenu
The Module window SpeedMenu provides commands that let you navigate through
the displayed file, inspect and watch data items, and load new 'Source code files. In
addition, the SpeedMenu in TD32 has the commands Thread and Edit .

. Inspect
The Inspect command opens an Inspector window that shows the· details of the
program variable at the current cursor position. If the cursor isn't on a variable, you're
prompted to enter an expression to inspect.

You can also use the arrow keys or your mouse to quickly.select an expression or string
of text in the Module window.To use the keyboard, press Ins, and use the left or right

90 Turbo Debugger User's Guide

arrow keys to mark your selection. To use the mouse, click and drag the mouse pointer
over the section of text you want to select. After selecting an expression, press Ctrl+1 to
activate the Inspector window.

Watch
Watch adds the variable at the current cursor position to the Watches window. Putting a
variable in the Watches window lets you monitor the value of that variable as your
program executes.

If you have selected an expression in the Module window, press Ctrl+W to add the
expression to the Watches window.

Thread
The Thread command, found only in TD32, opens the Pick a Thread dialog box, from
which you can pick a specific program thread to monitor. For more information on
threads, see page 121.

Module
[ill The Module command lets you load a different module into the debugger by picking

the module you want from the Load Module Source or DLL Symbols dialog box.

The Load Module Source or DLL Symbols dialog box is fully described on page 118.

File
File lets you examine another source file that's compiled into the module you're
currently viewing. This command opens the Pick a Source File dialog box, which lists
the source files that contain executable code. When you choose the source file you want
to examine, that file replaces the current file in the Module window.

To view different files simultaneously, use the View I Another I Module command to
open multiple Module windows.

Files that are included in your program with the C #inc1ude directive (or the Object
Pascal uses directive) are also program source files. If an include file contains executable
lines of code, you can use the File command to load the file into the Module window.
However, if the include file doesn't contain executable code (such as many C header
files), you must use the File window to examine the file.

Previous
The Previous command returns you to the source location you were viewing before you
changed your position. For example, if you use the Goto command to view the source
code at a different address, the Previous command returns you to your original position.

Line
Line positions you at a new line number in the file. The Enter New Line Number dialog
box prompts you for a decimal line number. If you enter a line number after the last line
in the file, you will be positioned at the end of the file.

C hap t e r 7, E x ami n i n 9 dis k f i I e s 91

Search
The Search command searches for a character string, starting at the current cursor
position. When you choose this command, the Enter Search String dialog box prompts
you for a search string. If the cursor is positioned over something that looks like a
variable name, the dialog box opens initialized to that name.

If you mark a block in the file using Ins and the arrow keys, that block will be used to
initialize the Search String dialog box.

You can also search using simple wildcards: a question mark (?) indicates a match on
any single character and an asterisk (*) matches zero or more characters. '

The search does not wrap around from the end of the file to the beginning. To search the
entire file, first go to the beginning of the file by pressing Ctrl+PgUp.

Next
Next searches for the next instance of the character string you specified with the Search
command. .

Origin
The Origin command positions the cursor at the module and line number containing the
current instruction pointer. If the module you are currently viewing is not the module
that contains the instruction pointer, the Module window will change to show that
module.

This command is useful when you have been examining various places in your code,
and you want to return to the location of the instruction pointer.

Goto
Goto opens the Enter Addressto Position To dialog box, which enables you to view any
address location within your program. Enter the address you want to examine as either
a procedure name or a hexadecimal address. lithe address you enter doesn't have a
corresponding source line, the CPU window opens. See "Types of expressions" on
page 80 for a description of entering addresses.

Note You can also invoke this command by typing into the Module window. This brings up
the Enter Address to Position To dialog box, exactly as if you had chosen the Goto
command.

Edit
When you're debugging a Win32 program with TD32, you can invoke the editor of your
choice using the Edit command. This command is useful if you've found the program
bug, and you want to fix the source code before leaving Turbo Debugger.

Before you can use this command, you must configure TD32 so it knows where to find
your editor:

1 Load the TDINST32.EXE installation program.

2 Choose Options I Directories to access the Directories dialog box.

92 T u r boD e bug 9 e r Use r 's G u ide

3 Enter the absolute path and name of your editor into the Editor Program Name input
field.

4 Save the settings.

Exceptions
If you have implemented C or c++ exception handling in your program, the Exception
command becomes active. For complete details on this command, see page 135.

Examining other disk files
You can use the File window to examine any disk file, including binary and text files.

Figure 7.2 The File window

When you choose View I File from the menu bar, Turbo Debugger displays the Enter
Name of File to View dialog box. You can type a specific file name to load, or you can
enter a file mask using wildcards characters to get a list of files to choose from.

After you select a file name, the File window opens and displays the file name and
contents.

Figure 7.3 The File window showing hex data

The File window displays files as either ASCII text or as hexadecimal bytes; depending
on the contents of the file. If Turbo Debugger determines that the file contains text, it
displays the file as ASCII; otherwise, the file is displayed as hexadecimal. You can
switch between an ASCII or hexadecimal display using the Display As SpeedMenu

C hap t e.r 7, E x ami n i n 9 dis k f i I e s 93

command. If you're viewing the file as ASCII, the current line number is also displayed
in the title bar.

The File window SpeedMenu
The File window SpeedMenu has commands for navigating through a diskfile and for
changing the file's display format.

Gata
The Goto command positions the display at a new line number or offset in the file. If
you are viewing the file as ASCII text/enter the new line number to go to. If you are
viewing the file as hexadecimal bytes, enter the offset that you want to move to. If you
enter a line·number greater than the last line in the file (or an.offset beyond the end of
the file), Turbo Debugger displays the end of the file.

Search
The Search command searches for a character string, starting at the current cursor
position. When you choose this command, the Enter Search String dialog box prompts
you for a search string. If the cursor is positioned over something that looks like a
variable name, the dialog box opens initialized to that name.

If you mark a block in the file using Ins and the arrow keys, that block will be used to
initialize the Search String dialog box.

The search does not wrap around from the end of the file to the beginning. To search the
entire file, first go to the beginning of the file by pressing Ctrl+PgUp.

If the file is displayed in ASCII, you can use DOS wildcards in your search string: a
question mark (?) indicates a match on any single character and an asterisk (*) matches
zero or more characters.

If the file is displayed as hexadecimal bytes, enter a byte list consisting of a series of byte
values or quoted character strings, using the syntax of the selected expression evaluator.
For example, if the language is C++, a byte list consisting of the hex numbers 0408
would be entered as Ox0804. If the language is Object Pascal, the same byte list is entered
as $0804.

You can also invoke this command by typing the string that you want to search for. This
brings up the Search dialog box exactly as if you had specified the Search command.

Next
The Next command searches for the next instance of the character string you specified
with the Search command.

Display As ,
Display As toggles the display between the following two formats:

• ASCII displays the file using the printable ASCII character set.

• Hex displays the file in hexadecimal format. With this display, each line starts with
the offset from the beginning of the file (shown as a hexadecimal number), followed

94 Turbo Debugger User's Guide

by the hexadecimal representation of the bytes in the file. The ASCII character for
each byte in the file appears on the right side of the display. The File window
displays the entire 256 1B!'A extended-character set.

File
The File command lets you change the file that's displayed in the File window. This
command lets you view different files without opening duplicate File windows. If you
want to view two different files (or two parts of the same file) simultaneously, choose
View I Another I File to open another File window.

Edit
The Edit command is the same as the Module window SpeedMenu Edit command. For
more information, refer to page 92.

C hap t e r 7, E x ami n i n 9 dis k f i I e s 95

96 T u r boD e bug 9 e r Use r 's G u ide

Assembly-level debugging
When you're debugging a program, the high-level view of your source code is often all
you need. Sometimes, however, you might need to take a closer look at your program.
Viewing the assembly-level aspects of your program can reveal details such as the
machinecode generated by your compiler, the contents of the CPU registers and flags,
and the items contained on the call stack.

Turbo Debugger provides the following windows for examining the assembly-level
state of your program:

• The CPU window
• The Dump window
• The Registers window
• The Numeric Processor window

This chapter describes how to use these windows to view the assembly-level aspects of
your program. The online file TD _ASM.TXT contains additional information on
assembly-level debugging, including a description of the Numeric Processor window.

The CPU window
The CPU window uses various panes to describe the low-level state of your program. A
SpeedMenu in each pane provides commands specific to the contents of that pane.

Among other things, you can use the CPU window to:

• Examine the machine code and disassembled assembly instructions produced from
your program's source code.

• Examine and modify the bytes that make up your program's data structures.

• Use the built-in assembler in the Code pane to test bug fixes.

C hap t e r 8, Ass e m b I Y - I eve Ide bug gin 9 97

The CPU window is shown in Figure 8.1. Table 8.1 gives a brief description of each pane
in the CPU window.

Table 8.1 CPU window panes

Code pane

Registers pane

Flags pane

Dump pane

Stack pane

Selector pane

Shows the machine code and disassembled assembly instructions of your executable
program. Source code lines can also be displayed.

Shows the contents of the CPU registers.

Shows the state of the eight CPU flags.

Shows a hexadecimal dump of any memory area accessible by your program. A
variety of display formats is available.

Shows the hexadecimal contents of the program stack.

Available in TQW only, this pane shows and describes all W~dows 3.x selectors.

Figure 8.1 The CPU window

Dump pane Stack pane

·From within the Code,Dump, and Stack pane, it's possible to scroll outside the current
protected-mode segment, even though the operating system marks these as invalid
addresses for your program. Because of this, the CPU window displays question marks
for any addresses referenced outside the current protected-mode segment.

Note In the Code, Dump, and Stack panest: press Ctrl+Left and Ctrl+Right to shift the starting
display address of the pane by 1 byte up or down. Using these keystrokes is often faster
than using the Goto command to make small adjustments to the display.

Opening the CPU window
To open the CPU window, choose View I CPU from the menu bar. Turbo Debugger
opens the CPU window automatically in the following cases:

• If it gains control when Windows code is being executed.
• If you enter a module that doesn't contain debug information.
• If your program stops on an instruction within a line of source code.
• If you trace through instructions using Alt+F7.

98 T u rb 0 Deb u 9 9 e rU s e r 's G u id e

When you open the CPU window, Turbo Debugger positions the display at the
appropriate Code, Dump, or Stack pane, depending on the window that was active
when you opened the CPU windo~. The following table describes where the cursor is
positioned when you open the CPU window:

Table 8.2 CPU window positioning

;~~rit'Wi~doW>< " G~-q:.p~e
Module window

Breakpoint (nonglobal)

Variable window

Watches window

Inspector window

Stack window

Other area

Code

Code

Dump/Code

Dump/Code

Dump/Code

Stack

Code

Address of item

Breakpoint address

Address of item

Address of item

Address of item

Top of stack frame for highlighted item

Current instruction pointer location

Once opened, the title bar of the CPU window displays your system's processor type
(8086, 80286, 80386, 80486, or Pentium). In addition, if the highlighted instruction in the
Code pane references a memory location, the memory address and its current contents
are displayed in the title bar of the CPU window. This lets you see both where an
instruction operand points in memory and the value that is about to be-accessed.

The Code pane
The left side of the Code pane lists the address of each disassembled instruction. If
you're viewing i6-bit code, the addresses are shown in segment:offset notation.
Otherwise, addresses are displayed as 32-bit addresses. An arrow (~) to the right of the
memory address indicates the location of the current instruction pointer. The instruction
pointer always points to the next instruction to be executed. To the right of this, the CPU
window displays the hexadecimal machine code, followed by its disassembled
assembly instruction.

When an assembly instruction contains an immediate operand, you can infer its size
from the number of digits in the operand: a i-byte immediate has two digits, a i6-bit
immediate has four digits, and a 32-bit immediate has eight digits.

Displaying source code
If you set the Mixed SpeedMenu command to Yes, the Code pane displays the source
code that relates to the displayed assembly instructions. If an address corresponds to
either a global symbol, static symbol, or line number, the CPU window displays the
original source code above the first disassembled instruction relating to the source code.
Also, if there is a line of source code that corresponds to the symbol address, it is
displayed after the symbol.

Global symbols appear simply as the symbol name. Static symbols appear as the
module name, followed by a cross hatch (#), followed by the static symbol name. Line
numbers appear as the module name, followed by a cross hatch (#), followed by the
decimal line number.

Chapter 8, Assembly-level debugging' 99

Setting breakpoints
You can set or remove breakpoints in the Code pane by highlighting the desired
assembly instruction, and pressing F2. Also, clicking a line sets and removes breakpoints
on that line. Once a breakpoint is set, the line containing the breakpoint tums.red (the
default color). .

The Code pane Speed Menu
The SpeedMenu contains commands that let you navigate through the Code pane, alter
the pane's display, and assemble instructions that you supply.

For the most part, the SpeedMenus for TDW and TD32 contain the same commands.
However, TDW has the extra command I/O, and TD32 contains the extra commands
Thread and OS Exceptions.

Goto
When you choose the Goto command, the Enter Address to Position To dialog box
prompts you for an address to go to. You can examine any address that your program
can access, including addresses in the ROM BIOS, inside DOS, and in the Windows
program.

Origin
The Origin command positions you at the location of the instruction pointer. This
command is useful when you have navigated through the Code pane, and you want to
return to the next instruction to be executed.

Follow
The Follow cominand positions the Code pane at the destination address of the
currently highlighted instruction. Use this command in conjunction with instructions
that cause a transfer of control (such as CALL, JMP, INT), and with conditional jump I

instructions OZ, JNE, LOOP, and so forth). For conditional jumps, the address is shown
as if the jump had occurred. Use the Previous command to return to the origin of the
jump.

Caller
Caller positions you at the instruction that called the current interrupt or subroutine. Be
aware that if the current interrupt routine has pushed data items onto the stack, Turbo
Debugger might not be able to determine where the routine was called from.

Previous
The Previous command restores the Code pane display to the position it had before the
last command that explicitly changed the display (such as Previous, Caller, Origin, and
Follow). The keys do not affect this command.

Search
The Search command searches forward in the code for an expression or byte list that
you supply (see Chapter 6 for information on byte lists).

100 T u r boD e bug ge r Use r' s G u ide

Note When you search for an expression in the Code pane, Turbo Debugger assembles the
expression that you're searching for, and searches for a match in the resulting machine
code. Becauseof this, care must be taken when you specify the search expression; you
should search only for expressions that don't change the bytes they assemble to. For
example, you will not encounter problems if you search for the following exp!essions:

PUSH DX
POP [DI+4J
ADD AX,lOO

However, searching for these instructions can cause unpredictable results:

JE 123
CALL MYFUNC
LOOP 100

View Source
The View Source command activates the Module window, showing you the source code
that corresponds to the current disassembled instruction. If there is no corresponding
source code (for example, if you're examining Windows kernel code), this command has
no effect.

Mixed
Mixed toggles between the three ways of displaying disassembled instructions and
related source code:

Table 8.3

No

Yes

Both

Thread

Mixed command options

Disassembled instructions are displayed without source code.

Source code lines are listed before the first disassembled instruction relating to that source
line. This is the default mode for C and Pascal programs.

Source code lines replace disassembled lines for the lines that have corresponding source
code. If there is no source code, the disassembled instruction appears. This is the default
mode for assembly modules.
Use this mode when you're debugging an assembler module and you want to see the
original source code instead of the corresponding disassembled instructions.

The Thread command, found only in TD32, lets you choose the thread of execution you
want to debug. When selected, this command opens the Pick a Thread dialog box, from
which you can pick a specific program thread. For more information on threads, see
page 121.

as Exceptions
The as Exceptions command, found only in TD32, lets you choose the operating-system
exceptions you want to handle. For more information on operating-system exceptions,
see page 124.

C hap t e r 8, Ass e m b 1 Y -I eve 1 deb u 9 gin 9 101

NewEIP
The New EIP command changes the location of the instruction pointer to the currently
highlighted line in the Code pane (in TDW, this command is called New CS:IP). Wheh
you resume program execution, execution starts at this address. This command is useful
when you want to skip certain machine instructions.

Usethis command with extreme care; it is easy to place your system in an unstable state
wnen you skip over program instructions.

NewCS:IP
The New CS:IP command changes the location of the instruction pointer to the currently
highlighted line in the Code pane. When you resume program execution, execution
starts at this address. This command is useful when you want to skip certain machine
instructions.

Use this command with extreme care; it is easy to place your system in an unstable state
when you skip over program instructions.

Assemble
The Assemble command assembles an instruction, replacing the instruction at the
currently highlighted location. Use this command when you want to test bug fixes by
making minor changes to assembly instructions.

When you choose Assemble, the Enter Instruction to Assemble dialog box opens,
prompting you for an expression to assemble. For more information on assembling
instructions, refer to "The Asserpbler" section in the online file TD_ASM.TXT.

This command is invoked if you type into the Code pane.

1/0
The I/O command, found only in TDW, reads or writes a value in the CPU's I/O space,
and lets you examine and write to the contents of special I/O registers. This command
gives you access to the 110 space of peripheral device controllers such as serial cards,
disk controllers, and video adapters.

When you choose this command, a menu opens with the following commands:

ill Byte

Out Byte

Read Word

Write Word

Reads a byte from an I/O port. You are prompted for the I/O port whose value you want
to examine.

Writes a byte,to an I/ 0 port. You are prompted for the IIO port to write to and the value
you want to write.

Reads a word from an I/O port.

Writes a word to an I/O port.

. Some I/O devices perform an action (such as resetting a status bit or loading a new data
byte into the port) when their ports are read. Because of this, you might disrupt the
normal operation of the device with the use of these commands.

102 T u r boD e bug 9 e r Use r' s G u ide

The Registers pane
The Registers pane displays the contents of the CPU registers. The display varies,
depending on whether you're using TDW or TD32. By default, TDW displays the
thirteen 16-bit registers. TD32 always displays the fifteen registers found in the 80386
(and higher) processors.

The Registers pane SpeedMenu
Using the commands on the Register pane SpeedMenu, you can modify and clear the
register values.

Increment
Increment adds 1 to the value in the currently highlighted register. This lets you test
"off-by-one" bugs by making small adjustments to the register values.

Decrement
Decrement subtracts 1 from the value in the currently highlighted register.

Zero
The Zero command sets the value of the currently highlighted register to O.

Change
Change lets you change the value of the currently highlighted register. When you chose
this command, the Enter New Value dialog box prompts you for a new value. You can
make full use of the expression evaluator to enter new values.

You can also invoke this command by typing the new register value into the Registers
pane.

Registers 32-bit
The Registers 32-bit command, used only by TDW, toggles the register display between
16-bit values and (on systems with 32-bit processors) 32-bit values.

TDW usually displays 16-bit registers, unless you use this command to set the display to
32-bit registers. Toggle this command to Yes if you're debugging a module that uses 32-
bit addressing. Notice that all segment registers will remain as 16-bit values, even when
you toggle on the 32-bit display.

The Flags pane
The Flags pane shows the state of the eight CPU flags. The following table lists the
different flags and how they are shown in the Flags pane:

Table 8.5 The CPU Flags

c

z

,Carry
Zero

C hap t e r 8, Ass e m b 1 Y ·1 eve 1 deb u 9 gin 9 103

Table 8.5 The CPU Flags (continued)

s Sign

0 Overflow

p Parity

a Auxiliary carry

Interrupt enable

d Direction

The Flags pane SpeedMenu
The Flags pane contains the Toggle command, which changes the value of the currently
highlighted flag between 0 and 1. You can also press Enter or the Spacebar to toggle the
value of a flag.

The Dump pane
This pane shows a raw hexadecimal display of an area in memory. The leftmost part of
each line shows the starting address of that line, using either 16-bit segment:offset
notation or 32-bit flat addresses. With 16-bit cofle, the address is displayed as either a
hex segment and offset, or with the segment value replaced with One of the register
names if the segment value is the same as that register. The Dump pane matches
registers in the following order: DS, ES, SS, CS.

To the right of the address, the value of one or more data items is displayed. The format
of this area depends on the display format selected with the Display As SpeedMenu
command. If you choose one of the floating-point display formats (Comp, Float, Real,
Double, or Extended), a single floating-point number is displayed on each line. Byte
format displays 8 bytes per line, Word format displays 4 words per line, and Long
format displays 2 long words per line.

When the data is displayed as bytes, the rightmost part of each line shows the ASCII
characters that correspond to the data byte values. Turbo Debugger displays all byte
values as their display equivalents, including "nonprintable" characters and the
characters from the IBM extended-character set.

If you use the Goto command in the Dump pane to examine the contents of the display
memory, the ROM BIOS data area, or the vectors in low memory, you will see the
values of the program being debugged, not the actual values that are in memory while
Turbo Debugger is running. Turbo Debugger detects when you're accessing areas of
memory that it is using, and displays the correct program values from where it stores
them in memory.

The Dump pane SpeedMenu
The Dump pane SpeedMenu contains commands·that let you navigate through the
pane, modify memory contents, follow near or far pointers, format the display, and
manipulate blocks of memory.

104 Turbo Debugger Use'/"s Guide

Goto
Goto prompts you for a new area of memory to display with the Enter Address to
Position To dialog box. Enter any expression that evaluates to a memory location that
your program can access.

Search
The Search command searches for a character string or byte list, starting from the
memory address indicated by the cursor.

Next
Next searches for the next instance of the item you previously specified in the Search
command.

Change
The Change command lets you modify the bytes located at the current cursor location. If
the display is ASCII or if the hexadecimal format is Byte, you're prompted for a byte list.
Otherwise, you're prompted for an item of the current display type.

You can invoke this command by typing :into the Dump pane.

Follow
The Follow command opens a menu containing commands that let you examine the
data at near and far pointer addresses. The TD32 menu contains only the commands

. that relate to 32-bit addressing.

Table 8.6 Follow command options

Near Code Interprets the word under the cursor in the Dump pane as an offset into the
segment specified by the CS register. This command activates the Code pane,
and positions it to the near address.

Far Code Interprets the doubleword under the cursor in the Dump pane as a far address
(segment:offset). This command activates the Code pane, and positions it to the
far address.

Offset to Data Lets you follow word-pointer chains (near and offset only). The Dump pane is
set to the offset specified by the word at the current cursor location.

Segment:Offset to Data Lets you follow long pointer chains (far, segment, and offset). The Dump pane is
set to the offset specified by the two words at the current cursor location.

Base Segment: to Data Interpr~ts the word under the cursor as a segment address and positions the
Dump pane to the start of that segment.

Previous
Previous restores the Dump pane position to the address before the last command that
explicitly changed the display address. The arrow keys do not affect this command.

Turbo Debugger maintains a stack of the last five addresses accessed :in the Dump pane,
so you can backtrack through multiple uses of the Follow menu or Goto commands.

Chapter 8, Assembly-level debugging 105

Display As
Use the Display As command to format the data that's listed in the Dump pane. You can
choose any of the following data formats:

Table 8.7 Display As command options

Byte Hexadecimal bytes.

Word 2-byte hexadecimal numbers.

Long 4-byte hexadecimal numbers.

Comp 8-byte decimal integers.

Float 4-byte floating-point numbers in scientific notation.

Real 6-byte floating-point numbers in scientific notation.

Double 8-byte flqating-point numbers in scientific !lotation.

Extended lO-byte floating-point numbers in scientific notation.

, Block
This command brings up a menu that lets you move, clear, and set blocks of memory. In
addition, you can read and write memory blocks to and from files. Use Ins and the arrow
keys to quickly select the block of bytes that you want to work with.

Table 8.8

Clear

Move

Set

Read

Write

Block command options

Sets a contiguous block of memory to zero (0). You are prompted for the address and
the number of bytes to clear.

Copies a block of memory from one address to another. You are prompted for the
source address, the destination address, and how many bytes to copy.

Sets a contiguous block of memory to a sp~cific byte value. You are prompted for the
address of the block, how many bytes to set, and the value to set them to.

Reads all or a portion of a file 'into a block of memory. You are prompted for the file
name to read from, for the address to read it into, and for how many bytes to read.

Writes a block of memory to a file. You are prompted for the file name to write to, for
the address of the block to write, and for how many bytes to write.

The Stack pane
The Stack pane shows the hexadecimal contents of the program stack. An arrow (~)
shows the location of the current stack pointer.

Although you might need to review the hexadechnal bytes that make up the 'program
stack, Turbo Debugger uses the Stack window to show the contents of the stack in a
more readable format. See page 74 for a discussion on the Stack window.

The Stack pane SpeedMenu
The SpeedMenu of ' the Stack pane contains the following commands.

106 T u r boD e bug 9 e r Use r' s G u ide

Goto
Goto prompts you for an address to view with the Enter Address to Position To dialog
box. If you want, you can enter addresses outside your program's stack, although it's
usually easier to use the Dump pane to examine arbitrary memory locations.

Origin
Origin positions you at the current stack location as indicated by the SS:SP register pair.

Follow
The Follow command positions you at the location in the stack pointed to by the
currently highlighted word. This is useful for following stack-frame threads back to the
calling procedure.

Previous
The Previous command restores the Stack pane position to the address before the last
command that explicitly changed the display address (such as Goto, Origin, and
F~llow). The arrow keys do not affect this command.

Change
Change lets you enter a new word value for the currently highlighted stack word with
the Enter New Value for Unsigned Tnt dialog box.

You can invoke this command by typing the new value for the highlighted stack item.

The Selector pane
The Selector pane, found only in TDW, lists the Windows 3.x protected-mode selectors.
A selector can be either valid or invalid. If valid, the selector points to a location in the
protected-mode descriptor table corresponding to a memory address. If invalid, the
selector is unused.

If a selector is valid, the pane shows the following information:

• The contents of the selector segment (Data or Code).

• The status of the selector memory area: Loaded (present in memory) or Unloaded
(swapped out to disk).

• The length of the referenced memory segment in bytes.

If the selector references a data segment, the pane displays additional information on
the access rights (Read/Write or Read Only), and the direction in which the segment
expands in memory (up or Down).

The Selector pane SpeedMenu
You use the SpeedMenu of the Selector pane to go to a new selector or see the contents
of the currently highlighted selector. Turbo Deb~gger displays selector contents in
either the Code pane or the Dump pane, depending on the nature of the data being
displayed.

C h apt e r 8, Ass e m b 1 Y -I eve 1 deb u 9 gin 9 107

Selector
The Selector command opens the Enter New Selector dialog box, which prompts you for
a selector to display in the pane. You can use full expression syntax to enter the selector.
If you enter a numeric value, Turbo Debugger assumes it is decimal, unless you use the
syntax of the current language to indicate that the value is hexadecimal.

For example, if the current language were C, you could type the hexadecimal selector
value 7F as Ox7F. For Pascal, you'd type it as $7F. You can also type the decimal value 127
to go to selector 7F.

Another-method of entering the selector value is to display the CPU window and check
the segment register values. If a register holds the selector you're interested in, you can
enter the name of the register preceded by an underscore (J. For example, you could
type the data segment register as _DS.

Examine
. Examine displays the contents,of the memory area referenced by the currently
highlighted selector. When this command is invoked, either the Code pane or the Dump
pane gains focus. If the selector points to a code segment, the contents are displayed in
the Code pane. If the selector contents are data, they're displayed in the Dump pane.

The Dump window
The Dump window, opened with the View I Dump command, displays the raw data
that's located in any area of memory that can be accessed by your program. The Dump
windowis identical in behavior to the Dump pane in the CPU window, including all
SpeedMenu commands (see page 104 for a description of this pane). The advantage of
using the Dump window, however, is thatit can be resized.

Figure 8.2 The Dump window

The Dump window is useful when you're in an Inspector window and you want to look
at the raw bytes that make up the object you're inspecting. Choosing the View I Dump
command when an Inspector window is active opens a Dump window that's positioned
at the address of the data in the Inspector window.

You can open several Dump windows simultaneously by choosing View I Another I
Dump.

The Registers window·
The Registers window is a combination of the Registers and Flags panes in the CPU
window (see page 97).

108 Turbo Debugger User's Guide

Figure 8.3 The Registers window

Registers pane Flags pane

You can perform the same functions from the SpeedMenu of the Registers window as
you can from the SpeedMenus of the Registers and the Flags panes in the CPU window.

C hap t e r 8, Ass e m b I Y ·1 eve Ide bug gin 9 109

110 Tu r boD e bug 9 er Use r' s G u ide

Windows debugging features
Programs written for the Windows operating system can be robust and powerful.
However, the added complexity of programming for Windows opens up a new
category of software bugs. Turbo Debugger provides the following features to help you
find the bugs in your Windows code:

• Windows message tracking and message breakpoints

• Dynamic-link library debugging

• Thread support (for Windows NT only)

• Operating-system exception support for Windows NT and Windows 95

• Listings of your program's local heap, global heap, and program modules
, (TDWonly)

• Expression typecasting from memory handles to near and far pointers (TDW only)

• A Selector pane in the CPU window ofTDW lets you examine any Windows 3.x
protected-mode selector (see "The Selector pane" on page 107 for a description of this
feature)

Monitoring window messages
The Windows Messages window provides commands for tracking and exainining the
window messages received by your program. Using this window, you can create
message breakpoints (breakpoints that pause your program's execution when a specific
window message is received), and you can log the messages that a particular window
processes.

C hap t e r9 , Windows debugging features 111

You open the Windows Messages window, shown in Figure 9.1, with the View I
Windows Messages command. Table 9.1 defines the three panes of the Windows
Messages window.

Table 9.1 Windows Messages window panes

Window Selector pane

Message Class pane

Lists the windows that you've selected for messages tracking.

Lists the messages and message classes that you're tracking for the highlighted
window in the Window Selection pane.

Message Log pane Displays the window messages received by your program.

Figure 9.1 The Windows Messages window

Window Selection pane Message Class pane

Message Log pane

To track messages for a specific window, follow these steps:

1 Specifya window to monitor.

2 Specify the messages you want to track.

3 Specify the action that Turbo Debugger should take when the window messages are
received: Break or Log.

Specifying a window to monitor
The first step in tracking window messages is to specify the window you want to
monitor. Although the procedure for specifying windows is similar in both TD32 and
TDW,\there are some differences.

To specify a window in TD32, use the name of the window procedure that processes the
window's messages: .

Open the Add Window Procedure to Watch dialog box by choosing Add from the
Window Selector pane SpeedMenu, or typing directly into the pane.

2 Type the name of the window procedure into the Window Identifier input box, and
press Enter. .

You can repeat this procedure for each window whose messages you want to monitor.

In TDW, you can specify a window by either its window handle or by the window
procedure that processes the window's messages. In either case, you use the Add
Window or Handle to Watch dialog box to select a "'iindow. To access this dialog box,
choose Add from the Window Selector pane SpeedMenu, or type directly into the pane.

112 T u r boD e bug 9 e r Use r 's G u ide

In TDW's Add Window or Handle to Watch dialog box, the Identify By radio buttons let
you choose how you're going to specify the window whose messages you're going to
track:

Window Proc Choose this when you supply the name of the routine that processes the
window messages (for example WndProc).

Handle Choose this when you supply the name of the window's handle.

Specifying a window procedure
If you select the Window Proc radio button, enter the name of the window procedure
that processes the window's messages in the Window Identifier input box. This is
usually the best way to specify a window because you can enter the procedure name
any time after you've loaded your program.

Specifying a window handle
If you prefer to use the window's handle name, follow these steps to specify the
window's handle:

1 Run your program past the line where the handle is initialized (Turbo Debugger
issues an error message if you try to specify a handle name before it's assigned a
value).

2 Open the Windows Messages window and choose Add from the Window Selection
pane SpeedMenu.

3 Click the Handle radio button.

4 Type the name of the window handle into the Window Identifier input box, and cast
the handle to a UINT data type. .

For example, the following entry would be used to specify the h Wnd window handle:

(UINT)hWnd

5 Complete the entry by pressing Enter.

Note If you enter a handle name but click the Window Proc radio button, Turbo Debugger
will accept your input, falsely assuming that the "window procedure" will be defined
later during your program's execution.

Deleting window selections
The Window Selection pane SpeedMenu contains two menu commands for deleting
window selections: Remove and Delete All.

To delete a single window selection, highlight the desired window entry in the Window
selection pane, and press Ctrl+R (or choose Remove from the pane SpeedMenu). The
Delete All command (Ctrl+O) erases all window selections, which removes all existing
window message tracking.

C hap t e r 9, Win dow s de bug gin 9 f eat u res 113

Specifying the messages to·track
After you specify a window in the Window Selector pane, Turbo Debugger, by default,
lists all the WM_ messages sent to that window in the Message Log pane. Because a
single window can process many messages, you'll probably want to narrow the focus
by selecting the specific messages you're interested in.

To change a window's message-tracking settings, use the Set Message Filter dialog box,
which is accessed with the Window Class pane SpeedMenu Add command. (You can
also begin typing into the Window Class pane to access the dialog box.) This dialog box
lets you select window messages by either message class or by individual message
names.

Figure 9.2 The Set Message Filter dialog box

Note Before you can access the Set Message Filter dialog box, you must first specify a window
in the Window Selection paile.

Specifying a message class to track
To track a sp~cific message class for the highlighted window in the Window Selection
pane, open the Set Message Filter dialog box and choose one of the following message
classes from the Message Class radio buttons.

All Messages

Mouse

Window

Input

System

Initialization

All window messages.

Messages generated by a mouse event (for example,
WM_LBUTTONDOWN and WM_MOUSEMOVE).

Messages generated by the window manager (for example,
WM_P AINT and WM_ CREATE).

Messages generated by a keyboard event or by the user accessing
a System menu, scroll bar, or size box (for example, .
WM_KEYDOWN).

Messages generated by a system-wide change (for example,
WM_FONTCHANGE and WM_SPOOLERSTATUS).

Messages generated when an application creates a dialog box or a
window (for example, WM_INITDIALOG and
WM_INITMENU).

114 Turbo Debugger User's Guide

Clipboard

DDE'

Non-client

Other

Messages generated when the user accesses the Clipboard (for
example, WM_DRAWCLIPBOARD and
WM_SIZECLIPBOARD).

Dynamic Data Exchange messages, generated by applications
communicating with one another's windows (for example,
WM_DDE_INITIATE and WM_DDE_ACK).

Messages generated by Windows to maintain the non-client area
of an application window (for example, WM_NCHITTEST and
WM_NCCREATE).

Any messages that don't fall into the other message categories,
such as owner draw control messages and multiple document
interface messages.

Single Message Lets you specify a single message to track.

To track a single message, choose the Single Message radio button and enter the
message name or message number (an integer) into the Single Message Name input
box. Message names are case sensitive; be sure to match their names exactly.

Although you can set up a single window to track many different message classes and
message names, you can add only one message class or message name at a time. If you
want to track more than a single class or message with a particular window,

Specify a single message class or message name.

2 Choose Add from the Message Class pane SpeedMenu.

3 Append additional message classes or message names to .the window's message
tracking definition.

Specifying the message action
After specifying a window and the messages to track, you must indicate the action that
you want to perform when the window messages are received. Turbo Debugger
provides the following two Action radio buttons in the Set Message Filter dialog box:

Break

Log

Pause program execution when the window receives one of the specified
messages.

List all specified messages in the Message Log pane of the Windows
Messages window (default).

Breaking on messages
If you want Turbo Debugger to gain control when a specific window message is
received by your program, choose Break as the message action. This setting is known as
a message breakpoint.

The following example shows how to set a message breakpoint on WM_P AINT, which
pauses your program every time the message is sent to the window you've selected in
the Window Selection pane:

C hap t e r 9, Win dow s deb u 9 gin 9 f eat u res 115

Enter a window procedure name into the Window Selection pane.

2 Activate the Message Class pane (on the top right), and choose Add from its
SpeedMenu. This opens the Set Message Filter dialog box.

3 Click Single Message from the Message Class radio buttons, and enter WM_PAINT in the
Message Name input box.

4 Click the Break radio button.

5 Press Enter.

Figure 9.1 on page 112 shows how the Windows Messages window looks after you have
made these selections and a WM_P AINT message has been received.

Logging messages
If you choose the Log radio button, Turbo Debugger lists the specified window
messages in the Message Log pane of the Windows Messages window. This pane can
list up to 200 messages.

If you're tracking many messages, you might want to write the messages to a me so you
don't overwrite the messages already sent to the Message Log pane. To do so,

Set the Action radio button to Log.

2 Activate the Message Log pane, and set the Send to Log Window SpeedMenu
command to Yes.

3 Open the Log window, using the View I Log command.

4 Choose Open Log File from the Log window SpeedMenu.

For details on logging messages to a me, see "Open Log File" on page 63.

To clear the Message Log pane, choose Erase Log from its SpeedMenu. Messages
already written to the Log window are not affected by this command.

Deleting message class and action settings
To delete a window's message and action settings, highlight the desired item in the
Message Class pane and choose Remove from the SpeedMenu. You can also remove
window settings by pressing either Delete or Ctrl+R. To delete all window message and
action settings, choose Delete All from the SpeedMenu,or press Ctrl+D.

If you delete all message and action settings, the default setting (Log All Messages) is
automatically assigned to the window highlighted in the Window Selection pane.

Message tracking tips
The following tips can be helpful when you track window messages:

• If you're tracking messages for more than a single window, don't log all the
messages. In.stead, log specific messages or specific message classes for each window.
If you log all messages, the large number of messages being transferred between
Windows and Turbo Debugger might cause your system to crash.

116 Turbo Debugger User's Guide

• When setting a message breakpoint on the Mouse message class, be aware that a
WM_MOUSEDOWN message must be followed by a WM_MOUSEUP message
before the keyboard becomes active again. This restriction means that when you
return to the application, you might have to press the mouse button several times to
get Windows to receive a WM_MOUSEUP message. You'll know that Windows has
received the message when you see it displayed in the Message Log pane.

Debugging dynamic-link libraries
A dynamic-link library (OLL) is a library of routines and resources that is linked to your
Windows application at runtime rather than at compile time. Windows links OLLs at
run time to save memory by allowing multiple applications to share a single copy of
routines, data, or device drivers. When an application needs to access a OLL, Windows
checks to see if the OLL is already loaded into memory. If the OLL is loaded, then there
is no need to load a second copy of the file.

OLLs can be loaded into memory by your program at two different times:

• 'When your program loads (OLLs are loaded at this time if you've statically linked
them using the IMPLIB utility)

• When your program issues a LoadLibrary call

Stepping into DLL code
When you single-step into a OLL function, Turbo Oebugger loads the OLL's symbol,
loads the source code of the OLL into the Module window, and positions the cursor on
the called routine.

However, before a OLL's source code can be loaded into the Module window, the
following conditions must be met:

• The OLL must be compiled with symbolic debug information.

• The .OLL file must be located in the same directory as your program's .EXE file.

• The OLL's source code must be available.

Turbo Oebugger searches for 1;)LL source co'de the same way it searches for the
source code of your program's executable file, as described on page 21.

If a OLL doesn't contain debug information, or if Turbo Oebugger can't find the OLLIS
source code, Turbo Oebugger opens the CPU window and displays the OLL's
disassembled machine instructions.

Returning from a DLL
If, when debugging a OLL function, you step past the return statement with F7 or FB,
your program might begin to run as though you had pressed F9. This behavior is typical
when you're debugging a OLL that was called from a routine that doesn't contain
symbolic debug information, or when the OLL function returns through a Windows
function call.

C hap t e r 9, Win dow s deb u 9 gin 9 f eat u res 117

If you're debugging DLL startup code, set a breakpoint on the first line of your program
before you load the DLL to ensure that your program will pause when you step past the
DLL's return statement.

Accessing Dlls and source-code modules
Although Turbo Debugger makes stepping into DLL functions transparent, you might
need to access a DLL before your program makes a call to it. For example, you might
need to access a DLL to set breakpoints or watches, or to examine a function's source
code.

To access an executable module other than the one that's currently loaded, open the
Load Module Source or DLL Symbols dialog box by choosing the View I Modules
command or by pressing F3.

Figure 9.3 The Load Module Source or DLL Symbols dialog box

The Source Modules list box displays all the source modules contained in the currently
loaded executable file. The DLLs & Programs list box displays all the .DLL and .EXE
files that are currently loaded by Windows. (If you're running TDW, the list also
displays all loaded .DRV and .FON files.) CheckShow Full Name Paths to view the
directory and path to your source modules.

A bullet (.) next to a DLL listing indicates that it can be loaded into Turbo Debugger (as
long as the DLL contains symbolic debug information and the source codeis available).
An asterisk (*) next to a module indicates that the module has been successfully loaded
by Turbo Debugger.

Note Because your program might load DLL modules with the LoadLibrary call, the DLLs &
Programs list box might not display all of the.DLL files your program uses. To view
.DLLs loaded with LoadLibrary, be sure to include the .DLL source-code path in the
Option I Path for Source command.

Changing source modules
If you need to access a different source code module in the currently loaded executable
file, highlight the desired module in the Source Modules list box, and press the Load
button (you can also double click the desired module to load it). Turbo Debugger opens
the Module window, which displays the selected source code module.

118 T u r boD e bug 9 e r Use r 's G u ide

Changing executable files
To access an executable file that's not currently loaded:

1 Openthe Load Module Source or DLL Symbols dialog box (press F3 or choose
View I Modules).

2 Highlight the desired file in the DLLs & Programs list box.

3 Choose the Symbol Load button.

Turbo Debugger opens the Module window, which displays the first source code
module found in the executable module. If you need to switch source code modules,
follow the directions in the preceding section.

Adding DLLs to the DLLs & Programs list
To access a DLL through the Load Module Source or DLL Symbols dialog box, the DLL
must be listed in the DLLs & Programs list box. However, if a DLL is loaded with the
LoadLibrary call, the DLL might not yet be listed (a DLL's name is listed only after it's
been loaded).

To add a DLL to the DLLs & Programs list box:

1 Open the Load Module Source or DLL Symbols dialog box (press F3 or choose
View I Modules).

2 Activate the DLL Name input box, and enter the name of the desired DLL (enter the
full pqth if necessary).

3 Press the Add DLL button to add the DLL to the list.

Stepping over Dlls
Whenever you step into a function contained in a DLL, Turbo Debugger automatically

, loads in the symbol table and source code for that DLL (providing that the source code
is available and the DLL was compiled with symbolic debug information). This includes
DLLs that your program loads with the LoadLibrary calL

Because it takes time to swap symbol tables and source, code, you might want to
disable the swapping operation for the DLLs you don't need to debug. To prevent
Turbo Debugger from loading a DLL's symbol table and source code,

1 Open the Load Module Source or,DLL Symbols dialog box (press F3 or choose
View I Modules).

2 Highlight the desired DLL in the DLLs & Programs list box.

3 Choose the No radio button, then choose OK.

To re-enable the loading of a DLL's symbol table, choose the Yes radio button in the
Load Symbols group.

When you disable the loading of a DLL's symbol table, the bullet next to the DLL listing
in the DLLs & Programs list box disappears. Although Turbo Debugger will now
automatically step over calls to the DLL, you can still access the DLL through the

C hap t e r 9, Win dow s deb u 9 gin 9 f eat u res 119

Symbol Load button, as described in the preceding section" Accessing DLLsand source
code modules."

Note When you reload a program, the Load Symbols radio button is set to Yes for aU DLLs
and modules, even for DLLs or modules that were previously set to No.

Debugging Dll startup code
When your application loads a DLL (when either the program is loaded or when your
program makes a LoadLibrary call), the DLL's startup code is executed. By default, Turbo
Debugger does not step through a DLL's startup code. However, if you need to verify
that a DLL is loading correctly, then you'll need to debug the DLL's startup code.

Turbo Debugger lets you debug two types of DLL startup code:

• The initialization code immediately following LibMain (default mode).

• The assembly-language code linked to the DLL. This code initializes the startup
procedures and contains the emulated math packages for the size model of the DLL.
(Select this debug mode by starting Turbo Debugger with the -1 command-line
option.)

You set DLL startup code debugging with the Load Module Source or DLL Symbols
dialog box. However, if you try to run your application after setting the startup
debugging, Turbo Debugger might not behave as you expect because some or all of the
DLLs might already have been loaded. Because of this, you must load your application,
set the startup debugging for selected DLLs, and then restart your application using the
Run I Program Reset command (Ctrl+F2).

With these preliminaries in mind, follow these steps to specify startup debugging for
one or more DLLs:

1 Load your program into Turbo Debugger.

2 Bring up the Load Module Source or DLL Symbols dialog box (press F3 or choose
View I Modules).

3 Highlight the DLL whose startup code you want to debug in the DLLs & Programs
list box.

4 Choose the Debug Startup Yes radio button.

If the needed DLL isn't on the list, add it using the method described in the section
"Adding DLLs to the DLLs & Programs list" on page 119.

When you specify startup debugging for a DLL; the DLL's entry in the DLLs &
Programs list box displays a double exclamation point (!!) next to it.

5 Repeat steps 3 and 4 until you've set startup debugging for all desired DLLs.

6 Choose Run I Program Reset or Ctrl+F2 to reload your application.

After you've set up startup debugging for DLLs, you're ready to run your program.
However, before you begin, keep the following in mind:

120 T u r boD e bug 9 e r Use r 's G u ide

• Be sure to run to the end of a DLL's startup code before reloading the current application or
loading a new one. If you don't, the partially executed DLL startup code might cause
Windows to hang, forcing you to reboot.

• Setting breakpoints on the first line of your application, or the first line after a
LoadLibrary call, guarantees that control returns to Turbo Debugger after the DLL's
startup code executes.

• As your application loads each DLL, Turbo Debugger places you in either the
Module window at the DLL's LibMain function (the default), or in the CPU window
at the start of the assembly code for the startup library.

• When you've finished debugging the startup code for a DLL, press F9 to run through
the end of the startup code and return to the application. If you've specified any
additional DLLs for startup code debugging, Turbo Debugger displays startup code
for them when your application loads them.

Debugging multithreaded programs
The Threads window (opened with the View I Threads command) supports the
multithreaded environment of Windows NT.

Figure 9.4 The Threads window

Threads Detail pane

The Threads Information pane

Threads List pane

Threads
Information pane

The Threads Information pane, which lists general thread information, consists of these
fields:

The Last field lists the last thread that was executing before Turbo Debugger regained
control.

The Current field shows the thread whose values are displayed in Turbo Debugger's
windows. You can change the thread you're debugging via the Make Current
SpeedMenu command.

The Total field indicates the total number of active program threads.

The Notify field displays either Yes or No, the Notify on Termination status of all threads.
Although you can set the Notify on Termination status for individual threads, the
overall status isset through the All Threads SpeedMenu command. Newly created
threads are also assigned this status.

C hap t e r 9, Win dow s deb u 9 gin 9 f eat u res 121

The Threads List pane
The Threads List pane lists all your program's active threads. Threads are identified by a
thread number (assigned by Windows NT) and a thread name. Turbo Debugger
generates a thread name when your program creates a thread. The first thread created is
named Thread 1, followed by Thread 2, and so on. You cap modify a thread's name using
the Option command on the List pane SpeedMenu.

Threads List pane SpeedMenu
The Threads window contains a single SpeedMenu (which you activate through the
Threads List pane) which contains the Options, Make Current, and All Threads
commands.

Options
The-Options SpeedMenu command opens the Thread· Options dialog box. This dialog
box lets you set options for individual program threads.

Figure 9.5 The Thread Options dialog box

The Freeze check box lets you freeze and thaw individual threads. When you freeze a
thread by checking this box, the thread will not run. To thaw the thread (which enables
it to run), clear the checkbox. For your program to run, there must be at least one thread
that isn't frozen.

Note If you freeze the only thread in your program that processes window messages, your
program and the debugger will hang when you run the program.

The Notify on Termination check box lets you specify whether Turbo Debugger should
notify you when the clU'rently highlighted thread terminates. When this box is checked,
Turbo Debugger generates a message when the thread terminates, and activates a
Module or CPU window that displays the current program location. If you clear the
Notify on Termination check box, Turbo Debugger doesn't pause when the thread
terminates. To set the Notify on Termination status for all threads, use the All Threads
SpeedMenu command.

The Thread Name input box lets you modify the thread name that's generated by Turbo
Debugger. If your program generates many threads, it can be easier to keep track of
them if you specify your own thread names.

Make Current
The Make Current command lets you change the thread currently being processed by
Turbo Debugger. To change the current thread, highlight the thread that you want to
examine in the Threads List pane, and press CtrltM (or choose the Make Current .

122 T u r boD e bug 9 e r Use r 's G u ide

command). When you do so, the Thread Information pane displilYS the thread number
whose data values are displayed in Turbo Debugger's windows, and all references to
the CPU registers and stack data will now relate to this thread.

Inspect
The Inspect command opens a Module or CPU window that shows the current point of
execution for the highlighted thread. Pressing Enter has the same effect as choosing
Inspect from the SpeedMenu.

All Threads
The All Threads command opens a menu whose commands relate to all program
threads.

The Thaw command unfreezes any currently frozen threads. When you issue this
command, all threads in your program are able to run.

The Freeze command disables all thread execution. When you issue this command, all
threads in your program will be frozen and unable to run. For your program to run, you
must thaw at least one thread using the Options SpeedMenu command (or use the
Thaw command on the All Threads menu to unfreeze all the threads).

The Enable Exit Notification command sets the notify-on-exit status for all program
threads, including threads that have yet to be created. Choosing this command causes
Turbo Debugger to issue a message when any thread terminates. The status of notify
on-exit is displayed in the Notify field of the Threads Information pane.

The Disable Exit Notification command turns off the notify-on-exit status. This is Turbo
Debugger's default setting. .

Step
The Step command toggles between All and Single:

When set to All (the default), all the threads in your program can run as you step
through your program using F7 or FB. If you're debugging a thread with a low priority,
other threads might execute several statements before the thread you're debugging
executes a single statement. (This can sometimes make it difficult to watch the behavior
of a single thread in your program.)

When the Step command is set to Single, only the thread located at the current
instruction pointer will run as you step. This is different from freezing threads because
different threads can be created and destroyed, and you can step into these threads as
your program's execution dictates.

The Threads Detail pane
The Thread Detail pane, shown in Figure 9.4, displays the details of the thread that's
highlighted in the Threads List pane. .

C hap t e r 9, Win dow s deb u 9 gin 9 f eat u res 123

The first line of the Thread Detail pane displays the status of the highlighted thread
(either suspended or runnable) and the thread's priority. The priority, which is set by the
operating system, can be one of five different states:

-2 (lowest)

-1 (below normal)

o (normal)

1 (above normal)

2 (highest)

The second line of the Thread Detail pane displays the current execution point of the
thread that's highlighted in the Threads List pane.

The third line, if present, indicates how Turbo Debugger gained control from the
running thread. A complete list of the messages that Turbo Debugger can g~nerate for
this line is given in the "Status messages" section on page 169.

The fourth line of the Thread Detail pane, if present, lists the thread's settings. Possible
settings are Frozen and Notify on Termination .

. Tracking operating-system exceptions
In TD32, the as Exceptions command (located on the SpeedMenu of the CPU window's
Code pane) opens the Specify Exception Handling dialog box. This dialog box lets you
specify how Turbo Debugger should handle the operating-system exceptions that are
generated by your program.

Figure 9.6 The Specify Exception Handling dialog box

The Exceptions list box displays all the operating-system exceptions that can be
handled by Turbo Debugger. For each exception in the list, you can specify whether
Turbo Debugger should handle the exception or whether your program's exception
handling routine should take ~ontrol.

By default, all exceptions generated by the operating system are handled by
Turbo Debugger. This means that whenever your program generates an operating
system exception, Turbo Debugger pauses your program and activates the Module or
CPU window with the cursor located on the line of code that caused.the exception.

To change the debugger's default exception handling behavior,

124 T u r boD e bug 9 e r Use r 's G u ide

Open the Specify Exception Handling dialog box using the as Exceptions command
on the SpeedMenu of the CPU window's Code pane.

2 Highlight the e~ception you want your program to handle.

3 Click the User, Program radio button.

When you specify that your program will handle an operating-system exception,
Turbo Debugger places a bullet (•) next to the exception listing in the Exceptions list
box.

If you want your program to handle all the operating-system exceptions, click the User
All button on the right side of the Specify Exception Handling dialog box. To have
Turbo Debugger pause on all operating-system exceptions, click the Debugger All
button (default).

Specifying user-defined exceptions
Turbo Debugger supports user-defined operating-system exceptions with the Range
Low and Range High input boxes in the Specify Exception Handling dialog box.

By default, Turbo Debugger sets both the Range Low and Range High input boxes to o.
This default state indicates that there are no user-defined operating-system exceptions.

To have Turbo Debugger monitor a single user-defined operating-system exception,
enter the hexadecimal number generated by the exception into the Range Low input
box. The following line then appears at the bottom of the Exception list box, where
xxxxxxxx equals the hexadecimal value of the exception:

Range: xxxxxxxx to xxxxxxxx

If you've defined more than one operating-system exception, enter the lowest user
defined operating-exception number into the Range Low input box, and the highest
user-defined operating-exception number into the Range High input box. The Range
listing the Exceptions list box will then indicate the range of user-defined operating
system exceptions that Turbo Debugger will monitor.

Obtaining memory and module lists
In TDW, you can write either the contents of the global heap, the contents of the local
heap, or the list of modules used by your program to the Log window. The Windows
Information dialog box (accessed by choosing the Display Windows Info command on
the Log window SpeedMenu) lets you pick the type of list you want displayed, and
where you want the list to start.

C hap t e r 9, Win dow s deb ug gin 9 f eat u res 125

Figure 9.7 TDW's Windows Information dialog box

Listing the contents of the global heap
The global heap is the global memory Windows makes available to all applications. If you
allocate resources like icons, bit maps, dialog boxes, and fonts, or if you allocate memory
using the GlobalAlloc function, your application uses the global heap.

To see a li~t of the data objects in the global heap, select the Global Heap radio button in
the Windows Information dialog box and choose OK. The data objects in the global
heap are then listed in the Log window.

In addition to listing the global heap, the Start At radio buttons let you choose whether
to display the list from the top or bottom of the heap, or from a location indicated by a
starting handle.

A handle is the name of a global memory handle set in your applicati~::m by a callto a
Windows memory allocation routine like GlobalAlloc. Picking a handle causes Turbo
Debugger to display the object at that handle and the next four objects that follow it in
the heap.

Note Because the global heap listing is likely to exceed the number of lines in the Log window
,Jthe default is 50 lines), you should either write the contents to a log file (using the Log
window's Open Log File SpeedMenu command) or increase the number of Log window
lines (using TDWINST). The Log window can hold a maximum of 200 lines.

The following line shows an example of a global heap listing. Table 9.2 gives an
explanation of each field in the output.

053E (053D) 00002DCObPDB (OF1D) DATA MOVEABLE LOCKED=OOOOl ,PGLOCKED=OOOl

Table 9.2 Format of a global heap list

053E Either a handle to the memory object, expressed as a 4-digit hex value, orthe word
FREE, indicating a free memory block.

(053D) A memory selector pointing to an entry in the global descriptor table. The selector
isn't displayed if it's the same value as the memory handle.

00002DCOb A hexadecimal number representing the length of the segment in bytes.

PDB The allocator of the segment, usually an application or library module. A PDB is a
process descriptor block; it is also known as a program segment prefix (PSP).

(OFID) A handle indicating th~ owner ofa PDB.

126 T u r boD e bug 9 e rUse r ' s G u ide

Table 9.2 Format of a global heap list (continued)

DATA

MOVABLE

LOCKED=OOOOl

PGLOCKED=OOOl

The type of memory object. Possible types are:
• DATA Data segment of an application or DLL.
• CODE Code segment of an application or DLL.
• PRIV Either a system object or global data for an application or DLL.

A memory allocation attribute. An object can be FIXED, MOVABLE, or MOVABLE
DISCARDABLE.

For a movable or movable-discardable object, this is the number of locks on the
object that have been set using either the GlobalLock or LockData functions.

For 386 Enhanced mode, the number of page locks on the object that have been set
using the GlobalPageLock function. With a page lock set on a memory object,
Windows can't swap to disk any of the object's 4-kilobyte pages.

Listing the contents of the local heap
The local heap is a private memory area used by your program; it is not accessible to
other Windows applications, including other instances of the same application.

A program doesn't necessarily have a local heap. Windows creates a local heap only if
the application uses the LocalAlloc function.

To see a list of the data objects in the local heap, select the Local Heap radio button in the
Windows Information dialog box, then choose OK. The local heap data objects will be
listed in the Log window.

The following line shows an example local heap listing. Table 9.3 giVes an explanation of
each field in the output.

05CD: 0024b BUSY (lOAF)

Table 9.3

0024b

BUSY

(1OAF)

Format of a local heap list

object's offset in the local data segment.

The length of the object in bytes.

The disposition of the memory object, as follows:
• FREE An unallocated block of memory.
• BUSY An allocated object.

A local memory handle for the object.

Listing the Windows modules
To see a list of the tasks and DLL modules that have been loaded by Windows, select the
Module List radio button in the Windows Information dialog box, then choose OK. The
modules will be listed in the Log window.

C hap t e r 9, Win dow s deb u 9 gin 9 f eat u res 127

The following line shows an example module listing. Table 9.4 gives an explanation of
each field in the output. '

OEFD TASK GENERIC C:\TPW\GENERIC.EXE

Table 9.4 Format of a Windows module list

OEFD

TASK
GENERIC

C: \ TPW\GENERIC.EXE

A handle for the memory segment, expressed as a' 4-digit hex value.

The module type. A module can be either a task or a DLL.

The module name.

The path to the module's executable file.

Converting memory handles to addresses
In a Windows program, you reference a data object using a symbolic name instead of
using the object's physical address. This way, Windows can perform its own memory
management, and can change the physical address of the object without creating
conflicts with your program.

Turbo Debugger provides two special data types to help you obtain the physical
address of a data object that's referenced by a memory handle: Ih2fp and gh2fp. If you
need the actual address referred to by a.memory handle, use the typecast symbols Ih2fp
to dereference a local handle and gh2fp to dereference a global handle. .

You use Turbo Debugger's special data types for typecasting, just as you can use any of
C's ,built-in data types. For example, you could cast the local memory handle
hLocalMemory using two methods:

• Use the Data I Inspect window to evaluate the expression (lh2 fp) hLocalMemory.

• Use the Type Cast command in the Inspector local window and enter Ih2fp as the
type. .

In either case, the expression evaluates to the first character of the memory block
pointed to by hLocalMemory.

You could also use either of these techniques to do a more complicated cast. For
example, a two-stage cast-from a handle into a character pointer into a pointer to the
data in memory-could read as follows:

(Mystruct far *) (lh2fp)hLocalMemory

128 T u r boD e bug 9 e r Use r 's G u ide

Debugging object-oriented programs
Turbo Debugger supplies the following features to help you debug object-oriented
programs:

• The Hierarchy window
• Class Inspector windows
• Object inspector windows
• Object Pascal property inspection
• C, C++, and Object Pascal exception handling

The Hierarchy window
The Hierarchy window, which is opened with the View I Hierarchy command, provides
a graphic display of the class hierarchies in your program.

Figure 10.1 The Hierarchy window

Classes pane . Hierarchy pane

Parents pane

The Hierarchy window displays the heritage of object-oriented program classes. The
window is composed of two or three panes, depending on whether or not your program
uses multiple inheritance.

C hap t e r 1 0, 0 e bug gin gob j e c t- 0 r i e n ted pro 9 ram s 129

The Classes pane
The Classes pane displays an alphabetical listing of the classes used by the currently
loaded module. The class that's highlighted in this pane is detailed in the pane(s) on the
window's right side.~

The Classes pane uses incremental matching to help you quickly find the class you're
interested in. As you type the name of a class into the pane, Turbo Debugger highlights
the class whose name matches the keystrokes you've pressed.

The Classes pane SpeedMenu
The Classes pane contains two SpeedMenu commands.

Inspect
The Inspect command opens a Class Inspector window for the currently highlighted
class. Alternately, you can press Enter to open a Class Inspector window for the
highlighted class. For a description of Class Inspector windows, see page 131.

Tree
The Tree command activates the Hierarchy pane, highlighting the currently selected
class.

The Hierarchy pane
The Hierarchy pane displays the loaded module's classes and their hierarchies. Original
base classes are placed at the left margin of the pane with derived classes displayed
beneath their base classes.

Classes that inherit from multiple base classes are marked with asterisks. The first class
in a group of multiply-inherited classes is marked with a double-asterisk (**); all other
classes that are part of the same multiple-inheritance group are marked with a single
asterisk (*). .

To locate a class in a complex hierarchy, choose the Tree command from the Classes
pane SpeedMenu. This navigates to the class in the Hierarchy pane.

The Hierarchy pane SpeedMenu
The Hierarchy pane SpeedMenu has one or two commands, depending on whether or
not your program implements classes with multiple inheritance.

Inspect
When you choose Inspect (or press Enter), a Class Inspector window opens for the class
that's highlighted in the pane.

Parents
If you're debugging an object-Qriented program that implements classes derived
through multiple inheritance, the Hierarchypane SpeedMenu also contains the Parents

130 T u r boD e bug 9 e r Use r 's G u ide

command. The Parents command toggles on and off the display of the Hierarchy
window's Parents pane. The default for Parents is Yes. .

The Parents pane
The Hierarchy window's Parents pane appears only if your program contains classes
that inherit from multiple base classes, and the Parents command on the Hierarchy pane
SpeedMenu is set to Yes.

The Parents pane displays all base classes for the classes that are derived through
multiple inheritance. A class' display begins with the message Parents of <ClassName>.
Beneath this, the pane displays a reverse hierarchy tree for each set of base classes, with
lines indicating the base class and derived class relationships.

The Parent pane SpeedMenu
The Parent pane, if displayed, contains a single SpeedMenu command: Inspect.
Choosing Inspect (or pressing Enter), opens a Class Inspector window for the class
highlighted in the pane.

Class Inspector windows
The Class Inspector window lets you inspect the details of object-oriented program
classes. To open a Class Inspector window, activate the Hierarchy window (choose
View I Hierarchy), highlight a class, and press Enter.

Figure 10.2 A Class Inspector window

Data Member pane

Member Function pane

A Class Inspector window is divided horizontally into two panes. The top pane lists the
class' data members and type information, and the bottom pane lists the class' member
functions and their return types.

A Class Inspector window s1,lmmarizes the data members and member functions
contained in a C++ class (or the methods and fields contained in an Object Pascal class);
it doesn't, however, reflect the data of any particular instance. If you want to examine a
member (or method) function's arguments, highlight the member fUnction and press .
Enter. A Function Inspector window opens, displaying the code address for the object's
implementation of the function and the names and types of all its arguments.

If the highlighted data member is a pointer to a class, pressing Enter opens another Class
Inspector window for the highlighted class. (This action is identical to choosing Inspect

C hap t e r 1 0, Deb u 99 i n 9 0 b j e c t - 0 r i e n ted pro 9 ram s 131

in the SpeedMenu for this pane.) Using thisJunctionality, you can inspect complex,
nested classes with a minimum of keystrokes. .

As with all Inspector windows, Esc closes the current Inspector window and Alt+F3
closes them all.

The Class Inspector window SpeedMenus
The SpeedMenus in each pane of the Class Inspector window contain identical
commands, although they behave slightly differently in each pane.

Inspect
The Data Member pane's Inspect command opens an Inspector window on the
highlighted data member (or Object Pascal field). If the data member is a pointer to
another class, a Class Inspector window opens for that class .

. The Member Function pane's Inspect command opens 'a Function Inspector window on
the highlighted member function (or Object Pascal class method). To display a member
function's source code, position the cursor over the address of the member function in
the Function Inspector window, and press Enter to activate the Module window.

Hierarchy
The Hierarchy command on each SpeedMenu opens the Hierarchy window, displaying
the currently inspected class. The Hierarchy window is described on page 129.

Show Inherited
The Show Inherited command toggles between Yes and No in each pane of the Class
Inspector window. The default value in each pane is Yes.

When Show Inherited is set to Yes, Turbo Debugger shows either all the C++ data
members or all the C++ member functions of the currently highlighted class, including
all the items that the class inherits (with Object Pascal, Turbo Debugger shows either all
the fields or all the methods of the currently highlighted class, including all the items
that the class inherits). If the toggle is set to No, Turbo Debugger displays only the data
members or member functions defined within the class being inspected.

Object Inspector windows
While Class Inspector windows provide information about the structure of a class, they
say nothing about the data contained in a particular class instance. To view the structure
and the values of a specific class instance, use the Object Inspector window.

To open an Object Inspector window, place the cursor on an object name in the Module
window, and press Ctrl+l.

132 T u r boD e bug 9 e r Use r 's G u ide

Figure 10.3 An Object Inspector window

Data Member pane

Member Function pane

Type pane

An Object Inspector window contains three panes. The Data Member pane displays the
current values of the object's C++ data members (or Object Pascal fields). The Member
Function pane shows the current values and code addresses of the object's C++ member
functions (or Object Pascal methods). The Type pane displays the data type of the
highlighted C++ data member or member function (or. Object Pascal field or method).

The Object Inspector window SpeedMenus
The Object Inspector window's Data Member and Member Function panes both contain
a SpeedMenu. Each menu contains identical commands, except that the Data Member
pane contains the additional Change command.

Range
The Range command lets you specify a range of array elements to be displayed. If the
currently highlighted item is not an array or a pointer, the item cannot be accessed.

Change
The Change command, available only from the Data Member pane, lets you modify the
value of the highlighted C++ data member or object Pascal field.

Methods
The Methods command can be toggled between Yes and No; Yes is the default setting.
When set to Yes, Turbo Debugger opens the middle pane of the Object Inspector
window, where C++ member functions (or Object Pascal methods) are summarized.
When Methods is set to No, the middle pane is not displayed. The Methods setting is
carried forward to the next opened Object Inspector window.

Show Inherited
The Show Inherited command is also a Yes/No toggle. When it's set to Yes, all Object
Pascal fields and methods (or C++ data members and member functions) are shown,
whether they are defined within the class being inspected or inherited from a base class.
When the command is set to No, Turbo Debugger displays only those Object Pascal
methods and fields (or C++ data members and member functions) defined within the
class being inspected.

Inspect
The Inspect command (which can be opened from the SpeedMenu or by pressing Enter)
opens an Inspector window on the currently highlighted C++ data member or member

C hap t e r 1 0, Deb u 9 gin gob j e ct· 0 r i e n ted pro 9 ram s 133

function (or Object Pascal field or method). Inspecting a member function (or method)
opens the Module view, with the cursor positioned on the code that defines the member
function (or method).

Descend
The Descend command works like the Inspect SpeedMenu command, except that it
replaces the current Inspector window with the new item you want to examine. Using
this command reduces the number of Inspector windows onscreen; however, you can't
return to a previous Inspector .window as you could if you use the In~pect command.

\
New Expression
Use the New Expression command to inspect a different expression. The data in the
current Inspector'window is replaced with the data relating to the new expression you
enter.

Type Cast
The Type Cast command lets you specify a different data type for the currently
highlighted item. This command is useful if your class contains a symbol for which
there is no type information, as well as for explicitly setting the type of pointers.

Hierarchy
The Hierarchy command opens the Hierarchy window, displaying the heritage of the
class being inspected. The Hierarchy window is described on page 129.

Object Pascal property inspection
, When inspecting or evaluating Object Pascal classes, the Object Pascal evaluator in

Turbo Debugger does not automatically display the current values of all the properties
contained in the class. To obtain the current value for most Object Pascal properties, a
"get" function must be called. Because of this, the evaluator in Turbo Debugger does not
automatically display all property values when a Object Pascal class is evaluated.

In order to examine the current value of a Object Pascal property, you must use a fully
qualified expression to explicitly point to the property. For example, you can use the
following expression in an Inspector window (or the Evaluate/Modify dialog box) to
examine the BoundsRect property of Forml:

Forml.BoundsRect

Note that you can also use the Descend feature of an Inspect window to view the value
of a class property.

Note Turbo Debugger cannot evaluate properties whose property-access methods have been
smart-linked away because there is no symbolic debug information for such properties.
If you try to evaluate such a property, Turbo Debugger generates an error message.

134 T u r boD e bug 9 e r Use r 's G u ide

Exceptions
The Exceptions command is foundon the SpeedMenu of the Module window. If you
have implemented C or c++ exception handling in your program, the Exception
command becomes active. Choosing this command opens the Specify C and C++
Exception Handling dialog box:

Figure 10.4 The Specify C and C++ Exception Handling dialog box

c++ exception handling
If your program implements C++ exception handling using try, catch, and throw
statements, you can specify how you want Turbo Debugger to treat the exceptions your
program generates.

Using theC++ Exceptions radio buttons, specify the exception handling in the following
ways:

None

Types

Specifies that Turbo Debugger should not interfere with your program's
exception handling.

Lets you specify the exception data types you want to trap with Turbo
Debugger. Enter the data types of the exceptions you want to trap into the
Exception Types input box.

If you want Turbo Debugger to trap exceptions in classes derived from the
ones you enter into the Exception Types input box, check the Derived Classes
checkbox.

All Specifies that you want Turbo Debugger to trap all exceptions generated by
your program.

If, for example, you specify that Turbo Debugger should trap char* exceptions, then
Turbo Debugger will pause whenever program execution encounters a throw (char *)
statement.

If an exception is generated, Turbo Debugger pauses the program with the cursor (not
the IP) placed on the throwO that is responsible for the exception. In this way, Turbo
Debugger notifies the user of the location where the exception occurred. From here,
press FB to step into the catchO function, or press F9 to continue running the program if
you are not interested in this particular C++ exception.

C hap t e r 1 0, Deb u 9 gin gob j e c t - 0 r i e n ted pro 9 ram s 135

Note If you tum exceptions off, then step into or over a throwO call, Turbo Debugger runs the
application without stopping at the appropriate catch function. You can debug catch
functions when exceptions are turned off by setting breakpoints within the functions.

C exception handling
If your C program implements C exception handling, you can control how Turbo
Debugger handles the exceptions that your program generates.

Using the C Exceptions radio buttons, specify the C exception handling in the following
ways:

None Specifies that Turbo Debugger should not interfere with your program's
exception handling. I

Values Lets you specify the exception values you want to trap with Turbo Debugger.
Enter the numbers of the exceptions you want to trap into the Exception
values input box.

All Specifies that you want Turbo Debugger to trap all exceptions generated by
your program.

Object Pascal exception handling
When you are debugging an Object Pascal application, the Options I Exceptions
command in Turbo Debugger opens the Pascal Exceptions dialog box. This dialog box
contains two checkboxes:

• Stop On Raise
• Stop On qestructors

If you check Stop On Raise, Turbo Debugger pauses the program execution when an
Object Pascal exception is encountered. When the program pauses, Turbo Debugger
places the cursor on the code that raised the exception, either in the Module window or
the Disassembly view of the CPU window. Note that the instruction pointer might not
be visible, especially if Windows kernel code was executing when the exception was
raised.

If you check Stop On Destructors, Delphi pauses the program execution after the
exception has been handled, but before the exception object has been destroyed by its
destructor. This gives you the ability to examine the exception object before processing
continues.

136 T u r boD e bug 9 e r Use r 's G u ide

Debugging TSRs and device drivers
Using TD.EXE, you can debug DOS terminate and stay resident (TSR) programs and
DOS device drivers. Turbo Debugger has three commands on the file menu that are
specifically designed to be used for debugging these types of programs: File I Resident,
File I Symbol Load, and File I Table Relocate.

This chapter gives a brief explanation of what TSRs and device drivers are and it
provides information on how to debug them with Turbo Debugger.

What's a TSR?
Terminate and stay resident programs (TSRs) are programs that stay in RAM after you
"exit" the program. Once you exit the program, you can reinvoke the TSR via special hot
keys or from programs that issue special software interrupts. Borland's C and c++
compilers provide a function, geninterrupt, that issues such software interrupts.

TSRs consist of two parts: a transient portion and a resident portion. The transient portion
is responsible for loading the resident portion into RAM and for installing an interrupt
handler that determines how the TSR is invoked. If the TSR is to be invoked through a
software interrupt, the transient portion places the address of the resident portion of the
code in the appropriate interrupt vector. If the TSR is to be invoked through a hot key,
the resident portion must intercept the DOS interrupt handler for keyboard presses.

When the transient portion is finished executing, it invokes a DOS function that allows a
portion of the .EXE file to stay resident in RAM after execution is terminated-hence the
phrase "terminate and stay resident." The transient portion of the TSR knows the size of
the resident portion as well as the resident portion's location in memory, and passes this
information along to DOS. DOS then leaves the specified block of memory alone, but is
free to overwrite the unprotected portion of memory. Thus the resident portion stays in
memory, while the transient portion can be overwritten.

The trick to debugging TSRs is that you want to be able to debug the resident portion as
well as the transient portion. When the .EXE file executes, the only code that is executed

C hap t e r 1 1, 0 e bug gin 9 T S R san d d e vic e d r i v e r s 137

is the transient portion of the TSR. Therefore, when you run a TSR under Turbo
Debugger, the only code you see executing is the transient portion as it installs the
resident portion and its interrupt handlers. To debug the resident portion of a TSR, you
must set a breakpoint in the resident code, and make Turbo Debugger itself go resi~ent.

Debugging a TSR
Debugging the transient portion of a TSR is the same as debugging any other file. It's
only when you start to debug the resident portion of your program that anything

. different happens.

Note If you're debugging the keyboard handler of your TSR (INT 9), use the mouse to
navigate through Turbo Debugger. This way, the keyboard handler won't confuse
which keys get trapped. If this doesn't work, try using the remote debugging
capabilities of Turbo Debugger.

Here's how you debug a TSR program:

1 Compile or assemble the TSR with symbolic debug information.

2 Run Turbo Debugger and load the TSR program.

3 Set a breakpoint at the beginning of the resident portion of the TSR.

4 Run the transient portion of your program by choosing Run I Run.

S Debug the transient portion of the program using normal debugging techniques.

6 After the transient portion is fully debugged, exit the TSR; the resident portion of the
TSR program remains installed in RAM.

7 Choose the File I Resident command to make Turbo Debugger go resident.

This has nothing to do with making your TSR go memory-resident; the TSR goes
resident when you run it from Turbo Debugger. Once Turbo Debugger is resident,
you can return to DOS and invoke your TSR, which makes its resident portion
exe.cute.

8 At the DOS command line, execute the resident portion of your TSR by pressing its
hot key (or by doing whatever is needed to invoke it), and run through your program
as usual.

9 Exit the TSR program.

The resident portion of the TSR now executes, causing Turbo Debugger to encounter
the breakpoint. When the breakpoint activates, Turbo Debugger pauses the TSR at
the beginning of the resident portion of the program, arid you can debug the resident
code. (To reenter Turbo Debugger fro~ DOS, press Ctrl+Breaktwice.)

A second method of debugging a TSR's resident portion involves executing the TSR
from the DOS command line and using Turbo Debugger's CPU window to debug the
area of RAM containing the TSR:

1 Compile your program with debug information.

2 Use TDSTRIP to strip the symbol table from the program and place it in a .IDS file.

138 Turbo Debugger User's Guide

The symbol table contains a set of symbols tied to relative memory locations in your
code. The symbols in the symbol table are all prefixed by the characters #FILENAME#,
where FILENAME is the name of your TSR source file. For example, if your source
file was called TSR.ASM and contained a label Intr, the symbol #TSR#INTR marks a
location in memory.

3 Execute your TSR from the DOS command line.

4 Run TDMEM (described in TD _ UTILS. TXT) to obtain a memory map of your
computer. Note the segment address at which the resident portion of your TSR is
loaded.

5 Run Turbo Debugger and load your TSR's symbol table by choosing File I Symbol
Load and specifying the .TDS file you created with the TDSTRIP utility.

6 Set a breakpoint at the beginning of the resident portion of the TSR.

7 Choose the File I Resident command to make Turbo Debugger go resident.

8 At the DOS command line, execute the resident portion of your TSR by pressing its
hot key and run through your program as usual.

When your program hits the breakpoint, Turbo Debugger activates with your TSR
paused at the beginning of the resident portion of the program. However, to make
things easier, synchronize the symbol table with the code in memory.

The symbols in the symbol table are offset from each other by the correct number of
bytes, but the absolute location of the first symbol isn't determined yet because DOS
might have loaded your TSR at a different absolute memory location than the one at
which it was assembled. For this reason, you must use the File I Table Relocate
command to explicitly locate the first symbol in memory.

9 Use File I Table Relocate to place the first symbol from the symbol table at the proper
location in memory. In this way, the symbolic information present corresponds with
your code. To do this, add 10 hex to the s~gment address Seg of your TSR to account
for the 256-byte program segment prefix (PSP). Use this number as the TSR segment
address in the Table Relocate command.

The disassembled statements from memory are synchronized with information from
the symbol table. If your source file is present, source statements are printed on the
same line as the information from the symbol table.

10 Use ,the Goto command (Ctrl+G) in the CPU window to go to the segment of RAM
containing your TSR. Do this either by giving the segment address of your TSR,
followed by offset OOOOH, or by going to a specific symbolic label in your code.

11 'Debug the resident portion of your TSR.

Once you've finished debugging the TSR, exit the debugging session as follows:

• If you loaded the TSR through Turbo Debugger, exit the debugger by pressing Alt+X;
the TSR will be unloaded automatically.

.• If you're debugging a TSR that you loaded from DOS, run the TSR until Turbo
Debugger goes resident and press Ctrl+Break twice to bring up Turbo Debugger. Press (
Alt+X to exit Turbo Debugger. This leaves the TSR resident.

C hap t e r 1 1, Deb u 9 gin 9 T S R san d d e vic e d r i v e r s 139

, What's a device driver?
Device drivers are collections of routines used by DOS to control low-level I/O
functions.lnstallable device drivers (as opposed to those intrinsic to DOS) can be
installed from your CONFIG.SYS using commands such as:

device = clock.sys

When DOS has to perform an I/O operation involving a single character, if scans
through a linked list of device headers looking for a device with the appropriate logical
name (forexample, COM1). In the case of block device drivers (such as disk drives),
DOS keeps track of how many block devices have been installed and designates each by
a letter, with A for the first block device driver installed, B for the second, and so on.
When you make a reference to drive C, for example, DOS knows to call the third block
device driver.

The linked list of device headers contains offsets to the two components of the device
driver itself, the strategy routine and the interrupt routiile.

When DOS determines that a given device driver needs to be invoked, it calls the driver
twice. The first time the driver is called, DOS talks to the strategy routine and passes it a
pointer to a memory buffer called the request header. The request header contains
information about what DOS wants the device driver to do. The strategy routine simply
stores this pointer away for later use. On the second call to the device driver, DOS
invokes the interrupt routine, which does the actual work specified by DOS in the
request header, such as transferring characters in from a disk.

The request header specifies what the device driver is to do through a byte in the
request header called a command code. This specifies one of a predefined set of operations
all device drivers must perform. The set of command codes is different for character
device drivers than for block device drivers.

The problem with debugging device drivers is that there is no .EXE file to load into
Turbo Debugger; drivers are installed when your computer boots up and have
extensions of .sYS, .COM or .BIN. To debug a device driver, it must be resident in
memory when you start Turbo Debugger. Hence the functions to load and relocate
symbol tables become very useful because they can restore symbolic information to the
disassembled segment of memory where the device driver is loaded. The File I Resident
command is also very useful.

Debugging a device driver
There are two approaches to debugging device drivers. The first approach is similar to
the method shown on page 138 for debugging TSRs. Another approach involves the
remote debugging capabilities of Turbo Debugger. To use this approach, read Appendix
B for a description of remote debugging, then debug your device driver using the
following steps:

1 Compile the device driver with symbolic debug information ..

2 Strip the symbolic debug information from the device driver using TDSTRIP
(described in TD_UTILS.TXT) ..

140 Turbo Debugger User's Guide

3 Copy the device driver to the remote system.

4 Modify your CONFIG.5Y$ file on the remote system so that it loads the device driver
when it boots up. Then, reboot the remote system to load the device driver.

S Run TDMEM on the remote system to obtain the memory location of your device
driver.

6 Load TDREMOTE on the remote system.

7 Load Turbo Debugger on the local system, connecting it to the remote system.

S Load in your device driver's symbol table into Turbo Debugger using the
File I Symbol Load command.

9 Use the File I Table Relocate command to synchronize the first symbol of the symbol
table with the proper location in memory. In this way, the symbolic information
present will correspond with your code. To do this, specify the segment address for
your device driver (which you determined using TDMEM) to the Table Relocate
command prompt.

10 Set a breakpoint at the beginning of the device driver's code.

11 Choose the File I Resident command to make TDREMOTE go resident.

This has nothing to do with making your device driver memory resident; it goes
resident when you boot up the remote system. You make TDREMOTE resident so
you can return to DOS and do whatever is necessary to invoke your device driver.

12 At the DOS command line on the remote system, perform a command to activate
your device driver. For example, send information to whatever device it controls.

13 When your program hits the breakpoint, Turbo Debugger displays the device
driver's source code at the appropriate point and you can begin debugging your
code. (To reenter Turbo Debugger while DOS is running, press Ctrl+Break.)

C h a pte r 11, Deb u 9 gin 9 T S R san d de vic e d r i v e r s 141

142 Turbo Debugger User's Guide

Command-line options
If you start Turbo Debugger from a command line (as described on page 17), you can
use the following syntax to configure certain Turbo Debugger options:

TD I TDW I TD32 [option~] [program_name [program_args]]

You can use this syntax to start TD.EXE, TDW.EXE, or TD32.EXE from a command]fie.
In the syntax diagram, items enclosed in square brackets are optional. The options item
represents Turbo Debugger's command-line options.

Command-line option details
. All Turbo Debugger command-line options start with a dash (-) and must be separated

from other items in the command line by at least one space. To explicitly tum a
command-line option off, follow the option with another dash. For example, -p
disables the mouse.

Any settings you specify using command-line options will take precedence over the
settings loaded from Turbo Debugger's configuration files.

The following sections describe Turbo Debugger's command-line options in detail.
Unless otherwise noted, all options work the same for TD, TDW, and TD32.

Appendix A, Command-line options 143

Attaching to a running process
The -a options, used only by TD32, lets you attach Turbo Debugger toa process that's
already running under Windows NT. See "The Attach command" on page 44 for details
on attaching to a running program.

-ar# The -ar option attaches TD32 to process identification number #. The process
will continue to run after the attachment is made .

. -as# The -as option is the same as the -ar option, except that TD32 gains control
when the attachmentis made.

Loading a specific configuration file (-c)
By default TD.EXE loads the configuration file TDCONFIG.TD, TDW.EXE loads
TDCONFIG.TDW, and TD32.EXE loads TDCONFIG.TD2, if the files exist. The
-cfilename option lets you load a different configuration file, specified by filename. There
must not be a space between -c and the file name.

For example, the following command loads the configuration file MYCONF.TDW and
the program MYPROG:

TDW -cMYCFG.TDW MYPROG

Display updating (-d options)
The -d options, used by TD and TDW,affect the way Turbo Debugger updates the
display. .

-do The -do option enables dual-monitor debugging. This lets you view your
program's screen on the primary display and Turbo Debugger's on the
secondary one. For more information on dual-monitor debugging, see "Dual
monitor debugging" on page 9.

-dp The -dp option, used only with TD.EXE, enables screen flipping-Turbo
Debugger is displayed on one screen page and the program you're debugging
is displayed on a second screen page. Screen flipping minimizes the time it
takes to switch between the debugger's screens and your program's. To use
this mode, your display adapter must support multiple screen pages and the
program you're debugging must not use screen paging.

-ds This option, known as screen swapping, maintains separate screen images in
memory for both the debugger and for the program you're debugging. These
images are then" swapped" back and forth from memory as each program
runs.

Although this technique is the most time-consuming method for displaying the
screens, itis the most reliable method. Because of this, display swapping is
turned on by default for all displays.

144 Turbo Debugger User's Guide

Getting help (-h and -? options)
The -h and -? options display a help window that describes the command-line syntax
and command-line options that are available with each debugger.

Session restart modes (-j options)
The -j options specify how Turbo Debugger should handle the session-state files
(described on page 21) when it starts. The options work as follows:

-ji Don't use the session-state file if you've recompiled your program.

-jn Tum off session-state restoring (do not use the restart file).

-jp Prompt if the program has been recompiled since the session-state file was
created.

-ju Always use the session-state file, even if it's old.

Keystroke recording (-k)
The -k option, used only by TD.EXE, enables keystroke recording. When keystroke
recording is turned on, all keystrokes you type during a debugging session will be
recorded to a disk file, including the keys you press in Turbo Debugger and the keys
you press inside your program. Keystroke recording lets you easily recover a previous
point in your debugging session. For more information on keystroke recording, see
"The Keystroke Recording pane" on page 29.

Assembler-mode startup (-I)
The -1 (lowercase L) option forces the debugger to start in assembler mode. In this
mode, Turbo Debugger does not execute your program's startup code as it's loaded into
the debugger (which it normally does). Use this option when you want to debug your
program's startup code, or the startup code to a DLL.

Mouse support (disabling/enabling)
The -p option enables mouse support. However, since the default for mouse support is
On, this option is normally used to tum mouse support off (-p-).

Note If the mouse driver is disabled for Windows, it will also be disabled for Turbo
Debugger. In this case, the -p option has no effect.

Remote debugging (-r options)
The -r, -mL;R, -rp#, and -rs# options, used by TD and TDW, are fully described on
page 155.

A P pen d i x A, Com man d - lin e 0 p't ion s 145

Source code handling (-s options)

-sc The -sc option causes Turbo Debugger to ignore the case when you enter
symbol names, even if your program was linked with case sensitivity enabled.

Without the -sc option, Turbo Debugger ignores case only when you've linked
your program with the case ignore option enabled.

-sd The -sd option lets you specify one or more directories that Turbo Debugger
should search through to find the source code for your program. The syntax for
this ?ption is:

-sddirname[;dirname ...]

Note The -sd option doesn't change the starting directory.

To specify multiple directories, sepa~ate each directory name with a semicolon (;).
Turbo Debugger searches for directories in the order specified. dirname ,can be a relative
or absolute path and can include a disk letter. If the configuration file specifies any
directories, the ones specified by the -sd option are added to the end of that list. See
page 21 for details on how Turbo Debugger searches for source code.

Starting directory (-t)
The -tdirname option changes the directory where Turbo Debugger looks for its
configuration file and for .EXE files not specified with a full path. There must not be a
space between the option and the directory path name, and only a single directory can
be specified with this option.

Video hardware handling (-v options)
The-v options -vg, -vn, and -vp are used only by TD.EXE, and affect how Turbo
Debugger handles the video hardware. The option -vd is used only by TD32.

-vd Causes TD32 to load SVGA32.DLL and use a dual-monitor setup.

-vg Saves complete graphics image of your program's screen. Enabling this option
uses an extra 8K of memory, but it lets you debug programs that use certain
graphic display modes. Try this mode if your program's graphic screens
become corrupted when you're running under TO.EXE.

-vn Disables the 43 j 50-line display under TD.EXE. You can save some memory by
using this option when you know you won't be switching to 43j50-line mode.

-vp Enables the EGAjVGA palette save. If your program alters the EGAjVGA
palette, use this option to have TD.EXE save your program's palette to
memory.

146 Turbo Debugger User's Guide

Windows crash message checking (-wc)
The -we option, used only by TDW, disables Turbo Debugger's system crash checking,
which is turned on by default.

If your program generates Turbo Debugger's System crash possible. Continue? error
message, you can use this option to tum the message off. Normally, this error message is
generated after you have paused your program's execution with the system interrupt
key and then begin to single~step. When you disable the system crash checking, Turbo
Debugger issues the message only once, and not as you continue to single step through
your program. .

Windows Dll checking (-wd)
The -wd option, used only by TDW, enables DLL checking by Turbo Debugger. When
this option is turned on (the default setting), Turbo Debugger makes a check when your
program is loaded to see if all the DLLs used by your program are available. By turning
this option off, you can disable the check for the DLLs.

Command-line option summary
Table A.llists all of Turbo Debugger's command-line options.

Table A.1

-ar#

-as#

-cfilename
-do
-dp
-ds

-h,-?

-ji

-jn
-jp
-ju
-k
-1

-p
-r

-rllL;R

-rp#
-rs#

-sc

Turbo Debugger's command-line options

Attach to process id number # and continue running process

Attach to process id number # and give control to Turbo Debugger

Use filename configuration file

Display TD.EXE or TDW.EXE on secondary display

Enable page flipping for TD.EXE

Swap Turbo Debugger and user screens to memory

Display help screen listing all command-line options

Ignore old saved-state information.

Don't use saved-state information

Prompt if saved-state information is old (default)

Use saved-state information, even if old

Enable keystroke recording for TD.EXE

Assembler startup code debugging for applications and DLLs (this option letter is a
lowercase ell)

Enable / disable mouse (default is on)

Starts TD.EXE or TDW.EXE with default remote-debugging settings

Remote debugging over a network

Set port for remote serial debugging

Set speed for remote serial debugging

No case-checking of symbols for search strings

A P pen d i x A, Com man d - lin e 0 p t ion s 147

Table A.1

-sddir[;dir ...]

-tdirectory
-vd

-vg

-vn

-vp
-we'

-wd

Turbo Debugger's command-line options (continued)

Source-file search directories

Set starting directory for loading configuration and executable files

Sets dual-monitor debugging fot TD32 ruruiing under Windows 95

Save program graphics screen (TD.EXE only)

Disable 43/50 line display ability for TD.EXE

Enable EGA/VGA palette save for TD.EXE.

Enable/ disable System Crash Possible error message (default is enabled).

Enable/ disable checking for the presence of all your program's DLLs (default is on).

148 Turbo Debugger User's Guide.

Remote debugging
TD and TDW support remote debugging, which lets you run Turbo Debugger on one
computer and the program you're debugging on another. The two systems can be
connected either through serial ports or through a NETBIOS-compatible local area
network (LAN).

Remote debugging is useful in several situations:

• If your program uses a lot of memory, and you can't run Turbo Debugger and your
program on the same computer.

If you receive any memory allocation errors while debugging your program, try
using two systems to debug your program. The remote debugging drivers
(TDREMOTE and WREMOTE) use far less memory than does Turbo Debugger, so
the program you're debugging will behave more like it does when it's running
without the debugger in the background.

• If you need to debug a device driver.

• If your system has a single monitor, and you don't want to swap screens between
. Turbo Debugger's character mode screens and your program's graphics mode

screens. (However, you might also want to try dual-monitor debugging. For more
information on this, see "Dual-monitor debugging" on page 9.)

Hardware and software requirements
You can use either a serial connection or a LAN connection for the remote session.
Although the two setups use different hardware, both share the following requirements:

• A development system with enough memory to load Windows and Turbo
Debugger. This is the local system.

A P pen d i x B, Rem 0 ted e bug gin 9 149

• A second PC with 'enough memory to load Windows,the remote debugging driver
(TDREMOTE or WREMOTE), and the Windows program you want to debug. This is

, the remote system.

For a serial connection, you'll need a null-modem cable to connect the serial ports of the
two systems; ~egular serial cables won't send and receive the signals correctly. At the
very least, the null-modem cable must swap the transmit and receive lines (lines 2 and 3
on 9-pin and 25-pin cables) of a regular serial cable.

For a LAN connection, you'll need a LAN running Novell Netware-compatible software
(IPX and NETBIOS version 3.0 or later). NETBIOS mustbe loaded onto both the local
and remote systems before either Turbo Debugger or the remote driver can be loaded.

Starting the remote debugging session
To initiate a remote debugging session, you must:

• Set up the remote system.
• Configure and start WREMOTE, the remote debugging driver.
• Start and configure TDW on the local system.
• Load the program for debugging.

Note "'Remote DOS debugging" on page 156 describes debugging DOS applications with a
remote connection.

Setting up the remote system
Before you can begin a remote debugging session, the remote system must contain the
following files: '

• The program you're debugging.

The setup on the remote system must include all program support files, such as data
input files, configuration files, help files, Windows DLL files, and so on. Set up these
files as you would in a normal debugging session. For information on loading your
program's .EXE file onto the remote system, see II Automatic file transfer" on page
154.

• WREMOTE.EXE, the remote debugging driver.

• WRSETUP.EXE, the configuration program for WREMOTE.EXE.

Configuring and starting WREMQTE
Before you run WREMOTE, you must first run WRSETUP to establish the
communication settings. When you run WRSETUP (by clicking the Remote Setup icon),
a window opens displaying the commands File, Settings, and Help. Choose Settings to
access the Remote Driver Setting dialog box:

150 T u r boD e bug 9 e r Use r ' s G u ide

Figure B.1 WRSETUP main window and Settings dialog box

Eile ,Settings .!:!.elp

Remote Driver Settings

D !P.I~:~:~:i~::~I.~§~:J~i~:~r.~p.:~~! Iln.HII,1
[gJ .Quit when host quits

Starting .!I.irectory:

Remote type

@,Serial

o Network

Network remole name:

I REMOTE

Serial configuration

Baud rate

o ft600

@192.!!.0

o 3.1!:II00

o 11~000

Comm port

@COMl

OCOMl.

OCOMJ

o COM.4

If you're using a serial connection:

1 Click the Serial radio button.

2 Choose the rate of communications by clicking the 'appropriate Baud Rate radio
button. If you're using the higher transmission speeds (38,400 or 115,000 baud), click
the Disable Clock Interrupts check box to help TDW make a reliable connection with
WREMOTE.

3 Choose the communications port that works for your hardware setup by clicking the
appropriate Comm Port radio button.

4 Enter the directory location of your program in the Starting Directory input box.

5 If you want WREMOTE to return control to Windows when you terminate Turbo
Debugger on the local machine, click the Quit When Host Quits check box.

By default, WREMOTE uses a link speed of 19,200 baud, with communications over
COM1.

LAN configuration
If you're using a LAN connection:

1 Click the Network radio button.

2 Specify the remote system name in the Network Remote Name input box.

By default, the remote system name is REMOTE. For information on naming the local
and remote systems, see "Local and remote system names" on page-ISS.

3 Enter the directory location of your program in the Starting Directory input box.

A P pen d i x B, Rem 0 ted e bug gin 9 151

4 If you wantWREMOTE to return control to Windows when you terminate Turbo
Debugger on the local machine, check the Quit When Host Quits check box.

Saving the communication settings
After you've set your options and closed the WRSETUP window, WRSETUP saves your
settings to TDW.INI in your Windows directory. The following excerpt from a TDW.JNI
file shows theWREMOTE settings when you have chosen a serial connection at 19,200
baud on COM2 with clock interrupts disabled and program control returning to
Windows when Turbo Debugger terminates:

[WRemote]
BaudRate=19200 .
Port=2
Quit~l

Clock=O
Directory=C:MYPROJ
Type=l
RemoteName=REMOTE

Starting WREMOTE
Once WREMOTE is properly configured, you can load it by clicking the Remote
Debugging icon, by using the Windows File I Run command, or by using the Windows
File Manager. After starting WREMOTE, the mouse cursor on the remote system
displays an hourglass, indicating that it's waiting for you to start TDW at the other end
of the link. (To terminate WREMOTE while it's waiting to establish a connection with
TDW, press Ctrl+Break on the remote machine.)

WREMOTE command-line options
If needed, you can use WREMOTE command-line options to override the remote
settings in the TDW.INI file. Start an option with either a dash (-) or a slash (I), using
the following syntax:

WREMOTE [options] [progname [progargs]]

Table B.1 WREMOTE command-line options

-c<filename>

-d<dir>

-hor-?

-reO

-rc1

-m<remotename>

-rpl
-rp2
-rp3
-rp4
-rqO

152 T u r boD e bug 9 e r Use r 's G u ide

Uses <filename> as the configuration (.IN1) file

Uses <dir> as the startup directory

Displays the help screen

Enables clock interrupts

Disables clock interrupts

Uses remote LAN debugging

Uses port 1 (COMl); default

Uses port 2 (COM2)

Uses port 3 (COM3)

Uses port 4 (COM4)

Doesn't return to Windows when you exit Turbo Debugger

Table B.1 WREMOTE command-line options (continued)

-rql Returns to Windows when Turbo Debugger exits

-rsl Uses slowest speed (9,600 baud)

-rs2 Uses slow speed (19,200 baud); default

-rs3 Uses medium speed (38,400 baud)

-rs4 Uses fast speed (115,000 baud)

Starting and configuring TOW
After you've started WREMOTE, you can start TDW. However, before connecting TDW
to WREMOTE, it must be configured for the remote session.

The easiest way to configure TDW for the remote debugging session is through the
debugger's File I Open command. However, you can also use TDWINST's Options I
Miscellaneous command or TDW's command-line options to configure the remote
debugging session (for information on the command-line options, see "TDW's remote
debugging command-line options" on page 155).

Serial configuration
When you use a null modem cable to connect the local and remote systems, you must
specify both the communication rate and the serial port that TDW will use for the
connection. To initiate a serial remote debugging session:

1 Start WREMOTE on the remote system (as previously described in this chapter).

2 Start TDW, and choose File I Open to open the Load a New Program to Debug dialog
box.

3 Click the Session button to open the Set Session Parameters dialog box.

4 Click the Serial Remote radio button. (Click the Local radio button if you're not using
remote debugging.)

5 Choose the serial port of the local system by clicking the appropriate Remote Link
Port radio button.

6 Choose the serial communications speed by clicking the appropriate Link Speed
radio button.

7 Choose OK to accept the serial communication settings and return you to the Load a
New Program to Debug dialog box.

Note Although the local and remote systems can use different serial ports for the remote link,
the link speeds of the two systems must match for the serial connection to work.

LAN configuration
To configure TDW for a remote debugging session on a NETBIOS local area network:

1 Start WREMOTE on the remote system (as previously described in this chapter).

A P pen d i x B, Rem 0 ted e bug gin 9 153

2 Start TOW, and choose File I Open to open the Load a New Program to Debug dialog
box.

3 Click the Session button to open the Set Session Parameters dialog box.

4 Choose the Network Remote radio button.

S Specify the local and remote system names:

By default, Turbo Debugger sets the local and rempte system names to LOCAL and
REMOTE, respectively. However, if there is more than one remote debugging session
running over the same network, you'll have to specify your own system names to .
uniquely identify the systems you're using.

6 Choose OK to accept the LAN communication settings and return you to the Load a
New Program to Debug dialog box.

Initiating the remote link
Once you've configured TOW for the remote debugging session, load your program
using the Load a New Program to Debug dialog box (described on page 19). When you
load your program, TDW displays the copyright and version information of TOW, and
the following message:

·Waiting for handshake from remote driver (Ctrl+Break to quit)

While waiting for a connection, an hourglass is displayed on the remote system. If the
link is successful, the hourglass disappears, and Turbo Debugger's normal display
appears on the local machine. (Press Ctrl+Break to exit TDW if the link is not successful.)

Once you start TOW in remote mode, the Turbo Debugger commands work exactly the
same as they do on a single system; there is nothing new to learn. If you access TOW's
CPU window, the remote system's CPU type is listed as part of the CPU window title
with the word REMOTE before it.

Because the program you're debugging is actually running on the remote system, any
screen output or keyboard input to that program happens on the remote system. The
Window I User Screen command has no effect when you're running on the remote link.

Automatic file transfer
Once you make a remote connection and load a program into TOW, the debugger
automatically checks to see if your program needs to be sent to the remote system.

TOW is smart about loading programs onto the remote system. First, a check is made to
see if the program exists in the working directory of the remote system. If the program
doesn't exist on the remote system, then it's sent over the link right away. If the program
does exist on the remote system, Turbo Debugger checks the time stamp of the program
on the local system and compares this with the copy on the remote system. If the
program on the local system is later (newer) than the remote copy, Turbo Debugger
presumes you've recompiled or relinked the program, and sends it over the link.

At the highest serial link speed (115,000 baud), file transfers move at a rate of
approximately 10K per second. Thus, a 60K program takes roughly six seconds to

154 T u r boD e bug 9 e r Use r 's G u ide

transfer. To indicate that the system is working, the screen on the remote system adds
up the bytes of the file as Turbo Debugger transfers it.

Automatic file transfer can save time and energy. However, TDW transfers only .EXE
files; Windows DLL files and other program support files are not transferred to the
remote system via automatic file transfer.

TOW's remote debugging command-line options
If you use TDWINST or rDW's command-line options to configure TDW, you must do
so before you load TDW. For instructions on using TDWINST, see the online file
TD_DTILS.TXT. For details on TDW's remote command-line options, see Table B.2.

If you started TDW without first configuring it for remote debugging, use TDW's
File I Open command to configure the remote settings.

Table 8.2 TDW's remote debugging command-line options

-r Initiates remote debugging using the default settings

-rnL;R Uses remote LAN debugging (see the following section titled "Local and remote
system names" for more information)

-rpi Uses port 1 (COM1); default

-rp2 Uses port 2 (COM2)

-rp3 Uses port 3 (COM3)

-rp4 Uses port 4 (COM4)

-rsl Uses slowest speed (9,600 baud)

-rs2 Uses slow speed (19,200 baud); default

-rs3 Uses medium speed (38,400 baud)

-rs4 Uses high speed (115,000 baud)

Here's a typical TDW command to start a serial remote connection:

TDW -rs3 myprog

This command begins the link on the default serial port (usually COM1), at the link
speed of 38,400 baud. In addition, the program myprog is loaded for debugging.

Local and remote system names
The -mL;R command-line option takes two optional parameters: the local system name
and the remote system name, separated by a semicolon.

Since both parameters are optional, there are four ways to use the -m command-line·
option with Turbo Debugger. The following commands all load Turbo Debugger,
specify a remote LAN connection, and load the program filename for debugging.

TDW -rn filename

TDW -rnLOCALl filename

TDW -rniREMOTEl filename

TDW -rnLOCALliREMOTEl filename

A P pen d i x B, Rem 0 ted e bug gin 9 155

The first command uses defaultnames for both the local and remote systems, LOCAL and
REMOTE respectively. The second command specifies LOCALl as the local system name, but
uses the default name (REMOTE) for the remote system. The third command uses the
default name for the local system (LOCAL), but specifies R~MOTEl as the remote system
name. Finally, the fourth command specifies both local and remote system names.

Note While you can create local and remote system names up to 16 characters in length, the
need to specifically name local and remote systems arises only when there are
simultaneous remote debugging sessions running on a network. If only one person on a
network is using TDW's remote debugging feature, then it isn't necessary to define
special local and remote system names.

Remote DOS debugging
You can use TD to debug DOS applications over a remote link just as you use TDW to
debug Windows applications remotely. In fact, using TD over a remote link is exactly
the same as using TDW over a remote link except that you use the remote driver
TDREMOTE on the remote system instead of using WREMOTE. Because of this, you
can follow the instructions for remote debugging a Windows application (starting on
page 150 with "Starting the remote debugging session") to debug a DOS application
over a remote link. To use the TDW instructions, substitute TD for TDW, and
TDREMOTE for WREMOTE. '

Differences between TDREMOTE and WREMOTE
Although the instructions for debugging a Windows application over a remote link can
be used for DOS applications, there is one difference: TDREMOTE does not have a setup
program (as does WREMOTE). Because of this, you must use command-line options to
configure TDREMOTE when you start it. Use the following to configure TDREMOTE:

TDREMOTE [options]

The following table summarizes TDREMOTE's command.;.line options:

Table B.3 TDREMOTE command-line options

-hor-?

-nn<rer.notenar.ne>
-rpl
-rp2
-rp3
-rp4
-rsl
-rs2
-rs3
-rs4

156 T u r boD e bug 9 e r Use r 's G u ide

Displays the help screen

Uses remote LAN debugging

Uses port 1 (COM1); default

Uses port 2 (COM2)

Uses port 3 (COM3)

Uses port 4 (COM4)

Uses slowest speed (9,600 baud) ,

Uses slow speed (19,200 baud)

Uses medium speed (38,400 baud)

Uses fast speed (115,000 baud); default

Each TDREMOTE command-line option must be prefixed with either a dash (-) or a
slash (/), and it must be separated by other options by a space.

Before starting TDREMOTE, be sure the directory on the remote system is set to the
directory that contains the program files. This is essential because TDREMOTE puts the
program to be debugged into the directory that is current when you start Turbo
Debugger.

When loaded, TDREMOTE signs on with a copyright message, then indicates that it's
. waiting for you to start TD.EXE at the other end of the link. To stop and return to DOS,
press Ctrl+Break.

Transferring files to the remote system
To transfer files to the remote DOS system, you can use either floppy disks or
TDRF.EXE, the remote file-transfer utility. (The online file TD_UTILS.TXT describes
TDRF.EXE)

To send files over to the remote system while running Turbo Debugger, choose
File lOS Shell to obtain a DOS prompt and use TDRF to transfer the necessary files. To
return to Turbo Debugger, type EXIT at the DOS prompt.

Troubleshooting
Here's a list of troubleshooting techniques you can try if you experience problems with
the remote setup:

• Check your cable hookups. This is the most common cause of problems.

• Check to make sure you're using the correct serial port settings (you must use the
same link speed on both the local and remote systems) or that you're properly
connected to the network.

• With serial connections, try successively slower baud rates until you find a speed that
works.

• Some hardware and cable combinations don't always work properly at the highest
speed. If the link works only at slower speeds, try a different cable or, if possible,
different computers.

• If you can't get the serial connection to work at any speed when you're using TDW,
use WRSETUP to Disable clock interrupts and try running the link at 9,600 baud. If that
works, try successively higher communication speeds.

A P pen d i x 8, Rem 0 ted e bug gin 9 157

158 T u r boD e bug 9 e r Use r 's G u ide

Turbo Debugger error messages
Turbo Debugger can display a variety of messages while you're debugging your
program. This Appendix lists the following types of messages:

• Messages generated by TD, TDW, and TD32.

• Status messages listed in the Get Info dialog box and in the Thread Detail pane of the
Threads window (page 169).

• Messages generated by TDREMOTE (page 170).

• Messages generated by WREMOTE (page 171).

TO, TOW, and T032 messages
This section gives an alphabetical listing of the messages generated by TD, TDW, and
TD32. Following each message listing is a description that suggests how to handle the
message.

Messages can be either error messages (some of them fatal) or messages that prompt
you for information. You can easily distinguish an error message from a prompt if you
tum on Error Message Beeps in TDWINST or TD32INST.

Fatal messages cause Turbo Debugger to exit to Windows. Although some fatal errors
occur when you start Turbo Debugger, others can occur while you're in the middle of
debugging your program. In either case, after having solved the problem, your only
remedy is to restart Turbo Debugger.

Turbo Debugger displays messages that prompt for information in a dialog box. The
title bar of the dialog box contains a description of the type of information that's needed.
In some cases, the dialog box will contain a history list of the previous responses you've
given.

A P pen d i xC, T u r boD e bug 9 ere r r 0 r m e s sag e s 159

You can respond to message prompts in one of two ways:

• Enter a response and press Enter.
• Press Esc to cancel the dialog box.

L)' expected
While evaluating an expression, Turbo Debugger found a left parenthesis without a matching right parenthesis.

L:' expected
While evaluating a C expression, a question mark (?) separating the first two expressions of the ternary operator (? :) was
encountered, but the colon (:) that separates the second and third expressions was not found.

L]' expected
While evaluating an expression, Turbo Debugger found a left bracket ([) without a matching right bracket (]).
This error can also occur when entering an assembler instruction using the built-in assembler. In this case, a left bracket
was encountered that introduced a base or index register memory access, and there was no corresponding right bracket.

All threads frozen
You've tried to run or step your Windows NT program after freezing all program threads. For the program to be able to
run, you must unfreeze at least one thread using the Options command on the Threads window SpeedMenu.

Already logging to a file .
You issued an Open Log File command after having already issued the same command without an intervening Close
Log File command. If you want to log to a different file, first close the current log by issuing the Close Log File command.

Already recording, do you want to abort?
You're already recording a keystroke macro. You can't start recording another keystroke macro until you finish the
current one. Press Y to stop recording the macro, or press N to continue recording.

Ambiguous symbol name
You used a symbol in an expression that does not uniquely identify a C++ member function or Object Pascal method
name. Before the expression can be evaluated, you must pick a valid symbol from the list of member functions or
methods.

Bad configuration file
Turbo Debugger's configuration file is corrupted.

Bad or missing configuration file
You have specified a nonexistent, corrupted, or outdated file name wit!; the -c command-line option.

Can't do this when debugging an attached process
You cannot reset a program (Ctrl+F2) after you have attached to it using TD32' s File I Attach command.

Can't execute DOS command processor
You've issued the File I OS Shell command, and Turbo Debugger cannot find COMMAND.COM. Either
COMMAND.COM 6'r the COMSPEC environment variable is corrupted.

Can't find filename.DLL "
This message is generated by Turbo Debugger in two situations:

• You're attempting to load a program that requires one or more DLLs into Turbo Debugger, and the debugger can't locate
one of the DLL files. The DLLs with symbol tables required by your executable must be in the same directory as the
program you're debugging.

• You are attempting to load TDW, and the program can't find IDWINTHDLL. Either you have an invalid file name or
path in the DebuggerDLL entry in TDW.INI, or TDW can't find TDW.INI.

Either edit the DebuggerDLL entry in TDW.INI to reflect the correct path and file name, or if there is no TDW.INI,move
TDWIN1H.INI to the main Windows directory.

160 Turbo Debugger User's Guide

Can't have more than one segment override
You attempted to assemble an instruction where both operands have a segment override. Only one operand can have a
segment override. For example,

moves: [bxl,ds:l

should have been

moves: [bxl, 1

Can't load
You specified a bad DLL name in the TDW.INI file.

Can't run TDW on Windows NT
You must use TD32 to debug a 32-bit Windows NT program.

Can't set a breakpoint at this location
You tried to set a breakpoint in ROM or in segment O. The only way to view the execution of ROM code is to step though
it at the instruction level using Alt+F7.

Can't set any more hardware breakpoints
The hardware debugging registers have already been allocated by other hardware breakpoints. You can't set another
hardware breakpoint without first deleting one you have already set.

Can't set hardware condition on this breakpoint
You've attempted to set a hardware condition on a breakpoint that isn't a global breakpoint. Hardware conditions can
only be set on global breakpoints.

Can't set that sort of hardware breakpoint
The hardware device driver that you have installed in your CONFIG.SYS file can't do a hardware breakpoint with the
combination of cycle type, address match, and data match that you have specified.

Cannot access an inactive scope
The expression you entered contains a symbol that isn't contained in the current scope. See page 83 for information on
scope overrides.

Cannot be changed
You tried to change a symbol that can't be changed. The only symbols that can be changed directly are scalars (int, long,
real, integer, and so forth) and pointers. If you want to change data in a structure or array, you must change the
individual elements one at a time.

Constructors and destructors cannot be called
This error message appears only if you're debugging a program that uses C++ or Object Pascal objects. You tried to
evaluate a member function or method that's either a constructor or a destructor; Turbo Debugger cannot evaluate
expression that create or destroy objects.

Count value too large
In the Dump pane of the CPU window, you've entered too large a block length to one of the SpeedMenu Block
commands. The block length can't exceed FFFFFh.

Destination too far away
You attempted to assemble a conditional jump instruction where the target address is too far from the current address.
The target for a conditional jump instruction must be within -128 and 127 bytes of the instruction itself.

Device error - Retry? .
An error has occurred while writing to a character device, such as the printer. This could be caused by the printer being
unplugged, offline, or out of paper. Correct the condition and then press Y to retry or N to cancel the operation.

Disk error on drive _ - Retry?
A hardware error has occurred while accessing the indicated drive. This might mean you don't have a floppy disk in the
drive or, in the case of a hard disk, it might indicate an unreadable or unwriteable portion of the disk. You can press Y to
retry the disk read, or, press N to cancel the operation.

A P pen d i xC, T u r boD e bug 9 ere r r 0 r m e s sag e s 161

Display adapter not supported by filename
The video driver filename indicated in the VideoDLL entry in TDW.INI does not support your display adapter. For more
information on video DLL, see the section describing TDWINI.EXE in the online file TD _UTILS.TXT.

Divide by zero
You entered an expression using a divide (/, div) or modulus operator (mod, %) where the divisor evaluates to zero.

DLL already in list
In the View I Modules dialog box, you tried to add a DLL to the DLLs & Programs list, but the DLL was already in the
list.

DLL not loaded
You tried to load a DLL's symbol table before the DLL has been loaded by Turbo Debugger. Make sure that the DLL is
loaded before explicitly trying to load its symbol table.

Edit program not specified
You must first specify an editor using TD32INST before you can issue TD32' s Edit command.

Error ## loading_
Error number ## occurred when you attempted to load the DLL listed in the error message.

Error loadingfilename
Turbo Debugger was unable to load the video driver filename. The video driver could be an invalid driver file or it could
be corrupted. For more information on video drivers, refer to the section describing TDWINI.EXE in the online file
TD _UTILS.TXT.

Error/opening file _
Turbo Debugger couldn't open the file that you want to view in the File window. Check to ensure that the file name and
path are correct.

Error reading block into memory
The block you specified could not be read from the file into memory. You probably specified a byte count that exceeded
the number of bytes in the file~

Error saving configuration
Turbo Debugger couldn't write your configuration to disk. Make sure that your disk contains enough free space for the
file. .

Error writing block to disk
The block you specified couldn't be written to the disk file. You probably entered a count that exceeded the amount of
free space available on your disk. .

Error writing log file _
An error occurred while writing from the Log window to the log file. The file name you supplied for the Open Log File
SpeedMenu command can't be opened because there's not enough room to create the file or because the disk, directory
path, or file name you specified is invalid. Either make room for the file by deleting some files from your disk, or supply
a correct disk, path, and file name. .

Error writing to file
Turbo Debugger couldn't write your changes back to the disk. The file might be marked as read-only, or an error might
have occurred while writing to disk. .

Expression too complex
The expression you supplied is too complicated; you must supply an expression that has fewer operators and operands.
You can have up to 64 operators and operands in an expression.

Expression with side effects not permitted
You have entered an expression that modifies a memory location when it gets evaluated. There are several places where
Turbo Debugger doesn't allow this type of expression; for example, in Inspector windows.

Extra input after expression
You entered an expression that was valid, but there was more text after the valid expression. This sometimes indicates
that you omitted an operator in your expression. You could also have entered a number in the wrong syntax for the
language you're using. For example, you might have entered OxFOOO instead of OFOOOh as an assembler expression.

162 T u r boD e bug 9 e r Use r' s G u ide

Fatal memory error
The Windows memory manager reported a fatal error to Turbo Debugger.

Help file _ not found
You asked for help, but Turbo Debugger's help file couldn't be found. Make sure that the help file is in the same directory
as the debugger program.

Immediate operand out of range
You entered an instruction that had a byte-sized operand combined with an immediate operand that is too large to fit in
a byte. For example, .

add BYTE PTR[bx],300

should have been

add WORD PTR[bx] ,300

Initialization not complete
You have attempted to access a variable in your program before the data segment has been set up properly by the
compiler's initialization code. You must let the compiler execute to. the start of your source code before you can access
most program variables.

Invalid argument list
The expression you entered contains a function call that does not have a correctly formed argument list. An argument list
starts with a left parenthesis, has zero or more comma-separated expressions for arguments, and ends with a right
parenthesis.

Invalid character constant
The expression you entered contains a badly formed character constant. A character constant consists of a single quote
character (') followed by a single character, ending with another single quote character.

Invalid format string
You have entered an invalid format control string after an expression. See Chapter 6 for a description of format strings.

Invalid function parameter(s)
You entered an expression that calls a function, but you supplied incorrect arguments to the call.

Invalid instruction
You entered an. instruction to assemble that had a valid instruction mnemonic, but the operand you supplied was
invalid.

Invalid instruction mnemonic
When entering an instruction to be assembled, you failed to supply an instruction mnemonic. An instruction consists of
an instruction mnemonic followed by optional arguments. For example,

Ai.,123

should have been
MOV ax,123

Invalid number entered
You entered an invalid number in a dialog box. For example, in a File window, you typed an invalid number to go to.
Here, entries must be integers greater than zero.

Invalid operand(s)
The instruction you're trying to assemble has one or more operands that aren't allowed. For example, a MOV instruction
cannot have two operands that reference memory, and some instructions only work on word-sized operands. For
example,

POP al

shoUld have been

POP ax

Appendix C, Turbo Debugger error messages 163

Invalid operator/data combination
You've entered an expression where the operator can't perform its function with the type of operand supplied. For
example, you cannot multiply a constantby the address of a function.

Invalid pass count entered
You have entered a breakpoint pass count that is not between 1 and 65,535. Pass counts must be greater than 0; a pass
count of 1 means that the breakpoint can activate the first time it's encountered.

Invalid register
You entered an invalid floating-point register as part of an instruction being assembled. A floating-point register consists
of the letters ST, optionally followed by a number between 0 and 7 within parentheses; for example, 5T or 5T(4).

Invalid register combination in address expression
When entering an instruction to assemble, you supplied art operand that did not contain one of the permitted
combinations of base and index registers. An address expression can contain a base register, an index register, or one of
each. The base registers are BX and BP, and the index registers are 5I and DL Here are the valid address register
combinations:

BX BX+S1
BP BP+S1
DI BX+DI
S1 BP+DI

Invalid register in address expression
You entered an instruction to assemble using an invalid register as part of a memory address expression between
brackets ([D. You can only use the BX, BP, 5I, and DI registers in address expressions.

Invalid switch:
You supplied an invalid option switch on the command line. Appendix A discusses each command-line option in detail.

Invalid symbol in operand
When entering an instruction to assemble, you started an operand with a character that cannot be used to start an
operand: for example, the colon (:).

Invalid typecast
A correct C or C++ typecast starts with a left parenthesis, contains a possibly complex data type declaration (excluding
the variable name), and ends with a right parenthesis. For example,

(x *)p

should have been

(struct x *)p

A correct Object Pascal typecast starts with the data type of the cast, an open parenthesis, the data being cast, followed by
a closing parenthesis. For example,

Char (x

should have been

Char (x)

Invalid value entered
When prompted to enter a memory address,. you supplied a floating-point value instead of an integer value.

Invalid window handle
In TDW, you tried to indicate a window using a window handle. The handle must be initialized before it can be used to
specify a window for message tracking. Run your program past the point where the handle is initialized.

Invalid ---' missing _
This fatal error message occurs when you have written your own video or keyboard DLL to work with Turbo Debugger,
but have left out a section in the DLL. The name of the DLL is given in the first field, and the missing section is listed in
the second field. \

164 Turbo Debugger User's Guide

Keyword not a symbol
The expression you entered contains a keyword where a variable name was expected. You can only use keywords as
part of typecast operations, with the exception of the sizeof special operator. For example, in C++:

floatval = char charval

should have been

floatval = char (charval) float

In Object Pascal:

val = real charval

should have been

floatval = real (charval)

Left side' not a record, structure, or union
You entered an expression that used one of the C structure member selectors (. or -» symbol, however, was not preceded
by a structure name, nor was it preceded by a pointer to a structure. .

No C or C++ exception handler
You tried to access the Module window SpeedMenu Exception command. To access this command, your program must
include exception-handling routines.

No coprocessor or emulator installed
You tried to open a Numeric Processor window using the View I Numeric Processor command, but there is no numeric
processor chip installed in your system, and the program you're debugging either doesn't use the software emulator or
the emulator has not been initialized.

No hardware debugging available
You have tried to set a hardware breakpoint, but you don't have the hardware debugging device driver installed. You
can also get this error if your hardware debugging device driver does not find the hardware it needs. See page 56 for
more information on hardware breakpoints.

No help for this context
You pressed F1 to get help, but Turbo Debugger could not find a relevant help screen. Please report this to Borland
Technical Support.

No modules have line number information
You issued the View I Module command, but Turbo Debugger can't find any modules with debug information. This
message usually occurs when you're debugging a program without a symbol table. See the "Program has no symbol
table" error message entry on page 167 for more information on symbol tables.

No network present
You have attempted to start Turbo Debugger using a remote network connection, but Turbo Debugger couldn't detect a
NETBIOS network connection.

No pending status from program being debugged
You've issued TD32's Run I Next Pending Status command, but your program ha~ no events waiting in the operating
system.

No previous search expression
You attempted to perform a Next command from the SpeedMenu of a text pane, but you had not previously issued a
Search command to specify what to search for.

No program loaded
You attempted to issue a command that requires a program to be loaded. For example, none of the commands in the Run
menu can be performed without first loading a program. .

No type information for this symbol
You entered an expression that contains a symbol not found in the debug information. Check to ensure that you typed
the symbol name correctly.

A P pen d i xC, T u r boD e bug 9 ere r r 0 r me s sag e s 165

Not a function name
You entered an expression that contains a call to a routine, but the routine cannot be found. Any time a pair of
parentheses immediately follows a symbol, the expression parser presumes that you intended to call a routine.

Not a record, structure, or union member
You entered an expression that used one of the C structure member selectors (. or -» the symbol wasn't preceded by a
structure name or a pointer to a structure.

Not a 32-bit program
You've tried to load a 16-bit program into TD32 running under Windows 95 or Windows NT. Exit TD32, and use TOW
to debug 'the 16-bitprogram.

Not a Windows program
You can only use TOW to debug Windows programs.

Not enough memory
Turbo Debugger ran out of working memory while loading.

Not enough memory for selected operation .
Your system ran out of working memory while trying to open a new Turbo Debugger window. Try closing some other
windows before you reissue the command.

Not enough memory to load filename
Turbo Debugger ran out of working memory while loading the video driver filename.

Not enough memory to load program
Your program's symbol table has been successfully loaded into memory, but there is not enough memory left to load
your program.

Not enough memory to load symbol table
There is not enough room to load your program's symbol table into memory. When this message is issued, you must free
enough memory to load both your program and its symbol table. Try making the symbol table smaller by generating
debug information for only the necessary source modules.

Old or invalid configuration file
You've attempted to start Turbo Debugger using a configuration file from a previous version of the debugger.

Only one operand size allowed
You entered an instruction to assemble that had more than one size indicator. Once you have set the size of an operand,
you can't change it. For example,

mov WORD PTR BYTE PTR[bxl,l

should have been

mov BYTE PTR [bxl,l .

Operand must be memory location
You entered an expression that contained a subexpression that should have referenced a memory location. Some things
that must reference memory include the assignment operator and the C increment and decrement (++ and -: -) operators.

Operand size unknown
You entered an instruction to assemble, but did not specify the size of the operand. Some instructions that can act on
bytes or words require you to specify which size to use if it cannot be deduced from the operands. For example,

add [bxl,l

should have been

add BYTE PTR[bxl,l

Overwrite ?
You tried to write to an already existing file. You can choose to overwrite the file, replacing its previous contents, or you
can cancel the command and leave the previous file intact.

166 T u r boD e bug 9 e r Use r' s G u ide

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key already has a macro assigned to it. If you want to overwrite the
existing macro, press Y; otherwise, press N to cancel the command.

Path not found
You entered a drive and directory combination that does not exist. Check that you have specified the correct drive and
that the directory path is spelled correctly. .

Path or file not found
You specified a nonexistent or invalid file name or path when prompted for a file name to load. If you do not know the
exact name of the file you want to load, you can pick the file name from a list by pressing Browse.

Press key to assign macro to
Press the key that you want to assign the macro to. Then, press the keys to do the command sequence that you want to
assign to the macro key. The command sequence will actually be performed as you type it. To end the macro recording
sequence, press the key you assigned the macro to, or press AIt+- (the Alt key plus the hyphen key).

Program already terminated, Reload?
You have attempted to run or step your program after it has already terminated. If you choose Y, your program will be
reloaded. If you choose N, your program will not be reloaded, and your run or step command will not be executed.

Program has invalid symbol table
The symbol table attached to your program has become corrupted. You must recompile your program with debug
information.

Program has no objects or classes
You've attempted to open a View I Hierarchy window on a program that isn't object-oriented.

Program has no symbol table
The program you want to debug has been successfully loaded, but it doesn't contain symbolic debug information. You'll
be able to use the CPU view to debug your program, but you wont be able to use the program's source code or symbol
names while debugging. Refer to Chapter 2 for information on compiling your program for debugging.

Program has no threads
You tried to open the Threads window in TD32 (using CtrI+T) while running Windows 95. Windows 95 doesn't support
process threads.

Program is running
You issued a command to run your program in TD32 under Windows NT, but the program was already running.

Program linked with wrong linker version
You loaded a program with out-of-date debug information. Recompile your program using the latest version of the
compiler. .

Program not found
The program name you specified does not exist. Either supply the correct name or pick the program name from the file
list.

Program out of date on remote, send over link?
When you start a remote debugging session, Turbo Debugger checks to see if the .EXE file on the remote system is the
latest version of the program. If the program on the local system is newer than the copy on the remote system, you will
receive this prompt. Enter Y if you want to send your program over the link, or N if you don't.

Register cannot be used with this operator
You have entered an instruction to assemble that attempts to use a base or index register as a negative displacement. You
can only use base and index registers as positive offsets. For example,

INC WORD PTR[12-BX]

should have been

INC WORD PTR[12+BX]

A P pen d i xC, Tu r boD e bug 9 ere r r 0 r me s sag e s 167

Register or displacement expected
The instruction you tried to assemble has a badly formed expression between brackets ([D. You can only put register
names or constant displacement values between the base-index brackets.

Remote link timeout
The connection to the remote system has been disrupted. Try rebooting both the systems and starting again. For details
on remote debugging, see Appendix B.

Restart info is old, use anyhow?
When starting Turbo Debugger, it restores the settings of the previous debugging session. If the program has been
changed since you last loaded it into the debugger, you will receive the prompt. See page 21 for more information on
session-state saving. .

Run out of space for keystroke macros
The macro you are recording has run out of space. You can record up to 256 keystrokes for all macros.

Search expression not found
. The text or bytes that you specified could not be found. The search starts at the current location in the file, as indicated by
the cursor, and proceeds forward. If you want to search the entire file, press Ctr/+PgUp before issuing the search
command.

Source file not found
Turbo Debugger can't find the source file for the module you want to examine. See page 21 for more information on how
Turbo Debugger searches for source cod~.

Symbol not found
You entered an expression that contains an invalid variable name. Make sure that you correctly spelled the symbol name,
and that it's in scope.

Symbol table file not found
The symbol table file that you have specified does not exist. You can specify either a . IDS or .EXE file for the symbol file.

Syntax error
You entered an expression that doesn't conform to the syntax of the selected language parser.

System crash possible, continue?
After pressing the program interrupt key, Turbo Debugger gained control while your program was executing Windows
kernel code. If you try to exit Turbo Debugger, or reset your program, this error message is generated. Exiting Turbo
Debugger or reloading your program while paused inside Windows kernel code will have unpredictable results, most
likely hanging the system and forcing a reboot. ,
To remedy this situation, set a breakpoint in your code and run your program to that breakpoint. When the breakpoint
activates, you can either exit Turbo Debugger, or reset your program.
The -we command-line option controls the generation of this error message.

Too many files match wildcard mask
You specified a wildcard file mask that specifies more files than can be handled. IDW can display up to 1,000 file names,
and ID32 can display up to 10,000 file names.

Unexpected end of line
While evaluating an expression, the end of your expression was encountered before a valid expression was recognized.

Unknown character
You entered an expression that contains an illegal character, such as a reverse single quote (').

Unknown record, structure, or union name
You have entered an expression that contains a typecast with an unknown record or enum name. (Note that assembler
structures have their own name space different from variables.)

Unknown symbol
You entered an expression that contained an invalid symbol name. Make sure the module name, symbol name, or line
number is correct.

168 Turbo Debugger User's Guide

Untenninated string
You entered a string that did not end with a closing quote ("). To enter a string with quote characters, you must precede
each quote with a backslash (\) character.

Value must be between nn and nn
You have entered an invalid numeric value for an editor setting (such as the tab width) or printer setting (such as the
number of lines per page). The error message will tell you the allowed range of numbers.

Value must be between 1 and 32 tenths of a second
The value entered for the background screen updating must be an integer between 1 and 32.

Value out of range
You have entered a value for a variable that is outside the range of allowed values.

Variable not available·
The variable in question has been optimized away by the compiler and cannot be accessed by the debugger. For best
results, compile without optimizations while you're developing your program.

Video mode not available
You have attempted to switch to 43/50-line mode, but your display adapter does not support this mode; you can use
43/50-line mode only with EGA, VGA or SVGA video adapters.

Video mode not supported by filename
The video mode Windows is using isn't supported by the video DLL indicated in the VideoDLL entry in the TDW.INI
file. Refer to the description of TDWINI.EXE in the online file TD _ UTILS.TXT for more information on video DLLs.

Video mode switched while flipping pages
Your program has changed the video display mode when Turbo Debugger is in page flipping mode. This means that the
contents of your program's screen might be lost. You can avoid this by using the -ds command-line option to turn on the
video swapping mode. <

Waiting for remote driver. Press Esc to stop waiting
You've configured TDW for remote debugging either through a serial or network connection, and it is now waiting to
connect to WREMOTE on the remote system. Press Esc to exit the debugger. See Appendix B for details on remote
debugging.

Wrong version of remote driver
TDW tried making a remote connection with WREMOTE, but the version of WREMOTE does not match that of TDW.
Make sure that TDW and WREMOTE are installed from the same Borland software package.

You must run WREMOTE on remote system
Make sure that the remote system is running WREMOTE, and not a copy of TDREMOTE used with earlier versions of
Turbo Debugger.

Status messages
Here are the messages you'll see on the Status line of the Get Info text box and in the
Thread Detail pane of the Threads window. These messages describe how
Turbo Debugger gained control from your running process.

Breakpoint at_
Your program encountered a breakpoint that was set to pause your program. The text after "at" is the address of the
breakpoint.

Divide by zero
Your program has executed a divide instruction where the divisor is zero.

A P pen d i xC, T u r boD e bug 9 ere rr 0 r m e s sag e s 169

Exception_
A processor exception has occurred, which usually happens when your program attempts to execute an illegal
instruction opcode. The Intel processor documentation describes the exception: codes in detail.
The most common exception to occur 'with a Windows program is Exception 13. This exception indicates that your
program has attempted to perform an invalid memory access. (Either the selector vah,le in a segment register is invalid or
the offset portion of an address points beyond the end of the segment.) You must correct the invalid pointer causing the
problem.

Global breakpoint _ at _
A global breakpoint has been activated. This status message includes the breakpoint number and the address where the
breakpoint occurred. .

Interrupt
You pressed the program interrupt key to regain control.

Loaded
You either reset your program or loaded it without executing any startup code. Because no instructions have been
executed at this point (including those that set up your stack and segment registers), most of Turbo Debugger's windows
show incorrect data. '

No program loaded
You started Turbo Debugger without loading a program. You cannot execute any code until you either load a program
or assemble some instructions using the Assemble SpeedMenu command in the Code pane of a CPU window.

Step
You executed a single source line or machine instruction, skipping function calls, with FB (Run I Step Over).

Stopped at_
Your program stopped as the result of a completed Run I Execute To, Run I Go to Cursor, or Run I Until Return
command. This status line message also appears when your program is first loaded, and the compiler startup code in
your program has been executed to place you at thestart of your source code.

Tenninated, exit code _
Your program has finished executing. The text after" code" is the numeric exit code returned to Windows by your
program. If your program does not explicitly return a value, a garbage value might be displayed. You cannot run your
program until you reload it with Run I Program Reset. ,

Trace
You executed a single source line or machine instruction with F7(Run I Trace).

Window message breakpoint at_
Your program encountered a message breakpoint that paused your program. The text after" at" is the window
procedure that handles the message received. .

TDREMOTE messages
Here's the list of error messages-that can be generated by TDREMOTE.

Can't create file
TDREMOTE can't create a file on the remote system. This can happen if there isn't enough room on the remote disk to
transfer the executable program across the link.

Download failed, write error on disk
TDREMOTE can't write part of, a received file to disk. This usually happens when the disk fills up. You must delete some
files before TDREMOTE can successfully download the file. ,

Interrupted ,
You pressed Ctrl+Break while waiting for communications to be established with the other system.

Invalid command-line option
You gave an invalid command-line option when you started TDRFfrom the DOS command line.

170 T u r boD e bug 9 e r Use r' s G u ide

Link broken
The program communicating with TDREMOTE has stopped and returned to DOS.

Program load failed, EXEC failure
DOS could not load the program into memory. This can happen if the program has become corrupted or truncated.
Delete the program file from the remote system's disk to force Turbo Debugger to send a new copy over the link. If this
message happens again after deleting the file, you should relink your program using TLINK on the local system and try
again.

Program load failed; not enough memory
The remote system doesn't have enough free memory to load the program you want to debug.

Program load failed; program not found
TDREMOTE could not find the program on its disk. This should never happen because Turbo Debugger downloads the
program to the remote system if TDREMOTE can't find it.

Unknown request: message
TDREMOTE has received an invalid request from the local system (where you're running Turbo Debugger). If you get
this message, check that the link cable is in good working order. If you keep getting this error, try reducing the link speed
(use the -rs command-line option).

WREMOTE messages
Here's the list of error messages that can be generated by WREMOTE.

Can't find configuration file: _
The file you specified using the -c command-line option cannot be found. Check to ensure the path and file name are
spelled correctly.

Can't open COMx serial port
WREMOTE is trying to use a COM port that is either in use or doesn't exist.

Invalid switch
You specified an unknown option on the WREMOTE command line. Refer to Appendix B for a description of
WREMOTE command-line options.

No network present
WREMOTE is unable to detect a NETBIOS compatible network. Make sure you have loaded NETBIOS (version 3.0 or
greater), and are logged onto the network.

Appendix C, Turbo Debugger error messages 171

172 T u r boD e bug 9 e r Use r' s G u ide

Symbols
!! (exclamation points), in Load

Module Source or DLL
Symbols dialog box 120

(cross hatch)
in CPU window 99
in expressions 81, 84

* (asterisk)
in Breakpoints window 56
in Clipboard window 43
in Hierarchy window '130
in Load Module Source or

DLL Symbols dialog
box 118

** (asterisks), in Hierarchy
window 130

. 92,95
~ (arrow)

in CPU window 99, 106
in Module window 90

-7 command-line option 145
?7?? (four question marks)

in CPU window 98
in Variables window 68
in Watches window 66

• (bullet)
in Load Module Source or

DLL Symbols dialog
box 118

in Module window 90
in Specify Exception

Handling dialog box 125
== menu (System) 33

Numerics
16-bit programs

debugging 19
80x87 processors 37

A
-a command-line options 144
Action Expression input box 57
Action radio buttons 53, 56-57
activity indic;ator 46

READY 40
RECORDING 40
REMOTE 154

adapters See video adapters
Add command

breakpoint groups 60

Index
Breakpoints window 52
Windows Messages

window 112, 114
Add Comment command (Log

window) 63, 64
Add DLL button 119
Add Group dialog box 60
Add Watch command (Data

menu) 66
Add Window or Handle to

Watch dialog box 112
Add Window Procedure to

Watch dialog box 112
Address input box 52, 55
addresses

expressions 81
navigatingto 92,100
running to specified 25
setting breakpoints' 52, 55
shifting 98
viewing invalid (CPU

window) 98
All Threads check box 62
All Threads command (Threads

window) 123
allocating memory 44
Alt+key shortcuts See hot keys
Animate command (Run

menu) 25
Another command (View

menu) 38
arguments

calling function 36
command-line 26
this 66

Arguments command (Run
menu) 26

arrays
displaying character

strings 83
inspecting 71,72

See also Inspector windows
subranges 73

modifying 161
arrow keys, in CPU window 98
ASCII files, viewing 93
Assemble command (CPU

window) 102
assembler

instructions See machine
instructions

registers See CPU window,
registers

assignment operator 82
At command (Breakpoints

window) 52
Attach command (TD32' s File

menu) 44
Attach to and Debug a Running

Process dialog box 45
. automatic name completion 39

B
Back Trace command (Run

menu) 25
Background Delay input box 11
backward trace See reverse

execution
Baud radio buttons 151
Block command (CPU

window) 106 ,
Borland, contacting 5
Breakpoint Options dialog

box 53
breakpoints

See also Breakpoints window
action set$ 58
actions 50,56-57
changed-memory 54
condition sets 58
conditions 50
CPU window 100
defined 49
disabling/ enabling 57, 61
expression-true 52
global 50, 55

Always action and 55
groups 57, 59-61
hardware 56

problems with 161, 165
inspecting source 61
instrumentation 57
line numbers and 22
location 49
logging values" 57 .
modifying 53
pass counts 50,54
reloading programs 30
removing 61
saving 21,22
scope of expressions 59
setting 51 '

in different modules 59

In d ex 173

simple 51
templates and 61
threads and 62
TSR programs 138 .
types 51

. window messages and Ill,
115

Breakpoints wirtdow 35,50-51
panes 50

bugs, finding 32
buttons 42
byte list expressions 81

c
-c command-line option 144
C++ programs

See also object-oriented
programs

class instances, formatting 76
exceptions 135
multiple inheritance 130
stepping over 25
tracing into 24

call stack See stack
Caller command (CPU

window) 100
case sensitivity, overriqing 146
casting See type conversion
central processing unit See CPU

window
CGA See video adapters
Change command

Breakpoints window 53
CPU window 103,105,107
Inspector windows 74
Object Inspector window 133
Variables window 68
Watch window 67

Change dialog box 68
Changed Memory Global

command (Breakpoints
menu) 55

character strings See strings
characters; nonprinting 83
Class Inspector window 131-132

SpeedMenu 132
Classes radio button 60
classes See C++ programs; object

oriented programs
Clipboard command (View

menu) 42
Clipboard window 38, 42

item types 42
saving 21, 22

SpeedMenu 43
watching expressions 43

Close command (Window
menu) 38

Close Log File command (Log
window) 64

code See source code; startup
code

Comm Port radio buttons 151
command-line options 17,143

See also specific switch
changing 26
disabling 143
help with 145
integrated environment

and 18
remote debugging 155
setting 26
TDREMOTE 156
utilities 14
WREMOTE 152

commands
See also specific command
choosing 33 .
macros as 40 I

onscreen summary of 46
shortcuts See hot keys

compiler I

directive (-v) 16
optimizations 90

compiling 15
integrated environment

and 16
optimizations 16

Condition Expression input
box 54

Condition radio buttons 53
conditional breakpoints See

breakpoints
Conditions and Actions dialog

box 53
Conditions and Actions list

box 53
configuration files 7-8

changing default name 12
directory paths 146
loading 144
overriding 8,143
saving options to 12
searching for 8

control-key shortcuts See hot,
keys .

conversion See type conversion
coprocessor, numeric 37

See also Numeric Processor
window

copying and pasting 41
CPU window 37

addresses

174 Turbo Debugger User's Guide

navigating to 100
shifting display 98
viewing invalid 98

cursor 99
display format 101, 103, 104,

106
expressions, searching on 101
flags 103,108

See also Registers window
immediate operands 99
instruction pointer 99

navigating to 100
memory dump 104

See also Dump window
opening 98
panes 98
registers 103,108

32-bit display 103
See also Registers window
I/O 102
modifying 103

SpeedMenu 100-102
title bar display 99

Create command (Macros) 40
Ctrl-key shortcuts See hot keys
current activity, help with 46
cursor

CPU window 99
Module window 89
running programs to 24

customer service 5

D
-d command-line options 144
data

See also Dump pane
examining raw bytes 70
inspecting 69, 108

See also Inspector windows
modifying 74,105
monitoring 54
types See type conversion
viewing raw bytes 37
watching See Watches

window
data objects See object-oriented

programs
Debug Startup radio buttons 120
debugger boards 56.
Debugger See Turbo Debugger
debugging

16-bitprograms 19
assembly code 14
assembly-level 97
defined 31
device drivers 140-141
DLLs See DLLs

dual-monitors 9,144
execution control 24
features 1
functions 82
information 15

adding to files 16
adding to modules 16,20

interactive programs and 27
just-in-time 22
memory use and 44
methodology 31-33
multitasking and 27
multithread programs 121
object-oriented programs See

object-oriented programs
program termination 30
recursive functions 69, 75
remote See remote debugging
reproducing the bug 32
steps 15-16,31
terminology 3
testing fixes 32, 57, 102
tools 33
TSR programs 137-139
Windows programs 111

decimal numbers 11
Decrement command (CPU

window) 103
default settings

overriding 8
See also TDWINST.EXE file

restoring 12
Delete All command

Breakpoints window 61
Macros menu 41
Watch window 67
Windows Message

window 116
Delphi

calling functions 82
compiling for 16
constructors and

destructors 77
evaluating member

functions 77
inspecting records 72
starting TD 18

Derived Classes check box 135
Descend command

Inspector windows 74
Object Inspector window 134

device drivers 140
debugging 140-141

dialog boxes
See also specific dialog box
responding to 160
status line help 47

directories
changing 20, 146
searching 146
WREMOTE and 152

Disable Clock Interrupts check
box 151

Disabled check box 61
disk drives, changing 20
display

See also screens
adapters See video adapters
CPU window 101,104,106

32-bit registers 103
expression formats 83
file formats 94
integer formats 10
modes, setting 10
starting addresses, shifting 98

Display As command
CPU window 106
File window 94

Display Options command
(Options menu) 10

Display Options dialog box 10
Display Swapping radio

buttons 10
Display Windows Info

command (Log window) 64,
125

displays 144
DLL Name input box 119
DLLs

checking at program load 147
debugging 26,117

startup code 120
loading 117, 118

problems with 160
returning from 117
running programs with _

reverse execution and 28
scope 87
startup code types 120
stepping into 117
stepping over 119

DLLs & Programs list box 118
documentation 5

overview 4
printing conventions 3

DOS
interrupt handlers and TSR

programs 137
DOS version, viewing 44
drives, changing 20
DUAL8514.DLL 12
dual-monitor debugging 9,144
Dump Pane to Log command

(Log window) 63

Dump window 37, 108
dynamic link libraries See DLLs

E
Edit Breakpoint Groups dialog

box 59
Edit command

File window 95
Module window 92
Watch window 67

Edit Watch Expression dialog
box 67

EGA, line display 11
EMS, usage 44
Enter Address to Position To

dialog box 92, 100, lOS, 107
Enter Code Address to Execute

To dialog box 25
Enter Expression for Conditional

Breakpoint input box 56
Enter Expression to Watch dialog

box 66
Enter Instruction to Assemble

di?log box 102
Enter Memory Address Count

input box 55
Enter New Selector dialog

box 108
Enter New Value dialog box 67,

74,103
Enter New Value for Unsigned

Int dialog box 107
Enter Program Name to Load

dialog box 20
Enter Search String dialog

box 92,94
Enter Source Directory Path

input box 11
Enter Variable to Inspect dialog

box 70
Erase Log command

Log window 64
Window Messages

window 116
error messages 159-169

fatal 159
memory 149
TDREMOTE 170-171
WREMOTE 171

Evaluate/Modify dialog box
75-77

events, running to 26
Examine command (CPU

window) 108
Exception 13 (Windows) 170

I nd ex 175

Exception command (Module
window) 135

exceptions
CandC++ 135
operating-~ystem 101,124
. specitying 125

Exceptions list box 124
executable program files See files
Execute Startup Code check

box 20
Execute To command (Run

menu) 25
executing programs See

programs,running
execution history

See also reverse execution
deleting 28
recovering 29

Execution History window 27-
29,37

SpeedMenu 28
exit code, returned to

Windows 170
exiting Turbo Debugger 30
expression evaluators 79

selecting 79
Expression input box 76
Expression Lang1lage dialog

box 79
expression-true breakpoints 52
Expression True Global

command (Breakpoints
menu) 56

Expression True radio button 53
expressions 79-83

addresses 81
byte lists 81
current IP vs. current

scope 84
defined 79
evaluating 75-77,84
format specifiers 83
functions and 82
hexadecimal 80
inspecting 70

See also Inspector windows
language evaluators 79

selecting 79
line numbers 81
repeat counts 83
scope and 84, 85
side effects 76, 82
types 80
watching 43,65

See also Watches window

F
F12 (Windows NT interrupt

key) 27
fatal errors 159
features, new 2
File command

File window 95
Module window 91
Viewmenu 93

File window 37, 93-94
SpeedMenu 94-95 .

FILELIST.DOC 7
files

See also File command; File
window

configuration See
configuration files

display format 94
executable and support 12

changing 119
header 91
include statements and 91
loading a new module 91
moving to specific line

number 91,94
non-source 93
online 14
opening 19
response ·11
searching through 92, 94
session-state 21, 145
source See source files
utility 12
viewing 37,89,91,93

program address· 92
flags, CPU 103; 108
floating-point numbers 37

displaying 83
Follow command (CPU

window) 100,105, 107
format specifiers 83
Freeze check box 122
Full History command

(Execution History
window) 29

function keys See hot keys
Function Return command (Data

menu) 78
functions

calling 82
inspecting 73, 75

See also Inspector windows
names, finding 36
recursive 69, 75
return values and 78
returning from 25

176 T u r boD e bug 9 e r Use r' s G u ide

G

stepping over 24
viewing in stack 36, 74

Get Info command (File
menu) 43

Get Info text box 43-44
gh2fp (typecast symbol) 128
global breakpoints 50,55

See also breakpoints
Always action and 55

Global check box 55
global memory, listing 126
global menus 33

See also mentis
global variables 68

See also variables
GlobalAlloc function 126
GlobalLock function 127

. GlobalPageLock function 127
Go to Cursor command (Run

menu) 24
Goto command

CPU window 100, 105, 107
File window 94
ModUle window 92

graphics adapters See video
adapters

Group command (Breakpoints
window) 59

Group ID input box 60

H
-h command-line option 145
handle

casting to far pointer 128
window messages and 113

hardware
adapters See video adapters
breakpoints 56
primary and secondary
. displays 144
requirements 2

Hardware Breakpoint Options
dialog box 56

header files, viewing 91
heap 127
. viewing 126
Help 46-47

Index 46
help

command-line options 145
current activity 46
online 46

Help menu 46

hexadecimal numbers 10
displaying 83
notating 80

Hierarchy command
Class Inspector window 132
Object Inspector window 134

Hierarchy window 38, 129-131
panes 129
Speed11enu 130,131

highlight bar 34
history lists

See also execution history
saving 22

hot keys
Alt+- (Stop Recording) 41
Alt+= (Create 11acros) 40
Alt+ F2 (Breakpoints At) 52,

62
Alt+F4 (Back Trace) 25
Alt+F5 (User screen) 39
Alt+F6 (Undo Close) 35
Alt+F7 (Instruction trace) 24,

25
Alt+F9 (Execute To) 25
Alt+H (Help) 46
Alt+X (Exit) 30
Ctrl+F2 (Program Reset) 26,

30
Ctrl+N (Text Entry) 39
F2 (Toggle Breakpoint) 51
F4 (Go to Cursor) 24
F5 (Zoom) 34
F6 (Next Window) 34
F7 (Trace Into) 24
F8 (Step Over) 24
F8 (Until Return) 25
F9 (Run) 24
help with 47
macros as 40
Shift-F3 (Clip) 41
Shift-F4 (Paste) 41
Speed11enus 47
Tab/Shift-Tab (Next Pane) 34

I/O command (CPU
window) 102

icon conventions
(documentation) 3

immediate operands and CPU
window 99

include files 91
Increment command (CPU

window) 103
incremental matching 40

Index command (Help
window) 46

indicators See activity indicators
input boxes

See also dialog boxes
entering text 39

Inspect command
Breakpoints window 61
Class Inspector window 132
Execution History

window 28, 29
Hierarchy window 130, 131
Inspector windows 74
11odulewindow 90
Object Inspector window 133
Stack window 75
Threads window 123
Variables window 68
Watch window 67

Inspector windows 38,69-74
arrays 71, 72
character values in 70
class See Class Inspector

window
closing 38, 74
compound data objects

and 69,74
entering expressions 70
functions 68, 73
global symbols and 68
member functions 131
object See Object Inspector

window
opening 70
panes 72
pointers 71
records 72
scalars 70
selecting expressions 70
Speed11enus 73-74
structures 71
types 69
unions 71
viewing memory contents 70

INSTALL.EXE 7
installation 7
instruction pointer 99

changing 102
location 90
navigatingto 92,100

Instruction Trace co:nu:hand (Run
menu) 25

execution history and 28
instructions See machine

instructions
instrumentation (defined) 57
Integer Format radio buttons 10

integers
See also numbers
displaying 83
formatting 10

interrupts
machine instructions 100
program execution 27

reversing 28
tracing into 25
TSR programs and 138

J
-j command-line options 145
JITI11E.EXE 13
jump instI'l;lctions 100
just-in-time debugging 22

K
-k command-line option 145
keys See hot keys
keystroke recording 29,145
Keystroke Restore command 29
keystrokes

replaying 29 .
restoring from macro 41

L
-1 command-line option 145
labels, running to 25
Language command (Options

menu) 10,79
language evaluator

default 79
selecting 79

language syntax 80
Ih2fp (typecast symbol) 128
Lib11ain function 121
Line command (11odule

window) 91
line numbers

CPU window and 99
expressions and 81
moving to specific 9t 94
resetting and 26

Link Speed radio buttons 153
list boxes

See also dialog boxes
incremental matching in 40 .

lists, choosing items 40
Load a New Program to Debug

dialog box 19
Load button 118
Load 110dule Source or DLL

Symbols dialog box 91, 118

Index 177

Load Symbols radio buttons 119
LoadLibrary function 119
Local Display dialog box: 69
localmenrrory, listing 127
Local radio button 153
local variables See variables
LocalAlloc function 127
Locals cor.nr.nand (Stack

window) 75
LockData function 127
Log window 36, 63-64

adding cor.nr.nents 63
logging window

messages 116
Speed~enu 63-64
writing to disk 63

Loggingcor.nr.nand(Log
window) 64

M
machine instructions

See also CPU window
back tracing into 29
inspecting 28

See also Inspector windows
interrupts 100
multiple treated as single 24
recording 29
replacing 102
stepping over 24
tracing into 24, 25
transferring control 100
viewing history 28
watching 37

macros 40
creating 40
removing 41
restoring keystrokes 4.1
saving 12

11acroscor.nr.nand«()ptions
menu) 40

11acros menu 40-41
manual

overview 4
printing conventions 3
using 5

math coprocessor 37
See also Numeric Processor

window
member functions See object

oriented programs
memory

allocation 44
changing values 55
dump 104, 108
error nrressages 149

expression format 83
global handles 126
global heap 126
local heap 127
modifying 106
monitoring 54
usage 44
viewing 37

menu bar 33
menus

activating 33
global 33
Help 46
local See Speed~enus
~acros 40-41
()Ptions 9-12
Run 23-27

prograrntermination
and 30

System (=) 34
View 35-38
Window 34

message breakpoints
defined 111
setting 115

11essage Class radio buttons 114
message classes 115

monitoring 114
removing window message

actions 116
message log 36

See also Windows ~essages
window

messages
See also Windows 11essages

window .
error 159-169
Exception 13 170
status 169-170

methods
evaluating 77

~ethods cor.nr.nand (Object
Inspector window) 133

Wcrosoft Windows See
Windows

~edcor.nr.nand(CPU
window) 99,101

11odule/Class list box 60
~odule cor.nr.nand (11odule

window) .91
~odule window 36, 89-93

incorrect source listing 90
opening 90
Speed~enu,90-93

modules
Seealso 110dule window

178 T u r boD e bug 9 e r Use r' s G u ide

adding debug
information '16, 20

changIng 118
compiling 15
defined 3
listing ·127
loading 90,91
scope override and 85
setting breakpoints 59
tracing into 25
viewing 36

110dules radio button 60
monitors See hardware; screens
mouse, disabling/ enabling 145
multi-language programs 14
multiple inheritance 130
multitasking and debugging 27
multithread programs,

debugging 121
See also threads

N
name completion (symbols),

automatic 39
NETBIOS, remote debugging

and 150
Network Remote Name input

box 151
New CS:IP cor.nr.nand (CPU

window) 102
New EIP cor.nr.nand (CPU

window) 102
New Expression cor.nr.nand

Inspector windows 74
Object Inspector window 134

Next cor.nr.nand
See also Search cor.nr.nand
CPU window 105
File window 94
110dule window 92

Next Pane cor.nr.nand (Window
menu) 34

Next Pending Status command
(TD32's Run menu) 26

Next Window cor.nr.nand
(Window menu) 34

nonprinting characters,
displaying' 83

Notify on Termination check
box 122

null-modem cable, remote
debuggingand 150

null-terminated character
string 71

numbers

decimal 11
displaying 83
floating-point 37, 83
formatting 10
hexadecimal 10, 80, 83

numeric coprocessor 37
numeric exit code 170
Numeric Processor window 37

o
Object Inspector window 132

panes 133
SpeedMenu 133

, Object Pascal See Delphi
object-oriented programs 129

ancestor classes 133
constructors and

destructors 76, 161
derived classes 131
evaluating member

functions 76
formatting objects 76
inspecting

classes 131
data members 131
member functions 131

nested classes 131
Object Inspector window 132
scope override 85,87
this pointer 66
viewing member

fUnctions 75
online files 14
online help See help
OOP See object-oriented

programs
-Open command (File menu) 19
Open Log File command (Log

window) 63
operands (CPU window) 99
operating-system

exceptions 101,124
handling 124
specifying user-defined 125

operators, assignment and
expressions 82

optimizations, compiler. 16,90
options ,

See also Options menu
command-line See command-

line options '
restoring defaults 12
saving 12

Options menu 9-12
Origin command

CPU window 100,107

Module window 92
OS Exceptions command (CPU

window) 101
OS shell command (TD32's File

menu) 45
output, verifying 39

p
-p command-line option 145
parameters

See also arguments
Parents command (Hierarchy

window) 130
Pa~s C~unt input box 54
pass counts 50

setting 54
pasting and copying 41
Path for Source command

(Options menu) 11
paths, directory See directories
Pick a Source File dialog box 91
Pick a Thread dialog box 91, 101
Pick dialog box 41
pointers

displaying 83
inspecting 71
instruction See instruction

pointer
ports, writing and reading 102
Previous command

CPUwindow 100,107
Help window 46
Module window 91

printing conventions
(documentation) 3

program files See files
program interrupt key 27

Program Reset and 27
TSR programs and 138

Program Reset command (Run
menu) 26,30

program interrupt key
and 27

programs
arguments 17

command-line syntax
and 21

setting 26
C++ See C++ programs
compiling 15

integrated environment
and 16

controlling execution 23
debugging See debugging
finding instruction pointer 92
information on 43

loading 19
without debug

information 20
low-level view 97
memory usage 36
modified since compiled 90
multitasking 27
multithread 121

See also threads
object-oriented See object-

oriented programs
output screen 39
reloading 26
resetting 26, 30

program interrupt key
and 27 '

stackand 30
returning to Turbo

Debugger 24
reverse execution 25,27-29
running 23-27,161

at full speed 24
controlling 23
in slow motion 25
interrupting 27
reversing 25,27-29
to an event 26
tocursor 24
to labels 25

scope See scope
termination 30
why paused 44
Windows See Windows

prompts, responding to 160
protected mode selectors 107

Q
Quit command (File menu) 30
Quit When Host Quits check

box 151

R
-r command-line options 155
radio buttons See specific radio

button
Range command

Inspector windows 71, 73
Object Inspector window 133

read-only memory See ROM
READY indicator 40
RECORDING indicator 40
recursive functions 69, 75
registers

See also CPU window;
Registers window

32-bit display 103

I nd ex 179

I/O 102
modifying 103
termination and 30
valid address

combinations 164
viewing 103, 108

Registers 32-bit command (CPU
window) 103

Registers window 37, 108
reloading programs 26
Relocate Table command 141
remote debugging

configuring 20
DOS applications 156
hardware and software

requirements 149
loading programs 154
local and remote systems 149
NETBIOS and 150
network compatibility 150
null-modem cable 150
remote Windows driver 150
system names 155
troubleshooting 157

REMOTE indicator 154
Remote Link Port radio

buttons 153
Remove command

Breakpoints window 61
Macros menu 41
Watch window 67
Windows Message

window 116
Repaint Desktop command

(System menu) 35
resetting programs 26, 30

program interrupt key 27
Resident command 138
response file 11
Restart Options dialog box 22
Restore at Restart check boxes 22
Restore Options command

(Options menu) 12
Restore Standard command

(System menu) 35
Result input box 76
return values 78

breakpoints and 57
Reverse Execute command

(Execution History
window) 28

reverse execution 25,27-29
ROM, program execution

and 161
Run cOminand (Run menu) 24

execution history and 28

Runmenu 23-26
program termination and 30

running programs See programs,
running

5
-s command-line options 146
Save Options command (Options

menu) 12
Save To input box 12
scalars, inspecting 70
scope 83-87

breakpoint expressions 59
changing. 84
DLLsand· 87
inactive 161
overriding syntax 84
templates 85
watch expressions 66

Screen Lines radio buttons 11
screen shots 3
screens

See also display; hardware
display swapping 144
dual-monitor debugging 9,

144
lines per, setting 11
problems with writing 10 .
resto~ing layout 35
screen flipping 144
screen swapping 144
swapping 10

-sd command-line option 21
Search command

See also Next command
CPU window 100,105
File window 94
Module window 92

secondary display See dual-
monitoring debugging

select by typing 40
selecting text 90
Selector command (CPU

window) 108
selectors 107
Send to Log Window command

(Windows Messages
window) 116 '

Session button 20,152
Session radio buttons 20,153
session-state files 21,145
Set Message Filter dialog

box 114
Set Options command

(Breakpoints window) 53

180 Turb.o Debugger User's Guide

Set Session Parameters dialog
box 153 .

settings, default 8, 12
shortcuts See hot keys
Show command (Variables

window) 69
Show Inherited command

Class Inspector window 132
Object Inspector window .133

side effects, expressions 76,82
simple breakpoints 51
single stepping 24

continuous 25
into interrupts 25
in reverse 25

Size/Move command (Window
menu) 34

source code
incorrect listing 90
inspecting 28, 61

See also Inspector windows
searching for 21
splicing with breakpoints 57
stepping over 24
stepping through See Step

Over command
tracing into 24

See also Trace Into
command

verifying position 39
viewing 89

program address 92
source files

See also files
adding debug information 16
loading 90
viewing 91

Source Modules list box 118
Specify C and C++!Exception

Handling dialog box 135
Specify Exception Handling

dialog box 124
SpeedMenus

accessing 35
Class Inspector window 132
Clipboard 43
command shortcuts 40
CPU window 100-102
Execution History

window 28
File window 94-95
Hierarchywindow 130,131
hot keys in 47
Inspector windows 73-74
Log window 63-64
Module window 90-92
Object Inspector window 133

Stack window 75
Threads window 122
Variables window 67-69
Watches window 67

splicing code 57
stack

See also CPU window; Stack
window

current state 36
modifying 107

Stack window 36, 74-75
SpeedMenu 75
viewing local variables 69

starting directory, changing 146
Starting Directory input box 151
starting Turbo Debugger 17

assembler mode 145
. command-line options See

command-line
startup code

debugging 145
DLLs 120

running 20
state, saving 21
static symbols and CPU

window 99
status line 46
status messages 169-170
STB.DLL 12
Step command (Threads

window) 123
Step Over command (Run

Menu)
execution history and 28

Step Over command (Run
menu) 24

Stop on Attach check box 45
Stop Recording command

(Macros) 41
strings

displaying 83
inspecting 70
null-terminated 71
searching for 92, 94

nextoccurrence 92,94
structures

inspecting 69,71,74
modifying 161

SVGA.DLL 12
switches See command-line

options
Symbol Load hutton 119
Symbol Load command 139
symbol tables

creating 15
DLLsand 117

sorting 40
symbols 39

accessing 83-87
scope 83
searching for 83

syntax, supported 80
System Information text box 43
System menu (=) 34

T
-t command-line option 146
Tab Size input box 11
Table Relocate command 139
tabs, setting 11
TD.EXE 12
TD_ASM.TXT 14
TD_HDWBP.TXT 14,56
TD_RDME.TXT 14
TD_UTILS.TXT 14
TD32.EXE 13
TD32.ICO 13
TD32HELP.TDH 13
TD32INST.EXE 13
TD32INST.ICO 13
TDCONFIG.TD 8

overriding 8
TDCONFIG.TD2 8
TDCONFIG.TDW 8
TDDEBUG.386 13, 56
TDHELP.TDH 13
TDINST.EXE 13
.TDK files 29
TDKBD16.DLL 13
TDKBD32.DLL 13
TDKBDW16.DLL 13
TDKBDW32.DLL 13
TDMEM 139
TDMEM.EXE 13
TDREMOTE.EXE 13

command-line options 156
error messages 170-171

TDRF.EXE 13, 157
TDSTRIP 138
TDSTRIP.EXE 13
TDSTRP32.EXE 14
TDVMP.EXE 14
TDVIDW16.DLL 13
TDVIDW32.DLL 13
TDW.EXE 13
TDW.INI 8, 13
TDWGUI.DLL 13
TDWHELP.TDH 13
TDWINI.EXE 9, 14·
TDWINI.HLP 14
TDWINST.EXE 14

TDWINTH.DLL 13
technical support 5
templates

breakpoint behavior 61
scope of 85

text
searching 100
selecting 90

text files, viewing 93
text modes See display, modes
this pointer 66
Thread command

CPU window 101
Module window 91

Thread Name input box 122
Thread Options dialog box 122
threads

See also Threads window
'active' 122
breakpoints and 62
current 122
debugging 121
emperor has no 167
execution point 124
freezing 122, 123
naming 122
priority 124
suspended and runnable 124
terminating 122, 123
thawing 123

Threadsinputbox 62
Threads window 121

panes 121
SpeedMenu 122
thread numbers 122

Toggle command (Breakpoints
window) 51

.TRfiles 21,22

.TR2 files 21, 22
Trace Into command (Run

menu) 24
execution history and 28

tracing See Tracing Into
command

Tree command (Hierarchy
window) 130

.TRW files 21, 22
TSR programs

debugging 137-139
defined 137
resident portion 138

Turbo Debugger
command-line syntax 17
configuring 7-12
defined 1
icon settings 18
new features 2

In de x 181

running 19
as resident 138

starting 17
utilities 13
windows overview 35-39

Type Cast command
Inspector windows 74
Object Inspector window 134

type conversion
memory handle to far

pointer 128
typographic conventions 3

u
Undo Close command (Window

menu) 35
unions, inspecting 71
Until Return command (Run

menu) 25
Use Restart Info radio buttons 22
User Screen 10
User Screen command (Window

menu) 39
remote debugging 154

User Screen Delay input box 11
utilities 13

command-line options 13

v
-v command-line options 146
-v compiler directive 16
variables

See also Variables window
adding watches 69
DLLsand 87
evaluatingandmodifying 68,

75-77
global 68

local vs. 68
modifying 68

in recursive routines 69
inspecting 68

See also Inspector windows
logging (breakpoints) 57
program termination and 30
scope override 85
viewing 67

instack 36
watching 36, 65

See also Watches window
Variables command 68
Variables window 36,67-69

modifying local display 69
panes 68
Speed~enu 68-69

video adapters 3, 9
EGA and VGA 11

View menu 35-38
View Source command (CPU

window) 101

w
-w command-line options 147
Wait for Child command (TD32' s

Run menu) 23, 27
Watch command

~odule window 91
Variables window 69
Watch window 67

watches
creating 66
expressions

editing 67
scope 66

inspecting compound 67
freezing in Clipboard 43
global vs. local variables 69
modifying 67
reloading programs 30
saving 21, 22
this pointer and 66

Watches window 36, 65-67
opening 66
Speed~enu 67

watchpoints 54
See also breakpoints

wildcards, searching with 92, 94
Window menu 34 .
window messages

debugging tips 116
handles and 113
logging 116

to a file 116
monitoring 111,112

classes 114
processing 113
removing selected 113
setting breakpoints 115
tracking single 115,116

182 T u r boD e bug 9 e r Use r' s G u ide

window panes
See also windows
highlight bar 34
moving between 34
Next Pane command 34

Window Pick command
(Window menu) 34

Windows .
crash checking, system 147
debugging programs. 111

tips 27
Display Windows Info

command 125
executing Windows code 27
messages 111

Exception 13 170
numeric exit code 170
returning to 30
shortcut keys 19
switching applications 19

windows 357 39
Breakpoints 35,50-51
Class Inspector 131-132
Clipboard 38,42
CPU 37
Dump 37,108
duplicating 38
Execution History 27-29,37
File 37, 93-95
Hierarchy 38, 129-131
Inspector 38,69-74
layout, saving 12
Log 36,63-64
managing 34
messages See window

messages
~odule 36, 89~93
moving/resizing 34
Next Window command 34
numbering system 34
Numeric Processor 37
panes See window panes
recovering last closed 35
Registers 37
saving contents of 63
specifying 113
Stack 36,74-75
status line 46
user screen 39
Variables 36,67-69
Watches 36, 65-67
Windows ~essages 38

Windows Information dialog
box 125

Windows Messages
window 38, 111, 112

See also window messages
WREMOTE.EXE 13

command-line options 152
configuring 150
error messages 171

WRSETUP.EXE 14

z
Zero command (CPU

window) 103
Zoom command (Window

menu) 34

In d ex 183

184 T u r boD e bug 9 e r Use r 's G u ide

Borland
Copyright © 1996 Borland International, Inc. All rights reserved. All Borland product names are trademarks of Borland International,
Inc. Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Internet: http://www.borland.com
CompuServe: GO BORLAND. Offices in: Australia, Canada, France, Germany, Hong Kong, Japan, Latin America, Mexico,
The Netherlands, Taiwan, and United Kingdom · Part # LSM1350WW21773 • BaR 8909

