Paradigm Assembler
User's Guide

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under alicense and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.
Copyright © 1999 Paradigm Systems. All rights reserved.

Paradigm C++™ s atrademark of Paradigm Systems. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Version 5.0
October 26, 1999

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road
Suite 2214
Endwell, NY 13760
USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com
Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, contact our technical support team viathe Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm'’s Survival Pak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (800) 537-5043 to purchase this protection today.

Chapter 1 Getting Started
Writing your first Paradigm Assembler source

MOAUIE.....ceeieiee e 7
Building your first application............ccccvvvirennene 8
Chapter 2 Using directives and switches
ADOUL CSCIIPL ... e 9
Starting Paradigm Assemblerccooevieiiiienenenne 9
Starting Paradigm Assemblerccooevvecevcieneennne 9
Command-line OptioNs..........ccccceveereeieseeneerie e 11
Indirect command filesS........cccovverininnineneneniee 21
The configuration file ..o 21
Chapter 3 General programming concepts
Paradigm Assembler Ideal mode...........cccccvevennenee. 23
Why use Ideal mode?.........cccocvvveeeevnecn e 23
Entering and leaving Ideal mode..........c..cccoeuenne 24
MASM and Ideal mode differences............cc...... 25
Expressions and operands..........cccceeeereeieennenne 25
OPEFALOrS.coevee e 25
SUPPressed fIXUPS.....covvveereee e 25
Operand for BOUND instruction...................... 26
Segments and grouUPS........coveeeereererienseeseennens 26
Accessing segment data belonging to agroup .. 26
Commenting the program............cceeeevvneenenienneene 28
Comments at the end of theline............ccoceeeenee. 28
The COMMENT directive.......cccooeveiineneneniens 28
Extending the line........cccoveevveevicce e, 29
Using INCLUDE fil€S.....cooiiiieieeeeeeeee, 29
Predefined symbols..........ccocoienininneneeeeeee, 30
Assigning valuesto symbolS..........ccocceverieiiiiennne 31
General module Structure...........ccoeeeeverenenc e 31
The VERSION directive.........ccooeevereenenenenienins 31
The NAME directive........cccooveiienencncnene 32
The END directive........ccoccoveevercenenieneeneenn, 32
Displaying warning mesSages..........ccoceeveereeseeseeenens 33
Multiple error-message reporting...........oceeeeeeneeenne. 34
Chapter 4 Creating object-oriented
programs
TErMINOIOGY....c.ceveeeerieeie e seee e 35
Why use objects in Paradigm Assembler?............... 35
What iSan ODJECL?......ceeveeeeeeceee e 36
A Sample ObJECL........cooereereeeeeee e 36
Declaring ObJECtS.......ccoeeieriererieseeee e 37
Declaring abase object..........ccccevvviiininnnenne 37
Declaring aderived object..........cccecvevveceernenne. 39

Contents

Table of Contents

Declaring a method procedure..........cccooeeeveevesnenen. 39
The virtual method table..........ccocooeieiiiiiiieiee 40
Initializing the virtual method table...................... 41
Calling an object method...........ccocceverveninneniennne 41
Calling a static method...........cccceeeverienienecieee 41
Calling avirtual method...........cccccoeeeveevencieseenee, 42
Calling ancestor virtual methods............ccccveueeee. 44
More on caling methods..........ccceeeveeieneenennne 45
Creating an instance of an objectc.ccoveeiiennnne. 45
Programming form for objects.........cccvveevvneenenen. 45

Chapter 5 Using expressions and symbol
values

CONSLANES ... 47
NUMENC CONSLANES......coviierierieriiree e 47
Changing the default radiXcccooeeeveeieninnee. 48
StriNg CONSLANES.....ccveeeeceeee e 48
SYMDBOIS.....oiie 48
Symbol NAMES........c.oocviiei 48
Symbol types........cooeiiiie e 49
Simple address SUbtYPeS........cccceveeeeeeeneerie e 49
Describing a complex address subtype................. 50
EXPreSSIONS......ccvecieeieceecieeie e 50
EXPression PreCiSioN........ceeveeeeeneesiesneeseeseeseens 51
ConstantS iN eXPreSSIONS........coeeveeeerieereeneesenens 51
Symbolsin expressions..........cccceveeeeneeneeiiesene 51
REGISLENS....eeiece e 51
Standard symbol values...........cccccevvevvneeneeennn. 52
Simple symbol values...........cccccvvveveevecinsieennn. 52
The LENGTH unary operatorccceeeeerueenne. 53
The SIZE unary Operatorccccceveenerceenueenee 53
The WIDTH unary Operatorcccceveeeeenueene 54
MASK unary Operatorccccceevvveeerireeesinennnnne 54
General arithmetic operators..........cccovvevveceereeenne. 54
Simple arithmetic operators.........c.ccoeevveeerveenne. 55
Logical arithmetic operators...........ccceveervernenne 55
Bit shift Operators........ccoceveveeveeneneneee e 55
CompariSON OPEratorS........covveevereereeerieseesieenens 55
Setting the address subtype of an expression....56
Obtaining the type of an expression.................. 56
Overriding the segment part of an address
EXPIESSION....eevieiesiee i ieeiee st see e sre e 57
Obtaining the segment and offset of an address
EXPIESSION....eeevieniesiee e eee et sre e 57
Creating an address expression using the location
COUNLEN ...t e e 58
3

Determining expression characteristics............ 58
Referencing structure, union, and table member

OFfSELS . 59
Describing the contents of an address............... 59
Implied addition..........ccccoeierineeieeee 60
Obtaining the high or low byte values of an

EXPIESSION ...t 60
Specifying a 16- or 32-bit expression............... 60

Chapter 6 Choosing directives
X86 Processor direCtiVesccoveevereenieriie e 63
8087 coprocessor direCtives.........cccoeeveneerieeiennnenn 67
Coprocessor emulation directives...........cccoceeeveenee. 68
DITECHIVES. ...t 68
Predefined symbols..........cccccvvverieiinnieveere e, 97
(@20 o1 TSR 97
@WOIASIZE ...ttt o8
Chapter 7 Using program models and
segmentation
The MODEL directive........ccooceveiienenienieseesieene 99
Symbols created by the MODEL directive........ 102
The @Model symbal..........cccoevevvvceiieeee 102
The @32Bit symbolcccccevveieiecieceee 102
The @CodeSize symbol...........cccoeeveeiiieennnne 102
The @DataSize symbol............cccoeeveeiiivennenne 102
The @Interface symbol............ccccevveiivenennne 102
Simplified segment directives.........c..cccecveveennnne 103
Symbols created by the smplified segment
ITECHIVES...c.eeeeeceee e 104
The STARTUPCODE directive...........ccoocereenueenee. 104
The @Startup symbol..........ccooviriiveeieneeneene, 104
The EXITCODE directiVe.........cocevvvevveeiinennnnns 104
Defining generic segments and groups.................. 105
The SEGMENT directive........ccccevevenennrinnnenn 105
Segment combination attribute 105
Segment class attribute..........ccoevveiiiinnenne 106
Segment alignment attribute ..o 106
Segment Size attribute.........ccocceevvieeieriinnenne 107
Segment access attribute............cceeevveveennenne 107
The ENDS directive........cccooceverinieneninene 107
The GROUP directive........cccooereeienenenienenienne 107
The ASSUME directive.........ccocevvreeneenenenneenn, 108
Segment Ordering........cccceveereereneenenie e e 109
Changing a modul€'s segment ordering 109
The . ALPHA directive.......ccooovvvininnncninnne. 109
The .SEQ directive.........ccccveveevcveeiee e, 109
The DOSSEG directive........cccoovveienenerienne 109
Changing the size of the stack.........c.cccceeienenne 110
Chapter 8 Defining data types
Defining enumerated datatypes.........cccccevvevvernenne. 111
Defining bit-field records..........cccocvevveceneeiiecenne, 112
Defining structure and Unions..........cccceceeveerieneenne 113
4

Opening a structure or union definition.............. 113
Specifying structure and union members............ 114
Defining structure member labéls................... 114
Aligning structure members.........cccocevevereennne 114
Closing a structure or union definition............... 114
Nesting structures and UNioNS..........c.cceeeereereenne 115
Including one named structure within another....116
Using structure names in expressions................. 117
Defining tables........ccceceveveeececeee e 117
Overriding table members.........ccccvveveveeveennne 119
Defining anamed typecccevveeeieennnerneenienens 119
Defining a procedure type........ccoceeeeevereeesieeniennens 119
Defining an ObJECtccoeeveeiieiesee e 120
The TBLPTR direCtive.......ccccoovrerieviienenerien 121
The STRUC directive........ccoovvererieienenicrenne 121
Chapter 9 Using the location counter
The $ location counter symbolcccccevvrvriennee. 123
Location counter direCtives..........cooeveevererenieneens 123
The ORG direCtive..........ccoovverererieerene e 123
The EVEN and EVENDATA directives............ 125
The ALIGN directives........ccoceveeceieeieninneene, 125
Defining labels........coooooiiiinieee 126
The : OPErator......ccccceveeieeesee e 126
The LABEL directive........ccoovvrevieienene e 127
The:: direCliVe.......ccccovevinireeee e 127
Chapter 10 Declaring procedures
Procedure definition syntax...........c.cceceveeeeveenenenne 129
Declaring NEAR or FAR procedures................. 129
Declaring a procedure language...........ccccceveeneee. 131
Specifying alanguage modifier..........cccocevvennne 132
Defining arguments and local variables............. 133
ARG and LOCAL SyntaX........ccoveeeeeereenieriensnenne 134
The scope of ARG and LOCAL variable names 135
Preserving registers......ccovevveereeresveeseesee e 136
Defining procedures using procedure types....136
Nested procedures and scope rules...........c.ccevueenne 136
Declaring method procedures for objects............... 138
Using procedure prototypes.......cocveeereeereeseeseeneens 138
Chapter 11 Controlling the scope of symbols
Redefinable symbols..........ccccooveceieiecce e 141
BIOCK SCOPING.....coiiiiiririierieeieee e 142
The LOCALS and NOLOCALS directives........ 142
MASM block SCOPING....ccvrerreerienieiienieeee e 142
MASM-stylelocal labels........ccccevvevviciiieeee 143
Chapter 12 Allocating data
Simple data directives...........ccoveeverieerenneneeseen, 145
Creating an instance of a structure or union........... 148
Initializing union or structure instances.............. 148
Creating an instance of arecord...........cccccvevveruenen. 151
Initializing record iNStancCes..........cccocveveeverveenne. 151

Creating an instance of an enumerated data type...152

Paradigm Assembler User's Guide

Initalizing enumerated data type instances......... 152

Creating an instance of atable.........c.cccccccvvvvenennee. 152
Initializing table instances...........cccvcvevvecveceeenee. 153
Creating and initializing a named-type instance.... 153
Creating an instance of an object...........cc.c......... 154
Creating an instance of an object's virtual method
tADIC.. e 154
Chapter 13 Advanced coding instructions
Code generation: SMART and NOSMART 155
Extended JUMPS........ccovereneree e 155
Additional 80386 LOOP instructions.................... 156
Additional ENTER and LEAVE instructions........ 156
Additional return instructions...........ccceeevveceeeenne. 157
Additional IRET inStructions..........cccceeeeevveieeseenne. 157
Extended PUSH and POP instructions 157
Multiple PUSH and POPs..........ccccecveiiecieeen, 157
Pointer PUSH and POPS..........ccccevinieneeienene 158
PUSHing constants on the 8086 processor 158
Additional PUSHA, POPA, PUSHF and POPF
INSEFUCLIONS ...t 158
The PUSHSTATE and POPSTATE instructions .. 158
Extended ShiftS........cccooeiininiiceee 160
Forced segment overrides. SEGxx instructions..... 160
Additional smart flag instructions.............cccuee.... 160
Additional field value manipulation instructions... 161
The SETFIELD instruction..........ccccceevveverveenee. 161
The GETFIELD instruction..........cccoceeveeeeneenee. 162
Additional fast immediate multiply instruction..... 162
Extensions to necessary instructions for the 80386
PIOCESSONeeeveiesiee et 163
Calling procedures with stack frames.................... 164
Calling procedures that contain RETURNS....... 165

Calling procedures that have been prototyped ... 165
Calling method procedures for objects:

CALL..METHOD.....cccteitmieieiererenie e 165
Tail recursion for object methods:
JMP.METHOD ..ot 166
Additional instruction for object-oriented
Programmingccoceeeuereereesreeseeseeseeseesseeseeses 167
Chapter 14 Using macros
USING MBCIOS ..evveeveeveeieeeesreesseeeesseesseseesseessesnenns 169
TEXE MBCIOS. ...t 169
Defining text macros with the EQU directive.... 169
String macro manipulation directives................. 170
The CATSTR directive........cccooevvvceieennnnnne 170
The SUBSTR directive.......cccceveveveneneneenne. 170
The INSTR directive.........coceeeveienenesesiee 170
The SIZESTR directive........ccccooeveneveserienne. 170
Text macro manipulation examples................ 170
MUltiline MAaCIOS.......ccccerieieriere e 171
The multiline macro body...........cccceveeevenennennen. 171
USINg & INMACIOScveeeeeeerieeie e 172

Contents

Including comments in macro bodies.............. 172
Loca dummy arguments...........ccceveveeeenvennnn. 172
EXITM direCtiVe......ccccvvverieiieieseese 173
Tags and the GOTO directive.........cccccvevueennne 173
General multiline Macros..........ccocceveeveseenenenns 174
Invoking a general multiline macro................. 175
The < > literal string brackets..........cccocevennee 175
The ! charaCter........cooovvviniiece, 176
The % expression evaluation character 176
Redefining a general multiline macro.............. 176
The PURGE directive.........c.ccooeverinieeniennne 177
Defining nested and recursive macros............. 177
The count repeat Macro..........ccoceveeeevceerenceeseenen 178
The WHILE directive........ccooveverieineneree 178
String repeat MAECTOS.....c..veveeeereeieeeeseeereeeeesseeeas 179
The % immediate macro directive...................... 180
Including multiline macro expansions................ 180
Saving the current operating state............ccceceeuennee. 180
Chapter 15 Using conditional directives
General conditional directives syntax.................... 183
| Fxxx conditional assembly directives............... 183
EL SEIFxxx conditional assembly directives......184
ERRxxx error-generation directives................... 185
Specific directive descriptionsccccceveeveerveenee. 185
Unconditional error-generation directives.......... 185
Expression-conditional directives....................... 185
Symbol-definition conditional directives........... 186
Text-string conditional directives............cccc.c..... 187
Assembler-pass conditionals............c.cceeeeiennenne 189
Including conditionalsin the list file...................... 189
Chapter 16 Interfacing with the linker
Publishing symbols externaly.............cccccveenne 191
Conventions for a particular language................. 191
Declaring public symbols.........ccccceveverveieenennne 192
Declaring library symbols.........cccccccveveiveinnnnne. 192
Defining external symbols..........cccccveeeveeiennene 192
Defining global symbals...........cccooviiiiiinnne 193
Publishing a procedure prototype..........ccccceuee.. 193
Defining communal variables............cccccevenene 193
Including alibrary........cccoceveeveecesiese e 194
The ALIAS direCtiVe.......cccoeveririneierece e 195
Chapter 17 Generating a listing
Listing fOrmat.........ccoovvoerieneeieeeseee e 197
General list direCtives........cooevvveeieienene e 198
Includefile list directives..........ccocvveveiinesenennens 199
Conditional list direCtives..........cceovevererereneriene 199
Macro list direCtives.........ccooeeveneeneere e 199
Cross-reference list directives..........ccoveeveneeneenee. 200
Changing list format parameters..........cccceeeeereenee. 201
Chapter 18 Interfacing with Paradigm C++
Calling PASM functions from Paradigm C++....... 205
5

The frameWOrKeeee e 206

Linking assembly language modules.............. 206
Using Extern "C" to simplify linkage............. 207
Memory models and segments...........ccceeveee. 207
Simplified segment directives............ccccenneee. 207
Old-style segment directives..........ccccceevuernne 209
Segment defaults: When isit necessary to load
SEGMENES?..ciieee e 210
Publics and externals..........ccccoevenenencniennne 212
Underscores and the C language..................... 212
The significance of uppercase and lowercase. 213
Label typPeS. ..o 213
Far externalS........ccooeeeneenenie e 214
Linker command [ineccccevvveiinencniennnn 215
Parameter PassiNg........cccoveeeeveereenesseeseeseeseenns 216
Preserving registers......oooevevevieeseeresieeseeenens 220
Returning Values...........ccccoveeieveeneeneneeeee, 220
Calling an assembler function from C++........... 221
Writing C++ member functions in assembly
=0 0= L= 224
Pascal calling conventions...........ccccceeveveeieennenne. 226
Calling Paradigm C++ from Paradigm Assembler 227
Link in the C++ startup code.........cccoceevvriinrnenne 227
The segment Setupoocvieenerieceeee e, 227
Performing the call ... 228
Calling a Paradigm C++ function from Paradigm
ASSEMDIES ... 229
Appendix A Program blueprints
Simplified segmentation segment description....... 233
Appendix B Syntax summary
Lexical grammar..........ccoceveenienenneeniesee e 235
MASM mode expression grammar...........cc.cceeeeee. 236
Ideal mode expression grammarccceeeveeeeenne 238
Keyword precedence.........ccccevvveeveenieeeeseenee s 240
Ideal mode precedence..........cceeevveiveieneesiecen, 240
MASM mode precedence.........cccceevevereecenrnnene 240
Keywords and predefined symboals............c........... 241
Directive kKeywords..........cccccvereeiinenneninnen 241
Appendix C MASM 6.1 compatibility
BasiC datatypes......ccceveeeeneerie e 247
SIONEA LYPES....eeeiieeeee e 247
Floating-point tyPes.........ceoeveererieeneeneeee s 247
New decision and looping directives..................... 248
IF .ELSE ELSEIF .ENDIF ..o 248
6

MWHILE . ENDW.....cooiiiiieeeeeee e 248
REPEAT .UNTIL UNTILCXZ......coevvrrrirnnne 249
BREAK .CONTINUE........ccceiiirieninierienine 249
Logical OPErators.........cceveereeiieeeeseesee e seesee e 250
Using flagsin conditions...........cccceeeneriinenniennnne 250
TEXE MACIOS.....coiiiiieiiieeeiee e e 250
Macro repeat blocks with loop directives.............. 251
REPEAT 100PS....cceeiiieeeriieie e sieeie e 251
@] 100 = T 251
@ O (070 o 252
NEeW diIr€CtiVES.......coiereriereee e 252
ECHO direCtiVe........ccooeeveeiiiiereeeeeeeeie e 252
EXTERNDEF directive.........cccoceveveneiienennnnens 252
OPTION dir€CtiVe.......ccvrerieririeiesiese e 252
CASEMAP: NONE/NOTPUBLIC/ALL......... 253
DOTNAME/NODOTNAMEcooovvririenen 253
EMULATOR/NOEMULATOR.........ccoeuennene. 253
EXPRLG/EXPR32......cccoiieieieeierie e 253
LIMP/NOLIMP......ccovviiieieieererie e 253
NOKEYWORD: <keywordList>.................... 253
PROC: PRIVATE/PUBLIC/EXPORT 253
SCOPED/NOSCOPED.........ccoeiirieriinierienieniens 253
SEGMENT: USE16/USE32/FLAT.......ccenue. 253
Visibility in procedure declarations..............cc........ 253
Distance in procedure declarationscccc...... 254
SIZE operator in MASM mode.........ccccevveeenneenee. 254
Compatibility ISSUES.......ccvueeeereeiecee e 254
One-pass versus two-pass assembly........ccccceeevenee. 255
Environment variables ... 255
Microsoft binary floating-point format 255
Appendix D Predefined symbols
Predefined symbols..........ccocvevercenieie e 257
Appendix E Operators
OPEFALOrS....ccevee et 259
|deal mode operator precedence...........cccceeeveeee. 259
MASM mode operator precedence..................... 259
OPEIELONS......eeeeeeeiee et 259
MaCIO OPEratOrS.cceiueeeiiiee e 266
Appendix F Error messages
EIror MESSAgESvvveiiiieciie e 269
INformation MESSAQEScccvvrveerierirree e 269
Warning and error messages........coovvveereereeseeenn 269
INAEX.c. e 293

Paradigm Assembler User's Guide

Chapter

1

Getting started

Y ou might have heard that programming in assembly language is a black art suited only
to hackers and wizards. However, assembly language is nothing more than the human
form of the language of the computer. And, as you'd expect, the computer's language is
highly logical. Asyou might also expect, assembly language is very powerful-in fact,
assembly language is the only way to tap the full power of the Intel 80x86

MIi Croprocessors.

Y ou can write whole programs using nothing but assembly language or you can mix
assembly language with programs written in high-level languages like Paradigm C++.
Either way, assembly language lets you write small and fast programs. In addition to the
advantage of speed, assembly language gives you the ability to control every aspect of
your computer's operation, something no compiler will allow you to do.

Writing your first Paradigm Assembler source module

If you have not yet written assembly source, the example ASMDEMO.ASM in
\EXAMPLES\REAL\ASMDEMOis a good place to start. Here is a sample of the
ASMDEMO.ASM sourcefile:

page 60, 132

nane AsnDeno
title AsnDenp nmain routine

locals @@ ; Define local symbols
I NCLUDE startup.inc ; Macros/assenbly | anguage definitions
I NCLUDE cO. i nc ; Conpiler-specific definitions

SHOW <Par adi gm C++ 5.0 AsnDeno Application>

subttl Segment ordering/alignnent section

page

Def Seg _TEXT, para, public, CODE, <>
subttl Application code section
page

Ext Proc _startup ; Restart application

_TEXT segnent
assunme cs:_ TEXT

’

This is where control will start after the CJC++ startup code is
; executed. You can start by witing application code here to do
what ever you pl ease.

BegProc nain ; Application entry point
inc ax
jnmp main ; Not much of an application
EndProc nmain
_TEXT ends
end

Chapter 1, Using Object Scripting 7

If you're familiar with high-level languages (such as C, C++, or Pascal), you might
think that ASMDEMO.ASM is abit long. Assembler programs tend to be longer than
high-level language programs because each high-level language statement actually
breaks down to form many assembler instructions. However, assembly language gives
you complete freedom over the actual instructions that is given to the microprocessor
execution unit. With assembly language, you can write code that tells the processor to
do anything that it's capable of doing.

Building your first application

Before you can debug your application, you'll have to assembleit into an .OBJfile, and
then link the files to form an executable that can be debugged with Paradigm C++.

The assembly step turns your source code into an intermediate form called an object
module, and the linking and locating steps combine one or more object modules into an
executable program. Y ou can do your assembling and linking from the command line.

To assemble ASMDEMO.ASM, type the following line at the command line:
PASM /D _s__ asndeno

Unless you specify another file name, ASMDEMO.ASM will be assembled to form the
object file ASMDEMO.OBJ. (Note that you don't need to type in the file extension
name; Paradigm Assembler assumes all source files end with .ASM.) If you entered the
ASMDEMO.ASM program without any errors, you'll see alisting similar to the
following one displayed onscreen:

Par adi gm Assenbl er version 5.0 Copyright (c¢) 1999 by Paradi gm
Syst ens.

Assenbling file: ASMDEMOD. ASM
Error nessages: None
WAr ni ng nessages: None

Passes: 1

Rerai ni ng nmenory: 439K

If you get warnings or errors, they are displayed with the program line numbers to
indicate where they occurred. If you do get errors, edit ASMDEMO.ASM make sureit's
precisely the same as the program shown above. After editing the program, reassemble
it with the Paradigm Assembler command line from above.

Paradigm Assembler User's Guide

Chapter

2

Using directives and switches

This chapter is dedicated to familiarizing you with Paradigm Assembler's command-line
options. We'll describe each of the command-line options you can use to alter the
assembler's behavior, and then show how and when to use command files. Well aso
describe the configuration file, and how you can control the display of warning and
error messages.

When you use Paradigm Assembler within the Paradigm C++ integrated devel opment
environment, these options are created for an automatically based on your project
settings.

Starting Paradigm Assembler

Figure 2-1.

If you start Paradigm Assembler from your operating system command line without
giving it any arguments, like this,

pasm

you'll get a screenful of help describing many of the command-line options, and the
syntax for specifying the files you want to assemble. Figure 2-1 shows you how this
looks.

Paradigm Assembler command line

Par adi gm Assenbl er Version 5.0 Copyright © 1999, Paradi gm Systens
Syntax: PASM [options] source [,object] [,listing] [,xref]

la,ls Al phabetic or Source-code segnent ordering

/c Cenerate cross-reference in listing

/ dSYM =VAL] Define synbol SYM = 0, or = value VAL

le, lr Ermul ated or Real floating-point instructions

IhI? Di splay this help screen

/i PATH Search PATH for include files

/j C\VD Jamin an assenbler directive CVD (e.g. /| DEAL)

[kh# Hash tabl e capacity # synbols

[1,/1a Cenerate listing: I=normal listing, |a=expanded listing
/Im,/nx,/mu Case sensitive on synbols: m=all, nmx=globals, mu=none
[mv# Set maxi mumvalid I ength for synbols

[n# Allow # multiple passes to resolve forward references
/n Suppress synbol tables in listing

Ip Check for code segnent overrides in protected node

/q Suppress OBJ records not needed for |inking

/'t Suppress nessages if successful assenbly

/ UXXXX Set version emnul ation, version XXxx

/w0, /wl, /w2 Set warning | evel: wl=none, wl=w2=war ni ngs on

/X Include false conditionals in listing

/z Di splay source line with error nessage

/zi,lzd,/zn Debug info: zi=full, zd=line nunbers only, zn=none

With the command-line option, you can specify the name of one or more files that you
want to assemble, aswell as any options that control how the files get assembled.

The general form of the command line looks like this:

Chapter 2, Using directives and switches 9

10

PASM fileset [; fileset]...

The semicolon (;) after the left bracket ([) lets you assemble multiple groups of files on
one command line by separating the file groups. If you prefer, you can set different
options for each set of files. For example,

PASM /e FILEl; /a FILE2

assembles FILEL.ASM with the /e command-line option and assemblesfile
FILE2.ASM with the /a command-line options.

In the general form of the command line, fileset can be

[option] .sourcefile [[+] sourcefile]...
[,[objfile] [, [listfile] [, [xreffile]]l]]

This syntax shows that a group of files can start off with any options you want to apply
to those files, followed by the files you want to assemble. A file name can be asingle
name, or it can use the normal wildcard characters* and ? to specify multiple filesto
assemble. If your file name does not have an extension, Paradigm Assembler adds the
ASM extension. For example, to assemble all the . ASM file in the current directory,
you would type

PASM *
If you want to assemble multiple files, you can separate their names with the plus sign

(+):

PASM MYFI LE1 + MYFI LE2

Y ou can follow the file name you want to assemble by an optional object file name,
listing file name, and a cross-reference file name. If you do not specify an object file or
listing file, Paradigm Assembler creates an object file with the same name as the source
file and an extension of .OBJ.

A listing file is not generated unless you explicitly request one. To request one, place a
comma after the object file name, followed by alisting file name. If you don't explicitly
provide alisting file name, Paradigm Assembler creates alisting file with the same
name as the source file and the extension .LST. If you supply alisting file name without
an extension, .L ST is appended to it.

A crossreferencefile is not generated unless you explicitly request one. To request one,
place a comma after the listing file name, followed by a cross-reference file name. If
you don't explicitly provide a cross-reference file name, Paradigm Assembler creates a
cross-reference file with the same name as the source file and the extension .XRF is

appended to it.

If you want to accept the default object file name and also request alisting file, you
must supply the comma that separates the object file name from the listing file name:

PASM FI LE1, , TEST
This assembles FILEL.ASM to FILE1.OBJ and creates a listing file named TEST.LST.

If you want to accept the default object and listing file names and also request a cross-
reference file, you must supply the commas that separate the file names:

PASM MYFI LE, , , MYXREF

ThisassemblesMYFILE.ASM to MYFILE.OBJ, with alistingin file MYFILE.LST
and across-referencein MY XREF.XRF.

Paradigm Assembler User's Guide

If you use wildcard to specify the source files to assemble, you can also use wildcards
to indicate the object and listing file names. For example, if your current directory
contains XX1.ASM and XX2.ASM, the command line

PASM XX*, YY*
assembles al thefilesthat start with XX, generates object files that start with YY, and

derives the remainder of the name from the source file name. The resulting object files
aretherefore called YY1.0BJand YY2.0BJ.

If you don't want an object file but you do want alisting file, or if you want a cross-
reference file but don't want alisting file or object file, you can specify the null device
(NUL) asthe file name. For example,

PASM FI LE1, , NUL,

assembler file FILEL.ASM to object file FILE1.OBJ, doesn't produce a listing file, and
creates a cross-reference file FILELXRF.

Command-line options

Command-line options let you control the behavior of the assembler, and how it outputs
information to the screen, listing, and object file. Paradigm Assembler provides you
with some options that produce no action, but are accepted for compatibility with the
current and previous version of the Microsoft Assembler (MASM):

/b Sets buffer size
/v Displays extra statistics

Y ou can enter options using any combination of uppercase and lowercase letters. You
can also enter your options in any order except where you have multiple /i or /j options,
these are processed in sequence. When using the /d option, you must also be careful to
define symbols before using them in subsequent /d options.

Y ou can override command-line options by using conflicting directives in your source

=4 code.
Figure 2-1, page 2-9 summarizes the Paradigm Assembler command-line options; here's
a detailed description of each option.
la
Function Specifies aphabetical segment-ordering
Syntax /a
Remarks The/a option tells Paradigm Assembler to place segments in the object filein
alphabetical order. Thisisthe same asusing the ALPHA directive in your source file.
Y ou usually only have to use this option if you want to assemble a source file that was
written for very early versions of the IBM or Microsoft assemblers.
The /s option reverses the effect of this option by returning to the default sequential
segment-ordering.
If you specify sequential segment-ordering with the .SEQ directive in your source file,
it will override any /a you provide on the command line.
= This option is obsolete and its use is not recommended.

Chapter 2, Using directives and switches 11

Examp|e PASM / a TEST1
This command line creates an object file, TEST1.0BJ, that has its segments in
alphabetical order.

See also /swhich returns to the default sequential segment-ordering.

/b
Syntax /b
Remarks The/b option isincluded for compatibility. It performs no action and has no effect on
the assembly.
Ic
Function Enables cross-referencein listing file
Syntax /¢

Remarks The/c option enables cross-reference information in the listing file. Paradigm
Assembler adds the cross-reference information to the symbol table at the end of the
listing file. This means that, in order to see the cross-reference information, you must
either explicitly specify alisting file on the command line or use the /I option to enable
the listing file.

For each symbol, the cross-reference shows the line on which it is defined and al lines
that refer to it.
This code creates alisting file that also has cross-reference information in the symbol
table.
/d
Function Definesasymbol
Syntax /dsynbol [=val ue or expression]

Remarks The/d option defines a symbol for your source file, exactly asif it were defined on the
first line of your file with the = directive. Y ou can use this option as many times as you
want on the command line.

Y ou can only define a symbol as being equal to another symbol or a constant value.
Y ou can't use an expression with operators to the right of the equal sign (=). For
example, /dX=9 and /dX=Y are allowed, but /dX=Y-4 isnot.
This command line defines two symbols, MAX and MIN, that other statements in the
source file TEST1.ASM can refer to.

12 Paradigm Assembler User's Guide

e

Function

Syntax

Remarks

Example

See also

/h or [?

Generates floating-point emulator instructions
/e

The /e option tells Paradigm Assembler to generate floating-point instructions that will
be executed by a software floating-point emulator. Use this option if your program
contains a floating-point emulation library that mimics the functions of the 80x87
nUMeric Coprocessor.

Normally, you would only use this option if your assembler module is part of a program
written in Paradigm C++. You can't just link an assembler program with the emulation
library, since the library expects to have been initialized by the compiler's startup code.

The/r option reverses the effect of this option by enabling the assembly of real floating-
point instruction that can only be executed by a numeric coprocessor.

If you use the NOEM UL directive in your sourcefile, it will override the /e option on
the command line.

The /e command-line option has the same effect as using the EM UL directive at the
start of your source file, and is also the same as using the /JEM UL command-line
option.

PASM / e SECANT
PCC -f -c- TRI G C SECANT. OBJ

This command line assembles a module with emulated floating-point instructions. The
second command line compiles a C source module with floating-point emulation and
then links it with the object file from the assembler.

The error message "Can't emulate 8087 instruction”.

/i

Function

Syntax

Remarks

Example

Displays a help screen
/hor [?

The /h option tells Paradigm Assembler to display a help screen that describes the
command-line syntax. Thisincludes alist of the options, aswell as the variousfile
names you can supply. The /? option does the same thing.

PASM / h

Function

Syntax

Remarks

Sets an include file path
/i PATH

The /i option lets you tell Paradigm Assembler where to look for files that are included
in your source file by using the INCL UDE directive. Y ou can place more than one /i
option on the command line.

Chapter 2, Using directives and switches 13

When Paradigm Assembler encounters an | NCL UDE directive, the location where it
searches for the include file is determined by whether the file name in the INCLUDE
directive has a directory path or isjust asimple file name.

If you supply adirectory path as part of the file name, that path istried first, then
Paradigm Assembler searches the directories specified by /i command-line optionsin
the order they appear on the command line. It then looks in any directories specified by
/i option in a configuration file.

If you don't supply adirectory path as part of the file name, Paradigm Assembler
searchesfirst in the directories specified by /i command-line options, then it looks in
any directories specified by /i option in a configuration file, and finally it looksin the
current directory.

Example PASM/i\INCLUDE /i D:\ | NCLUDE TEST1
This the source file contains the statement
| NCLUDE MYMACS. | NC
Paradigm Assembler will first look for INCLUDE\MYMACS.INC, then it will look for
DAINCLUDE\MYMACS.INC. If it ill hasn't found the file, it will ook for
MY MACS.INC in the current directory. If the statement in your source file has been
| NCLUDE | NC\ MYNACS. | NC
Paradigm Assembler would first look for INCS\MYMACS.INC and then it would look
for INCLUDE\MYMACS.INC, and finally for DAINCLUDE\MY MACS.INC.
J
Function Defines an assembler startup directive
Syntax /idirective
Remarks The/j option lets you specify adirective that will be assembled before the first line of
the sourcefile. directive can be any Paradigm Assembler directive that does not take
any arguments, such as .286, IDEAL, %MACS NOJUMPS, and so on.
Y ou can put more than one/j option on the command line; they are processed from left
to right across the command line.
This code assembles the file TEST1.ASM with 80286 instructions enabled and |deal
mode expression-parsing enabled.
/l
Function Generatesalisting file
Syntax /|
Remarks The/l option indicates that you want alisting file, even if you did not explicitly specify
it on the command line. The listing file will have the same name as the source file, with
an extension of .LST.
14 Paradigm Assembler User's Guide

Example

PASM /| TEST1

This command line requests alising file that will be named TEST1.LST.

lla
Function Shows high-level interface codein listing file
Syntax /la

Remarks The/la option tells Paradigm Assembler to show all generated code in the listing file,
including the code that gets generated as a result of the high-level language interface
.MODEL directive.

/m
Function Sets the maximum number of assembly passes
Syntax /ninpasses]

Remarks Normally, Paradigm Assembler functions as a single-pass assembler. The /m option
allows you to specify the maximum number of passes that the assembler should make
during the assembly process. PASM automatically decides whether it can perform less
than the number of passes specified. If you select the /m option, but don't specify the
number of passes, adefault of fiveis used.

Some modules contain constructions that assemble properly only when two passes are
done. If multiple passes are not enabled, such a module will produce at least one "Pass-
dependent construction encountered" warning. If the/m option is enabled, Paradigm
Assembler will assemble this module correctly but will not optimize the code by
removing NOPSs, no matter how many passes are alowed. The warning "Module is pass
dependent--compatibility pass was done" is displayed if this occurs.
Thistells Paradigm Assembler to use up to two passes when assembling TEST1.
/ml
Function Treats symbols as case-sensitive
Syntax /m

Remarks The/ml option tells Paradigm Assembler to treat all symbol names as case-sensitive.
Normally, uppercase and lowercase |etters are considered equivalent so that the names
ABCxyz, abcxyz, and ABCXYZ would al refer to the same symbol. If you specify the
/ml option, these three symbols will be treated as distinct. Even when you specify /ml,
you can still enter any assembler keyword in uppercase or lowercase. Keywords are the
symbols built into the assembler that have special meanings, such as instruction
mnemonics, directives, and operators.

Chapter 2, Using directives and switches 15

where TEST1.ASM contains the following statements:

abc DWO
ABC DW 1 ;not a duplicate synbol
Move AXx, [BP] ;m xed case K in keywords

The /ml switch used together with /mx has special meaning for Pascal symbols.

See also /mx section on page 2-16.
/mu
Function Converts symbols to uppercase
Syntax /mu

Remarks The/mu option tells Paradigm Assembler to ignore the case of all symbols. By defaullt,
Paradigm Assembler specifies that any lowercase letters in symbols will be converted to
uppercase unless you change it by using the /ml directive.
makes sure that all symbols are converted to uppercase (which is the default):

EXTRN nyf unc: NEAR
call nyfunc ;don't know if declared as
MYFUNC, M/func, ...
/mv
Function Sets the maximum length of symbols
Syntax /mv#

Remarks The/mv# option sets the maximum length of symbolsthat PASM will distinguish
between. For example, if you set /mv3, PASM will see ABCC and ABCD as the same
symbol, but not AB.

/mx
Function Makes public and external symbols case-sensitive
Syntax /nx

Remarks The/mx option tells Paradigm Assembler to treat only external and public symbols as
case-sensitive. All other symbols used (within the source file) are treated as uppercase.
Y ou should use this directive when you call routines in other modules that were
compiled using the Paradigm C++ compiler.
where TEST1.ASM contains the following sources lines:

EXTRN Cf unc: NEAR
myproc PROC NEAR
call Cfunc
16 Paradigm Assembler User's Guide

Using the /mx and /ml options together has a special meaning for symbols declared as

= Pascal; if you use these symbols together, the symbols will be published as all
uppercase to the linker.
/n
Function Suppresses symbol tablein listing file
Syntax /"

Remarks The/n option indicates that you don't want the usual symbol table at the end of the
listing file. Normally, a complete symbol table listing appears at the end of thefile,
showing all symbols, their types, and their values.

Y ou must specify alisting file, either explicitly on the command line or by using the /I
option; otherwise, /n has no effect.
This code generates a listing file showing the generated code only, and not the values of
your symbols.
/p
Function Checksfor impure code in protected mode
Syntax /P

Remarks The/p option specifies that you want to be warned about any instructions that generate
"Impure" code in protected mode. Instructions that move data into memory by using a
CS: override in protected mode are considered impure because they might not work
correctly unless you take special measures.

Y ou only need to use this option if you are writing a program that runsin protected
mode.
where TEST1.ASM contains the following statements:
. 386P
CODE SEGVENT
tenp DW ?
mov CS:tenp, 0 ;inmpure in protected node
/9
Function Suppresses .OBJ records not needed for linking
Syntax /4
Remarks The/q option removes the copyright and file dependency records from the resulting

.OBJfiles, making it smaller. Don't use this option if you are using MAKE or asimilar
program that relies on the dependency records.

Chapter 2, Using directives and switches 17

Ir

/s

Function

Syntax

Remarks

Example

Generates real floating-point instructions
Ir

The/r option tells Paradigm Assembler to generate real floating-point instructions
(instead of generating emulated floating-point instructions). Use this option if your
program is going to run on machines equipped with an 80x87 numeric coprocessor.

The /e option reverses the effect of this option in generating emulated floating-point
instructions.

If you use the EMUL directivein your sourcefile, it will override the /r option on the
command line.

The /r command-line option has the same effect as using the NOEM UL directive at the
start of your source file, and is aso the same as using the /[NOEM UL command-line
option.

PASM /r SECANT

This command line assembles a module with real floating-point instructions.

It

Function

Syntax

Remarks

Example

Specifies sequential segment-ordering
/s

The /s option tells Paradigm Assembler to place segments in the object file in the order
in which they were encountered in the source file. By default, Paradigm Assembler uses
segment-ordering, unless you change it by placing an /a option in the configuration file.

If you specify aphabetical segment-ordering in your source file with the ALPHA
directive, it will override/s on the command line.

PASM /s TEST1

This code creates an object file, (TEST1.0BJ) that has its segments ordered exactly as
they were specified in the sourcefile.

18

Function

Syntax

Remarks

Example

Suppresses messages on successful assembly
/'t

The /t option stops any display by Paradigm Assembler unless warning or error
messages result from the assembly.

Y ou can use this option when you are assembling many modules, and you only want
warning or error messages to be displayed onscreen.

PASM /t TEST1

Paradigm Assembler User's Guide

JUXXXX

v

Function

Syntax

Remarks

Setsversion ID in command line
/u version

The /u option lets you specify which version of Paradigm Assembler or MASM you
want to use to run your modules. Thisis the command-line version of the VERSION
directive.

w

Syntax

Remarks

/v

The /v option isincluded for compatibility. It performs no action and has no effect on
the assembly.

Function

Syntax

Remarks

Controls the generation of warning messages

/w
/W[war ncl ass]
[w+[war ncl ass]

The /w option controls which warning messages are emitted by Paradigm Assembler.

If you specify /w by itself, "mild" warnings are enabled. Mild warnings merely indicate
that you can improve some aspect of your code's efficiency.

If you specify /w- without warnclass, all warnings are disabled. If you follow /w- with
warnclass, only that warning is disabled. Each warning message has a three-letter
identifier:

ALN Segment alignment

ASS Assuming segment is 16-bit
BRK Brackets needed

ICG Inefficient code generation
LCO L ocation counter overflow
OPI Open IF conditional

OPP Open procedure
OPS Open segment
OVF Arithmetic overflow

PDC Pass-dependent construction

PQK Assuming constant for [const] warning

PRO Write-to memory in protected mode needs CS override
RES Reserved word warning

TPI illegal warning

UNI For turning off uninitialized segment warning

If you specify /w+ without warnclass, all warnings are enabled. If you specify /w+ with
warnclass from the preceding list, only that warning will be enabled.

By default, Paradigm Assembler first starts assembling your file with all warnings
enabled except the inefficient code-generation (1CG) and the write-to-memory in
protected mode (PRO) warnings.

Chapter 2, Using directives and switches 19

Y ou can use the WARN and NOWARN directives within your source file to control
whether a particular warning is allowed for a certain range of source lines. These
directives are described in “Display warning messages,” page 3-33.

The following statement in TEST1.ASM issues a warning message that would not have
appeared without the /w option:
mov bx, ABC ;inefficient code generation warning
ABC = 1
With the command line
PASM / w OVF TEST2
no warnings are generated if TEST2.ASM contains
dw 1000h * 20h
IX
Function Includesfalse conditionalsin listing
Syntax /X
Remarks If aconditional IF, IFNDEF, IFDEF, and so forth evaluates to False, the /x option
causes the statements inside the conditional block to appear in the listing file. This
option also causes the conditional directives themselvesto be listed; normally they are
not.
Y ou must specify alisting file on the command line or use the /I option otherwise /x has
no effect.
You can use the .LFCOND, .SFCOND, and .TFCOND directives to override the
effects of the /x option.
Examp|e PASM / x TEST1
Iz
Function Displays source lines along with error messages
Syntax /Z
Remarks The/z option tells Paradigm Assembler to display the corresponding line from the
source file when an error message is generated. The line that caused the error is
displayed before the error message. With this option disabled, Paradigm Assembler just
displays a message that describes the error.
/zd
Function Enablesline-number information in object files
Syntax /zd
20 Paradigm Assembler User's Guide

zi

Remarks

Example

The /zd option causes Paradigm Assembler to place line-number information in the
object file. This lets the debugger display the current location in your source code, but
does not put the information in the object file that would allow the debugger to access
your dataitems.

If you run out of memory when trying to debug your program, you can use /zd for some
modules and /zi for others.

PASM / zd TEST1

Function

Syntax

Remarks

Example

Enables debug information in object file
! zi

The /zi option tells Paradigm Assembler to output complete debugging information to
the object file. Thisincludes line-number records to synchronize source code display
and data type information to alow you to examine and modify your program's data.

The/zi option lets you use all the features of the integrated debugger to step through
your program and examine or change your dataitems. Y ou can use/zi on all your
program’'s modules, or just on those you're interested in debugging.

PASM / zi TEST1

Indirect command files

At any point when entering a command line, Paradigm Assembler lets you specify an
indirect command file by preceding its name with an "at" sign (@). For example,

PASM / dTESTMODE @WAYPRQJ. PA

cause the contents of the file MY PROJ.PA to become part of the command line, exactly
asif you had typed in its contents directly.

This useful feature lets you put your most frequently used command lines and file lists
in a separate file. And you don't have to place your entire command line in one indirect
file, since you can use more than one indirect file on the command line and can also mix
indirect command files with normal arguments. For example,

PASM @WFI LE @ CLI BS / dBUF=1024

Thisway you can keep long lists of standard files and options in files, so that you can
quickly and easily ater the behavior of an individual assembly run.

Y ou can either put al your file names and options on asingle line in the command file,
or you can split them across as many lines as you want.

The configuration file

Paradigm Assembler also lets you put your most frequently used optionsinto a
configuration file in the current directory. Thisway, when you run Paradigm
Assembler, it looks for afile called PASM.CFG in your current directory. If Paradigm
Assembler finds thefile, it treatsit as an indirect file and processes it before anything
else on the command line.

Thisis helpful when you have al the source files for a project in asingle directory, and
you know that, for example, you always want to assemble with emulated floating-point

Chapter 2, Using directives and switches 21

22

instructions (the /e option). Y ou can place that option in the PASM.CFG file, so you
don't have to specify that option each time you start Paradigm Assembler.

The contents of the configuration file have exactly the same format as an indirect file.
The file can contain any valid command-line options, on as many lines as you want.
The options are treated as if they all appeared on one line.

The contents of the configuration file are processed before any arguments on the
command line. This lets you override any options set in the configuration file by simply
placing an option with the opposite effect on the command line. For example, if your
configuration file contains

lale
and you invoke Paradigm Assembler with

PASM /s /r MYFILE
MY FILE isyour program file, and your file will be assembled with sequential segment-
ordering (/s) and real floating-point instructions (/r), even though the configuration file

contained the /a and /e options that specified alphabetical segment-ordering and
emulated floating-point instructions.

Paradigm Assembler User's Guide

Chapter
3

General programming concepts

This chapter introduces you to the basic concepts of Paradigm Assembler. Well look at
Ideal mode versus MASM mode, commenting your programs and extending lines of
code, including files, using predefined symbols, and using several important directives
that produce module information. Although thisisalot of ground to cover, it will give
you a good idea of what assembly language is al about.

Paradigm Assembler Ideal mode

For those of you struggling to make MASM do your bidding, this may be the most
important chapter in the manual. In addition to near-perfect compatibility with MASM
syntax, Paradigm Assembler smooths the rough areas of assembly language
programming with aMASM derivative we call Ideal mode.

Among other things, Ideal mode lets you know solely by looking at the source text
exactly how an expression or instruction operand will behave. There's no need to
memorize all of MASM's many quirks and tricks. Instead, with Ideal mode, you write
clear, concise expressions that do exactly what you want.

Ideal mode uses nearly al MASM's same keywords, operators, and statement
constructions. This means you can explore Ideal mode's features one at a time without
having to learn a large number of new rules or keywords.

Ideal mode adds strict type checking to expressions. Strict type checking helps reduce
errors caused by assigning values of wrong typesto registers and variables, and by
using constructions that appear correct in the source text, but are assembled differently
than you expect. Instead of playing guessing games with values and expressions, you
can use Ideal mode to write code that makes logical and aesthetic sense.

With strict type checking, Ideal mode expressions are both easier to understand and less
prone to producing unexpected results. And, as a result, many of the MASM
idiosyncrasies we warn you about in other chapters disappear.

Ideal mode also has a number of features that make programming easier for novices and
experts alike. These features include the following:

. duplicate member names among multiple structures

. complex HIGH and LOW expressions

. predictable EQU processing

. correct handling of grouped data segments

. improved consistency among directives

. sensible bracketed expressions

Why use Ideal mode?

There are many good reasons why you should use Paradigm Assembler's Ideal mode. If
you are just learning assembly language, you can easily construct Ideal mode
expressions and statements that have the effects you desire. Y ou don't have to

Chapter 3, General programming concepts 23

experiment trying different things until you get an instruction that does what you want.
If you are an experienced assembly language programmer, you can use Ideal mode
features to write complex programs using language extensions such as nestable
structures and unions.

As adirect benefit of cleaner syntax, Ideal mode assembles files 30% faster than
MASM code. The larger your projects and files, the more savings in assembly time
you'll gain by switching to Ideal mode.

Strong type-checking rules, enforced by Ideal mode, et Paradigm Assembler catch
errors that you would otherwise have to find at run time or by debugging your code.
Thisissimilar to the way high-level language compilers point out questionable
constructions and mismatched data sizes.

Although Ideal mode uses a different syntax for some expressions, you can still write
programs that assemble equally well in both MASM and Ideal modes. Y ou can aso
switch between MASM and Ideal modes as often as necessary within the same source
file. Thisis especially helpful when you're experimenting with Ideal mode features, or
when you're converting existing programs written in the MASM syntax. Y ou can switch
to Ideal mode for new code that you add to your source files and maintain full MASM
compatibility for other portions of your program.

Entering and leaving Ideal mode

Usethe IDEAL and MASM directives to switch between Idea and MASM modes.
Paradigm Assembler always starts assembling a source filein MASM mode. To switch
to Ideal mode, include the IDEAL directive in your source file before using any Ideal
mode capabilities. From then on, or until the next M ASM directive, al statements
behave as described in this chapter. Y ou can switch back and forth between MASM and
Ideal modes in a source file as many times as you wish and at any place. Here'sa
sample:

DATA SEGVENT ;start in MASM node

abc LABEL BYTE ;abc addresses xyz as a byte
xyz DW O ;define a word at | abel xyz

DATA ENDS

;end of data segnent

| DEAL ;switch to ideal node
SEGQVENT CODE ; segrment keyword now cones first
PROC MyProc ; proc keyword cones first, too
Va
;1 deal node progranm ng goes here
ENDP MyProc ;repeating MyProc | abel is optional
ENDS ;repeating segment nane not required
MASM ;Switch back to MASM node
CODE SEGVENT ; name now required before segnent keyword
Func2 PROC ; name now cones before proc keyword, too
Va
; MASM node programm ng goes here
| DEAL ;switch to ideal node agai n!
]/4
;do some progranmming in ldeal node
MASM ;back to MASM node. Getting dizzy?
Func2 ENDP ;name again required before keyword
CCDE ENDS ;name again required here

In Ideal mode, directive keywords such as PROC and SEGMENT appear before the
identifying symbol names, which is the reverse of MASM's order, Y ou also have the

Paradigm Assembler User's Guide

option of repeating a segment or procedure name after the ENDP and ENDS directives.
Adding the name can help clarify the program by identifying the segment or procedure
that isending. Thisisagood idea, especialy in programs that nest multiple segments
and procedures. Y ou don't have to include the symbol name after ENDP and ENDS,
however.

MASM and Ideal mode differences

This section describes the main differences between Ideal and MASM modes. If you
know MASM, you might want to experiment with individual features by converting
small sections of your existing programs to Ideal mode. Further details of these
differences arein Chapter 5, 'Using expressions and symbol values."

Expressions and operands

The biggest difference between Ideal and MASM mode expressions is the way square
brackets function. In Ideal mode, square brackets always refer to the contents of the
enclosed quantity. Brackets never cause implied additions to occur. Many standard
MASM constructions, therefore, are not permitted by Ideal mode.

In Ideal mode, square brackets must be used in order to get the contents of an item. For
example,

nmov ax, wor dptr

displays a warning message. Y ou're trying to load a pointer (wordptr) into aregister
(AX). The correct formis

mov ax, [wordptr]

Using Ideal mode, it's clear you are loading the contents of the location addressed by
wordptr (in the current data segment at DS) into AX.

If you wish to refer to the offset of a symbol within a segment, you must explicitly use
the OFFSET operator, as in this example:

mov ax, OFFSET wor dptr

Operators

The changes made to the expression operatorsin Ideal mode increase the power and
flexibility of some operators while leaving unchanged the overall behavior of
expressions. The precedence levels of some operators have been changed to facilitate
common operator combinations.

The period (.) structure member operator is far more strict in Ideal mode when
accurately specifying the structure members you're referring to. The expression to the
left of a period must be a structure pointer. The expression to the right must be a
member name in that structure. Here's an example of loading registers with the values
of specific structure members:

; Declare variabl es using the structure types

S Stuff Somestuff <>

O Stuff QherStuff <>

mov ax, [S_Stuff. Arount] ;1 oad word val ue

mov bl , [O _Stuff. Anount] ;1 oad byte val ue

Suppressed fixups

Paradigm Assembler in Ideal mode does not generate segment-relative fixups for
private segments that are page- or paragraph-aligned. Because the linker does not

Chapter 3, General programming concepts 25

26

require such fixups, assembling programsin Ideal mode can result in smaller object
filesthat also link more quickly than object files generated by MASM mode. The
following demonstrates how superfluous fixups occur in MASM but not in Ideal mode:

SEGVENT DATA PRI VATE PARA

VARL DB O
VAR2 DW O
ENDS
SEGVENT CODE
ASSUME ds: DATA
mov ax, VAR2 ;no fixup needed
ENDS

This difference has no effect on code that you write. The documentation here is ssmply
for your information.

Operand for BOUND instruction

The BOUND instruction expects a WORD operand, not aDWORD. Thisletsyou
define the lower and upper bounds as two constant words, eliminating the need to
convert the operand to a DWORD with an explicit DWORD PTR. In MASM mode,
you must write

BOUNDS DW 1,4 ;lower and upper bounds
BOUND AX, DWORD PTR BOUNDS ;required for MASM node
but in Ideal mode, you need only write
BOUNDS DwWw 1,4 ;1 ower and upper bounds
BOUND AX, [BOUNDS] ;legal in |Ideal node

Segments and groups

The way Paradigm Assembler handles segments and groups in Ideal mode can make a
difference in getting a program up and running. If you're like most people, you probably
shudder at the thought of dealing with a bug that has anything to do with the interaction
of segments and groups.

Much of the difficulty in this process stems from the arbitrary way that MASM and,
therefore, Paradigm Assembler's MASM mode, makes assumptions about references to
data or code within a group. Fortunately, Ideal mode alleviates some of the more
nagging problems caused by MASM segment and group directives, asyou'll seein the
information that follows.

Accessing segment data belonging to a group

In Ideal mode, any data item in a segment that is part of agroup is considered to be
principally a member of the group, not of the segment. An explicit ssgment override
must be used for Paradigm Assembler to recognize the data item as a member of the
segment.

MASM mode handles this differently; sometimes a symbol is considered to be part of
the segment instead of the group. In particular, MASM mode treats a symbol as part of
a segment when the symbol is used with the OFFSET operator, but as part of a group
when the symbol is used as a pointer in a data allocation. This can be confusing because
when you directly access the data without OFFSET, MASM incorrectly generates the
reference relative to the segment instead of the group.

Here's an example of how easily you can get into trouble with MASM's addressing
quirks. Consider the following incomplete MASM program, which declares three data
segments:

Paradigm Assembler User's Guide

dsegl SEGVENT PARA, PUBLIC 'data'
vl DB 0
dsegl ENDS

dseg2 SEGVENT PARA PUBLI C 'data'
v2 DB 0
dseg?2 ENDS

dseg3 SEGVENT PARA PUBLI C ' dat a'
v3 DB 0
dseg3 ENDS

DGROUP GROUP dsegl, dseg?2, dseg3
cseg SEGVENT PARA PUBLI C ' code'

ASSUME cs:cseg, ds: DGROUP

start:
nmov ax, OFFSET v1
mov bx, OFFSET v2
nmov cx, OFFSET v3
cseg ENDS
END start

The three segments, dsegl, dseg2, and dseg3, are grouped under one name, DGROUP.
Asaresult, al the variables in the individual segments are stored together in memory.
In the program source text, each of the individual segments declaresaBYTE variable,
labeled v1, v2, and v3.

In the code portion of thisMASM program, the offset addresses of the three variables
are loaded into registers AX, BX, and CX. Because of the earlier ASSUME directive
and because the data segments were grouped together, you might think that MASM
would calculate the offsets to the variables relative to the entire group in which the
variables are eventually stored in memory.

But thisis not what happens. Despite your intentions, MASM calculates the offsets of
the variables relative to the individual segments, dsegl, dseg2, and dseg3. It does this
even though the three segments are combined into one data segment in memory,
addressed here by register DS. It makes no sense to take the offsets of variables relative
to individual segmentsin the program text when those segments are combined into a
single segment in memory. The only way to address such variablesisto refer to their
offsets relative to the entire group.

To fix the problem in MASM, you must specify the group name along with the
OFFSET keyword:
nmov ax, OFFSET DGROUP: vl

mov bx, OFFSET DGROUP: v2
mov cx, OFFSET DGROUP: v3

Although this now assembles correctly and loads the offsets of v1, v2, and v3 relative to
DGROUP (which coallects the individual segments), you might easily forget to specify
the DGROUP qualifier. If you make this mistake, the offset values will not correctly
locate the variables in memory and you'll receive no indication from MASM that
anything is amiss. In Ideal mode, there's no need to go to all this trouble:

| DEAL
SEGVENT dsegl PARA PUBLI C ' dat a'
V1 DB 0

ENDS

Chapter 3, General programming concepts 27

SEGVENT dseg?2 PARA PUBLI C ' dat &'

v2 DB 0
ENDS
SEGQVENT dseg3 PARA PUBLI C ' dat a'
v3 DB 0
ENDS
GROUP DGROUP dsegl, dseg2, dseg3
SEGVENT cseg PARA PUBLI C ' code'
ASSUME cs:cseqg, ds: DGROUP
start:
nmov ax, OFFSET vl
mov ax, OFFSET v2
mov ax, OFFSET v3
ENDS
END start

The offsetsto v1, v2, and v3 are correctly calculated relative to the group that collects
the individual segments to which the variables belong. Ideal mode does not require the
DGROUP qualifier to refer to variables in grouped segments. MASM mode does
require the qualifier and, even worse, gives no warning of a serious problem should you
forget to specify the group name in every single reference.

Commenting the program

28

=

Commenting your code is a great way to help you (or anyone who has to maintain your
code in the future) quickly understand how it functions. Using commentsis good
programming practice in any language. They can describe the semantic as opposed to
syntactic function of your code. We recommend that you use comments liberally in
your Paradigm Assembler code, and this section describes how you can do so.

Comments at the end of the line

There are several ways to comment assembler code. One approach is to add a comment
at the end of aline using the semicolon (;), such as

mov [bx], al ;store the nodified character

Another way to comment assembler code isto use the line continuation character (\) as
acomment character. See the section called “ Extending the line,” page 3-29 for an
example of how thisis done.

The COMMENT directive

The COMMENT directive lets you comment blocks of code. COMMENT ignores all
text from the first delimiter character and the line containing the next occurrence of the
delimiter. The following example uses * as a delimiter character:
COWMENT *
Wrk long and late to get free pizza

*

COMMENT only worksin MASM mode.

Paradigm Assembler User's Guide

Extending the line

For longer lines of code, Paradigm Assembler provides the line continuation (\)
character. Use this character at the end of your line, because Paradigm Assembler
ignores any characters that follow it on the same line.

The maximum line length is 1024 when you use \; however, tables, records, and enums
might have definitions that are longer than 1024 characters. An alternative that does not
have the 1024 character limitation is the multiline definition syntax. Here's an example
of the syntax (for an enum definition):

foo enum { ;Multiline version
fl
f2
f3
fa
f5
fé
f7
f8

}

A more compact version of the same definition:

foo enum f 1, f2{ ; Conpact multiline version
f3,f4
f5,f6
f7,f8}

When using multiline definitions, remember these rules:

. Theleft brace that starts the definition must be the last token on the starting line. It
does not, however, have to precede the first element in the list.

. You cannot include any directives such as | F or INCL UDE inside the midline
definition.

MASM-mode line continuation is available if you select VERSION M 510, M 520.
Strings and other tokens can be extended across multiple lines if the "\"character isthe
last character on the line. For example,

VERSI ON M510

DB 'Hello out there \

you guys'

Y ou can place line continuation anywhere in aline, and it is always available. It
functions as a comment as well. For example,

ARG al: word, \first argunent
a2: word, \'second ar gunent
a3: word ; final argunent

Using INCLUDE files

Include files let you use the same block of code in several placesin your program, insert
the block in several source modules, or reduce the size of your source program without
having to create several linkable modules. Using the INCLUDE directivetells
Paradigm Assembler to find the specified files on disk and assemble them asif they
were a part of the source program.

The Ideal mode syntax:
I NCLUDE "fil enane"

Chapter 3, General programming concepts 29

The MASM mode syntax:
I NCLUDE fi | enamne

You can nest INCL UDE directives as deep as you want.

filename can specify any drive, directory, or extension. If filename does not include a
directory or drive name, Paradigm Assembler first searches for the file in any
directories you specify with the /I command line option, and then in the current
directory.

Predefined symbols

30

Paradigm Assembler provides a number of predefined symbols that you can use in your
programs. These symbols can have different values at different placesin your source
file, and are similar to equated symbols you define using the EQU directive. When
Paradigm Assembler encounters one of these symbolsin your sourcefile, it replaces it
with the current value of that predefined symbol.

Some of these symbols are text (string) equates, some are numeric equates, and others
are aliases. The string values can be used anywhere that you would use a character
string, for example, to initialize a series of data bytes using tile DB directive:

NOW DB ??time
Numeric predefined values can be used anywhere that you would use a number:
| F ??version GI 100h
Alias values make the predefined symbol into a synonym for the value it represents,

allowing you to use the predefined symbol name anywhere you would use an ordinary
symbol name:

ASSUVE cs: @ode
All the predefined symbols can be used in both MASM and Ideal mode.

If you use the /ml command-line option when assembling, you must use the predefined
symbol names exactly as they are described on the following pages.

The following rule applies to predefined symbols starting with an at-sign (@): The first
letter of each word that makes up part of the symbol name is an uppercase letter (except
for segment names); the rest of the word is a mixture of upper and lowercase. Asan
example,

@i | eNane
Notice that @FileName performs an alias equate for the current assembly filename.

The exception is redefined symbols, which refer to segments. Segment names begin
with an at-sign (@) and are all-lowercase. For example,

@ur seg
@ ar dat a

For symbols that start with two question marks the letters are al lowercase. For
example,

??dat e
??version

Note that the ??date symbol defines atext equate that represents today's date. The exact
format of the date string is determined by the country code. The ??ver sion symbol lets

Paradigm Assembler User's Guide

you write source files that can take advantage of features in particular versions of
Paradigm Assembler. This equate also lets your source files know whether they are
being assembled by MASM or Paradigm Assembler, since ??version is not defined by
MASM. Similarly, ??filename defines an eight-character string that represents the file
name being assembled. The file name is padded with spacesiif it contains fewer than
eight characters. The ?2time symbol defines a text equate that represents the current
time. The exact format of the time string is determined by the country code.

Assigning values to symbols

Paradigm Assembler provides two directives that let you assign values to symbols:
EQU and =. The EQU directive defines a string, alias, or numeric equate. To use it,
specify the following syntax,

nane EQU expression

where name is assigned the result of evaluating expression. name must be a new symbol
name that you haven't previously defined in a different manner. In MASM mode, you
can only redefine a symbol that you defined using the EQU directive if you first define
it as astring equate. In MASM mode, EQU can generate any one of three kinds of
equates: alias, expression, or string.

The = directive defines only a numeric equate. To use it, specify

name = expression

where name is assigned the result of evaluating expression,. which must evaluate to
either a constant or an address within a segment. name can either be a new symbol
name, or a symbol that you previously defined with =. Since the = directive has far
more predictable behavior than the EQU directive in MASM mode, use = instead of
EQU whenever you can.

General module structure

Paradigm Assembler provides several directives to help you work with modules of
code. The remainder of this chapter describes these directives.

The VERSION directive

Using the VERSION directive lets you specify which version of Paradigm Assembler
or MASM you've written particular modules for. Thisis helpful for upward and
downward compatibility of various versions of PASM and MASM. The VERSION
directive aso puts you into the operating mode for the specified version.

Y ou can specify the VERSION directive as either a command-fine switch or within
program source code.

Within code, the syntax is
VERSI ON <ver si on_| D>

Y ou can specify the following legal version IDs:

M400 MASM 4.0
M500 MASM5.0
M510 MASM 5.1
M520 MASM 5.2 (Quick ASM)
P500 Paradigm Assembler 5.0

Chapter 3, General programming concepts 31

32

The command-line syntax is:
[Uversi on_| D>

As an example, if you wanted to assemble a program written for MASM 5.1, you could
leave the source for the program intact and use the switch /uM 510.

Here are the general rules:

1. The VERSION directive always selects MASM mode by default, because that is
the starting mode of operation for both MASM and Paradigm Assembler.

2. The VERSION directive limits the high-priority keywords available to those in the
specified compiler and version. As aresult, some features that were added to later
versions are unavailable to you.

3. From Ideal mode, the VERSION directive is unavailable if you select aversion
prior to P300. To use the VERSION directive in this case, you must switch to
MASM mode first.

4. No attempt is made to limit access to low priority keywords, since these will not
affect compatibility.
Previous versions of Paradigm Assembler controlled MASM compatibility with
directives suchas MASM51, NOMASM51, QUIRKS, SMART, and NOSMART.

The VERSI ON directive supersedes these older directives. See Chapter 6 for a
complete list of keywords available with each version of Paradigm Assembler.

The NAME directive
Use the NAME directive to set the object file's module name. Here is the syntax for it:
NAME nmodul ename

Paradigm Assembler usually uses the source file name with any drive, directory, or
extension as the module name. Use NAME if you wish to change this default name;
modulename will be the new name of the module. For example,

NAME | oader

The END directive
Use the END directive to mark the end of your source file. The syntax looks like this:
END [startaddress]

startaddress is an optional symbol or expression that specifies the addressin your
program where you want execution to begin. If your program is linked from multiple
source files, only one file can specify a startaddress. startaddress can be an address
within the module; it can also be an external symbol defined in another module,
declared with the EXTRN directive.

Paradigm Assembler ignores any text after the END directive in the sourcefile.

Example

. MODEL snal |

. CODE

START:

; Body of program goes here

END START ;programentry point is "START"
TH'S LINE I S | GNORED

SOIS TH S ONE

Paradigm Assembler User's Guide

Displaying a message during assembly

Paradigm Assembler provides two directives that |et you display a string on the console
during assembly: DISPLAY and % OUT. Y ou can use these directives to report on the

progress of an assembly, either to let you know how far the assembly has progressed, or
to let you know that a certain part of the code has been reached.

The two directives are essentially the same except that DI SPLAY displays a quoted
string onscreen, and % OUT displays a nonguoted string onscreen.

In both Ideal and MASM modes, the syntax for DISPLAY is
DI SPLAY ' text'
where text is any message you want to display.

The syntax for % OUT in both Ideal and MASM modesis
YOUT t ext

where, again, text is the message that you want displayed.

Displaying warning messages

Paradigm Assembler lets you choose what (if any) warning messages you'll receive
when you assemble different parts of your code. Each warning message contains a
three-letter identifier, which you can specify ahead of time to let the assembler know
whether or not you want to see warnings of that kind. You can use the WARN directive
to enable warning messages, and the NOWARN directive to disable them.

The syntax of the WARN directiveis
WARN [war ncl ass]

where warnclass is the three-letter identifier that represents a particular type of warning
message. The available warnclasses are:

ALN Segment alignment
BRK Brackets needed
GTP Global type doesn't match symbol type

ICG Inefficient code generation
INT INT 3 generation

LCO L ocation counter overflow
MCP MASM compatibility pass
OPI Open |F conditional

OPP Open procedure
OPS Open segment
OVF Arithmetic overflow

PDC Pass-dependent construction

PRO Write-to-memory in protected mode using CS
PQK Assuming constant for [const] warning

RES Reserved word warning

TPI illegal warning

WARN without awarnclass enables all warnings. WARN followed by an identifier
only enables that particular warning.

Notice that the identifiers used by WARN are the same as those used by the /W
command-line option.

Here's an example using WARN:

Chapter 3, General programming concepts 33

WARN OVF ;enabl es arithnetic overfl ow warni ng
DW 1000h * 1234h ;overflow warning will occur

Use the NOWARN directive to disable specific (or all) warning messages. NOWARN
uses the same identifiers described earlier under WARN. Here's an example that uses

NOWARN:
NOMRN OVF ;disabl e arithmetic overfl ow warni ngs
DW 1000h * 1234h ;doesn't warn now

NOWARN without awarnclass disables all warnings. NOWARN with an identifier

=4 disables only that particular warning.

Multiple error-message reporting

By default, Paradigm Assembler only allows one error message to be reported for each
line of source code. If a source line contains multiple errors, Paradigm Assembler
reports the most-significant error first. Y ou can control the number of error messages
you get for each source line by using the MULTERRSand NOMULTERRS
directives.

The MUL TERRS directive allows the assembler to report more than one error message
for each source line. Thisis sometimes helpful in locating the cause of a subtle error or
when the source line contains more than one error.

Note that sometimes additional error messages can be a"chain reaction” caused by the
first error condition; these "chain" error messages may disappear once you correct the

first error.

Here's an example of the MUL TERRS directive:
MULTERRS
mov ax, [bp+abc ; produces two errors;

;1) Undefined synbol: abc
;2) Need right square bracket

The NOMULTERRS directive only lets one error or warning message (the most
significant message) appear for each source line. When you correct this error, the other
error messages may disappear as well. To avoid this problem, usethe MULTERRS
directiveto see dl of the error messages.

Hereis an example of using the NOMUL TERRS directive:

NOMULTERRS
mov ax, [bp+abc ;one error;
;1) Undefined synbol: abc

34 Paradigm Assembler User's Guide

Chapter
4

Creating object-oriented programs

Object-oriented programming is an approach to software design that is based on objects
rather than procedures. This approach maximizes modularity and information hiding.
The underlying premise behind object-oriented programming is the binding or
encapsulation of a data structure with procedures for manipulating the datain the
structure into a unit.

Object-oriented design provides many advantages. For example, every object
encapsulates its data structure with the procedures used to manipulate instances of the
data structure. This removes interdependencies in code that can quickly make
maintenance difficult. Objects can also inherit a data structure and other characteristics
from a parent object, which saves work and lets you transparently, use a single chunk of
code for many purposes.

If you're not an experienced Paradigm Assembler user, you might want to skim through
this chapter now, but come back to it later after reading the other chapters of this
manual. We've put it here to make you aware of these features, but object-oriented
programming in Paradigm Assembler isreally an advanced topic. It will make more
sense after going through file rest of the manual.

Terminology

Table 4-1
Terminology

Assembler and C++ languages use different terms for various entities in object-oriented
programming. The following table outlines the differences among these languages.

Paradigm Assembler Paradigm C++
method member function
method procedure

object class

base object base class

parent object parent class
derived object derived class
field data member

Why use objects in Paradigm Assembler?

Most people think of assembly language as alow-level language. Paradigm Assembler,
however, provides many of the features of a high-level language (such as abstract data
types, and easy interfacing to other languages). The addition of object-oriented data
structures gives Paradigm Assembler the power to create object-oriented programs as
easily as high-level languages while retaining the speed and flexibility of assembly
language.

Chapter 4, General programming concepts 35

What is an object?

Table 4-2

Symbols defined

36

for objects

An object consists of a data structure and associated procedures (called methods) that
manage data stored in instances of the data structure.

An object can inherit characteristics from a parent object. This means that the new
object's data structure includes the parent object's data structure, as well as any new
data. Also, the new object can call all the method procedures of the parent object, as
well as any new method procedures it declares.

We strongly recommend that you use Ideal mode for object-oriented programming in
Paradigm Assembler because symbol scoping is global in MASM, which means you
can't distinguish the different positions of shown methods.

An object having no inheritance is called a base object; an object that inherits another is
aderived object.

Paradigm Assembler defines several symbols you can use when declaring objects. The
following table lists these symbols.

Symbol M eaning

@Object A text macro containing the name of the current object (the object last
declared).

<objectname> A STRUC data" that describes the object's data structure.

@Table_<objecthame> A TABLE datatype containing the object's method table, whichis not
the same as an instance of the virtual method table.

@TableAddr_<objectname> A label describing the address of the instance of the object's virtua

method table, if thereisone.

A sample object

As an example of where you can use objects, consider any program that uses linked
lists. Think of alinked list as an object consisting of the linked list data and the
operations (methods) that you can perform onit.

The linked list data consists of pointers to the head and tail of the linked list (this
example contains a doubly linked list because of its flexibility,). Each element of the
linked list is a separate object instance.

The following operations provide the power needed to use alinked list:

. Creating the linked list (allocating memory for it).

. Destroying the linked list (deallocating memory for it).

. Initializing the linked list.

. Denitiaizing the linked list.

. Inserting an item into the middle of the linked list before an existing item.

. Appending an item to the end of the linked list.

. Deleting an item from the linked list.

. Returning the first item in the linked list.

. Returning the last item in the linked list.

Keep in mind that create and initialize, as well as destroy and deinitialize methods are

not synonymous. create and destroy methods allocate and deallocate memory for the
linked list object, while the initialize and deinitialize methods only initialize and

Paradigm Assembler User's Guide

deinitialize previoudly allocated instances of the object. If you don't combine
initialization with creation, it's possible to statically allocate linked list objects.

Y ou can see how the linked list object can be inherited by a queue or stack object, since
aqueue or a stack can be implemented as a linked list with limited operations. For
example, you can implement a queue as alinked list where items can be added to the
start and taken off the end. If you implement a queue in this way, you must disable the
inherited linked list methods that are illegal on a queue (such asinserting into the
middle of thelist).

Declaring objects

Declaring an object consists of declaring the data structure for the object, and declaring
the method procedures that you can call for the object. Declaring an object does not
involve creating an instance of the object. You'll learn how to do this later.

Declaring a base object

Where you declare an object, Paradigm Assembler creates a STRUC that declares the
data for the object, and a TABLE that declares the methods for the object. The object's
data declaration is a structure with the same name as the object. The object's method
declarations are stored in a TABL E data type, named @Table_<objectname>.

For example, for the list object, two data types are declared:

list A STRUC declaring the following members:
list head dword pointer to head of list
list-tail dword pointer to tail of list

@Table-list A TABLE declaring the following methods:
construct dword pointer to the procedure list-construct
destroy dword pointer to the procedure list-destroy
and so on...

STRUC declares the data for the object that is created whenever you create an instance
of the object. TABL E declares the table of default method procedures for the
declaration. Paradigm Assembler maintains this data type; it does not create an instance
of the table anywhere in your program memory. However, you'll see later that you must
include an instance of the table for any object that uses virtual methods.

Here's an example of an object declaration for alinked list (for more on STRUC asit
applies to declaring objects, see Chapter 8):

list STRUC GLOBAL METHOD {

construct:dword = |ist_construct ;1ist constructor procedure
destroy:dword. = list_destroy ;list destructor procedure
init:dword = 1list_init ;list initializer procedure
deinit:dword = list_deinit ;list deinitializer procedure
virtual insert.word = list_insert ;list node insert procedure
virtual append:word = |ist_append ;i st node append procedure
virtual renove:word = |ist_delete ;1ist node renove procedure
virtual first:word = list_first ;list first node procedure
virtual last:word = list_|ast ;list last node procedure
%ist_head dd ? ;1ist head pointer

list tail dd ? ;list tail pointer

ENDS

Chapter 4, General programming concepts 37

38

In this example, the METHOD keyword shows that you're using an extended form of
STRUC, and are defining an object called list.

Each entry consists of a method name, a colon, and the size of a pointer to the method
procedure (WORD for near procedures, DWORD for far procedures). Thisis followed
by an equal sign, and the name of the procedure to call for that method.

Let'slook at this example to see what's happening.

METHOD indicates an object method call and is followed by alist of the method
procedure declarations for the object. These declarations are enclosed in braces ({})
because the list of methods requires more than one line.

Each method declaration tells Paradigm Assembler which procedure it should use to
mani pul ate the object when invoking that method name. For example, the first method
procedure declaration

construct:dword = |ist_construct

declares a method named construct that is afar procedure (because a DWORD stores
the pointer to it). The actual procedure name of the method is list_construct, which
should be defined elsewhere in the source code.

Paradigm Assembler considers a method to be virtual if it's preceded by the keyword
VIRTUAL. When you call such a method, Paradigm Assembler will locate the
method's procedure address by looking it up from a table present in memory at run time.
Otherwise, the method is a static method, meaning that Paradigm Assembler can
determine its address at compile time. For example, the method construct isastatic
method, while the method insert is declared as a virtual method. Later in this chapter,
well explain why you might want to choose virtual or static methods.

The data structure for the method immediately follows the method procedure
declaration section. This definition uses the syntax for the standard STRUC directive.
This example contains declarations for the linked list's head and tail pointers.

The method declaration portion of the object declaration doesn't place any datain the
object's data structure unless you've used virtual methods. Instead, these declarations
cause Paradigm Assembler to build a separate table data structure that contains the
specified method procedure addresses as default values. Y ou should have an instance of
thistable for every object, and you must explicitly place the table. Well explain how to
do thislater in this chapter.

Since the object declaration must exist in the module containing the method procedures
for the object (as well asincluded in any source code that uses the object), you should
declare the object itself in a separate file that can be INCL UDEd into the source code.
We recommend using afile name in the form objectname.ASO(A Ssembly Object). This
file should consist of only the object declaration. The object methods should be in
another source file so that you can include the object declaration wherever you need it.
For example, the linked list object declaration in the previous example would be placed
inthefile LIST.ASO. Thefile LIST.ASM could be used to define the object's method
procedures. Any program making use of the objects would include LIST.ASO, but not
LIST.ASM.

The keyword GLOBAL in the object declaration causes Paradigm Assembler to
publish information that lets you use the object in a module other than the one it's
defined in. The object declaration must also be included in all modules that use the
object.

Paradigm Assembler User's Guide

Declaring a derived object

An object that inherits another object's methods and data is called a derived object. You
can't override the members of the parent data structure, but you can override the
individual methods by respecifying them in the new object method list.

An object can inherit any other single object, whether that other object is a base or
derived object itself. The inherited object is called the parent object. The derived object
inherits the data and methods of the parent object, so you should only use inheritance
when these methods and data are useful to the new object.

For example, you can define a queue object that inherits the linked list object because
you can implement a queue as alinked list. Here's an example of such a derived object:

gqueue STRUC GLOBAL |ist METHOD {
i ni t: DWORD=queue_init

virtual insert:word = queue_insert ; (queue node insert procedure)
virtual renmove:word = queue_del ete ; (queue node del ete procedure)
virtual first:word = queue_first ; (queue first node procedure)
virtual last:word = queue_| ast ; (queue end node procedure)
virtual enqueue:word = |ist_append ; (queue enqueue procedure)
virtual dequeue:word = queue_dequeue ; (queue dequeue procedure)

}

ENDS

Placing the object name list before the METHOD keywords tells Paradigm Assembler
that the new object queue inherits the methods and data of the object, list. Any object
name placed in this location will be inherited-by the object being declared. Y ou can use
only one name (only single inheritance is supported).

The new queue object inherits all the data and methods from the list object, unless you
overrideit. Note that queue needsits own init to install the pointer to the virtual method
table for queues.

The inherited insert, remove, first, and last method declarations for the queue are
respecified in the declaration, so these methods are replaced with the indicated
procedures.

Two new methods have been declared for the queue: enqueue and dequeue. Notice that
the method procedure for enqueue is the same as for appending to alinked list.
However, we need a new procedure to dequeue from the queue, and this we call
queue_dequeue.

The queue object has no additional data declared other than what it inherits from list. It
inherits the linked list's head and tail pointers, which are still needed for the queue
because of the linked list methods used to manage the queue.

Declaring a method procedure

Method procedures manipul ate instances of the object. They are much like library
routines in that they should have a well-defined call and a return value interface, but
knowledge of how the method procedures work internally is not necessary.

The method procedures for an object should provide comprehensive management of the
objects; that is, they should be the only procedures allowed direct access to the objects.
Furthermore, you should use the concepts of data abstraction when you design the
methods: Y ou should be able to call the method procedures without having any
knowledge of the inner workings of the method procedures.

Chapter 4, General programming concepts 39

In al other respects, you can write method procedures for any language or interface you
want, although usually C++ calling conventions are used. Any arguments to the
procedures are up to you as well. One argument that is usually required is a pointer to
an object instance. Some method procedures might require additional parameters. For
example, the initialization method for the list object requires just the pointer to the list
object, while the list insert method requires a pointer to the list, a pointer to the new
node to insert, and a pointer to the node it's inserted after.

There are advantages and disadvantages to using both static and virtual methods. Static
methods are resolved at compile time, and result in direct calls to the method procedure.
This makes the call faster, and does not require you to use intermediate registers (asin
virtual method calls). However, since these calls are resolved at compile time, static
method calls don't have the flexibility of virtua method calls.

Virtual method calls are made indirectly through an instance of the virtual method table
for the object. The fact that the call isindirect gives virtual methods the disadvantage of
requiring you to use intermediate registers when you make the call (which could
complicate your code). A big advantage, however, is that virtual method cals are
resolved at run time. Thus, you can make virtual method calls for a derived object by
calling a common ancestor object's method without having to know exactly what sort of
descendant object you're dealing with.

Declare static and virtual method procedures exactly the same way as any other
procedure, with the following exception: if you omit the procedure name for virtual
methods you'll cause an empty uninitialized location in the virtual method table and
Paradigm Assembler won't warn you if you do this. Omitting the procedure nameis an
error if the method is not virtual, since virtual methods don't go into the table.

Here's an example of a method procedure:

; Construct a Linked-List object.
;This is the method 'construct'.
; This nust be a static nethod.
; Returns DX: AX pointing to linked-1ist object, null if none.
;hject is allocated but not yet initialized.
list_construct PROC PASCAL FAR
USES ds
;--Allocate the Linked-List object--
;;<<do the allocation here>>
ret
ENDP

The virtual method table

40

The virtual method table (VMT) is atable of addresses of the procedures that perform
virtual methods. Usually thistable is placed in the program's data segment. Any object
having virtual methods requires an instance of the VMT somewhere in the program.

Use the TBLINST directive to create the instance of the VMT for an object. Since this
directive creates atable for the most recently declared object, you should place this
directive immediately after the object declaration, as in the following:

I NCLUDE |i st. aso

DATASEG
TBLI NST

Paradigm Assembler User's Guide

Initializing the virtual method table

Simply creating the instance of the VMT is not enough to let you make calls to virtual
methods. Every object with virtual methods includes a pointer to the VMT in its data
structure. Y ou must initialize this pointer whenever you create an instance of an object,
and can use TBLINIT to do so.

Initialize the VMT pointer in the init method for the object as follows:

;Initialize a Linked List object.

;This is the method "init"

; This nmust be a static nethod!

list_init PROC PASCAL FAR

ARG @@i st: dword

USES ds, bx
| ds bx, @i st
;--Initialize any virtual nmethod table for the object at ds: bx
TBLINI T ds: bx
;--Initialize the object's data--
;;<<initialize any data for the object here.>>
ret

ENDP

Notice that the init method must be static because you can't call avirtual method for an
object instance until after you initialize the virtual table pointer.

Calling an object method

Use the CALL instruction to invoke object methods. Paradigm Assembler provides an
extension to the standard CALL instruction, CALL..METHOD, for calling method
procedures.

Notice that the syntax for CALL issimilar for calling both static and virtual methods.

Calling a static method

When making a call to a method procedure, you should write the CALL..METHOD
instruction as if you were making a call to a virtual method, even if you know that
you're calling a static method. Doing so will have no ill effects on static method calls,
and gives you the flexibility of changing methods from static to virtual or back again
without having to change al the calls to the method. For the same reasons, you should
specify areasonable selection for the intermediate calling registers, even if you know
that the method you're calling is static.

Callsto static methods are resolved at compile time to direct callsto the desired method
procedure for the object. However, when making the call, you should not make a direct
call to the method procedure; instead, use the extended CALL..METHOD instruction.

The following example shows a sample call to the static init method for the linked list
object.

CALL foolist METHOD list:init pascal,ds offset foolist
CALL es:di METHOD list:init pascal,es di

The call addressitself isthe address of an instance of the object. This addressis used for
syntactic reasons only; the actual call generated is adirect call to the method procedure.

In this example, the first call isto theinit method for the object list. Since thisis a static
method, you make a direct call to the method procedure list_init. Paradigm Assembler

Chapter 4, General programming concepts 41

42

ignores the object instance, foolist (except that it's passed as an argument to the method
procedure).

The method name is followed by the usual extended call language and parameter list.
The language and parameters depend on the method you're calling, and one of the
parametersis generally a pointer to the instance of the object. In this example, the
method accepts a single parameter, which is a pointer to the instance of the object.

Calling a virtual method

Any call to avirtual method requires an indirect can to the method procedure. Y ou can
use the extended CALL..METHOD instruction to let this happen. Paradigm Assembler
generates the following instructions to perform the call:

1. Load intermediate registers from the object instance with a pointer to the VMT.
2. Make an indirect call to the appropriate table member.

Therefore, when you specify

CALL <i nstance> METHOD <obj ect >: <nmet hod> USES <seg>: <r eg>
<cal ling_stuff>

the generated instructions are as follows:

MOV <reg>, [<instance>. <virtual_nethod_tabl e_poi nter>]
CALL [(<seg>:<reg>).<method>] <calling_stuff>

The first instruction loads the selected register <reg> with the address of the table from
the VMT pointer field of the object structure. The second instruction makes an indirect
call to the appropriate method in the table.

For example, acall of the form
CALL es:di method list:insert uses ds:bx pascal,es di,es dx,es cx

generates a sequence like

mov bx, [es:di, @ptr_list]
CALL [ds: bx.insert] pascal,\
es di,es dx,es cx

Note that for objects declared with NEAR tables, only the offset register win be loaded
by the CALL..METHOD instruction. The segment register should already contain the
correct value. The following example shows how to make sure that the segment register
is properly set up.

; Append a node at the end of a Linked-List objects.
;This is the virtual method "list]|append”
i st_append, PROC PASCAL NEAR

ARG @i st:dword,\
@@ew. dwor d
USES ds, bx, es, d
nmov ax, @at a
mov ds, ax
les di, @i st
sub ax, ax
CALL es:di nethod list:insert uses ds:bx pascal,\
es di, @ew, ax ax
ret
ENDP

Paradigm Assembler User's Guide

You can't call any virtual methods until after you initialize the VMT pointer in the
object's data. Thisis because the pointer loads the address of the VMT (from which the
address of the desired virtual method procedure is retrieved). Thus, if you haven't
initialized the pointer to the VMT, any virtual method call win result in a call to some
random address.

==

As another example, consider the base object node, which you can include in any object
placed in alinked list or a queue.

node STRUC GLOBAL METHOD {

construct:dword = node_construct ;node constructor routine
destroy: dword = node_destroy ;node destructor routine
init:dword = node_init ;node initialization routine
deinit:dword = node_deinit ;node deinitialization routine
virtual next:word = node_adv ;next node routine

virtual prev:wrd = node_back ; previ ous node routine

virtual print:word = node_print ;print contents of node
node_next dad ? ; next node pointer

node_prev dd ? ; prev node pointer

ends

Y ou can define any number of other objects inheriting the node object, to let it use a
linked list or queue. Here are two examples:

m abel STRUC GLOBAL node METHOD {

virtual print:word = | abel _print
}

| abel narme db 80 dup (?)

| abel _addr db 80*2 dup (?)
| abel city db 80 dup (?)

| abel _state db 2 dup (?)

| abel zip db 10 dup (?)

ENDS

book STRUC GLOBAL node METHOD {
virtual print:word = book_print

}

book title db 80 dup (?)

book_aut hor db 80 dup (?)
ENDS

In the next example, we're making calls to methods by calling printit for both label and
book objects. It doesn't matter what object gets passed to printit, aslong asnodeis an
ancestor. Because the print method is a virtua method, the call is made indirectly
through the VMT for the object. For the first can to printit, the method procedure

label _print is called, because we're passing an instance of alabel object. For the second
call to printit, the method procedure book _print is called, because we're passing an
instance of a book object. Note that if the method print were static, then the cal in
printit would always call the node_print procedure (which is not desirable).

Chapter 4, General programming concepts 43

44

call printit pascal, <<instance address of |abel object>>
call printit pascal, <<i nstance address of book object>>
Ya
printit proc pascal near
arg @bj : dword
uses ds, si, es, bx
nmov ax, @at a
nov es, ax
| ds si, @@bj
call ds:si nethod node: print uses es:bx pascal, ds si
ret
endp

Calling ancestor virtual methods

Using ancestor virtual methods can help you write methods for derived classes since
you can reuse some of the code. For example, queues can use the same listing method
asalist, aslong as you specify whether the item is a queue or alist. Within the fist
class, you can have

virtual show word = |ist_show

and within the queue class,
virtual show word = queue_show

The list_show routine might print LI ST SHOW , followed by alisting of the individual
itemsin the list. However, if the derived class queue_show uses the listing routine, it
should print its own title, QUEUE SHOW and use list-show only for the mechanics of
sequentially going through the list and printing individual elements. list_show can
determine the kind of structure passed to it, and whether it should print the list title. If
the routine for list_show looks at the pointer to the virtual method table (VMT) of the
structure passed to it, it can determine whether the pointer matches the one installed for
listsin the list_init routine (or if it differs). If the VMT pointer in the structure does not
point to the VMT for lists, the structure is probably a derived type. list_show can do this
checking with the following statements:
cnp [([es:di]). @ptr_list],offset @abl eAddr LIST
j ne @ot _a |ist ; Skip over printing the list title
;if we come here, it is alist, and the list title
; shoul d be printed.

Y,
@mot _a list:
; Now show the individual list elenments.
So how do we call the list class show method from within a queue_show routine? If you
were to directly call list_show, you could have a problem if the name of the routine
used for the show method of the list class ever changes. (Y ou might not remember to
change what queue-show calls.) If you put the following statement in queue-show,

call (es:di) nethod list:show

you'd have an infinite loop because even though it is specified as the class for which
show should be called, the VMT will be used because show is a virtual method. Since
the VMT for the structure would have been pointing to queue_show, you'd end up back
in the same routine.

The best way to call thelist class show method would be
call +@able_list | show

Paradigm Assembler User's Guide

Paradigm Assembler automatically translates this statement to adirect call to list_show,
since list_show was specified as the value for the show element of the @table_list when
the list class was declared. Note that even though list declares show to be virtual,
specifying the call causes Paradigm Assembler to make a direct call without the VMT
lookup.

= Virtual routines are usualy called through an indirect lookup to aVMT.

If for example, some initialization routine changes the show element of the table to
point to different routines, depending on what output device to use for the show
command of all list class elements, you may need to use the VMT for thelist class. The
following statements use the list class VMF:

mov bx, of f set @ABLEADDR LI ST
call [(@able_list ptr es:bx).SHON

Thisisvery similar to the sequence of instructions that Paradigm Assembler uses to
make the indirect call using the VMT.

More on calling methods

Often, you might find it necessary to call a parent object's method from inside a derived
method procedure. Y ou can also use the CALL..METHOD statement to do this.

Y ou can use the IMP instruction with the METHOD extension in the same way you
usethe CALL..METHOD instruction. Thisinstruction provides optimal tail recursion.
See Chapter 13 for more information about the CALL..METHOD and
JMP..METHOD instructions.

Creating an instance of an object

To create an instance of an object, you can call an object's constructor method (which
allocates memory for an object instance) or allocate an instance of the object in a
predefined (static) data segment.

Y ou can create an instance of the object exactly the same way you create an instance of
astructure. For example, examine the following instances of objects:

foolist [Ilist {} ;instance of a list
f ooqueue | abel queue
queue {} ;instance of a queue

queue {list_head=nynode, | i st _tail =nmynode}
;instance of a queue

When you create an instance of an object, you can override any of the object's default
data values as defined in the object declaration by specifying the overriding values
inside the braces. Y ou can't, however, override the methods for an object when you
create an instance of an object.

Programming form for objects

It's agood idea to keep method procedures in a separate file from the method
declaration, and from the code that uses the object. We recommend placing method
procedures in afile with the name of the object and an extension of ASM. For example,
the method procedures for the finked-list object wéuld go into the file LIST.ASM. The
method procedure file must INCL UDE the method declaration from the .ASO file.

Chapter 4, General programming concepts 45

An example of the method procedures for the list object is described at the end of this
chapter. This excerpt from the LIST.ASM file (on the example disks) shows the genera
structure of thisfile.

MODEL SMALL
LOCALS

;** Define Linked-List object **
I NCLUDE node. aso

;** Create instance of Linked-List virtual method table **
DATASEG

TBLI NST

; ** Li nked- Li st nethods **

CODESEG

i <<include all nethod procedures here>>

In general, you should use the following form for object-oriented programming in
Paradigm Assembler:

File Contents

<object>.ASO INCLUDES < parent object>.ASO, if any; contains GLOBAL object
declaration and a GL OBAL directive for each method procedure.

<object>.ASM INCLUDES <object>.ASO, contains TBL INST directive and method

procedure declarations; has an init method with a TBLINIT somewhereinside.

Note that you can use the TBLINST and TBLINIT directives even when there are
currently no virtual methods in the object; in that case, no action is taken.

We therefore recommend using the TBLINST and TBLINIT directives regardless of
whether virtual methods are currently present in an object: Place the TBLINST
directive in an appropriate data segment and the TBLINI T directive in the object's
initialization method (which must be a static method). Y ou must call this method before
using any other methods for the object.

46 Paradigm Assembler User's Guide

Chapter

5

Using expressions and symbol values

Expressions and symbols are fundamental components of an assembly language
program. Use expressions to calculate values and memory addresses. Symbols represent
different kinds of values. This chapter describes the different types of these language
components, and how you can use them.

Constants

Constants are numbers or strings that Paradigm Assembler interprets as a fixed numeric
value. You can use a variety of different numeric formats, including decimal,
hexadecimal, binary, and octal.

Numeric constants

A numeric constant in Paradigm Assembler always starts with adigit (0-9), and consists
of an arbitrary number of alphanumeric characters. The actual value of the constant
depends on the radix you select to interpret it. Radixes available in Paradigm Assembler
are binary, octal, decimal, and hexadecimal, as shown in Table 5.1:

Table 5-1 Radix Legal digits
Radixes
Binary 01
Octd 01234567
Decima 0123456789

Hexadecimal 0123456789ABCDEF

Note that for hexadecimal constants, you can use both upper- and lowercase |etters.

Paradigm Assembler determines the radix of a numeric constant by first checking the
LAST character of the constant. The charactersin the following table determine the
radix used to interpret the numeric constant.

Table 5-2 Character Radix
Characters
determining B Binary
radixes o Octal
Q Octd
D Decima
H Hexadecima

Y ou can use both uppercase and lowercase characters to specify the radix of a number.
If the last character of the numeric constant is not one of these values, Paradigm
Assembler will use the current default radix to interpret the constant. The following
table lists the available numeric constants and their values.

Chapter 5, Using expressions and symbol values 47

Table 5-3 Numeric constant Value

Numeric
constants

Symbols

77d 77 decimal

77h 77 hexadecimal

ffffh Illegal; doesn't start with adigit

Offffh FFFF hexadecimal

88 Interpretation depends on current default radix

Changing the default radix
You can use the RADI X or .RADI X directives to change the current default radix. Use
the following syntax for 1deal mode:

RADI X expr essi on
Here'sthe MASM mode syntax:
. RADI X expression

expression must have avalue of either 2 (binary), 8 (octal), 10 (decimal), or 16
(hexadecimal). Paradigm Assembler assumes that the current default radix is decimal
while it processes the RADI X directive.

String constants

String constants always begin with a single or double quote, and end with a matching
single or double quote. Paradigm Assembler converts the characters between the quotes
to ASCII values.

Sometimes, you might want to include a quote within a string constant. To do this, use a
pair of matching quotes as a single matching quote character within the string. For
example,

"1t'"'s' representsit' s

48

A symbol represents avalue, which can be avariable, address |abel, or an operand to an
assembly instruction and directive.

Symbol names

Symbol names are combinations of |etters (both uppercase and lowercase), digits, and
special characters. Symbol names can't start with a digit. Paradigm Assembler treats
symbols as either case sensitive or case insensitive. The command line switches /ML,
/MU, and /M X control the case sensitivity of symbols. For more information about
these command-line switches, see Chapter 2.

Symbols hames can be up to 255 characters in length. By default, symbol names are
significant up to 32 characters. You can use the/MV command-line switch to change
the number of characters of significance in symbols.

The underscore (), question mark (?), dollar sign ($), and at-sign (@) can all be used as
part of a symbol name. In MASM mode only, you can use adot (.) asthefirst character
of asymbol name. However, since it's easy to confuse a dot at the start of a symbol with
the dot operator (which performs a structure member operation), it's better not to use it
in symbol names.

Paradigm Assembler User's Guide

Symbol types

Each symbol has atype that describes the characteristics and information associated
with it. The way you define a symbol determines its type. For example, you can declare
asymbol to represent a numeric expression, atext string, a procedure name, or a data
variable. Table 5.4 lists the types of symbols that Paradigm Assembler supports.

Table 5-4 mbol type Description
Symbol types > yp 2

address An address. Data subtypes are UNKNOWN, BY TE, WORD,
DWORD, PWORD, or FWORD, QWORD, TBY TE, and an address of anamed
structure or table. Code subtypes are SHORT, NEAR, and FAR

text_macro A text string

alias An equivalent symbol
numerical_expr The value of anumerical expression
multiline-macro Multiple text lines with dummy arguments
struc/union A structure or union datatype

table A table datatype
struc/table_member A structure or table member

record A record datatype

record field A record field

enum An enumerated data type

segment A segment

group A group

type A named type

proctype A procedure description type

Simple address subtypes

Symbols subtypes describe whether the symbol represents the address of a byte, aword,
and so forth. Table 5.5 shows the simple address subtypes that Paradigm Assembler

provides.
Table 5-5 Type expression M eaning
Address
subtypes UNKNOWN Unknown or undetermined address subtype.
BYTE Address describes a byte.
WORD Address describes aword.
DWORD Address describes a 4-byte quantity.
PWORD or FWORD Address describes a 6-byte quantity.
QWORD Address describes an 8-byte quantity.
TBYTE Address describes a 10-byte quantity.
SHORT Address describes a short label/procedure address.
NEAR Address describes a near label/procedure address.
FAR Address describes afar |abel/procedure address.
PROC Address describes either anear or far |abel/procedure address,
depending on the currently selected programming model.
DATAPTR Address describes either aword, dword, or pword quantity,
depending on the currently selected programming model.
CODEPTR Address describes either aword, dword, or pword quantity,

depending on the currently selected programming model.

Chapter 5, Using expressions and symbol values 49

Table 5-5
continued

Table 5-6
Complex
address
subtypes

Table 5-7
Distance syntax

Type expression M eaning

struc/union_name Address describes an instance of the named structure or union.

table_name Address describes an instance of the named table.

record-name Address describes an instance of the named record; either a byte,
word, or dword quantity.

enum_name Address describes an instance of the named enumerated data
type, either abyte, word, or dword quantity.

type_name Address describes an instance of the named type.

TYPE expression Address describes an item whose subtype is the address subtype
of the expression; Ideal mode only.

proctype_name Address describes procedure of proctype.

Describing a complex address subtype

Several directives let you declare and use complex address subtypes. These type
expressions are similar to C in that they can represent multiple levels of pointer
indirection, for example, the complex type expression

PTR WORD

represents a pointer to aword. (The size of the pointer depends on the segmentation
model you selected with MODEL .)

Table 5.6 shows a syntax summary of complex address subtypes:

Syntax M eaning

simple_address subtype the specified address subtype

[dist]PTR[complex_adress subtype] apointer to the specified complex address subtype, the size of
which is determined by the current MODEL or by the specified
distance, if present

Y ou can describe the optional distance parameter in the following ways:

Syntax M eaning
NEAR use anear pointer; can be either 16 or 32 bits, depending on the current model
FAR use afar pointer; can be either 32 or 48 bits, depending on current model

SMALL NEAR use a 16-bit pointer; 80386 and later
LARGE NEAR use a 32-hit near pointer; 80386 and later
SMALL FAR use a 32-hit far pointer; 80386 and later
LARGE FAR use a48-hit far pointer; 80386 and later

The type of the object being pointed to is not strictly required in complex pointer types,
Paradigm Assembler only needs to know the size of the type. Therefore, forward
references are permitted in complex pointer types (but not in simple types).

Expressions

50

Using expressions lets you produce modular code, because you can represent program
values symbolically. Paradigm Assembler performs any recal culations required because
of changes (rather than requiring you to do them).

Paradigm Assembler User's Guide

Table 5-8
Simple
expressions

Paradigm Assembler uses standard infix notation for equations. Expressions can contain
operands and unary or binary operators. Unary operators are placed before asingle
operand; binary operators are placed between two operands. Table 5.8 shows examples
of ssimple expressions.

Expression Evaluatesto

5 constant 5
-5 constant -5
4+3 constant 7
4*3 constant 12
4*3+2%1 constant 14
4*(3+2)*1 constant 21

Appendix B contains the full Backus-Naur form (BNF) grammar that Paradigm
Assembler uses for expression parsing in both MASM and Ideal modes. This grammar
inherently describes the valid syntax of Paradigm Assembler expressions, as well as
operator precedence.

Expression precision

Paradigm Assembler always uses 32-bit arithmetic in Ideal mode. In MASM mode,
Paradigm Assembler uses either 16- or 32-bit arithmetic, depending on whether you
select a 16- or 32-bit processor. Therefore, some expressions might produce different
results depending on which processor you've selected. For example,

(1000h 1000h)/ 1000h

evaluates to 1000h if you select the 80386 processor, or to 0 if you select the 8086,
80186, or 80286 processors.

Constants in expressions

Y ou can use constants as operands in any expression. For example,
mov ax, 5 ;"B" is a constant operand

Symbols in expressions

When you use a symbol in an expression, the returned value depends on the type of
symbol. Y ou can use a symbol by itself or in conjunction with certain unary operators
that are designed to extract other information from the entity represented by the symboal.

Registers
Register names represent 8086-family processor registers, and are set aside as part of
the expression value. For example,

5+ax+7

This expression has afinal value of ax+12, because AX isaregister symbol that
Paradigm Assembler sets aside. The following list contains register symbols:

8086 AX,BX,CX,DX,SI,DI,BP,CSDS,ES,SS
80186,80286 Same as 8086

Chapter 5, Using expressions and symbol values 51

80386 8086 registers, plus EAX, EBX, ECX, EDX, ESI, EDI, EBP, FS,
GS, CRO, CR2, CR3, DRO, DR1, DR2, DR3, DR6, DR7

80486 80386 registers, plus: TR3, TR4, TR5

Standard symbol values

Some symbols always represent specific values and don't have to be defined for you to
use them. The following table lists these symbols and their values.

Table 5-9 'Symbol Value

Standard

symbols g Current program counter
NOTHING 0
? 0
UNKNOWN 0
BYTE 1
WORD 2
DWORD 4
PWORD 6
FWORD 6
QWORD 8
TBYTE 10
NEAR Offffh
FAR Offfeh
PROC Either Offffh or Offfeh, depending on current model
CODEPTR Either 2 or 4, depending on current model
DATAPTR Either 2 or 4, depending on current model

Simple symbol values
Paradigm Assembler returns the following values for symbols used by themselves:

Table 5-10 EXxpression Value
Values of
symbols used by address name Returns the address.
themselves 1 ymerical _expr_name Returns the value of the numerical expression.

table_namejtable member_name Returnsthe default value for the table member specified in the
definition of the table.

structable_member_name Returnsthe offset of the member within the table or structure (MASM
mode only).

record _name Returns amask where the bits reserved to represent bit fieldsin the
record definition are 1, therest are 0.

record name<...> Returnstheinitial value arecord instance would haveif it were
declared with the same text enclosed in angle brackets (see Chapter 12
for details).

record name({...} Similar torecord name < ... >.

record field_name Returns the number of bitsthe field is displaced from the low order bit
of the record (also known as the shift value).

enum_name Returns a mask where the bits required to represent the maximum value
present in the enum definition are 1, therest are 0.

segment_name Returns the segment value.

group_name Returns the group value.

52 Paradigm Assembler User's Guide

Table 5-10
continued

Table 5-11
LENGTH

operator return
values

Table 5-12
SIZE values

Expression Value
strucjunion_name Returnsthe sizein bytes of the structure or union, but only if itis
1, 2, or 4; dl other sizesreturn avalue of 0.
type name If thetypeis defined as a synonym for a structure or union, the value

returned is the same as for a structure or union. Otherwise, the size of
the type isreturned (with Offffh for short and near label's, and Offfeh for
far labels).

proctype_name Returns OFFFFh if the proctype describes a near procedure, or
OFFFEhN for afar procedure.

All other symbols types return the value 0.

Note that when you use a text macro name in an expression, Paradigm Assembler
substitutes the string value of the text macro for the text macro symbol. Similarly, when
you use an alias name, Paradigm Assembler substitutes the symbol value that the alias
represents for the alias symbol.

The LENGTH unary operator

The LENGTH operator returns information about the count or number of entities
represented by a symbol. The actual value returned depends on the type of the symbol,
as shown in the following table.

Expression Value
LENGTH address_name Returns the count of items allocated when the address name was
defined.

LENGTH struc|table menber_name Returns the count of items allocated when the member was defined
(MASM mode only).

The length operator (when applied to al other symbol types) returns the value 1. Here
are some examples using the LENGTH operator:

M5G DB "Hel | o"

array DW 10 DUP (4 DUP (1),0)

nunbrs DD 1,2,3,4

| msg = LENGTH nsg ;=1 no DUP

larray = LENGTH array ; =10, DUP repeat count
| nunbrs = LENGTH nunbr s ; =1, no DUP

The SIZE unary operator

The SIZE operator returns size information about the alocated dataitem. The value
returned depends on the type of the symbol you've specified. The following table lists
the available values for SIZE.

Expression Value
SIZE address name In Ideal mode, returns the actual number of bytes alocated to the

datavariable. In MASM mode, returns the size of the subtype of
address_name (UNKNOWN=0, BY TE=1, WORD=2, DWORD=4,
PWORD=FWORD=6, QWORD=8, TBY TE=10,
SHORT=NEAR=0ffffh, FAR=0fffeh, structure address=size of
structure) multiplied by the value of LENGTH address name.

SIZE strucjunion_name Returns the number of bytes required to represent the structure or
union.

Chapter 5, Using expressions and symbol values 53

Table 5-13
continued

Table 5-14
WIDTH values

Table 5-15
MASK return
values

54

Expression Value

SIZE table name Returns the number of bytes required to represent the table.

SIZE struc/table_member_name Returns the quantity TY PE struc/table member name * LENGTH
struc/table_member_name (MASM mode only).

SIZE record_name Returns the number of bytes required to represent the total number
of bitsreserved in the record definition; either 1, 2, or 4.

SIZE enum_name Returns the number of bytes required to represent the maximum
value present in the enum definition; either 1, 2, or 4.

SIZE segment_name Returnsthe size of the segment in bytes.

SIZE type_name Returns the number of bytes required to represent the named type,
with short and near |abels returning Offffh, and far labels returning
Offfeh.

The SIZE operator returns the value O when used on all other symbol types.

The WIDTH unary operator

The WIDTH operator returns the width in bits of afield in arecord. The value depends
on the type of symbol. The following table shows these types of symbols. Y ou can't use
WIDTH for any other symbol types.

Expression Value

WIDTH record_name Returns the total number of bits reserved in the record definition.

WIDTH record field name Returnsthe number of bits reserved for the field in the record definition.
WIDTH enum_name Returns the number of bits required to represent the maximum vauein the

enum definition.

MASK unary operator

The MASK operator creates amask from a bit field, where bits are set to 1 in the
returned value and correspond to bitsin afield that a symbol represents. The value
returned depends on the type of symbol, as shown in the following table. Note that you
can't use MASK on any other symbols.

Expression Value
MASK record_name Returns amask where the bits reserved to represent bit fields in the record

definition are 1, therest 0.

MASK record field name Returnsamask where the bits reserved for the field in the record definition
arel, therest 0.

MASK enum_name Returns amask where the bits required to represent up to the maximum
value present in the enum definition are 1, therest 0.

General arithmetic operators

General arithmetic operators manipulate constants, symbol values, and the values of
other general arithmetic operations. Common operators are addition, subtraction,
multiplication, and division. Others operators are more specifically tailored for
assembly language programming. Welll discuss alittle about all of these in the next few
sections.

Paradigm Assembler User's Guide

Table 5-16
Simple
arithmetic
operators

Table 5-17
Logical
arithmetic
operators

Table 5-18
Bit shift operator

Table 5-19
Comparison
operators

Simple arithmetic operators

Paradigm Assembler supports the simple arithmetic operators shown in the following
table.

Expression Value

+ expression Expression

- expression Negative of expression.

exprl +expr2 exprl plusexpr2.

exprl -expr2 exprl minusexpr2.

exprl * expr2 exprl multiplied by expr2.

exprl /expr2 exprl divided by expr2 using signed integer division; note that expr2 cannot be 0 or

greater than 16 bitsin extent.
exprl MOD expr2 Remainder of exprl divided by expr2; same rules apply asfor division.

Logical arithmetic operators

Logical operators let you perform Boolean algebra. Each of these operators performsin
abitwise manner; that is, the logical operation is performed one bit at atime. The
following table shows the logical operators.

Expression Value

NOT expression expression bitwise complemented
exprl AND expr2 exprl bitwise ANDed with expr2
exprl OR expr2 exprl bitwise ORed with expr2
exprl XOR expr2 exprl bitwise XORed with expr2

Bit shift operators

Shift operators move values left or right by afixed number of bits. Y ou can use them to
do quick multiplication or division, or to access the value of a bitfield within avalue.
The following table lists the bit shift operators.

Expression Value

exprl SHL expr2 exprl shifted left by expr2 bits (shifted right if expr2 is negative).
exprl SHR expr2 exprl shifted right by expr2 bits (shifted left if expr2 is negative).

Note that the SHL and SHR operators shift in Os from the right or left to fill the vacated
bits.

Comparison operators

Comparison operators compare two expressions to see if they're equal or unequal, or if
oneis greater than or less than the other. The operators return avalue of -1 if the
condition istrue, or avalue of O if the condition is not true. The following table shows
how you can use these operators.

Expression Value
exprl EQ expr2 -1if exprlisequal toexpr2; otherwise, 0.
exprl NE expr2 -1if exprl isnot equal to expr2; otherwise, O.

Chapter 5, Using expressions and symbol values 55

Table 5-18
continued

Table 5-20

Type override

56

operators

Expression Value

exprl GT expr2 -1if exprlisgreater than expr2; otherwise, 0.

exprl GE expr2 -1if exprl isgreater than or equal expr2; otherwise, 0.
exprl LT expr2 -1if exprlislessthan expr2; otherwise, 0.

exprl LE expr2 -1if exprlislessthan or equal expr2; otherwise, O.

EQ and NE treat expressions as unsigned numbers. For example, -1 EQ Offffh hasa
value of -1 (unless you've selected the 80386 or later processor or used Ideal mode;
then, -1 EQ Offffffffh has avalue of -1).

GT, GE, LT, and LE treat expressions as signed numbers. For example, 1 GE -1 hasa
value of -1, but 1 GE Offffh has avalue of 0.

Setting the address subtype of an expression

Paradigm Assembler provides operators that et you override or change the type of an
expression. The following table lists these operators.

Expression Value
exprl PTRexpr2 Converts expr2 to the type determined by expr1, where

0=UNKNOWN, 1=BYTE, 2=WORD, 4=DWORD, 6=PWORD,
8=QWORD, 10=TBYTE, Offffh=NEAR, Offfeh=FAR, all
otherssUNKNOWN; MASM mode only.

type PTR expression Converts expression to the specified address subtype; 1deal mode only.

or typeexpression

type LOW expression Converts expression to the specified address subtype. Type described
must be smaller in size than the type of the expression; Ideal mode
only.

type HIGH expression Converts expression to the specified address subtype. Type described
must be the resulting address is adjusted to the address expression;
Ideal mode only.

Here are some examples:

| DEAL

big DD I|2345678h

MOV ax, [WORD bi g] ; ax=5678h

MOV al, [BYTE PTR bi g] ;al =78h

MOV ax, [WORD HI GH bi g] ; ax=1234h

MOV ax, [WORD LOW bi g] ; ax=5670h

MOV al, [BYTE LONWORD H GH bi g] ;al = 3rd byte of big = 34h
MASM

MOV ax,2 PTR big ; ax=5678h

MOV ax, WORD PTR bi g ; ax=5678h (WORD has val ue 2)

Obtaining the type of an expression

In MASM mode, you can obtain the numeric value of the type of an expression by
using the TY PE operator. (Y ou can't do thisin Ideal mode, because types can never be
described numerically). The syntax of the TY PE operator is

TYPE expression

The TY PE operator returns the size of the object described by the address expression, as
follows:

Paradigm Assembler User's Guide

Table 5-21 Type Description

TYPE values

byte 1

word 2

dword 4

pword 6

gword 8

tbyte 10

short Offffh

near Offffh

far Offfeh

struct/union Size of astructure or union instance

table Size of atableinstance

proctype Returns OFFFFh if the proctype describes a near procedure, or OFFFEh for afar
procedure

Here's an example:

avar = 5
bvar db 1

darray dd 10 dup (1)

X struc
dw ?
dt ?
ends
fp label far
tavar = TYPE avar
t bvar = TYPE bvar
tdarray = TYPE darray
tx = TYPE X
tfp = TYPE fp

rR O

12
OFFFEh

Overriding the segment part of an address expression

Address expressions have values consisting of a segment and an offset. Y ou can specify
the segment explicitly as a segment register, or as a segment or group value. (If you
specify it as agroup value, Paradigm Assembler determines which segment register to
use based on the values that the segment registers are ASSUMEGd to be.) Use the
following syntax to change the segment part of an address expression:

exprl : expr2
This operation returns an address expression using the offset of expr2, and exprl asa
segment or group value. For example,
VarPtr dd dgroup: menvar ;dgroup is a group
mov cl, es:[si+4] ; segnent override ES

Obtaining the segment and offset of an address expression

Y ou can use the SEG and OFFSET operators to get the segment and offset of an
expression. The SEG operator returns the segment value of the address expression.
Here's its syntax:

SEG expressi on

Hereis acode example:

Chapter 5, Using expressions and symbol values 57

58

DATASEG
tenp DWO
CCDESEG

nmov ax, SEG tenp
mov ds, ax
ASSUME ds: SEG t enp

The OFFSET operator returns the offset of the address expression. Its syntax follows:
COFFSET expr essi on
Note that when you use the offset operator, be sure that the expression refers to the

correct segment. For example, if you are using MASM mode and not using the
simplified segmentation directives, the expression

OFFSET BUFFER ;buffer is a nenory address
is not the same as

COFFSET DGROUP: BUFFER ; Dgroup is the group containing the segnent
;that contai ns BUFFER

unless the segment that contains BUFFER happens to the first ssgment in DGROUP.

In Ideal mode, addresses are automatically calculated relative to any group that a
segment belongs to unless you override them with the : operator. In MASM mode, the
same istrueif you use the simplified segment directives. Otherwise, addresses are
calculated relative to the segment an object isin, rather than any group.

Creating an address expression using the location counter
Y ou can use the THIS operator to create an address expression that points to the current

segment and location counter, and has a specific address subtype. Y ou can use the
following syntax in Ideal mode:

TH S type
The Ideal mode syntax lets you build an address expression from the current segment
and location counter of the specified type. Y ou can use the next syntax in MASM mode:
TH' S expression

The MASM mode syntax functions like the syntax in Ideal mode, but uses the
numerical value of the expression to determine the type. These values are:
0=UNKNOWN, 1=BYTE, 2=WORD, 4=DWORD, 6=PWORD, 8=QWORD,
10=TBYTE, Offffh=NEAR, Offfeh=FAR. For example,

ptrl LABEL WORD
ptr2 EQU TH S WORD ;simlar to ptrl

Determining expression characteristics

Sometimes, it's useful to determine (within a macro) whether an expression has specific
characteristics. The SYMTY PE and .TY PE operators | et this happen.

The Ideal mode syntax:
SYMI'YPE expr essi on

The MASM mode syntax:
. TYPE expr essi on

The SYMTY PE and .TY PE operators are exactly equivaent; however, . TYPE is
available only in MASM mode, and you can use SYMTY PE only in Ideal mode.

Paradigm Assembler User's Guide

Table 5-22

Bit fields from
SYMTYPE and
.TYPE

SYMTYPE and .TY PE both return a constant value that describes the expression. This
value is broken down into the bit fields shown in the following table.

Bit Meaning

Expression is aprogram relative memory pointer.
Expresson is a data relative memory pointer.
Expression is a constant value.

Expression uses direct addressing mode.
Expression contains aregister.

Symbol is defined.

Expression contains an externally defined symbol.

~N o WODN PP O

The expression uses register indirection ([BX]) if bits 2 and 3 are both zero.

If Paradigm Assembler can't evaluate the expression, SYMTY PE returns appropriate
errors. .TY PE, however, will return avalue in these situations (usually 0).

Referencing structure, union, and table member offsets

Structure, union, and table members are global variables whose values are the offset of
the member within the structure, union, or table in MASM mode. In Ideal mode,
however, members of these data types are considered local to the data type. The dot
operator lets you obtain the offsets of members. Here's the Ideal mode syntax:

expression . synbol

expression must represent an address of a structure, union, or table instance. symbol
must be a member of the structure, union, or table. The dot operator returns the offset of
the member within the structure.

MASM mode aso contains aversion of the dot operator. However, its function is
similar to the + operator, and has the following syntax:

exprl . expr2

Describing the contents of an address
Many instructions require you to distinguish between an address and the contents of an
address. Y ou can do this by using square brackets ([]) For example,

MOV AX, BX ;move BX into AX
MOV AX [BX] ;move contents of address BX into AX

Here's the general syntax for using square brackets:
[expressi on]

In MASM mode, the brackets are optional for expressions that are addresses. Complete
addresses can't be used as an operand for any 80x86 instruction; rather, only the
segment (obtained with the SEG operator) or the offset (obtained with the OFFSET
operator) is used.

In Ideal mode, awarning is given when an expression is clearly an address, but no
brackets are present. Y ou can disable this warning (see Chapter 13 for further
information). However, it's good programming practice to include these brackets.

Chapter 5, Using expressions and symbol values 59

Implied addition

In MASM mode, you can add expressions in several ways. using the addition operator
(+), using the dot operator (.), or by implied addition (when expressions are separated
by brackets or parentheses). For example,

MOV AX, 5[BX] ;contents of address BX+5
MOV AX, 5(XYZ) ;contents of address XYZ+5

Here's the general syntax for implicit addition:
exprl [expr2]

or
exprl (expr2)

Obtaining the high or low byte values of an expression

Y ou can use the HIGH and LOW operators on an expression to return its high and low
byte values. Thisinformation can be useful in circumstances where, for example, only
the high 8 bits of an address offset is required.

Here's the syntax of the HIGH and LOW operators:

H GH expressi on
LOW expr essi on

For example,
magi ¢ equ 1234h
mov cl, H GH magic ; ¢l =12h
mov cl, LOW nagic ; ¢l =34h

Specifying a 16- or 32-bit expression

When the currently selected processor is the 80386 or higher, Paradigm Assembler
provides two operators that let you control whether an expression isinterpreted as a
16-bit value or as a 32-hit value: the SMALL and LARGE operators. Here are their
syntaxes:

SMALL expression
LARGE expression

The SMALL operator flags the expression as representing a 16-bit value. LARGE flags
it as representing a 32-bit value. These operators are particularly important when you
program for an environment in which some segments are 32-bit and others are 16-hit.
For example, the instruction

JMP [DAWORD PTR ABC]
represents an indirect jJump to the contents of the memory variable ABC. If you have
enabled the 80386 processor, thisinstruction could be interpreted as either afar jump

with a segment and 16-bit offset, or anear jump to a 32-bit offset. Y ou can use SMALL
or LARGE to remove the ambiguity, as follows:

JVP SMALL [DAWORD PTR ABC
Thisinstruction causes Paradigm Assembler to assemble the jump instruction so that the

value read from ABC isinterpreted as a 16-bit segment and 16-bit offset. Paradigm
Assembler then performs an indirect FAR jump.

When you use SMALL or LARGE within the address portion of an expression, the
operators indicate that the address is a 32-bit address. For example,

JMP SMALL [LARGE DWORD PTR ABC]

Paradigm Assembler User's Guide

indicates that alarge 32-bit address describes the memory variable ABC, but its
contents are interpreted as a 16-bit segment and 16-bit offset.

Chapter 5, Using expressions and symbol values

61

62

Paradigm Assembler User's Guide

Chapter

6

Choosing directives

The 8086 processor is actually only one of afamily of x86 processors from Intel, AMD
and other vendors. Members of this family include
. The 8088 (which contains an 8-bit data bus), the 8086 (containing a 16-bit data bus)

. The 80186 and 80188 (like the 8086 and 8088 but contain additional instructions
and run faster than their predecessors)

. The 80286 (which contains instructions for protected mode)

. The 80386 (which can process 16- and 32-bit data)

. The 80486 (an enhanced version of 80386 that runs even faster)
. The Pentium (an even faster version of the 80436)

. And otherswe are just learning about

Math coprocessors such as the 8087,80287, and 80387 work with the iAPx86 family so
that you can perform floating-point operations.

Paradigm Assembler provides directives and predefined symbols that let you use the
instructions included for particular processors. This chapter describes these directives
and symbols.

x86 processor directives

The x86 family provides a variety of processor directives for you to use. In the

following directives, note that those beginning with "." are only availablein MASM
mode.

P8086 Ideal, MASM

P8086

Enables assembly of 8086 processor instructions only. Thisis the default processor
instruction mode for Paradigm Assembler.

P186 Ideal, MASM

P186
Enables assembly of 80186 processor instructions.

P286 Ideal, MASM

P286

Enables assembly of all 80286 (including protected mode) processor instructions and
80287 numeric coprocessor instructions.

Chapter 6, Directives 63

64

P286N Ideal, MASM

Enables assembly of non-privileged (real mode) 80286 processor instructions and
80287 numeric coprocessor instructions.

P286P Ideal, MASM

P286P

Enables assembly of al privileged 80286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions.

P386 Ideal, MASM

P386

Enables assembly of al priveleged 80386 (including protected mode) processor
instructions. It aso enables the 80387 numeric processor instructions exactly asif the
.387 or P387 directive has been issued.

P386N Ideal, MASM

P386N

Enables assembly of non-privileged (real mode) 80386 processor instructions and
80387 numeric coprocessor instructions.

P386P Ideal, MASM

P386P
Enables assembly of all 80386 (including protected mode) processor instructions.

P486 Ideal, MASM

PA86
Enables assembly of all 1486 (including protected mode) processor instructions.

P486N Ideal, MASM

PA86N
Enables assembly of non-privileged (real mode) i486 processor instructions.

P586 Ideal, MASM

P586
Enables assembly of all Pentium (including protected mode) processor instructions.

P586N Ideal, MASM

P586N
Enables assembly of non-privileged (real mode) Pentium processor instructions.

Paradigm Assembler User's Guide

.8086 MASM

.8086

Enables assembly of 8086 processor instructions and disables al instructions available
only on the 80186, 80286, 386 processors. It also enables the 8087 coprocessor
instructions exactly asif the .8087 or 8087 has been issued. Thisis the default processor
instruction mode used by Paradigm Assembler.

.186 MASM

.186
Enables assembly of 80186 processor instructions.

.286 MASM

.286

Enables assembly of non-privileged (real mode) 80286 processor instructions. It also
enables the 80287 numeric processor instructions exactly asif the .286 or P287
directive has been issued.

.286C MASM

.286C
Enables assembly of non-privileged (real mode) 80286 processor.

.286P MASM

.286P

Enables assembly of all 80286 (including privileged mode) processor instructions. It
also enables the 80287 numeric processor instructions exactly asif the .286 or P287
directive has been issued.

.386 MASM

.386

Enables assembly of non-privileged (real mode) 80386 processor instructions. It also
enables the 80387 numeric processor instructions exactly asif the .387 or P387
directive has been issued.

.386C MASM

.386C

Enables assembly of non-privileged (real mode) 80386 processor instructions and
80387 numeric coprocessor instructions.

.386P MASM

.386P

Enables assembly of all 80386 (including privileged mode) processor. It also enables
the 80387 numeric processor instructions exactly asif the .387 or P387 directive has
been issued.

Chapter 6, Directives 65

66

486 MASM

486
Enables assembly of non-protected instructions for the 1486 processor. It aso enables

the 387 numeric processor instructions exactly asif the .387 or P387 directive has been

issued.

.486C MASM

486C
Enables assembly of protected instructions for the 1486 processor.

.486P MASM

.386P

Enables assembly of al 1486 (including privileged mode) processor. It aso enables the
80387 numeric processor instructions exactly asif the .387 or P387 directive has been

issued.

487 MASM

487

Enables assembly of all 80487 numeric instructions. Thisinstruction works only in
MASM mode.

P487 Ideal, MASM

PA87
Enables assembly of 80487 processor instructions. This instruction worksin both and
MASM and Ideal modes.

.586 MASM
.586

Enables assembly of non-privileged (real mode) instructions for the Pentium processor.
.586C MASM
.586C

Enables assembly of non-privileged (real mode) instructions for the Pentium processor.
.586P MASM
.586P

Enables assembly of protected mode instructions for the Pentium processor.

587 MASM
587

Enables assembly of Pentium numeric processor instructions. This instruction works
only in MASM mode.

Paradigm Assembler User's Guide

P587 Ideal, MASM

P587

Enables assembly of Pentium numeric processor instructions. This instruction worksin
both and MASM and Ideal modes.

8087 coprocessor directives

The following are available math coprocessor directives. Again, directives beginning
with adot (.) work only in MASM mode.

.8087 MASM

.8087

Enables assembly of 8087 numeric coprocessor instructions and disables al those
coprocessor instructions available only on the 80287 and 80387. This s the default
coprocessor instruction mode used by Paradigm Assembler.

.287 MASM

.287

Enables assembly of 80287 numeric coprocessor instructions. This directive causes
floating-point instructions to be optimized in a manner incompatible with the 8087, so
don't use it if you want your programs to run using an 8087.

.387 MASM

.387

Enables assembly of 80387 numeric coprocessor instructions. Use this directive if you
know you'll never run programs using an 8087 coprocessor. This directive causes
floating-point instructions to be optimized in a manner incompatible with the 8087, so
don't use it if you want your programs to run using an 8087.

A87 MASM

487
Enables assembly of al 80486 numeric instructions.

.587 MASM

587
Enables assembly of Pentium numeric processor instructions.

P8087 Ideal, MASM

P8087

Enables assembly of 8087 numeric coprocessor instructions only. Thisis the default
coprocessor instruction mode for Paradigm Assembler.

pP287 Ideal, MASM

P287
Enables assembly of 80287 numeric coprocessor instructions.

Chapter 6, Directives 67

pP387 Ideal, MASM

P387
Enables assembly of 80387 numeric coprocessor instructions.

P487 Ideal, MASM

P487
Enables assembly of 1487 processor instructions.

pP587 Ideal, MASM

P587
Enables assembly of Pentium numeric processor instructions.

Coprocessor emulation directives

Directives

If you need to use real floating-point instructions, you must use an 80x87 coprocessor.
If your program has installed a software floating-point emulation package, you can use
the EMUL directive to useit. (EMUL functions like /e.)

For example,
Finit ;real 80x87 coprocessor instruction
EMUL
Fsave BUF ;erulated instruction)

Both EMUL and NOEM UL work in MASM and |deal modes.

If you're using an 80x87 coprocessor, you can either emulate floating-point instructions
using EM UL, or force the generation of real floating-point instructions with the
NOEMUL directive. Note that you can use EMUL and NOEM UL when you want to
generate real floating-point instructions in one portion of afile, and emulated
instructions in another.

Here's an example ussing NOEM UL :
NOEMUL ;assemble real FP instructions
finit
EMUL ;back to enul ation

68

The following directives are also available. Note that those beginning with "." are only
availablein MASM mode.

Ideal, MASM

name:
Defines anear code label caled name.

= Ideal, MASM

name = expression
Defines or redefines a numeric equate.

Paradigm Assembler User's Guide

ALIGN Ideal, MASM

ALIGN boundary
Rounds up the location counter to a power-of-two address boundary (2, 4, 8, ...).

ALPHA MASM
ALPHA

Set alphanumeric segment-ordering. The /a command-line option perform the same
function.

ARG Ideal, MASM

ARG argument [,argument] ... [=symbol]
[RETURNS argument [,argument]]

Sets up arguments on the stack for procedures. Each argument is assigned a positive
offset from the BP register, presuming that both the return address of the procedure call
and the caller's BP have been pushed onto the stack already. Each argument has the
following syntax (boldface items are literal):

argnane[[count1]] [:[debug_size] [type] [:count2]]
The optional debug_size has this syntax:
[type] PTR

ASSUME Ideal, MASM

ASSUME segmentreg: name [,segmentreg: name ...
ASSUME segmentreg: NOTHING
ASSUME NOTHING

Specifies the segment register (segmentreg) that will be used to calculate the effective
addresses for al labels and variables defined under a given segment or group name
(name). The NOTHING keyword cancels the association between the designated
segment register and segment or group name. The ASSUME NOTHING statement
removes all associations between segment registers and segment or group names.

In addition, MASM mode supports the following syntax, which uses ASSUME to
assign a datatype to a data register:

ASSUME datareg:type [,datareg: type]

%BIN Ideal, MASM

%BIN size
Sets the width of the object code field in the listing file to size columns.

CALL Ideal, MASM

CALL<instance_ptr>METHOD{ object_name>:}
<method _name>USES{ segreg:} offsreg} { <extended call parameters>}

Calls amethod procedure.

Chapter 6, Directives 69

70

CATSTR Ideal, MASM51

name CATSTR string [,string]...
Concatenates several strings to form asingle string name.

.CODE MASM
.CODE[name]

Synonymous with CODESEG. MASM mode only.

CODESEG Ideal, MASM
CODESEG [namg]

Defines the start of a code segment when used with the . MODEL directive. If you have
specified the medium or large memory model, you can follow the .CODE (or
CODESEG) directive with an optional hame that indicates the name of the segment.

COMM Ideal, MASM

COMM definition [,definition]...
Defines acommunal variable. Each definition describes a symbol and has the following
format (boldface items are literal):

[di stance] synbol nanme:type [:count]

distance can be either NEAR or FAR and defaults to the size of the default data
memory model if not specified. symbolname is the symbol that is to be communal. If
distanceis FAR, symbolname may also specify an array element size multiplier to be
included in the total space computation (name[multiplier]). typeisoneof: BY TE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD,
TBYTE, or astructure name. count specifies how many items this communal symbol
defines (default is 1).

COMMENT MASM

COMMENT delimiter [text]

[text]

[text]delimiter [text]
Starts a multiline comment. delimiter isthe first non-blank character following
COMMENT.

%CONDS ldeal, MASM

%CONDS
Shows al statementsin conditional blocks in the listing.

.CONST MASM

.CONST

Defines the start of the constant data segment. Synonymous with CONST. MASM
mode only.

Paradigm Assembler User's Guide

CONST Ideal, MASM

CONST
Defines the start of the constant data segment.

.CREF MASM

.CREF
Synonymous with % CREF. MASM mode only.

%CREF Ideal, MASM

%CREF

Allows cross-reference information to be accumulated for all symbols encountered from
this point forward in the source file. .CREF reverses the effect of any % XCREF or
XCREF directives that inhibited the information collection.

%CREFALL Ideal, MASM

%CREFALL

Causes all subsequent symbols in the source file to appear in the cross-reference listing.
This is the default mode for Paradigm Assembler. %CREFALL reverses the effect of
any previous % CREFREF or % CREFUREF directives that disabled the listing of
unreferenced or referenced symbols.

%CREFREF Ideal, MASM

%CREFREF
Disableslisting of unreferenced symbolsin cross-reference.

%CREFUREF Ideal, MASM

%CREFUREF
Lists only the unreferenced symbols in cross-reference.

%CTLS Ideal, MASM
%CTLS

Causes listing control directives (such as % LIST, %INCL, and so on) to be placed in
the listing file.

.DATA MASM
.DATA

Synonymouswith DATASEG. MASM mode only.

DATASEG Ideal

DATASEG

Defines the start of the initialized data segment in your module. Y ou must first have
used the .M ODEL directive to specify amemory model. The data segment isput in a

Chapter 6, Directives 71

72

group called DGROUP, which aso contains the segments defined with the .STACK,
.CONST, and .DATA? directives.

.DATA? MASM

.DATA?

Defines the start of the uninitialized data segment in your module. Y ou must first have
used the .M ODEL directive to specify amemory model. The data segment isput in a
group called DGROUP, which aso contains the segments defined with the .STACK,
.CONST, and .DATA directives.

DB ldeal, MASM

[name] DB expression [, expression]...

Allocates and initializes a byte of storage. name is the symbol you'll subsequently use to
refer to the data. expression can be a constant expression, a question mark, a character
string, or a DUPlicated expression.

DD Ideal, MASM

[name] DD [type PTR] expression [,expression]...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the symbol you'll
subsequently use to refer to the data. type followed by PTR adds debug information to
the symbol being defined, so that the integrated debugger can display its contents
properly. type is one of the following: BY TE, WORD, DATAPTR, CODEPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR, FAR or a
structure name. expression can be a constant expression, a 32-hit floating-point number,
aquestion mark, an address expression, or a DUPIicated expression.

%DEPTH Ideal, MASM

%DEPTH width
Sets size of depth field in listing file to width columns. The default is 1 column.

DF Ideal, MASM

[name] DF[type PTR] expression [,expression]

Allocates and initializes 6 bytes (afar 48-bit pointer) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds debug
information to the symbol being defined, so that the integrated debugger can display its
contents properly. type is one of the following: BY TE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR,
FAR or a structure name. expression can be a constant expression, a question mark, an
address expression or a DUPIicated expression.

DISPLAY Ideal, MASM

DISPLAY " text "
Outputs a quoted string (text) to the screen.

Paradigm Assembler User's Guide

DOSSEG Ideal, MASM

DOSSEG

Enables DOS segment-ordering at link time. DOSSEG isincluded for backward
compatibility only.

DP Ideal, MASM

[name] DP [type PTR] expression [,expression]...

Allocates and initializes 6 bytes (afar 48-bit pointer) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds debug
information to the symbol being defined, so that the integrated debugger can display its
contents properly. type is one of the following: BY TE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR,
FAR or a structure name. expression can be a constant expression, a question mark, an
address expression, or a DUPlicated expression.

DQ Ideal, MASM

[name] DQ expression [,expression]...

Allocates and initializes 8 bytes (a guadword) of storage. name is the symbol you'll
subsequently use to refer to the data. expression can be a constant expression, a 64-bit
floating-point number, a question mark, or a DUPIicated expression.

DT Ideal, MASM

[name] DT expression [,expression]...
Allocates and initializes 10 bytes of storage. name is the symbol you'll subsequently use

to refer to the data. expression can be a constant expression, a 64-bit floating-point
number, a question mark, or a DUPlicated expression.

DW Ideal, MASM

[name] DW [type PTR] expression [,expression]...

Allocates and initializes 2 bytes (aword) of storage. name is the symbol you'll
subsequently use to refer to the data. type followed by PTR adds debug information to
the symbol being defined, so that the integrated debugger can display its contents
properly. typeis one of the following: BY TE, WORD, DATAPTR, CODEPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR, FAR or a
structure name. expression can be a constant expression, a question mark, an address
expression, or a DUPlicated expression.

DWORD MASM

[name] DWORD [type PTR] expression [,expression]...
Allocates and initializes a doubleword (4 bytes) of storage. Synonymous with DD.

ELSE Ideal, MASM

IF condition
statementsl
[ELSE

Chapter 6, Directives 73

74

statements2 |
ENDIF

Starts an alternative | F conditional assembly block. The statements introduced by
EL SE (statements2) are assembled if condition evaluatesto false.

.ELSE MASM

IF condition
statementsl
[.ELSE
statements2]
.ENDIF

Starts an alternative | F conditional assembly block. The statements introduced by
EL SE (statements2) are assembled if condition evaluatesto false.

ELSEIF Ideal, MASM

IF conditionl
statementsl

[EL SEIF condition2
statements2]

ENDIF

Starts nested conditional assembly block if condition2 istrue. Several other forms of
EL SEIF are supported: EL SEIF1, ELSEIF2, EL SEIFB, EL SEIFDEF, EL SEIFDIF,
ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB, and
ELSEIFNDEF.

EMUL Ideal, MASM

EMUL

Causes al subsequent numeric coprocessor instructions to be generated as emulated
instructions, instead of real instructions. When your program is executed, you must
have a software floating-point emulation package installed or these instructions will not
work properly.

END Ideal, MASM

END [startaddress]

Marks the end of a source file. startaddressis asymbol or expression that specifies the
address in your program where you want execution to begin. Paradigm Assembler
ignores any text that appears after the END directive.

ENDIF Ideal, MASM

IFXx condition
Statements
ENDIF

Marks the end of a conditional assembly block started with oneif the | F directives.

Paradigm Assembler User's Guide

.ENDIF MASM

IF condition
Statements
.ENDIF

Marks the end of a conditional assembly block started with oneif the .1 F directives.

ENDM Ideal, MASM

Marks the end of arepeat block or a macro definition.

ENDP Ideal, MASM

ENDP [procname |
[procname | ENDP

Marks the end of a procedure. If procname is supplied, it must match the procedure
name specified with the PROC directive that started the procedure definition.

ENDS Ideal, MASM

ENDS [segmentname | strucname |
[segmentname | strucname |ENDS

Marks end of current segment, structure or union. If you supply the optional name, it
must match the name specified with the corresponding SEGMENT, STRUC, or
UNION directive.

ENUM Ideal, MASM

ENUM name [enum _var [,enum var...]]
name ENUM [enum_var [,enum var...]]

Declares an enumerated data type.

EQU Ideal, MASM

name EQU expression

Defines name to be a string, alias, or numeric equate containing the result of evaluating
expression.

.ERR MASM
.ERR <string>

Synonymous with ERR. MASM mode only.

ERR Ideal, MASM
ERR <string>

Forces an error to occur at the line that this directive is encountered on in the source
file. The optional string will display as part of the error message.

Chapter 6, Directives 75

76

.ERR1 MASM

.ERR1 <string>

Forces an error to occur on pass 1 of assembly. The optional string will display as part
of the error message.

.ERR2 MASM

.ERR2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (controlled by /m
command-line option) is enabled. The optional string will display as part of the error

message.

.ERRB MASM

ERRB argument <string>

Forces an error to occur if argument is blank (empty). The optional string will display
as part of the error message.

.ERRDEF MASM

.ERRDEF symbol <string>

Forces an error to occur if symbol is defined. The optional string will display as part of
the error message.

.ERRDIF MASM

.ERRDIF < argumentl1 >,< argument2 > <string>

Forces an error to occur if arguments are different. The comparison is case sensitive.
The optional string will display as part of the error message.

.ERRDIFI MASM

.ERRDIFI < argumentl >,< argument2 > <string>

Forces an error to occur if arguments are different. The comparison is not case sensitive.
The optional string will display as part of the error message.

.ERRE MASM

.ERRE expression <string>

Forces an error to occur if expression isfalse (0). The optional string will display as part
of the error message.

.ERRIDN MASM

.ERRIDN < argument1 >,< argument2 > <string>

Forces an error to occur if arguments are identical. The comparison is case sensitive.
The optional string will display as part of the error message.

Paradigm Assembler User's Guide

.ERRIDNI MASM

.ERRIDNI < argumentl >,< argument2 > <string>

Forces an error to occur if arguments are identical. The comparison is not case sensitive.
The optional string will display as part of the error message.

ERRIF Ideal, MASM

ERRIF expression <string>

Forces an error to occur if expression istrue (nonzero). The optional string will display
as part of the error message.

ERRIF1 Ideal, MASM

ERRIF1 <string>

Forces an error to occur on pass 1 of assembly. The optional string will display as part
of the error message.

ERRIF2 Ideal, MASM

ERRIF2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (controlled by /m
command-line option) is enabled. The optional string will display as part of the error

message.

ERRIFB Ideal, MASM

ERRIFB < argument > <string>

Forces an error to occur if argument is blank (empty). The optional string will display
as part of the error message.

ERRIFDEF Ideal, MASM

ERRIFDEF symbol <string>

Forces an error to occur if symbol is defined. The optional string will display as part of
the error message.

ERRIFDIF Ideal, MASM

ERRIFDIF < argumentl >,< argument2 > <string>

Forces an error to occur if arguments are different. The comparison is case sensitive.
The optional string will display as part of the error message.

ERRIFDIFI Ideal, MASM

ERRIFDIFI < argumentl >,< argument2 > <string>

Forces an error to occur if arguments are different. The comparison is not case sensitive.
The optional string will display as part of the error message.

Chapter 6, Directives 77

78

ERRIFE Ideal, MASM

ERRIFE expression <string>
Forces an error to occur if expression isfalse (0). The optional string will display as part
of the error message.

ERRIFIDN Ideal, MASM

ERRIFIDN < argumentl > < argument2 > <string>

Forces an error to occur if arguments are identical. The comparison is case sensitive.
The optional string will display as part of the error message.

ERRIFIDNI Ideal, MASM

ERRIFIDNI < argumentl >,< argument2 > <string>

Forces an error to occur if arguments are identical. The comparison is not case sensitive.
The optional string will display as part of the error message.

ERRIFNB Ideal, MASM

ERRIFNB < argument > <string>

Forces an error to occur if argument is not blank. The optional string will display as part
of the error message.

ERRIFNDEF Ideal, MASM

ERRIFNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will display as part
of the error message.

.ERRNB MASM

.ERRNB < argument > <string>

Forces an error to occur if argument is not blank. The optional string will display as part
of the error message.

.ERRNDEF MASM

.ERRNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will display as part
of the error message.

.ERRNZ MASM

.ERRNZ expression <string>

Forces an error to occur if expression istrue (nonzero). The optional string will display
as part of the error message.

EVEN Ideal, MASM

EVEN
Rounds up the location counter to the next even address.

Paradigm Assembler User's Guide

EVENDATA Ideal, MASM

EVENDATA
Rounds up the location counter to the next even address in a data segment.

EXIT MASM

EXIT [return_value _expr]
Produces termination code. MASM mode only. Synonymous to EXITCODE.

EXITCODE Ideal, MASM

EXITCODE [return_value _expr]

Produces termination code. Y ou can use it for each desired exit point.
return_value_expr is anumber to be returned to the operating system. If you don't
specify return_value_expr, the valuein AX isreturned.

EXITM Ideal, MASM

EXITM

Terminates macro- or block-repeat expansion and returns control to the next statement
following the macro or repeat-block call.

EXTRN Ideal, MASM

EXTRN definition [,definition]...

Indicates that a symbol is defined in another module. definition describes a symbol and
has the following format:

[language] name : type [: count]

language specifies that the naming conventions of C, PASCAL, BASIC, FORTRAN,
ASSEMBLER, or PROLOG areto be applied to symbol name. name is the symbol
that is defined in another module. type must match the type of the symbol whereit s
defined and must be one of the following: NEAR, FAR, PROC, BYTE, WORD,
DWORD, DATAPTR, CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS,
or astructure name. count specifies how many items this external symbol defines and
defaults to one if not specified.

.FARDATA MASM

.FARDATA [segmentname]
Synonymouswith FARDATA. MASM mode only.

FARDATA Ideal

FARDATA [segmentname |

Defines the start of afar initialized data segment. segmentname, if present, overrides the
default segment name.

Chapter 6, Directives 79

80

FASTIMUL Ideal, MASM

FASTIMUL <dest_reg>,<source_r/m> <value>

Generates code that multiplies source register or memory address by value, and putsiit
into destination register.

FLIPFLAG Ideal, MASM

flagreg FLIPFLAG flagreg

Optimized form of XOR that complements bits with shortest possible instruction. Use
only if the resulting contents of the flags registers are unimportant.

GETFIELD Ideal, MASM

GETFIELD <field_name><destination_reg>,<source_r/m>

Generates code that retrieves the value of afield found in the same source register or
memory address, and sets the destination to that value.

GLOBAL Ideal, MASM

GLOBAL definition [,definition]...

Acts as acombination of the EXTRN and PUBL I C directives to define a global
symbol. definition describes the symbol and has the following format (boldface items
areliteral:

[language] name : type [: count]

language specifies that the naming conventions of C, PASCAL, BASIC, FORTRAN,
ASSEMBLER, or PROLOG areto be applied to symbol name. If name isdefined in
the current source file, it is made public exactly asif used ina PUBL I C directive. If
not, it is declared as an external symbol of type type, asif the EXTRN directive had
been used. type must match the type of the symbol in the module where it is defined,
and must be one of the following: NEAR, FAR, PROC, BYTE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, ABS, or astructure
name. count specifies how many items this symbol defines (one is the default).

GOTO Ideal, MASM

GOTO tag_symbol

Tells Paradigm Assembler to resume execution at the specified macro tag (tag_symbol).
GOTO terminates any conditional block that it isfound in.

GROUP Ideal, MASM

GROUP groupname segmentname [,segmentname |...
groupname GROUP segmentname [,segmentname |...

Associates groupname with one or more segments, so that all labels and variables
defined in those segments have their offsets computed relative to the beginning of group
groupname. segmentname can be either a segment name defined previously with
SEGMENT or an expression starting with SEG. In MASM mode, you must use a
group override whenever you access a symbol in a segment that is part of agroup. In
Ideal mode, Paradigm Assembler automatically generates group overrides for such
symbols.

Paradigm Assembler User's Guide

IDEAL Ideal, MASM

IDEAL

Enters Ideal assembly mode. Ideal mode will stay in effect until it is overridden by a
MASM or QUIRK Sdirective.

IF Ideal, MASM

IF expression
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that expression istrue (nonzero). If expression isfalse (zero),
fal sestatements are assembl ed.

AF MASM

IF expression
truestatements
[.ELSE

fal sestatements |
.ENDIF

This directive generates code that executes truestatements if the expression evaluates
true. If an .EL SE follows the .1 F, fal sestatements are executed if the expression
evaluates false. Because the expression is evaluated at run time, it can incorporate the
run-time relational operators. MASM mode only.

IF1 Ideal, MASM

IF1

truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that multiple-pass mode (controlled by the /m command-line
option) is enabled and that the current assembly passis pass one.

IF2 Ideal, MASM

IF2
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that multiple-pass mode (controlled by the /m command-line
option) is enabled and that the current assembly pass is pass two.

Chapter 6, Directives 81

IFB Ideal, MASM

IFB argument
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that argument is blank (empty). If argument is not blank,
fal sestatements are assembl ed.

IFDEF Ideal, MASM

IFDEF symbol

truestatements
[ELSE

fal sestatements |
ENDIF
Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that symbol is defined. If symbol is undefined, fal sestatements
are assembled.

IFDIF Ideal, MASM

IFDIF argumentl, argument?2
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that the arguments are different. If the arguments are the
same, fal sestatements are assembled. The comparison is case sensitive.

IFDIFI Ideal, MASM

IFDIFI argumentl, argument2
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that the arguments are different. If the arguments are the
same, fal sestatements are assembled. The comparison is case sensitive.

Paradigm Assembler User's Guide

IFE Ideal, MASM

IFE expression
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that expression isfalse. If expression is true, fal sestatements
are assembled.

IFIDN Ideal, MASM

IFIDN argumentl,argument2
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that the arguments are identical. If the arguments are not
identical, fal sestatements are assembled. The comparison is case sensitive.

IFIDNI Ideal, MASM

IFIDNI argumentl,argument2
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that the arguments are identical. If the arguments are not
identical, fal sestatements are assembled. The comparison is not case sensitive.

IFNB Ideal, MASM

IFNB argument
truestatements
[ELSE

fal sestatements |
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that argument is nonblank. If the argument is blank,
fal sestatements are assembl ed.

Chapter 6, Directives 83

84

IFNDEF Ideal, MASM

IFE symbol
truestatements
[ELSE
fal sestatements |
ENDIF
Initiates a conditional block, causing the assembly of truestatements up to the optional
EL SE directive, provided that symbol is not defined. If symbol is defined,
fal sestatements are assembl ed.

%INCL Ideal, MASM

%INCL
Enableslisting of include files. Thisisthe default INCL UDE file listing mode.

INCLUDE Ideal, MASM

INCLUDE " filename "

Includes source code from file filename at the current position in the module being
assembled. If no extension is specified, .ASM is assumed.

INCLUDELIB Ideal, MASM

INCLUDELIB filename or INCLUDELIB "filename"

Causesthe linker to include library filename at link time. If no extension is specified,
.LIB is assumed.

INSTR Ideal, MASM

name INSTR [start,] stringl, string2

name is assigned the position of the first instance of string2 in stringl. Searching begins
at position start (position oneif start not specified). If string2 does not appear anywhere
within stringl, name is set to zero.

IRP ldeal, MASM

IRP parameter,<argl[,arg2]...>
statements
ENDM

Repeats a block of statements with string substitution. statements are assembled once
for each argument present. The arguments may be any text, such as symbols, strings,
numbers, and so on. Each time the block is assembled, the next argument in thelist is
substituted for any instance of parameter in the statements.

Paradigm Assembler User's Guide

IRPC Ideal, MASM

IRPC parameter, string
statements
ENDM

Repeats a block of statements with character substitution. statements are assembled
once for each character in string. Each time the block is assembled, the next character in
the string is substituted for any instances of parameter in statements.

JMP Ideal, MASM

JMP<instance ptr>METHOD{ <object_name>:}

<method_name>USES{ segreg:} offsreg}
Functions exactly like CALL..METHOD except that it generates a IMP instead of a
CALL and it cleans up the stack if there are LOCAL or USES variables on the stack.
Use primarily for tail recursion.

JUMPS Ideal, MASM

JUMPS

Causes Paradigm Assembler to look at the destination address of a conditional jump
instruction, and if it istoo far away to reach with the short displacement that these
instructions use, it generates a conditional jump of the opposite sense around an
ordinary jump instruction to the desired target address. This directive has the same
effect as using the /JJUM PS command-line option.

LABEL Ideal, MASM

name LABEL type

LABEL name type

Defines a symbol name to be of type type . name must not have been defined previously
in the source file. type must be one of the following: NEAR, FAR, PROC, BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD,
TBYTE, or astructure name.

.LALL MASM

.LALL
Enables listing of macro expansions.

LARGESTACK ldeal, MASM

LARGESTACK
Indicates that the stack is 32 hit.

.LFCOND MASM

.LFCOND
Shows al statementsin conditional blocks in the listing.

Chapter 6, Directives 85

86

%LINUM Ideal, MASM

%LINUM size

Sets the width of the line-number field in listing file to size columns. The default is four
columns.

%LIST ldeal, MASM

%LIST
Shows source linesin the listing. Thisis the default listing mode.

.LIST MASM

LIST
Synonymous with % L1ST. MASM mode only.

.LOCAL MASM

In macros.

LOCAL symbol [,symbol]...

In procedures:

LOCAL localdef [,localdef ... [= symbol]

Defines local variables for macros and procedures. Within a macro definition, LOCAL
defines temporary symbol names that are replaced by new unique symbol names each
time the macro is expanded. LOCAL must appear before any other statementsin the
macro definition.

Within aprocedure, LOCAL defines names that access stack locations as negative
offsetsrelative to the BP register. If you end the argument list with an equal sign (=)
and a symbol, that symbol will be equated to the total size of the local symbol block in
bytes. Each localdef has the following syntax (boldface brackets are literal):

|l ocalnane :[[distance] PTR] type [: count]
or
localnane [[count]][:[distance] PTR] type]
localname is the name you'll useto refer to thislocal symbol throughout the procedure.

type is the data type of the argument and can be one of the following: WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, or a
structure name. If type is not specified using the alternative syntax, WORD sizeis
assumed.

count specifies how many elements of the specified type to allocate on the stack. Using
distance and PTR includes debugging information for the integrated debugger, telling it
that thislocal variable isreally a pointer to another data type.

LOCALS Ideal, MASM

LOCALS] prefix]

Enables local symbols, whose names will begin with two at-signs (@@@@) or the
two-character prefix if it is specified. Local symbols are automatically enabled in Ideal
mode.

Paradigm Assembler User's Guide

MACRO Ideal, MASM

MACRO name [parameter [,parameter]...]
name MACRO [parameter [,parameter]...]

Defines a macro to be expanded later when name is encountered. parameter isa
placeholder that you use in the body of the macro definition wherever you want to
substitute one of the actual arguments the macro is called with.

%MACS Ideal, MASM

%MAC
Enables listing of macro expansions.

MASKFLAG Ideal, MASM

flagsreg MASKFLAG flagsreg

Optimized form of AND that clears bits with the shortest possible instruction. Use only
if the resulting contents of the flags registers are unimportant.

MASM Ideal, MASM
MASM

Enters MASM assembly mode. Thisis the default assembly mode for Paradigm
Assembler.

MASM51 Ideal, MASM
MASM51

Enables assembly of some MASM 5.1 enhancements.

MODEL Ideal, MASM

MODEL [model modifier | memorymodel [modulename |

[,[language modifier | language]
Sets the memory model for simplified segmentation directives. model modifier is can
come before memorymodel or at the end of the statement and must be either
NEARSTACK or FARSTACK if present. memorymodel is SMALL, MEDIUM,
COMPACT, LARGE, or HUGE . modulename is used in the large models to declare
the name of the code segment. language modifier iseither WINDOWS or
NOWINDOWS, to specify generation of MS-Windows procedure entry/exit code.
language specifies which language you will be calling from to access the proceduresin
thismodule: C, PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG.
Paradigm Assembler automatically generates the appropriate procedure entry and exit
code when you use the PROC and ENDP directives. language also tells Paradigm
Assembler which naming conventions to use for public and external symbols, and in
what order procedure arguments were pushed onto the stack by the calling module.
Also, the appropriate form of the RET instruction is generated to remove the arguments
from the stack before returning if required.

.MODEL MASM

.MODEL
Synonymous with MODEL . MASM mode only.

Chapter 6, Directives 87

88

MULTERRRS Ideal, MASM

MULTERRS
Allows multiple errors to be reported on a single source line.

NAME Ideal, MASM

NAME modulename
Sets the object file's module name.

%NEWPAGE Ideal, MASM

%NEWPAGE
Starts a new page in the listing file.

%NOCONDS Ideal, MASM

%NOCONDS
Disables the placement of statements in conditional blocksin the listing file.

%NOCREF ldeal, MASM

%NOCREF [symbal, ...]

Disables cross-reference listing (CREF) information accumulation. If you supply one or
more symbol names, cross-referencing is disabled only for those symbols.

%NOCTLS Ideal, MASM

%NOCTLS

Disables placement of listing-control directivesin thelisting file. Thisis the default
listing-control mode for Paradigm Assembler.

NOEMUL Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated as real
instructions, instead of emulated instructions. When your program is executed, you
must have an 80x87 coprocessor installed or these instructions will not work properly
This is the default floating-point assembly mode for Paradigm Assembler.

%NOINCL ldeal, MASM

%NOINCL
Disableslisting of sourcelinesfrom INCLUDE files.

NOJUMPS Ideal, MASM

NOJUMPS

Disables stretching of conditional jumps enabled with JUMPS. This is the default mode
for Paradigm Assembler.

Paradigm Assembler User's Guide

%NOLIST Ideal, MASM

NOLIST
Disables output to the listing file.

NOLOCALS ldeal, MASM

NOLOCALS

Disableslocal symbols enabled with LOCALS. Thisisthe default for Paradigm
Assembler's MASM mode.

NOMACS Ideal, MASM

%NOMACS

Lists only macro expansions that generate code. This is the default macro listing mode
for Paradigm Assembler.

NOMASMS51 Ideal, MASM

NOMASMS51

Disables assembly of certain MASM 5.1 enhancements enabled with MASM51. Thisis
the default mode for Paradigm Assembler.

NOMULTERRS Ideal, MASM

NOMULTERRS

Allows only asingle error to be reported on a source line. Thisisthe default error-
reporting mode for Paradigm Assembler.

NOSMART Ideal, MASM

NOSMART
Disables code optimizations that generate different code than MASM.

%NOSYMS Ideal, MASM

%NOSYMS
Disables placement of the symbol table in the listing file.

%NOTRUNC ldeal, MASM

%NOTRUNC

Prevents truncation of fields whose contents are longer than the corresponding field
widthsin the listing file.

NOWARN Ideal, MASM

NOWARN [warnclass |

Disables warning messages with warning identifier warnclass, or all warning messages
if warnclassis not specified.

Chapter 6, Directives 89

90

ORG Ideal, MASM

ORG expression
Sets the location counter in the current segment to the address specified by expression.

%OUT MASM

%O0OUT text
Displays text on screen.

PAGE MASM

PAGE [rows] [,cols]
Synonymous with % PAGESIZE. MASM mode only.

%PAGESIZE Ideal, MASM

%PAGESIZE [rows] [,cols]

Sets the listing page height and width, starts new pages. rows specifies the number of
lines that will appear on each listing page (10..255). cols specifies the number of
columns wide the page will be (59..255). Omitting rows or cols leave the current setting
unchanged. If you follow % PAGESIZE with aplussign (+), anew page starts, the
section number is incremented, and the page number restarts at 1. % PAGESI ZE with
no arguments forces the listing to resume on a new page, with no change in section
number.

%PCNT ldeal, MASM

%PCNT width

Sets segment:offset field width in listing file to width columns. The default is 4 for
16-bit segments and 8 for 32-bit segments.

%POPLCTL Ideal, MASM

%POPLCTL

Resets the listing controls to the way they were when the last % PUSHL CTL directive
was issued.

PROC Ideal, MASM

PROC [language modifier][language] name [distance]
[USES items,] [argument [,argument]...]
[RETURNS argument [,argument]...]

name PROC [language modifier] [language] [distance]

[USES items,] [argument [,argument]...]

[RETURNS argument [,argument]...]
Defines the start of procedure name. language modifier is either WINDOWS or
NOWINDOWS, to specify generation of MS-Windows entry/exit code. language
specifies which language you will be calling from to access this procedure: C,
PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG.

Paradigm Assembler User's Guide

This determines symbol naming conventions, the order of any arguments on the stack,
and whether the arguments will be left on the stack when the procedure returns.
distanceis NEAR or FAR and determines the type of RET instruction that will be
assembled at the end of the procedure. items isalist of registers and/or single-token
data items to be pushed on entry and popped on exit from the procedure. argument
describes an argument the procedure is called with. Each argument has the following
syntax:

argnanme [[count1]][[:distance] [PTRItype][: count 2]

argname is the name you'll use to refer to this argument throughout the procedure.
distanceis NEAR or FAR to indicate that the argument is a pointer of the indicated
size. type isthe data type of the argument and can be BY TE, WORD, DWORD,
FWORD, PWORD, QWORD, TBYTE, or astructure name. WORD is assumed if
none is specified. count1 and count2 are the number of elements of type. PTR tells
Paradigm Assembler to emit debug information to let the integrated debugger know that
the argument is a pointer to adataitem. Using PTR without distance causes the pointer
Size to be based on the current memory model and segment address size. RETURNS
introduces one or more arguments that won't be popped from the stack when the
procedure returns.

PUBLIC Ideal, MASM

PUBLIC [language] symbol [,[language]symbal]...

Declares symbol to be accessible from other modules. If language is specified (C,
PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG), symbol is made public
after having the naming conventions of the specified language applied to it.

PUBLICDLL Ideal, MASM

PUBLICDLL [language] symbol[,[language]symbol]...

Declares symbol to be accessible from other modules as a dynamic link entry point.
symbol is published in the object file as a dynamic link entry point so that it can be
accessed by other programs. If languageis specified (C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG), symbol is made public after having the
naming conventions of the specified language applied to it.

PURGE Ideal, MASM

PURGE macroname [,macroname]...
Removes macro definition macroname.

%PUSHLCTL Ideal, MASM

%PUSHLCTL
Saves current listing controls on a 16-level stack.

PUSHSTATE Ideal, MASM

PUSHSTATE
Saves current listing controls on a 16-level stack.

Chapter 6, Directives 91

92

QUIRKS Ideal, MASM

QUIRKS
Allows you to assemble a source file that makes use of one of the true MASM bugs.

.RADIX MASM

.RADIX radix
Synonymous with RADIX. MASM mode only.

RADIX Ideal, MASM

RADIX radix
Sets the default radix for integer constantsin expressionsto 2, 8, 10, or 16.

RECORD Ideal, MASM

name RECORD field [,field]...
RECORD name field [,field]...

Defines record name that contains bit fields. Each field describes a group of bitsin the
record and has the following format (boldface items are literal):

fi el dname: wi dt h[=expr essi on]
fieldname is the name of afield in the record. width (1..16) specifies the number of bits
in the field. If the total number of bitsin all fieldsis 8 or less, the record will occupy 1

byte; 9..16 bits will occupy 2 bytes; otherwise, it will occupy 4 bytes. expression
provides a default value for the field.

REPT ldeal, MASM

REPT expression
statements
ENDM

Repeats the statement block until expression evaluates TRUE.

SALL MASM

SALL
Suppresses the listing of al statements in macro expansions. MASM mode only.

SEGMENT Ideal, MASM

SEGMENT name [align] [combine] [usg] ['class]
name SEGMENT [align] [combine] [use] ['class]

Defines segment name with full attribute control. If you have already defined a segment
with the same name, this segment is treated as a continuation of the previous one. align
specifies the type of memory boundary where the segment must start: BY TE, WORD,
DWORD, PARA (default), or PAGE. combine specifies how segments from different
modules but with the same name will be combined at link time: AT expression (locates
segment at absolute paragraph address expression), COMMON (locates this segment
and all other segments with the same name at the same address), MEM ORY
(concatenates all segments with the same name to form a single contiguous segment),
PRIVATE (does not combine this segment with any other segments; thisis the default

Paradigm Assembler User's Guide

used if none specified), PUBLIC (same as MEM ORY above), STACK (concatenates
all segments with the same name to form a single contiguous segment, then initializes
SS to the beginning of the segment and SP to the length of the segment. use specifies
the default word size for the segment if 386 code generation is enabled, and can be
either USE16 or USE32. class controls the ordering of segments at link time: segments
with the same class name are |oaded into memory together, regardiess of the order in
which they appear in the sourcefile.

SEQ MASM

SEQ

Sets sequential segment-ordering. This is the default ordering mode for Paradigm
Assembler. .SEQ has the same function as the /s command-line option.

SETFIELD Ideal, MASM

SETFIELD <field_name><destination_r/m>,<source reg>

Generates code that sets avalue in arecord field. Sets the field in the destination
register or memory address with the contents of a source register.

SETFLAG Ideal, MASM

flagreg SETFLAG flagreg

Optimized form of OR that sets bits with shortest possible instruction. Use only if the
resulting contents of the flags register is unimportant.

.SFCOND MASM

.SFCOND
Prevents statements in false conditional blocks from appearing in the listing file.

SIZESTR Ideal, MASM

name SIZESTR string
Assigns the number of charactersin string to name. A null string has a length of zero.

SMALLSTACK Ideal, MASM

SMALLSTACK
Indicates that the stack is 16 hit.

SMART Ideal, MASM

SMART
Enables al code optimizations.

.STACK MASM

STACK [size]
Synonymous with STACK. MASM mode only.

Chapter 6, Directives 93

94

STACK Ideal, MASM

STACK [size]
Defines the start of the stack segment, alocating size bytes. 1024 bytes are allocated if
size is not specified.

.STARTUP MASM

STARTUP

Provides initialization code. MASM mode only. Equivalent to STARTUPCODE.
MASM mode only.

STARTUPCODE Ideal, MASM

STARTUPCODE
Provides initialization code and marks the beginning of the program.

STRUC Ideal, MASM

[name] STRUC{ <modifiers>}{ <parent_name>}{ METHOD<method _list>}
<structure_data>

ENDS|[name |

STRUC [name [{ <modifiers>}{ <parent_name>}{ METHOD<method_list>}
<structure data>

ENDS|[name]

parent_name is the name of the parent object's data structure. method _list islike that of
TABLE. structure_data is any (additional) data present in an instance of the object.
modifiers can be GLOBAL, NEAR, or FAR.

SUBSTR ldeal, MASM51

name SUBSTR string, position [,size]

Defines a new string name consisting of characters from string starting at position, with
alength of size. All the remaining charactersin string, starting from position, are
assigned to name if size is not specified.

SUBTTL MASM

SUBTTL "text"
Synonymous with %SUBTTL. MASM mode only.

%SUBTTL Ideal, MASM

%SUBTTL "text"
Sets subtitle in listing file to text.

%SYMS ldeal, MASM

%SYMS

Enables symbol table placement in listing file. Thisis the default symbol listing mode
for Paradigm Assembler.

Paradigm Assembler User's Guide

TABLE Ideal, MASM

TABLE name [table_member [,table_member...]]
Constructs a table structure used to contain method pointers for objects.

%TABSIZE Ideal, MASM

%TABSIZE width

Sets the number of columns between tabs in the listing file to width. The default is 8
columns.

TBLINIT Ideal, MASM

TBLINIT
Initializes pointer in an object to the virtual method table.

TBLINST Ideal, MASM

TBLINST

Creates an instance of the virtual table for the current object and defines
@TableAddr_<object>. Must be used after every object definition that includes virtual
methods, so that the virtual tableis allocated. Y ou should use this directive in only one
module of your program.

TBLPTR Ideal, MASM

TBLPTR

Places avirtua table pointer within the object data. Defines a structure member of the
name @M ptr_<object>. This can only be used inside an object definition.

TESTFLAG Ideal, MASM

flagreg TESTFLAG flagreg
Optimized form of TEST that tests bits with the shortest possible instruction.

%TEXT Ideal, MASM

%TEXT width
Sets width of source field in listing file to width columns.

.TFCOND MASM

TFCOND
Toggles conditional block-listing mode. MASM mode only.

%TITLE Ideal, MASM

%TITLE" text "
Setstitlein listing file to text.

Chapter 6, Directives 95

96

%TRUNC Ideal, MASM

%TRUNC
Truncates listing fields that are too long.

TYPEDEF Ideal, MASM

TY PEDEF type_name complex_type
type_name TY PEDEF complex_type

Defines named types.

UDATA Ideal, MASM

UDATA

Defines the start of the uninitialized data segment in your module. Y ou must first have
used the .M ODEL directive to specify amemory model. The data segment isput in a
group called DGROUP, which aso contains the segments defined with the .STACK,
.CONST, and .DATA directives.

UDATASEG Ideal, MASM

UDATASEG
Definesthe start of an uninitialized data segment.

UFARDATA Ideal, MASM

UFARDATA
Defines the start of an uninitialized far data segment.

UNION Ideal, MASM (disabled by QUIRKS)

UNION name
fields

ENDS|[name |

name UNION
fields

[name] ENDS

Defines aunion called name. A union isjust like a STRUC except that all its members
have an offset of zero from the start of the union. Thisresultsin a set of fields that are
overlayed, allowing you to refer to the memory area defined by the union with different
names and different data sizes. The length of aunion isthe length of its largest member,
not the sum of the lengths of its membersasin a STRUC. fields define the fields that
comprise the union. Each field uses the normal data allocation directives (DB, DW, and
so on.) to define its size.

USES Ideal, MASM

USES item [,item]...

Indicates which registers or single-token data items you want to have pushed at the
beginning of the enclosing procedure and which ones you want popped just before the
procedure returns. Y ou must use this directive before the first instruction that actually
generates code in your procedure.

Paradigm Assembler User's Guide

VERSION Ideal, MASM

VERSION <version_|D>
Places Paradigm Assembler in the equivalent operating mode for the specified version.

WARN Ideal, MASM

WARN [warnclass]
Enables the type of warning message specified with warnclass, or all warnings if

warnclass is not specified. warnclass may be oneof : ALN, ASS, BRK, GTP, ICG,
LCO, MCP, OPI, OPP, OPS, OVF, PDC, PRO, PQK, RES, or TPI.

WHILE Ideal, MASM
WHILE while_expression

macro body
ENDM

Repeats a macro body until while_expression evaluatesto O (false).

XALL MASM

XALL
Causes only macro expansions that generate code or data to be listed.

XCREF MASM

XCREF
Disables cross-reference listing (CREF) information accumulation.

XLIST MASM

XLIST
Disables subsequent output to listing file. MASM mode only.

Predefined symbols

@Cpu

Two predefined symbols, @Cpu and @WordSize, can give you information about the
type of processor you're using, or the size of the current segment. Here are descriptions
of these symbols:

Function

Remarks

Numeric equate that returns information about current processor

The value returned by @Cpu encodes the processor type in a number of single-bit
fields:

Bit Description

0 8086 instructions enabled
1 80186 instructionsenabled
2 80286 instructions enabled
3 386 instructions enabled

4 486 instructions enabled

Chapter 6, Directives 97

Table continued Bjt Description

5 586 instructions enabled

7 Privileged instructions enabled (80286,386,486)
8 8087 numeric processor instructions

10 80287 numeric processor instructions

11 387 numeric processor instructions

The bits not defined here are reserved for future use. Mask them off when using @Cpu
so that your programs will remain compatible with future versions of Paradigm
Assembler.

Since the 8086 processor family is upward compatible, when you enable a processor
type with adirective like .286, the lower processor types (8086, 80186) are
automatically enabled as well.

This equate only provides information about the processor you've selected at assembly
time using the .286 and related directives. The processor type and the CPU your
program is executing on at run time are not indicated.

Example | PUSH = @pu AND 2 ;allow i mmedi ate push on i 86 and above
I F 1 PUSH
PUSH 1234
ELSE
nmov ax, 1234
push ax
ENDI F

@WordSize
Function Numeric equate that indicates 16- or 32-bit segments

Remarks @WordSizereturns 2 if the current segment is a 16-bit segment, or 4 if the segmentisa
32-bit segment.

Example |F @erdSize EQ 4
mov esp, 0100h
ELSE
mov sp, 0l 00h
ENDI F

98 Paradigm Assembler User's Guide

Chapter
7

Using program models and segmentation

Each processor in the 80x86 family has at least four segment registers: CS, DS, ES, and
SS. These registers contain a segment value that describes a physical block of memory
to 64K in length (or up to 4 gigabytes on the 80386 and above). All addresses are
calculated using one of these segment registers as a base value.

The meaning of the value stored in a segment register differs depending on whether the
processor isusing real mode (the ONLY mode available for the 8086 and 80186),
where the segment value is actually a paragraph number, or protected mode, where a
segment register contains a selector (which has no numerical significance).

The operating system or platform for a program determines whether the program
operatesin rea mode or protected mode. If you use protected mode on the 80386 or
80486, the operating system also determines whether large (4 gigabyte) segments are
permitted. Paradigm Assembler supports al of these environments equally well.

In the general 80x86 model, programs are composed of one or more segments, where
each segment is a physically distinct piece of code or data (or both) designed to be
accessed by using a segment register. From this general scheme, many arbitrary
organizations are possible. To apply some order to the chaos, some standard memory
models have been devised. Since many high-level languages adhere to these
conventions, your assembly language programs should also.

One obvious way to break up a program is to separate the program instructions from
program data. Y ou can classify each piece of program data as initialized (containing an
initial value, such as text messages), or uninitialized (having no starting value).

The stack isusually afairly large portion of the uninitialized data. It's also special
because the SS and SP registers are usually initialized automatically to the stack area
when you execute a program. Thus, the standard memory models treat the stack as a
Separate segment.

Y ou can aso combine segments into groups. The advantage of using groups is that you
can use the same segment value for all the segments in the group. For example,
initialized data, uninitialized data, and stack segments are often combined into a group
so that the same segment value can be used for all of the program data.

This chapter describes how to use models and segments in your code and the directives
that make this possible.

The MODEL directive

The MODEL directive lets you specify one of several standard segmentation models
for your program. Y ou can also use it to specify alanguage for the procedures in your
program.

Here's the syntax for the M ODEL directive:

MCODEL [nodel _nodifier] nenory_nodel [code segnment nane]
[, [language_nodifier] |anguage]
[, nodel nodifier]

Chapter 7, Predefined symbols 99

In MASM mode, you can use the same syntax, but with the .MODEL directive.

memory_model and model_modifier specify the segmentation memory model to use for
the program.

The standard memory models available in Paradigm Assembler have specific segments
available for:

. code

. initialized data (DATA)

. unitialized data (BSS)

. farinitidized data (FAR_DATA)
. faruninitialized data (FAR_BSS)
. constants

. Stack

The code segment usually contains a module's code (but it can also contain data if
necessary). Initialized data and constants are treated separately for compatibility with
some high level languages. They contain data such as messages where the initial value
isimportant. Uninitialized data and stack contain data whose initial valueis
unimportant. Far initialized dataisinitialized data that is not part of the standard data
segment, and can be reached only by changing the value of a segment register. A
module can have more than one far initialized data segment. Far uninitialized datais
similar, except that it contains uninitialized data instead of initialized data.

The specific memory model determines how these segments are referenced with
segment registers, and how they are combined into groups (if at al). When writing a
program, you should keep these segments separate, regardless of the program's size.

Then, you can select the proper model to group the segments together. If you keep these
segments separate and your program grows, you can choose alarger model.

The memory modél is the only required parameter of the M ODEL directive. Table 7.1
describes each of the standard memory models.

The model _modifier field lets you change certain aspects of the model. Y ou can specify
more than one model modifier, if you wish. Table 7.2 shows the available model
modifiers.

Note that you can specify the model modifier in two places, for compatibility with
MASM 5.2. If you don't use amodel specifier, Paradigm Assembler assumes the
NEARSTACK modifier, and USE32 (if the 80386 or 80486 processor is selected).

Use the optional code_segment_name field in the large code models to override the
default name of the code segment. Normally, this is the module name with _TEXT

appended to it.
Table 7-1 Model Code/Data Regular Descriptions
Standard assumptions
memory models
TINY near/near cs=dgroup All code and data combined into asingle group called
ds=ss=dgroup DGROUP. Thismodel is used for.COM assembly

programs. Some languages such as Paradigm C++
don't support this model.

100 Paradigm Assembler User's Guide

Table 7-1
continued

Table 7-2
Model modifiers

Model Code/Data Regular Descriptions
assumptions

SMALL near/near cs= _text Codeisin asingle segment. All datais combined into
ds=ss=dgroup agroup called DGROUP. Thisisthe mog common

model for stand-alone assembly program

MEDIUM far/near cs=<module>_text Code uses multiple segments, one per module. Data
ds=ss=dgroup isinagroup called DGROUP.

COMPACT near/far cs=-text Codeisinasingle segment. All near dataisina
ds=ss=dgroup group called DGROUP. Far pointers are used to

reference data.

LARGE far/far cs=<module>_text Code uses multiple segments, one per module. All
ds=ss=dgroup near dataisin agroup called DGROUP. Far pointers
are used to reference data.
HUGE far/far cs=<module>_text Sameas LARGE modél, asfar as Paradigm
ds=ss-dgroup Assembler isconcerned.
FLAT near/near Ccs=_text Thisisthe same asthe SMALL model, but tailored
ds=ss=flat for use under 32-bit flat memory models.
Model modifier Function
NEARSTACK Indicates that the stack segment should be included in DGROUP (if DGROUP s
present), and SS should point to DGROUP.
FARSTACK Specifiesthat the stack segment should never be included in DGROUP, and SS
should point to nothing.
USE16 Specifies (when the 80386 or 80486 processor is selected) that 16-bit segments
should be used for al segmentsin the selected model.
USE32 Indicates (when the 80386 or 80486 processor is selected) that 32-bit segments
should be used for all segmentsin the selected model.
DOS, OS DOS Specifies that the application platform isreal mode.
NT, OS NT Specifies that the application platform is Win32.

language and language_modifier together specify the default procedure calling
conventions, and the default style of the prolog and epilog code present in each
procedure. They also control how to publish symbols externally for the linker to use
Paradigm Assembler will automatically generate the procedure entry and exit code that
is proper for procedures using any of the following interfacing conventions. PASCAL,
C, CPP (C++), SYSCALL, STDCALL, BASIC, FORTRAN, PROLOG, and
NOLANGUAGE. If you don't specify alanguage, Paradigm Assembler assumes the
default language to be NOLANGUAGE.

Use language _modifier to specify additional prolog and epilog code when you write
procedures for Windows. These options are: NORMAL, WINDOWS, ODDNEAR and
ODDFAR. If you don't specify an option, Paradigm Assembler assumes the default to

be NORMAL.

Also note that you can override the default language and language modifier when you
define a procedure. See Chapter 10 for further details.

Y ou can additionally override the default language when you publish a symbol.

Chapter 7, Predefined symbols

101

Table 7-3
Model modifiers

102

Symbols created by the MODEL directive

When you use the MODEL directive, Paradigm Assembler creates and initializes
certain variables to reflect the details of the selected model. These variables can help
you write code that's model independent, through the use of conditional assembly
Statements.

The @Model symbol
The @M odel symbol contains a representation of the model currently in effect. It is
defined as a text macro with any of the following values:

tiny nodel is in effect
smal | or flat

conpact

medi um

| arge

huge

t chuge,

t pascal

O~NOOTR~RWNBE

The @32Bit symbol

The @32Bit symbol contains an indication of whether segmentsin the currently
specified model are declared as 16 bit or 32 bit. The symbol has avalue of O if you
specified 16-bit segmentsin the MODEL directive, or | if you indicated 32-bit
segments.

The @CodeSize symbol

The @CodeSize text macro symbol indicates the default size of a code pointer in the
current memory model. It's set to O for the memory models that use NEAR code
pointers (SMALL, FLAT, COMPACT), and 1 for memory models that use FAR code
pointers (all others).

The @DataSize symbol

The @DataSize text macro symbol indicates the default size of a data pointer in the
current memory model. It's set to 0 for the memory models using NEAR data pointers
TINY, SMALL, FLAT, MEDIUM), 1 for memory models that use FAR data pointers
(COMPACT, LARGE), and 2 for models using huge data pointers (HUGE).

The @Interface symbol

The @I nterface symbol provides information about the language and operating system
selected by the MODEL statement. This text macro contains a number whose bits
represent the following values:

Valuein bits0-6 Meaning

NOLANGUAGE
C

SYSCALL
STDCALL
PASCAL
FORTRAN
BASIC
PROLOG

N o o WN - O

Paradigm Assembler User's Guide

Table 7-3 Valuein bits0-6 Meaning

continued

Table 7-4
Simplified

segment
directives

See Appendix A
for class names
and alignments
of the segments
created with the
simplified
segment
directives.

8 CPP

Bit 7 can have avaue of O for DOS/Windows, or 1 for 32-bit flat models.

For example, the value 01h for @I nter face shows that you selected areal mode target
operating system and the C language.

Simplified segment directives

Once you select a memory model, you can use simplified segment directives to begin
the individual segments. Y ou can only use these segmentation directives after a
MODEL directive specifies the memory model for the module. Place as many
segmentation directives as you want in a module; Paradigm Assembler combines al the
pieces with the same name to produce one segment (exactly asif you had entered all the
pieces at once after a single segmentation directive). Table 7.4 contains alist of these

directives.

Directive

Description

CODESEG [name]

.CODE [name]
DATASEG

.DATA
CONST

.CONST
UDATASEG

DATA?
STACK [size]

STACK [size€]
FARDATA [name]

.FARDATA [name]
UFARDATA [name]

Chapter 7, Predefined symbols

Begins or continues the module's code segment. For models whose code is
FAR, you can specify anamethat is the actual name of the segment. Note
that you can generate more than one code segment per modulein thisway.

Same as CODESEG. MASM mode only.
Begins or continues the modulesNEAR or default initialized data segment.

Same asDATASEG. MASM mode only.
Begins or continues a modul€'s constant data segment. Constant datais
dways NEAR and is equivalent to initialized data.

Same asCONST. MASM mode only.

Begins or continues a modulesNEAR or default unintialized data segment.
Be careful to include only uninitialized datain this segment or the resulting
executable program will be larger than necessary. See Chapter 12 for a
description of how to alocate uninitiaized data.

Same asUDATASEG. MASM mode only.

Begins or continues amodul€e's stack segment. The optional size parameter
specifies the amount of stack to reserve, in words. If you don't specify a
size, Paradigm Assembler assumes 200h words (1K bytes).

INnMASM mode, any labels, code, or datafollowing the STACK statement
will not be considered part of the stack segment. Ideal mode, however,
reserves the specified space, and leaves the stack segment open so that you
can add labels or other uninitialized data.

Y ou usually only need to use the stack directive if you are writing a stand-
aone assembly language program; most high-level languages will create a
stack for you.

Same as STACK. MASM mode only.

Beginsor continues the far initialized data segment of the specified name.
If you don't specify aname, Paradigm Assembler uses the segment name
FAR_DATA. You can have more than onefar initialized data segment per
module.

Same asFARDATA. MASM mode only

Begins or continues the far initialized data segment of the specified name.
If you don't specify aname, Paradigm Assembler uses the segment name
FAR_BSS. You can have more than onefar initialized data segment per
module.

103

Table 7-4
continued

Table 7-5
Simplified
segment
directive
symbols.

Directive Description

.FARDATA? [name] Same asUFARDATA. MASM mode only.

Symbols created by the simplified segment directives

When you use the simplified segment directives, they create variables that reflect the
details of the selected segment, just as the MODEL directive does

Symbol name Meaning

@code the segment or group that CSis assumed to be
@data the segment or group that DS is assumed to be
@fardata the current FARDAT A segment name
@fardata? the current UFARDATA segment name
@curseg the current segment name

@stack the segment or group that SSis assumed to be

The STARTUPCODE directive

104

The STARTUPCODE directive provides initialization code appropriate for the current
model and operating system. It also marks the beginning of the program. Here's its
syntax:

STARTUPCODE

or
. STARTUP ;. (MASM node onl y)

STARTUPCODE initializesthe DS, SS, and SP registers. For the SMALL,
MEDIUM, COMPACT, LARGE, and HUGE models, Paradigm Assembler sets DS
and SSto @data, and SP to the end of the stack.

The @Startup symbol

The @Startup symbol is placed at the beginning of the startup code that the
STARTUPCODE directive generates. It is a near label marking the start of the
program.

The EXITCODE directive

Y ou can use the EXITCODE directive to produce termination code appropriate for the
current operating system. Y ou can use it more than once in amodule, for each desired
exit point. Here's its syntax:

EXI TCODE [return_val ue_expr]
Y ou can use the following syntax only in MASM mode:

EXIT [return_val ue_expr]

The optional return_value _expr describes the number to be returned to the operating
system. If you don't specify areturn value, Paradigm Assembler assumes the valuein
the AX register.

Paradigm Assembler User's Guide

Defining generic segments and groups

Table 7-6
Segment
combination
attribute

Most applications can use segments created using the standard models. These standard
models, however, are limited in their flexibility. Some applications require full control
over all aspects of segment generation; generic segment directives provide this
flexibility.

The SEGMENT directive

The SEGMENT directive opens a segment. All code or data following it win be
included in the segment, until a corresponding ENDS directive closes the segment.
The Ideal mode syntax for the SEGMENT directiveis:

SEGQVENT nane [attri butes]

Y ou can use the following syntax for MASM mode:
nane SEGVENT [attri butes]

name is the name of the segment. Y ou should name segments according to their usages.

Y ou can open and close a segment of the same name many times in a single module. In
this case, Paradigm Assembler concatenates together the sections of the segment in the
order it finds them. Y ou only need to specify the attributes for the segment the first time
you open the segment.

attributes includes any and all desired segment attribute values, for each of the
following:

. segment combination attribute

. segment class attribute

. segment alignment attribute

. Segment size attribute

. Segment access attribute

Paradigm Assembler processes attribute values from |eft to right.

Segment combination attribute

The segment combination attribute tells the linker how to combine segments from
different modules that have the same name. The following table lists the legal values of
the segment combination attribute. Note that if you don't specify the combine type,
Paradigm Assembler assumes PRIVATE.

Attribute value M eaning

PRIVATE Segment win not be combined with any other segments of the
same name outside of thismodule.

PUBLIC Segment will be concatenated with other segments of the same
name outside of this module to form a single contiguous segment.

MEMORY Same as PUBLIC. Segment will be concatenated with other

segments of the same name outside this modul e to form a single contiguous
segment, used as the default stack. The linker initidizes values for theinitial SS
and SP registersfrom STACK so that they point to the end of these segments.

Chapter 7, Predefined symbols 105

Table 7-7 Attribute value M eaning
comtinue

COMMON L ocates this segment and al other segments with the same name
a the same address. All segments of this name overlap shared memory. The
length of the resulting common segment is the length of the longest segment
from a single module.

VIRTUAL Definesaspecia kind of segment that must be declared inside an
enclosing segment. The linker treats it as a common area and attachesit to the
enclosing segment. The virtual segment inherits its attributes from the enclosing
segment. The assume directive considers avirtual segment to be a part of its
parent segment; in all other ways, avirtual segment isacommon areathat is
combined across modules. This permitsthe sharing of static datathat comesinto
many modules from included files.

AT XXX L ocates the segment at the absol ute paragraph address that the
expression xxx specifies. The linker doesn't emit any dataor codefor AT
segments. Use AT to alow symboalic access to fixed memory locations.

UNINIT Produces awarning message to et you know that you have
inadvertently written initialized data to uninitialized data segments. For
example, you can specify the following to produce awarning message: BSS
SEGVENT PUBLI C WORD UNINI' T ' BSS' . To disable thiswarning
message, use the NOWARN UNI directive. Y ou can reenable the message by
using the WARN UNI directive.

Segment class attribute

The segment class attribute is a quoted string that hel ps the linker determine the proper
ordering of segments when it puts together a program from modules. The linker groups
together al segments with the same class name in memory. A typical use of the class
nameisto group all the code segments of a program together (usually the class CODE
isused for this). Dataand uninitialized data are a'so grouped using the class
mechanism.

Segment alignment attribute

The segment alignment attribute tells the linker to ensure that a segment begins on a
specified boundary. Thisis important because data can be loaded faster on the 80x86
processors if it's properly aligned. The following table lists legal valuesfor this

attribute.

Table 7-8 Attributevalue Meaning

Segment
alignment BYTE No specia alignment, start segment on the next available byte.
atribute \\oRp Start segment on the next word-aligned address.

DWORD Start segment on the next doubleword-aligned address.
PARA Start segment on the next paragraph (16-byte aligned) address.
PAGE Start segment on the next page (256-byte aligned) address.
MEMPAGE Start segment on the next memory page (4Kb aligned) address.

Paradigm Assembler assumes the PARA aignment if you don't specify the alignment
type.

106 Paradigm Assembler User's Guide

Segment size attribute

If the currently selected processor is the 80386, segments can be either 16 bit or 32 bit.
The segment size attribute tells the linker which of these you want for a specific
segment. The following table contains the legal attribute values.

Table 7-9 Attribute value = Meaning

Segment size

attribute values USE16 Segment is 16 bit. A 16-bit segment can contain up to 64K of code and/or data.
USE32 Segment is 32 bit. A 32-bit segment can contain up to 4 gigabytes of code and/or
data.

Paradigm Assembler assumes the USE32 value if you selected the 80386 processor in
MASM mode. In Ideal mode, Paradigm Assembler assumes USE16 by default.

Segment access attribute

For any segment in protected mode, you can control access so that certain kinds of
memory operations are not permitted. The segment access attribute tells the linker to
apply specific access restrictions to a segment. The following table lists the legal values
for this attribute.

Table 7-10 Attribute value Meaning

Segment access

attribute EXECONLY the segment is executable only
EXECREAD the segment is readable and executable
READONLY the segment is readable only
READWRITE the segment is readable and writable

Paradigm Assembler assumes the READONLY attribute if you selected the USE32
attribute but did not specify any of these four attributes.

The ENDS directive

Y ou can use the ENDSdirective to close a segment so that no further datais emitted
into it. Y ou should use the ENDS directive to close any segments opened with the
SEGMENT directive. Segments opened using the simplified segment directives don't
require the ENDS directive.

Here's the syntax of the ENDS directive:

ENDS [nane]

For MASM mode only, you can use the following syntax:
name ENDS

name specifies the name of the segment to be closed. Paradigm Assembler will report
an error message if name doesn't agree with the segment currently open. If you don't
specify a name, Paradigm Assembler assumes the currently-open segment.

The GROUP directive

Y ou can use the GROUP directive to assign segments to groups. A group lets you,
specify a single segment value to access datain al segmentsin the group.

Here's the Ideal mode syntax for the GROUP directive:

Chapter 7, Predefined symbols 107

GROUP name segnent_nane [, segnent_nane...]

Y ou can use the following syntax for MASM mode:
name GROUP segnent_nane [, segnent_nane...]

name is the name of the group. segment_name is the name of a segment you want to
assign to that group.

The ASSUME directive

108

A segment register must be loaded with the correct segment value for you to access data
in a segment. Often, you must do this yourself. For example, you could use the
following code to load the address of the current far data segment into ES:

MOV AX, @ ar dat a
MOV DS, AX

When a program loads a segment value into a segment register, you use that segment
register to access data in the segment. It rapidly becomestiring (and is also poor
programming practice) to specify a specific segment register every time you process
datain memory.

Use the ASSUME directive to tell Paradigm Assembler to associate a segment register
with a segment or group name. This allows Paradigm Assembler to be 'smart enough” to
use the correct segment registers when datais accessed. In fact, Paradigm Assembler
uses the information about the association between the segment registers and group or
segment names for another purpose aswell: in MASM mode, the value that the CS
register is ASSUM Ed to be is used to determine the segment or group alabel belongs
to. Thus, the CS register must be correctly specified in an ASSUME directive, or
Paradigm Assembler will report errors every time you define alabel or procedure.

Here's the syntax of the ASSUME directive:

ASSUME segreg : expression [, segreg : expression]
or

ASSUME NOTHI NG

segreg isone of CS, DS, ES or SSregisters. If you specify the 80386 or 80486
processor, you can also use the FS and GS segment registers. expression can be any
expression that evaluates to a group or segment name. Alternatively, it can be the
keyword NOTHING. The NOTHING keyword cancels the association between the
designated segment register and any segment or group name.

ASSUME NOTHING removes associations between all segment registers and segment
Or group hames.

Y ou can use the ASSUM E directive whenever you modify a segment register, or at the
start of a procedure to specify the assumptions at that point. In practice, ASSUMEs are
usually used at the beginning of a module and occasionally within it. If you use the
MODEL statement, Paradigm Assembler automatically sets up the initial ASSUMEs
for you.

If you don't specify a segment in an ASSUME directive, its ASSUMEd value is not
changed.

For example, the following code shows how you can load the current initialized far data
segment into the DS register, access memory in that segment, and restore the DS
register to the data segment value.

Paradigm Assembler User's Guide

MOV AX, @ ar dat a

MOV DS, AX

ASSUVE DS: @ ar dat a

MOV BX, <f ar _dat a- Vari abl e>
MOV AX, @lat a

MOV DS, AX

ASSUME DS: @lat a

Segment ordering

The linker arranges and locates all segments defined in a program'’s object modules.
Generally, the linker starts with the order in which it encounters the segmentsin a
program's modules. Y ou can alter this order using mechanisms such as segment
combination and segment classing.

There are other ways to affect the way the linker arranges segments in the final
program. For example, the order in which segments appear in a modul€'s source can be
changed. There are also directives that affect segment ordering. Descriptions of these
follow.

Changing a module's segment ordering

The order of segmentsin each module determines the starting point for the linker's
location of segmentsin the program. In MASM 1.0, 2.0, and 3.0, segments were passed
to the linker in alphabetical order. Paradigm Assembler provides directives (in MASM
mode only) that let you reproduce this behavior.

Note that these directives have the same function as the /A and /S command line
switches. See Chapter 2 for further details.

The .ALPHA directive

The . ALPHA directive specifies alphabetic segment ordering. This directive tells
Paradigm Assembler to place segments in the object file in-al phabetical order
(according to the segment name). Its syntax is

. ALPHA

The .SEQ directive

The .SEQ directive specifies sequential segment ordering, and tells Paradigm
Assembler to place segments in the object file in the order in which they were
encountered in the source file. Since thisis the default behavior of the assembler, you
should usually use the .SEQ directive only to override a previous . ALPHA or a
command line switch. Here's the syntax of SEQ:

. SEQ

The DOSSEG directive

Normally, the linker arranges segments in the sequential order it encounters them
during the generation of the program. When you include a DOSSEG directive in any
module in a program, it instructs the linker to use standard DOS segment ordering
instead. The linker defines this convention to mean the following arrangement of
segments in the final program:

. segments having the class name CODE (typically code segments)

. segments that do not have class name CODE and are not part of DGROUP

. segmentsthat are part of DGROUP in the following order:

Chapter 7, Predefined symbols 109

Table 7-11
Stack size
modification
directives

110

. segmentsnot of class BSS or STACK (typically initialized data)
. segmentsof class BSS (typically uninitialized data)
. segmentsof class STACK (stack space)

The segments within DGROUP are located in the order in which they were defined in
the source modules.

DOSSEG isincluded in PASM for backward compatibility only. It is recommended
that you do not use the DOSSEG directive in new assembly programs. In addition, do
not use the DOSSEG directive if you're interfacing assembly programs with C
programs.

Changing the size of the stack

A procedure's prolog and epilog code manipulates registers that point into the stack. On
the 80386 or 80486 processor, the stack segment can be either 16 bits or 32 bits.
Paradigm Assembler therefore must know the correct size of the stack before it can
generate correct prolog and epilog code for a procedure.

The stack size is automatically selected if you selected a standard model using the
MODEL statement.

Paradigm Assembler provides directives that can set or override the default stack size
for procedure prolog and epilog generation. The following table lists these directives.

Directive Meaning

SMALLSTACK Indicates that the stack is 16 bit
LARGESTACK Indicates that the stack is 32 bit

Paradigm Assembler User's Guide

Chapter

38

Defining data types

Defining data types symbolically helps you write modular code. Y ou can easily change
or extend data structures without having to rewrite code by separating the definition of a
data type from the code that uses it, and allowing symbolic access to the data type and
its components.

Paradigm Assembler supports as many or more symbolic data types than most high-
level languages. This chapter describes how to define various kinds of data types.

Defining enumerated data types

Warning!

An enumerated data type represents a collection of values that can be stored in a certain
number of bits. The maximum value stored determines the actual number of bits
required.
Here is the Ideal mode syntax for declaring an enumerated data type:

ENUM nane [enumvar [,enumvar ...]]

Y ou can use the following syntax in MASM mode:
name ENUM [enum var [,enumvar...]]

The syntax of each enum-var is:
var _name [=val ue]

Paradigm Assembler will assign avalue equal to that of the last variable in the fist plus
oneif value isn't present when you assign the specified value to the variable var_name.
Vaues can't berelative or forward referenced. Variablesthat ENUM created are
redefinable numeric variables of global scope.

If you use the same variable name in two enumerated data types, the first value of the
variable will be lost, and errors could result.

name is the name of the ENUM data type. You can useit later in the module to obtain a
variety of information about the values assigned to the variables detailed. See Chapter 5
for information about using enumeration data type names in Paradigm Assembler
expressions.

Y ou can also use enumerated data type names to create variables and allocate memory.
See Chapter 12 for details.

Enumerated data types are redefinable. Y ou can define the same name as an enumerated
data type more than once in amodule.

Paradigm Assembler provides a multiline syntax for enumerated data type definitions
requiring a large number of variables. The symbol '{' starts the multiline definition, and
the symbol '}’ stopsiit.

The Ideal mode syntax follows:

Chapter 8, Defining data types 111

=

ENUM nanme [enumvar [,enumuvar...]] {
[enumvar [,enumvar] ...]

[enumvar [,enumvar] ...]

Y ou can use the following syntax in MASM mode:

nane ENUM [enumvar [,enun_var...]] {
[enumvar [,enumvar] ...]

[enumvar [,enumvar] ...] {

For example, al of the following enumerated data type definitions are equivalent:
foo ENUMfI,f2,f3,f4, ;Original version

foo ENUM { ;Mul tiline version
fl
f2
f3
fa

}

foo ENUMf1,f2, { ; More conpact nultiline version
f3,f4}

Paradigm Assembler doesn't recognize any pseudo ops inside the multiline enumerated
data enumerated data type definition.

Defining bit-field records

112

A record data tape represents a collection of bit fields. Each bit field has a specific
width (in bits) and an initial value. The record data type width is the sum of the widths
of al thefields.

Y ou can use record data types to compress data into a form that's as compact as
possible. For example, you can represent a group of 16 flags (which can be either ON or
OFF) as 16 individual bytes, 16 individual words, or as arecord containing 16 1-bit
fields (the efficient method).

Here's the Ideal mode syntax for declaring a record data type:
RECORD name (rec_field [,rec_field ...]]

The MASM mode syntax is:
name RECORD [rec field [,rec_field ...]]

Each rec_field has the following syntax:
field nane : wi dth_expression [=val ue]

field_name isthe name of arecord field. Paradigm Assembler will allocate a bit field of
the width width_expression for it. value describes the initial value of the field (the
default value used when an instance of the record is created). Vaues and width
expressions can't be relative or forward referenced. Record field names are global in
scope and can't be redefined.

name is the name of the record data type. Y ou can use it later in the module to obtain a
variety of information about the record data type. Y ou can also use the names of
individual record fields to obtain information. See Chapter 5 for details about how to
obtain information from record data type names and record field names using Paradigm
Assembler expressions.

Paradigm Assembler User's Guide

Y ou can redefine record data types, and define the same name as a record data type
more than once in amodule.

Y ou can also use record data type names to create variables and allocate memory. See

= Chapter 12 for details.
Paradigm Assembler provides specia support for record fields that represent flags and
enumerated data types. Additional and extended instructions provide efficient access to
record fields. Chapter 13 describes this concept further.
For record data type definitions requiring a large number of fields, Paradigm Assembler
provides a multiline syntax similar to that for enumerated data types.
For example, al of the following record data type definitions are equivalent:
foo RECORD f1:1,f2:2,f3:3,f4:4 ;Original version
foo RECORD { ;Mul tiline version
fl.1
f2:2
f3:3
fa:4
}
foo RECORD f1:1,f2:2, { ; More conpact multiline version
f3:3,f4:4 }
= Paradigm Assembler does not recognize any pseudo ops inside the multiline record data
type definition.

Defining structures and unions

Structures and unions let you mix and match various types. A structure in Paradigm
Assembler is adatatype that contains one or more data elements called members.
Structures differ from records because structure members are aways an integral number
of bytes, while records describe the breakdown of bit fields within bytes. The size of a
structure is the combined size of all data elements within it.

Unions are similar to structures, except that al of the membersin a union occupy the
same memory. The size of aunion isthe size of its largest member. Unions are useful
when a block of memory must represent one of several distinct possibilities, each with
different data storage requirements.

Paradigm Assembler lets you fully nest structures and unions within one another, but
this can become complicated. For example, you could have a structure member that is
really aunion. A union could also have afull structure as each member.

Opening a structure or union definition

Use the following Ideal mode syntaxes to open a structure or union data type definition:
STRUC nane or UNI ON nane

Y ou can use the following MASM mode syntaxes to do the same thing:
nane STRUC or nanme UN ON

name is the name of the structure or union data type.

Paradigm Assembler considers al data or code emitted between the time a structure or
union data type definition is opened and the time a corresponding ENDS directiveis
encountered to be part of that structure or union data type.

Chapter 8, Defining data types 113

114

Paradigm Assembler treats structure and union data type names as global but
redefinable. Y ou can define the same name as a structure or union data "e more than
oncein amodule.

Specifying structure and union members

Paradigm Assembler includes data one line at atime in structures or unions. To alocate
data and create members in a structure or union definition, use the same directives as
those for allocating data and creating labels in an open segment. For example,

menber 1 DW 1

isequally valid in a segment or in a structure definition. In a segment, this statement
means "reserve aword of value 1, whose nameis member1." In a structure or union
definition, this statement means "reserve aword of initial value 1, whose member name
is memberl."

Y ou can use the initial value for a structure member if an instance of the structure or
union is allocated in a segment or a structure. If you don't intend to allocate structure
instances this way, theinitial value of the structure member is not important. Y ou can
use the data value ? (the uninitialized data symbol) to indicate this.

Paradigm Assembler allows all methods of allocating data with a structure definition,
including instances of other structures, unions, records, enumerated data types, tables,
and objects. For more information on how to allocate data, see Chapter 12.

MASM and Ideal modes treat structure member names differently. In MASM mode,
structure member names are global and can't be redefined. In Ideal mode, structure
member names are considered local to a structure or union data type.

Defining structure member labels with LABEL

The LABEL directive lets you create structure members without allocating data.
Normally, the LABEL directive establishes a named label or marker at the point it's
encountered in asegment. LABEL directives found inside structure definitions define
members of the structure. Here's the syntax of the LABEL directive:

LABEL nane conpl ex_type

In MASM mode only, you can use the following syntax:
name LABEL conpl ex_type
name is the name of the structure member. type is the desired type for the structure

member. It can be any legal type name. See Chapter 5 for a description of the available
type specifiers.

Aligning structure members
You can use the ALIGN directive within structure definitions to align structures
members on appropriate boundaries. For example,

ALI GN 4 ; DWORD al i gnrrent
menber dd ? ;menber will be DWORD al i gned

Closing a structure or union definition

Y ou must close the structure or union definition after you define al structure, or union
members. Use the ENDS directive to do this.

ENDS has the following syntax in Ideal mode:

Paradigm Assembler User's Guide

ENDS [nane]

In MASM mode, you can use the following syntax:
nane ENDS

name, if present, isthe name of the currently open structure or union data type
definition. If name is not present, the currently open structure or union will be closed.

Y ou can aso use the ENDS directive to close segments. Thisis not a conflict, because
you can't open a segment inside a structure or union definition.

Nesting structures and unions

Paradigm Assembler lets you nest the STRUC, UNION, and ENDS directivesinside
open structure and union data type definitions to control the offsets assigned to structure
members.

In astructure, each data element begins where the previous one ended. In a union, each
data element begins at the same offset as the previous data element. Allowing asingle
data element to consist of an entire union or structure provides enormous flexibility and
power. The following table contains descriptions of STRUC, UNION, and ENDS.

Table8-1 Directive Meaning
STRUC, UNION,
and ENDS STRUC Used inside an open structure or union, this directive begins ablock of elementsthat the
directives enclosing structure or union considers a single member. The membersin the block are

assigned offsetsin ascending order. The size of the block isthe sum of the sizes of al of
the membersiniit.

UNION Used inside an open structure or union, this begins ablock of membersthat the enclosing
structure or union considers asingle unit. The membersin the block are all assigned the
same offset. The size of the block isthe size of the largest member init.

ENDS Terminates a block of members started with a previous STRUC or UNION directive.

For example, the composite has five members in the following structure/union data
definition:

CUNION STRUC

CTYPE DB ?

UNI ON :Start of union
;I f CTYPE=0, use this...
STRUC
CTOPARL DwW 1
CTOPAR2 DB 2
ENDS
I f CTYPE=1, use this...
STRUC,
CT1PARL DB 3
CT1PAR2 DD 4
ENDS
ENDS :End of union
ENDS ; End of structure data type

The following table lists these members.

Table 8-2 Member Type Offset Default value
Block members

CTYPE Byte 0 ? (uninitialized)

Chapter 8, Defining data types 115

116

Member Type Offset Default value

CTOPARL Word 1 1
CTOPAR2 Byte 3 2
CT1PAR1 Byte 1 3
CT1PAR2 Dword 2 4

The length of this structure/union is 6 bytes.

Including one named structure within another

Paradigm Assembler provides away of incorporating an entire existing structure or
union data type, including member names, into an open structure definition to assist in
the inheritance of objects. It treats the incorporated structure or union asif it were
nested inside the open structure or union definition at that point. In this way,
incorporating a structure or union into another isintrinsically different from including
an instance of a structure or union in another; an instance include initialized or
uninitialized data, while incorporation includes data, structure, and member names.

Here's the Ideal mode syntax:
STRUC struc_nane fill _parameters

Y ou can use the following syntax in MASM mode:
struc_nanme STRUC fill _paraneters

Use a statement of this form only inside a structure or union definition. struc_name is
the name of the previously defined structure or union that is to be included.
fill_parameters represents the changes you want to make to the initial (default) values
of the included structure's members. A ? keyword indicates that all of the incorporated
structure's members should be considered uninitialized. Otherwise, the syntax for the
fill_parametersfieldis:

{ [menber _name [=expression] [,nenber _name [=expression] ...]] }

member_name is the name of any member of the included structure whose initial value
should be changed when it's included. expression is the value you want to change it to.
If you have expression, then the initial value for that member of the structure will be
unchanged when it isincluded. If you specify a? keyword for the expression field, that
member'sinitial value will be recorded as uninitialized when it's included.

Since structure member names are global in MASM mode, they are not redefined when
you copy a structure. Thus, including a structure within another is most useful in
MASM mode when you do it at the beginning of the structure or union you're defining.

Usually, when you create an instance of a union, you would have to make sure that only
one of the union's members contains initialized data. (See Chapter 12 for details.) Since
incorporating a structure in another does not involve creating an instance, this
restriction does not apply. More than one member of an included union can contain
initialized data. For example,

Paradigm Assembler User's Guide

FOO STRUC

ABC DW 1
DEF Dw 2
UNI ON
Al DB '123
A2 DW ?
ENDS
ENDS
FOO2 STRUC
FOO STRUC {A1=2} ;lncorporates struc FOO into struc FO002,
;with override. Note that both al and A2 are
;initialized by default in FOO2!
GH DB 3
ENDS
The definition of structure FOOZ2 in the previous example is equivalent to the following
nested structure/union:
FO»2 STRUC
STRUC ; Begi nning of nested structure...
ABC DW 1
DEF Dw 2
UNI ON ; Begi nni ng of doubly nested union,
Al DB '123
A2 DW 2
ENDS ; End of doubly nested union...
ENDS ; End of nested structure...
CGH DB 3
ENDS

Note that when an instance of the structure FOO2 is made, be sure that only one value
in the union isinitialized.

Using structure names in expressions

Once you define a structure or union, information about the structure or union is
available in many ways. Y ou can use both the structure or union data type name and a
structure member name to obtain information using Paradigm Assembler expressions.
See Chapter 5 for further information.

Defining tables

A table data type represents a collection of table members. Each member has a specific
size (in bytes) and an initial value. A table member can be either virtual or static. A
virtual member of atableis assigned an offset within the table data type; spaceis
reserved for it in any instance of the table. A static member does not have an offset;
spaceisn't reserved for it in an instance of the table.

The size of the table data type as awhole is the sum of the sizes of all of the virtual
members.

Table data types represent method tables, used in object-oriented programming. An
object usually has a number of methods associated with it, which are pointersto
procedures that manipulate instances of the object. Method procedures can either be
called directly (static methods) or indirectly, using atable of method procedure pointers
(virtual methods).

Y ou can use the following Ideal mode syntax for declaring a table data type:

Chapter 8, Defining data types 117

118

TABLE nane [table_nenber [,table_menber ...]]

The following syntax works only in MASM mode:
name TABLE [tabl e _nenber [, table nenber ...]]

Here's the syntax of each table_member field:
tabl e_nane

or

[VIRTUAL] nenber _nane [[count1_expression]]
[:compl ex_type [:count2_expression]] [= expression]

table_name is the name of an existing table data type whose members are incorporated
entirely in the table you define. Use this syntax wherever you want inheritance to occur.

member_name is the name of the table member. The optional VIRTUAL keyword
indicates that the member is virtual and should be assigned to atable offset.

complex_type can be any legal complex type expression. See Chapter 5 for a detailed
description of the valid type expressions.

If you don't specify a complex_type field, Paradigm Assembler assumes it to be WORD
(DWORD is assumed if the currently selected model is a 32-bit mode!).

count2_expression specifies how many items of this type the table_member defines. A
table member definition of

f oo TABLE VI RTUAL t np: DWORD: 4
defines a table member called tmp, consisting of four doublewords.

The default value for count2_expression is 1 if you don't specify it. countl _expression
isan array element size multiplier. The total space reserved for the member is
count2_expression times the length specified by the memtype field, times
countl_expression. The default value for count2_expressionisalso 1 if you don't
specify one. countl expression multiplied by count2_expression specifiesthe total
count of the table member.

Table member names are local to atable in Ideal mode, but are global in scope in
MASM mode.

name is the name of the table data type. You can useit later in the module to get a
variety of information about the table data type. Y ou can also use the names of
individual table members to obtain information. See Chapter 5 for further information.

Table data types are redefinable. Y ou can define the same name as a table data type
more than once in a module.

Y ou can also use table data type names to create variables and allocate memory. See
Chapter 12 for details.

Alternatively, Paradigm Assembler provides a multiline syntax for table data type
definitions requiring alarge number of members. This syntax is similar to that of
enumerated data type definitions. Here's an example:

foo TABLE t1: WORD, t2: WORD, t 3: WORD, t4: WORD ; Ori gi nal version

foo TABLE { ;Mul tiline version
t1: WORD
t 2: WORD
t 3: WORD
t 4: WORD
}

Paradigm Assembler User's Guide

foo TABLE t1:WORD,t2: WORD, { ; More conpact nultiline version
t 3: WORD, t 4: WORD}

Overriding table members

If you declare two or more members of the same name as part of the same table data
type, Paradigm Assembler will check to be sure that their types and sizes agree. If they
don't, it will generate an error. Paradigm Assembler will use the last initial value
occurring in the table definition for the member. In this way, you can override the initial
value of atable after it isincorporated into another. For example,

FOO TABLE VI RTUAL MEML: WORD=MEMLPRCC, VI RTUAL MEM2: WORD=MEMRPROC

FOO2 TABLE FOO, VI RTUAL MEML: WORD=NVEM3PROC :Overrides inherited
;. MEML

Defining a named type

Named types represent simple or complex types. Y ou can use the TY PEDEF directive
to define name types. Here's the Ideal mode syntax:

TYPEDEF type_nane conpl ex_type

The MASM mode syntax is:

t ype_nanme TYPEDEF conpl ex_type
complex_type describes any type or multiple levels of pointer indirection. See Chapter 5
for further information about complex types. type name is the name of the specified
type.

When you use a named type in an expression, it functions as if it were a simple type of
the appropriate size. For example,

MOV ax,word ptr [bx] ; Sinpl e st at enent ;
foo TYPDEF near ptr byte ;FOOis basically a word
MOV ax, foo ptr [bx] ;80 this works too

Defining a procedure type

Y ou can use a user-defined data type (called a procedure type) to describe the
arguments and calling conventions of a procedure. Paradigm Assembler treats
procedure types like any other types; you can use it wherever types are allowed. Note
that since procedure types don't allocate data, you can't create an instance of a procedure

type.

Use the PROCTY PE directive to create a procedure type. Here is the Ideal mode
syntax:

PRCCTYPE nane [procedure_description]
The MASM mode syntax is:
nane PROCTYPE [procedure_descri ption]

procedure_description is similar to the language and argument specification for the
PROC directive. Its syntax is:

[[Ianguage nodifier] |anguage] [distance] [argument |ist]

specify language_modifier, language and distance exactly the same way you would for
the corresponding fields in the PROC directive. For more information about the PROC
directive, see Chapter 10.

Chapter 8, Defining data types 119

Use the following form for argument_|list:
argunment [, argument] ...

An individua argument has the following syntax:
[argnane] [[countl expression]]:conplex_type [:count2 expression]

complex_type is the data type of the argument. It can be either a smple type or a pointer
expression.

See Chapter 5 for adiscussion of the syntax of complex types.

count2_expression specifies how many items of this type the argument defines. Its
default valueis 1, except for BY TE arguments. Those arguments have a default count
of 2, since you can't PUSH a byte value onto the 80x86 stack.

In procedure types whose calling convention permits variable-length arguments (like
C), count2_expression (for the last argument) can be the special keyword ?, which
indicates that the procedure caller will determine the size of the array. The type
UNKNOWN also indicates a variable-length parameter.

The name of each argument is optional, but complex_type is required because procedure
types are used mainly for type checking purposes. The names of the arguments don't
have to agree, but the types must.

Defining an object

120

An object consists of both a data structure and a list of methods that correspond to the
object. Paradigm Assembler uses a structure data type to represent the data structure
associated with an object, and a table data type to represent the list of methods
associated with an object.

An extension to the STRUC directive lets you define objects. The Ideal mode syntax
follows:

STRUC name [nodifiers] [parent_nane] [METHOD
[tabl e nenber 1 [, table nenber...]]]
structure_nenbers

ENDS [nane]

Y ou can use the following syntax in MASM mode:

name STRUC [nodifiers] [parent_nane] [METHOD
[tabl e_nenber 1[,table _nenber...]]]
[nare] ENDS

name is the name of the object. parent_name is the optional name of the parent object.
(Paradigm Assembler explicitly supports only single inheritance.) The parent object's
structure data will automatically be included in the new object's structure data, and the
parent object's table of methods will be included in the new object's table of methods as
well.

Each table_member field describes a method name and method procedure associated
with the object. The syntax of atable_member field is exactly the same asin atable
definition.

structure_members describe any additional structure members you want within the
object's data structure. These are formatted exactly the same as in an open structure
definition.

The optional modifiers field can be one or more of the following keywords:

Paradigm Assembler User's Guide

Table 8-3
Available
modifiers

Table 8-4
Symbols used or
defined by
STRUC

Keyword M eaning

GLOBAL Causes the address of the virtual method table (if any) to published

NEAR Forcesthe virtual table pointer (if any) to be an offset quantity, either 16 or 32 bits,
depending on whether the current model is USE16 or USE32.

FAR Forcesthe virtual table pointer (if any) to be a segment and offset quantity, either 32 or

48 bits, depending on whether the current model is USE16 or USE32.

The size of the virtual table pointer (if any) depends on whether datain the current
model is addressed as NEAR or FAR if you don't specify a modifier.

The TBLPTR directive

Inherent in the idea of objectsis the concept of the virtual method table. An instance of
this table exists once for any object having virtual methods. The data structure for any
object having virtual methods also must contain a pointer to the virtual method table for
that object. Paradigm Assembler automatically provides a virtual method table pointer
in an object's data structure (if required) and if you don't specify it explicitly using the
TBLPTR directive.

Y ou should use the TBL PTR directive within an object data structure definition.
TBLPTR letsyou explicitly locate the virtual table pointer wherever you want. Here's
its syntax:

TBLPTR

The size of the pointer that TBL PTR reservesis determined by whether the current
model is USE16 or USE32, and what modifiers you used in the object definition.

The STRUC directive

The extended STRUC directive defines or uses several symbols, which reflect the
object being defined. The following table shows these symbols.

Symbol Meaning
@ODbject A text macro containing the name of the current object
@Table_<object_name> A table data type containing the object's method table

@Tableaddr_<object_name> A label describing the address of the object's virtual method table

Chapter 8, Defining data types 121

122 Paradigm Assembler User's Guide

Chapter

9

Using the location counter

The location counter keeps track of the current address as your source files assemble.
This lets you know where you are at any time during assembly of your program.
Paradigm Assembler supplies directives that let you manipulate the location counter to
move it to a desired address.

Labels are the names used for referring to addresses within a program. Labels are
assigned the value of the location counter at the time they are defined. Labels let you
give names to memory variables and the locations of particular instructions.

This chapter discusses the available directives for manipulating the location counter,
and declaring labels at the current location counter.

The $ location counter symbol

The predefined symbol $ represents the current location counter. The location counter
consists of two parts: a segment, and an offset. The location counter is the current offset
within the current segment during assembly.

The location counter is an address that isincremented to reflect the current address as
each statement in the source file is assembled. As an example,

hel pmessage DB "This is help for the program'
hel pl ength = $ - hel pmessage

Once these two lines are assembled, the symbol helpLength will equal the length of the
help message.

Location counter directives

Paradigm Assembler provides several directives for setting the location counter. The
next few sections describe these directives. Note that all of these directives work in both
MASM and Ideal modes.

The ORG directive

Y ou can use the ORG directive, to set the location counter in the current segment. ORG
has the following syntax.

ORG expr essi on

expression can't contain any forward-referenced symbol names. It can either be a
constant or an offset from a symbol in the current segment or from the current location
counter.

Y ou can back up the location counter before data or code that has already been emitted
into a segment. Y ou can use thisto go back and file in table entries whose values
weren't known at the time the table was defined. Be careful when using this technique;
you might accidentally overwrite something you didn't intend to.

Chapter 9, Using the location counter 123

124

Y ou can use the ORG directive to connect alabel with a specific absolute address. The
ORG directive can also set the starting location for .COM files. Here's an example of
how to use ORG:

; Thi s program shows how to create a structure and nacro for
;declaring instances of the structure, that allows additiona
;elements to be added to the linked list without regard to other
;structures already declared in the list. If the macros invoked in
;a section of code that is between two other instances of the
;structure, the new structure will autonmatically be inserted in
;the linked list at that point without needing to know the nanes
;of the previous or next structure variables. Simlarly, using the
;macro at the end of the programeasily adds new structures to the
;linked Iist without regard for the name of the previous el enent.

; The macro al so nmaintains variables that point to the first and
;last elenents of the linked Iist.

i deal
p386

nmodel OS _NT fl at
codeseg

struc a

prev dd O

next dd O

info db 100 dup (0)
ends a

__last_a name equ <>

:Maintain the offsets of the head and tail of the |ist.
__list_a head dd 0
_list_a tail dd 0

macro nmakea nane :req, args
ifidni _ last_a nane, <>

; There is no previous itemof this type.
name a <0, 0, args>

; Setup the head and tail pointers
org __list_a head

dd nane

org __list_a tai

dd nane

;Return to the offset after the structure el enent
org nanme+si ze a

__last_a name equ nane

el se
;Declare it, with previous pointing to previous
;itemof structure a.

nane a < _last _a_nan®, 0, ar gs>

; Make the next pointer of the previous structure
;point to this structure,

org _last_a nane. next

dd nane

; Setup the tail pointer for the new menber
org __list_a tai

dd nane

Paradigm Assembler User's Guide

:CGo back to location after the current structure
org nane+si ze a

;Set up an equate to renenber the nane of the
;structure just declared

__last_a_name equ nane

endi f

endm

makea. first
;m scel | aneous ot her data
db 5 dup (0)

makea second

:More m scel | aneous dat a
db 56 dup (O

;G ve a string to put inthe info element of this structure
makea third,< Hello' >

end

The EVEN and EVENDATA directives

Y ou can use the EVEN directive to round up the location counter to the next even
address. EVEN lets you align code for efficient access by processors that use a 16-bit
data bus. It does not improve performance for processors that have an 8-bit data bus.

EVENDATA aligns evenly by advancing the location counter without emitting data,
which is useful for uninitialized segments. Both EVEN and EVENDATA will cause
Paradigm Assembler to generate a warning message if the current segment's alignment
isn't strict enough.

If the location counter is odd when an EVEN directive appears, Paradigm Assembler
places asingle byte of a NOP instruction in the segment to make the location counter
even. By padding withaNOP, EVEN can be used in code segments without causing
erroneous instructions to be executed at run time. This directive has no effect if the
location is already even.

= In code segments, NOPs are emitted. In data segments, zeros are emitted.

Similarly, if the location counter is odd when an EVENDATA directive appears,
Paradigm Assembler emits an uninitialized byte.

An example of using the EVEN directive follows:

EVEN
@®: | odsb
xor bl , ai ;align for efficient access
loop @A
Here's an example of using the EVENDATA directive:
EVENDATA
VARL DW 0 ;align for efficient 8086 access

The ALIGN directive

You'll usethe ALIGN directive to round up the location counter to a power-of-two
address. ALIGN has the following syntax:

ALI GN boundary
boundary must be a power of two.

Chapter 9, Using the location counter 125

Paradigm Assembler inserts NOP instructions into the segment to bring the location
counter up to the desired address if the location counter is not already at an offset that is
amultiple of boundary. This directive has no effect if the location counter is already at
amultiple of boundary.

You can't reliably align to a boundary that's more strict than the segment alignment in
which ALIGN appears. The segment's alignment is specified when the segment is first
started with the SEGMENT directive.
For example, if you've defined a segment with

CODE SEGVENT PARA PUBLI C
you can then say ALIGN 16 (same as PARA) but not ALIGN 32, since that's more
strict than the alignment that PARA indicated in the SEGMENT directive. ALIGN
generates awarning if the segment alignment isn't strict enough.
The following example shows how you can use the ALIGN directive:

ALI GN 4 ;align to DWORD boundary for 386
BigNum DD 12345678

Defining labels

Labels let you assign values to symbols. There are three ways of defining labels:

. using the: operator
. using the LABEL directive
. using the:: operator (from MASM 5.1)

The : operator

The: operator defines anear code label, and has the syntax

nane:
where name is a symbol that you haven't previously defined in the source file. You can
place anear code label on aline by itself or at the start of aline before an instruction.

Y ou usually would use a near code label as the destination of aJMP or CALL
instruction from within the same segment.

The code label will only be accessible from within the current source file unless you use
the PUBL I C directive to make it accessible from other source files.

This directive functions the same as using the L ABEL directive to defineaNEAR
label. For example,

A
isthe same as
A LABEL NEAR

Here's an example of using the :oper ator.
jne A ;skip followi ng function
inc si
A ;j ne goes here

126 Paradigm Assembler User's Guide

The LABEL directive

You'll usethe LABEL directive to define a symbol with a specified type. Note that the
syntax is different for Ideal and MASM models. In Ideal mode, specify

LABEL nane conpl ex_type
In MASM mode, use the following:
name LABEL conpl ex_type

name is a symbol that you haven't previously defined in the source file. complex_type
describes the size of the symbol and whether it refersto code or data. See Chapter 5 for
further information about complex types.

The label is only accessible from within the current source file, unless you use PUBLIC
to make it accessible from other source files.

You can use LABEL to access different-sized items than those in the data structure; the
following example illustrates this concept.

WORDS LABEL WORD ;access ' BYTES as WORDS
BYTES DB 64 DUP (0)
mov WORDS [2], 1 ;wite WORD of 1

The :: directive

The:: directive lets you define labels with a scope beyond the procedure you're in. This
differs from the: directive in that labels defined with : have a scope of only within the
current procedure. Note that :: isdifferent from : only when you specify alanguage in
the MODEL statement.

= The:: directive only works when you're using MASM 51.

Chapter 9, Using the location counter 127

128 Paradigm Assembler User's Guide

Chapter

10

Declaring procedures

Paradigm Assembler lets you declare procedures in many ways. This chapter discusses
NEAR and FAR procedures, declaring procedure languages using arguments and
variables in procedures, preserving registers, nesting procedures, declaring method
procedures for objects, and declaring procedure prototypes. Y ou can find more
information about how to call language proceduresin Chapter 13

Procedure definition syntax

Y ou can use the PROC directive to declare procedures. Here's its Ideal mode syntax:

PRCC nane [[| anguage nodifier] |anguage [distance]
[ARG argunent _list] [RETURNS itemlist]

[LOCAL argunent |ist]

[USES itemlist]

ENDIIDH [name]

Use the, following syntax in MASM mode:

nane PROC [[| anguage nodifier] |anguage] [distance]
[ARG argunent _|ist] [RETURNS itemlist]

[LOCAL argurent |ist]

[USES itemlist]

[nane] ENDP

Paradigm Assembler also accepts MASM syntax for defining procedures. For more
information on MASM syntax, see Chapter 3.

Declaring NEAR or FAR procedures

NEAR procedures are called with a near call, and contain a near return; you must call
them only from within the same segment in which they're defined. A near call pushes
the return address onto the stack, and sets the instruction pointer (1P) to the offset of the
procedure. Since the code segment (CS) is not changed, the procedure must be in the
same segment as the caller. When the processor encounters a near return, it pops the
return address from the stack and sets IP to it; again, the code segment is not changed.

FAR procedures are called with afar call and contain far returns. You can call FAR
procedures from outside the segment in which they're defined. A far call pushes the
return address onto the stack as a segment and offset, and then sets CS.1P to the address
of the procedure. When the processor encounters afar return, it pops the segment and
offset of the return address from the stack and sets CS.EP to it.

The currently selected model determines the default distance of a procedure. For tiny,
small, and compact models, the default procedure distance is NEAR. For all other
models, FAR is the default. If you don't use the simplified segmentation directives, the
default procedure distance is aways NEAR. Note that you can specify NEAR or FAR
as an argument to the M ODEL statement. See Chapter 7 for more information.

Chapter 10, Declaring procedures 129

130

Y ou can override the default distance of a procedure by specifying the desired distance
in the procedure definition. To do this, use the NEAR or FAR keywords. These
keywords override the default procedure distance, but only for the current procedure.
For example,

i\bDEL TI NY; def aul t di stance near

;testl is a far procedure
test1 PROC PAR
; body of procedure

RET ;this will be a far return
ENDP
;test2 is by default a near procedure
test2 PROC

; body of procedure

RET :this will be a near return

ENDP

The same RET mnemonic is used in both NEAR and FAR procedures; Paradigm
Assembler uses the distance of the procedure to determine whether anear or far return
isrequired. Similarly, Paradigm Assembler uses the procedure distance to determine
whether anear or far cal isrequired to reference the procedure:

éALL testl;this is a far call
CALL test2;this is a near call

When you make a call to aforward referenced procedure, Paradigm Assembler might
have to make multiple passes to determine the distance of the procedure. For example,

test1 PROC NEAR
MOV ax, 10
CALL test?2
RET

test1l ENDP

test2 PROC FAR
ADD ax, ax
RET

test 2 ENDP

When Paradigm Assembler reaches the "call test2" instruction during the first pass, it
has not yet encountered test2, and therefore doesn't know the distance. It assumes a
distance of NEAR, and presumes it can use a near call.

When it discovers that test2 isin fact a FAR procedure, Paradigm Assembler
determines that it needs a second pass to correctly generate the call. If you enable
multiple passes (with the /m command-line switch), a second pass will be made. If you
don't enable multiple passes, Paradigm Assembler will report a"f or war d

ref erence needs override" error.

Y ou can specify the distance of forward referenced procedures as NEAR PTR or FAR
PTR inthe call to avoid this situation (and to reduce the number of passes)..

Paradigm Assembler User's Guide

test1l PROC NEAR
MOV ax, 10
CALL FAR PTR test?2
RET

test1l ENDP

The previous example tells Paradigm Assembler to use afar call, so that multiple
assembler passes aren't necessary.

Declaring a procedure language

Y ou can easily define procedures that use high-level language interfacing conventions
in Paradigm Assembler. Interfacing conventions are supported for the NOLANGUAGE
(Assembler), BASIC, FORTRAN, PROLOG, C, CPP (C++), SYSCALL, STDCALL,
and PASCAL languages.

Paradigm Assembler does all the work of generating the correct prolog (procedure
entry) and epilog (procedure exit) code necessary to adhere to the specified language
convention.

Y ou can specify a default language as a parameter of the MODEL directive. See
Chapter 7 for further details. If adefault language is present, all procedures that don't
otherwise specify alanguage use the conventions of the default language.

To override the default language for an individual procedure, include the language
name in the procedure definition. Y ou can specify a procedure language by including a
language identifier keyword in its declaration. For example, adefinitionin MASM
mode for aPASCAL procedure would be

pascal proc PROC PASCAL FAR
; procedur e body
pascal proc ENDP

Paradigm Assembler uses the language of the procedure to determine what prolog and
epilog code is automatically included in the procedure's body. The prolog code sets up
the stack frame for passed arguments and local variables in the procedure; the epilog
code restores the stack frame before returning from the procedure.

Paradigm Assembler automatically inserts prolog code into the procedure before the
first instruction of the procedure, or before the first "label:" tag.

Prolog code does the following:
. Savesthe current BP on the stack.
. Sets BP to the current stack pointer.

. Adjuststhe stack pointer to allocate local variables.
. Savestheregisters specified by USES on the stack.

Paradigm Assembler automatically inserts epilog code into the procedure at each RET
instruction in the procedure (if there are multiple RETS, the epilog code will be inserted
multiple times). Paradigm Assembler also inserts epilog code before any object-oriented
method jump (see Chapter 4).

Epilog code reverses the effects of prolog code in the following ways:
. Popsthe registers specified by USES off the stack.

Chapter 10, Declaring procedures 131

Figure 10-1
How language
affects
procedures

132

. Adjuststhe stack pointer to discard local arguments.
. Pops, the stored BP off the stack.

. Adjuststhe stack to discard passed arguments (if the language requires it) and
returns.

The last part of the epilog code, discarding passed arguments, is performed only for
those languages requiring the procedure to discard arguments (for example, BASIC,
FORTRAN, PASCAL). The convention for other languages (C, C++, PROLOG) isto
leave the arguments on the stack and let the caller discard them. SY SCALL behaves
like C++. For the STDCALL language specification, C++ calling conventions are used
if the procedure has variable arguments. Otherwise, PASCAL calling conventions are
used.

Paradigm Assembler always implements the prolog and epilog code using the most
efficient instructions for the language and the current processor selected. Paradigm
Assembler doesn't generate prolog or epilog code for NOLANGUAGE procedures. If
such procedures expect arguments on the stack, you must specifically include the prolog
and epilog code yourself.

In general, the language of a procedure affects the procedure in the manner shown in the
following figure.

Language: | None | Basic | Fortran | Pascal | C CPP Prolog

Argument | L-R L-R L-R L-R R-L R-L

ordering
(left-to-
right, right-
to-left)

Who
cleansup
stack
(caller,
procedure)

PROC | PROC | PROC PROC | CALLER | CALLER | CALLER

Y ou can use the /la command-line switch to include procedure prolog and epilog code
inyour listing file. This lets you see the differences between the languages. See Chapter
13 for further information.

Specifying a language modifier

Language modifiers tell Paradigm Assembler to include specia prolog and epilog code
in procedures that interface with Windows. To use them, specify one before the
procedure language in the model directive, or in the procedure header. Valid modifiers
are NORMAL, WINDOWS, ODDNEAR, and ODDFAR.

Additionally, you can specify a default language modifier as a parameter of the
MODEL directive. If adefault language modifier exists, all procedures that don't
otherwise specify alanguage modifier will use the conventions of the default. See
Chapter 7 for more information.

Include the modifier in the procedure definition to specify the language modifier for an
individual procedure. For example,

Paradigm Assembler User's Guide

sanpl e PROC W NDOAS PASCAL FAR
; prodedur e body
ENDP

If you don't specify alanguage modifier, Paradigm Assembler uses the language
modifier specified in the MODEL statement. Paradigm Assembler will generate the
standard prolog or epilog code for the procedure if thereisn't aM ODEL statement, or if
NORMAL is specified.

If you've selected the WINDOWS language modifier, Paradigm Assembler generates
prolog and epilog code that lets you call the procedure from Windows. Paradigm
Assembler generates special prolog and epilog code only for FAR Windows
procedures. You cant call NEAR procedures from Windows, so they don't need special
prolog or epilog code. Procedures called by Windows typically use PASCAL calling
conventions. For example,

==

wi nproc PROC W NDONS PASCAL PAR

ARG @hwnd: WORD, @ress. WORD, @@wpar am WORD, @@ par am DWORD
; body of procedure

ENDP

Refer to your Windows documentation for more information on Windows procedures.

Defining arguments and local variables

Paradigm Assembler passes arguments to higher-level language procedures in stack
frames by pushing the arguments onto the stack before the procedureis called. A
language procedure reads the arguments off the stack when it needs them. When the
procedure returns, it either removes the arguments from the stack at that point (the
Pascal calling convention), or relies on the caller to remove the arguments (the C calling
convention).

The ARG directive specifies, in the procedure declaration, the stack frame arguments
passed to procedures. Arguments are defined internally as positive offsets from the BP
or EBP registers.

The procedure's language convention determines whether or not the arguments will be
assigned in reverse order on the stack. Y ou should alwayslist argumentsin the ARG
statement in the same order they would appear in a high-level declaration of the
procedure.

The LOCAL directive specifies, in the procedure declaration, the stack frame variables
local to procedures. Arguments are defined internally as negative offsets from the BP or
EBP register.

Allocate space for local stack frame variables on the stack frame by including procedure
prolog code, which adjusts the stack pointer downward by the amount of space
required. The procedure's epilog code must discard this extra space by restoring the
stack pointer. (Paradigm Assembler automatically generates this prolog code when the
procedure obeys any language convention other than NOLANGUAGE.)

Remember that Paradigm Assembler assumes that any procedure using stack frame
arguments will include proper prolog codein it to set up the BP or EBP register.
(Paradigm Assembler automatically generates prolog code when the procedure obeys

Chapter 10, Declaring procedures 133

134

any language convention other than NOLANGUAGE). Define arguments and local
variables with the ARG and L OCAL directives even if the language interfacing
convention for the procedure is NOLANGUAGE. No prolog or epilog code win
automatically be generated, however, in this case.

ARG and LOCAL syntax

Here's the syntax for defining the arguments passed to the procedure.
ARG argunent [,argunent] ..,. [=synbol]
[RETURNS argunent [, argunent]]
To define the local variables for the procedure, use the following:
LOCAL argunent [,argunent] ... [=synbol]

Anindividual argument has the following syntax:
argname [[count1l expression]] [: conplex_type [:count2_ expression]]

complex_type is the data type of the argument. It can be either asimple type, or a
complex pointer expression. See Chapter 5 for more information about the syntax of
complex types.

If you don't specify a complex_type field, Paradigm Assembler assumes WORD. It
assumes DWORD if the selected model is a 32-bit model.

count2_expression specifies how many items of this type the argument defines. An
argument definition of

ARG t np: DAORD: 4
defines an argument called tmp, consisting of 4 double words.

The default value for count2_expression is 1, except for arguments of type BY TE.
Since you can't push abyte value, BY TE arguments have a default count of 2 to make
them word-sized on the stack. This corresponds with the way high-level languages treat
character variables passed as parameters. If you really want to specify an argument as a
single byte m the stack, you must explicitly supply a count2_expression field of 1, such
as

ARG real byt e: BYTE: 1

countl_expression isan array element size multiplier. The total space reserved for the
argument on the stack is count2_expression times the length specified by the argtype
field, times countl_expression. The default value for countl_expressionis1if it isnot
specified. countl_expression times count2_expression specifies the total count of the
argument.

For Paradigm Assembler, you can specify count2_expression using the ? keyword to
indicate that a variable number of arguments are passed to the procedure. For example,
an argument definition of

ARG t np: WORD: ?
defines an argument called tmp, consisting of a variable number of words.

? must be used as the last item in the argument list. Also, you can use ? only in
procedures that support variable-length arguments (such as procedures that use the C
calling conventions).

If you end the argument list with an equal sign (=) and a symbol, Paradigm Assembler
will equate that symbol to the total size of the argument block in bytes. If you are not

Paradigm Assembler User's Guide

using Paradigm Assembler's automatic handling of high level language interfacing
conventions, you can use this value at the end of the procedure as an argument to the
RET instruction. Notice that this causes a stack cleanup of any pushed arguments before
returning (thisis the Pascal calling convention).

The arguments and variables are defined within the procedure as BP-relative memory
operands. Passed arguments defined with ARG are positive offset from BP; local
variables defined with LOCAL are negative offset from BP. For example,

funcl PROC NEAR
ARG a: WORD, b: DWORD: 4, c: BYTE=d
LOCAL x: DWORD, y: WORD: 2=z

definesa as [bp+4], b as[bp+6], c as[bp+14], and d as 20; x is[bp-2], y is[bp=6], and z
is8.

The scope of ARG and LOCAL variable names

All argument names specified in the procedure header, whether ARGs (passed
arguments), RETURNS (return arguments), or LOCAL s (local variables), are global in
scope unless you give them names prepended with the local symbol prefix.

The LOCAL Sdirective enables locally scoped symbols. For example,

LOCALS
test1 PROC PASCAL FAR
ARG @& WORD, @@: DWORD, @& BYTE

MOV WORD ptr @@, di
MOV WORD ptr @@+2, es
MOV @@, 'a'

RET

ENDP

test 2 PROC PASCAL FAR
ARG @ta: DWORD, @: BYTE
LOCAL @ox: WORD

LES di, @

MOV ax, es: [di]

MOV @@x, ax

CwW al, @@

jz @@n

mov a@, O
@n: MV ax, @

RET
ENDP

Since this example uses locally scoped variables, the names exist only within the body
of the procedure. Thus, test2 can reuse the argument names @@a, @@b, and @@X.
See Chapter 11 for more information about controlling the scope of symbols.

Chapter 10, Declaring procedures 135

Preserving registers

Most higher-level languages require that called procedures preserve certain registers.
Y ou can do this by pushing them at the start of the procedure, and popping them again
at the end of it.

Paradigm Assembler can automatically generate code to save and restore these registers
as part of a procedure's prolog and epilog code. Y ou can specify these registers with the
USES statement. Here's its syntax:

USES item[,iten]

item can be any register or single-token dataitem that can legally be pushed or popped.
Thereisalimit of eight items per procedure. For example,

nmyproc PROC PASCAL NEAR
ARG @3 our ce: DWORD, @@lest : DANORD, @@ ount : WORD
USES cx,,si, di, foo
MOV cx, i @ount
MOV f oo, @ ount
LES di, @dlest
LDS si, @®ource
REP MOVSB
RET
ENDP

See Chapter 18 for information about what registers are normally preserved.

USES s only available when used with procedures that have a language interfacing
convention other than NOLANGUAGE. Defining procedures using procedure types
Y ou can use a procedure type (defined with PROCTY PE) as atemplate for the
procedure declaration itself. For example,

Defining procedures using procedure types

Y ou can use a procedure type (defined with PROCTY PE) as atemplate for the
procedure declaration itself. For example,

f oot ype PROCTYPE pascal near :word, :dword,:word

foo PROC footype ; pascal near procedure

arg al :word, a2: dword, a3: word ;an error would occur if
;arguments did not match
;those of footype

When you declare a procedure using a named procedure description, the number and
types of the arguments declared for PROC are checked against those declared by
PROCTY PE. The procedure description supplies the language and distance of
procedure declaration.

Nested procedures and scope rules

All procedures have global scope, even if you nest them within another procedure. For
example,

136 Paradigm Assembler User's Guide

test1l PROCC FAR
:sone code here
CALL test?2
;sonme nore code here
RET
t est 2 PROC NEAR
:sone code here
RET ;nhear return
test 2 ENDP
test1l ENDP

In thisexample, it'slegal to call testl or test2 from outside the outer procedure.
If you want to have localized subprocedures, use alocally scoped name. For example,

LOCALS

test| PROC FAR :sone code here
RET

@@ est 2 PROC NEAR ;sone code here
RET

@@ est 2 ENDP

test1l ENDP

In this case, you can only access the procedure @@test2 from within the procedure
testl. n fact, there can be multiple procedures named @@test2 as long as no two are
within the same procedure. For example, the following is legal:

LOCALS
test1 PRCC FAR
MOV si, OFFSET Buffer
CALL @@ est 2
RET
@ est 2 PROC NEAR :sone code here
RET
@@ est 2 ENDP
test1 ENDP

test 2 PROC PAR
MOV si, OFFSET Buffer?2
CALL @@ est 2
RET
@@ est 2 PROC NEAR ;sone code here
RET
@@ est 2 ENDP
test 2 ENDP

The following code is not legal:

LOCALS

test1l PROC FAR
mov si, OFFSET, Buf f er
CALL @@ est 2
RET

test1l ENDP

Chapter 10, Declaring procedures 137

==

@@ est 2 PROC NEAR :sone code here
RET
@ est 2 ENDP

since the CALL to @@test2 specifies asymbol local to the procedure testl, and no such
symbol exists.

The LOCAL Sdirective enables locally scoped symbols. See Chapter 11 for further
information.

Declaring method procedures for objects

=

Some special considerations apply when you create method procedures for objects.
Object method procedures must be able to access the object that they are operating on,
and thus require a pointer to that object as a parameter to the procedure.

Paradigm Assembler's treatment of objectsis flexible enough to allow a wide range of
conventions for passing arguments to method procedures. The conventions are
constrained only by the need to interface with objects created by a high-level language.

If you are writing a native assembly-language object method procedure, you might want
to use register argument passing conventions. In this case, you should write a method
procedure to expect a pointer to the object in aregister or register pair (such as ES:DI).

If you are writing a method procedure that uses high-level language interfacing
conventions, your procedure should expect the object pointer to be one of the arguments
passed to the procedure. The object pointer passed from high-level OOP languages like
C++ isan implicit argument usually placed at the start of the list of arguments. A
method procedure written in assembly language must include the object pointer
explicitly initslist of arguments, or unexpected results will occur. Remember that the
object pointer can be either aWORD or DWORD quantity, depending on whether the
object isNEAR or FAR.

Other complexities arise when you write constructor or destructor proceduresin
assembly language. C++ uses other implicit arguments (under some circumstances) to
indicate to the constructor or destructor that certain actions must be taken. Constructors
written for an application using native assembly language do not necessarily need a
pointer to the object passed to them. If an object is never statically allocated, the object's
constructor will always allocate the object from the heap.

Y ou can find information about the calling conventions of Paradigm C++ in Chapter 18.

Using procedure prototypes

138

Paradigm Assembler lets you declare procedure prototypes much like procedure
prototypesin C. To do so, use the PROCDESC directive.

The Ideal mode syntax of PROCDESC is:
PROCDESC nane [procedure_description]
Use the following syntax in MASM mode:
nane PROCDESC [procedure_descri ption]

procedure_description is similar to the language and argument specification used in the
PROC directive. Its syntax is:

[[I anguage_nodi fier] |anguage] [distance] [argument |ist]

Paradigm Assembler User's Guide

language_modifier, language, and distance have the same syntax asin the PROC
directive. argument_list has the form:

argunent [, argunent]
For more information about PROC, see the beginning of this chapter.

An individua argument has the following syntax:
[argnane] [[countl expression]]:conplex type [:count2_ expression]

complex_type is the data type of the argument, and can be either asmple type or a
pointer expression. count2_expression specifies how many items of this type the
argument defines. The default value of count2_expression is 1, except for arguments of
BYTE, which have a default count of 2 (since you can't PUSH a byte value onto the
80x86 stack). See Chapter 5 for further information about the syntax of complex types.

For the last argument, in procedure types whose calling convention allows
variable_length arguments (like C), count2_expression can be ? to indicate that the
procedure caller will determine the size of the array.

Note that the name of each argument (argname) is optional, but complex_typeis
required for each argument because procedure types are used mainly for type checking
purposes. The names of the arguments do not have to agree, but the types must.

Here's an example:
t est PROCDESC pascal near a:word, b: dword, c: word

This example defines a prototype for the procedure test as a PASCAL procedure taking
three arguments (WORD, DWORD, WORD). Argument names are ignored, and you
can omit them in the PROCDESC directive, asfollows:

test PROCDESC pascal near :word,:dword, :word

The procedure prototype is used to check calls to the procedure, and to check the
PROC declaration against the language, number of arguments, and argument typesin
the prototype. For example,

test PROCC pascal near.
ARG al: word, a2: dword, a3: word ; mat ches PROCDESC for test

PROCDESC aso globally publishes the name of the procedure. Procedures that are not
defined in a module are published as externals, while procedures that are defined are
published as public. Be sure that PROCDESC precedes the PROC declaration, and any
use of the procedure name.

Procedure prototypes can aso use procedure types (defined with PROCTY PE). For
example,

f oot ype PROCTYRE pascal near :word,:dword,:word
f oo PROCDESC f oot ype

Chapter 10, Declaring procedures 139

140 Paradigm Assembler User's Guide

Chapter
11

Controlling the scope of symbols

In Paradigm Assembler and most other programming languages, a symbol can have
more than one meaning depending on where it's located in a module. For example, some
symbols have the same meaning across a whole module, while others are defined only
within a specific procedure.

Symbol scope refers to the range of lines over which a symbol has a specific meaning.
Proper scoping of symbolsis very important for modular program development. By
controlling the scope of a symbol, you can control its use. Also, properly selecting the
scope of a symbol can eliminate problems that occur when you try to define more than
one symbol of the same name.

Redefinable symbols

Some symbol types that Paradigm Assembler supports are considered redefinable. This
means that you can redefine a symbol of this type to be another symbol of the same type
at any point in the module. For example, numeric symbols have this property:

f oo =1

mov ax, f oo ;Mwves 1 into AX
f oo =2

mov ax, f oo ;Moves 2 into AX

Generally, the scope of a given redefinable symbol starts at the point of its definition,
and proceeds to the point where it's redefined. The scope of the last definition of the
symbol is extended to include the beginning of the module up through the first
definition of the symbol. For example,

mov ax, f oo ;Moves 2 into AX!
f oo =1
mov ax, f oo :Moves 1 into AX
foo = 2 ;This definition is carried around to the start
;of the nodule. ..
mov ax, f oo ;Moves 2 into AX

The following list contains the redefinable symbol types.

. text-macro

. numerical_expr
. multiline_macro
. Struc/union

. table
. record
. enum

See Chapter 5 for more information about these redefinable symbols.

Chapter 11, Controlling the scope of symbols 141

Block scoping

Block scoping makes a symbol have a scope that corresponds to a procedure in a
module. Paradigm Assembler supports two varieties of block scoping: MASM-style,
and native Paradigm Assembler style. By default, block-scoped symbols are disabled in
Paradigm Assembler.

The LOCALS and NOLOCALS directives

Paradigm Assembler uses a two-character code prepended to symbols, which
determines whether a symbol in a procedure has block scope. This local-symbol prefix
is denoted with "@@." Y ou can use the LOCAL S directive to both enable block-
scoped symbols, and to set the local symbol prefix. Its syntax looks like this:

LOCALS [prefix_synbol]
The optional prefix_symbol field contains the symbol (of two character length) that
Paradigm Assembler will use as the local-symbol prefix. For example,

LOCALS ;@is assuned to be the prefix by default.

foo proc
@ jmp @& ; This @& synbol belongs.to procedure FOO
foo endp

bar proc
@ jmp @& ; This @& synbol belongs to procedure BAR
bar endp

If you want to disable block-scoped symbols, you can use the NOL OCAL Sdirective.
Its syntax follows:

NOLOCALS
Note that you can also use block-scoped symbols outside procedures. In this case, the

scope of asymbol is determined by the labels defined with the colon directive (:) which
are not block-scoped symbols. For example,

f oo: ; Start of scope.
@ ; Bel ongs to scope starting at FOO
a» =1 ; Bel ongs to scope starting at FOO
bar: ;Start of scope.,

@ 2 ; Bel ongs to scope starting at BAR

MASM block scoping

INMASM versions 5.1 and 5.2, NEAR labels defined with the colon directive are
considered block-scoped if they are located inside a procedure, and you've selected a
language interfacing convention with the MODEL statement. However, these symbols
are not truly block-scoped; they can't be defined as anything other than a near label
elsewhere in the program. For example,

versi on Mb10
model small, c

codeseg

foo proc
a: jnp a ; Bel ongs to procedure FQO
foo endp

142 Paradigm Assembler User's Guide

bar proc

a: jnp a ; Bel ongs to procedure BAR
bar endp
a=1;illegal!

MASM-style local labels

MASM 5.1 and 5.2 provide special symbols that you can use to control the scope of
near labels within a small range of lines. These symbols are: @@, @F, and @B.

When you declare @@ as a NEAR label using the colon (:) directive, you're defining a
unique symbol of the form @@xxxx (where xxxx is a hexadecimal number). @B refers
to the last symbol defined in thisway. @F refers to the next symbol with this kind of
definition. For example,

version nbl 0

@
jmp @ ; Goes to the precious @@
jnmp O ; Goes to the next

@
jmp @B ; Coes to the previous @@
jmp @ :Error: no next @@

Chapter 11, Controlling the scope of symbols 143

144 Paradigm Assembler User's Guide

Chapter
12

Allocating data

Data allocation directives are used for alocating bytesin a segment. Y ou can also use
them for filling those bytes with initial data, and for defining data variables.

All data allocation directives have some features in common. First, they can generate
initialized data and set aside room for uninitialized data. Initialized data is defined with
someinitial value; uninitialized datais defined without specifying an initial value (its
initial value is said to be indeterminate). Data allocation directives indicate an
uninitialized data value with a ?. Anything else should represent an initialized data
value. Chapter 7 explains why you should distinguish between initialized and
uninitialized data.

Another feature common to all data allocation directivesis the use of the DUP keyword
to indicate a repeated block of data. Here's the general syntax of all dataallocation
directives.

[nane] directive dup_expr [,dup expr ...]

Paradigm Assembler initializes name to point to the space that the directive reserves.
The variable will have atype depending on the actual directive used.

The syntax of each dup_expr can be one of the following:
o?
«val ue
«count _expression DUP (dup expr [,dup_expr ...])

count_expression represents the number of times the data block will be repeated.
count_expression cannot be relative or forward referenced.

Use the ? symbol if you want uninitialized data. The amount of space reserved for the
uninitialized data depends on the actual directive used.

value stands for the particular description of an individual data element that is
appropriate for each directive. For some directives, the value field can be very complex
and contain many components; others may only require a simple expression. The
following example uses the DW directive, which allocates WORDS:

DW2 DUP (3 DUP (1,3),S) ;Sanme as DW

Simple data directives

Table 12-1
Data size
directives

Y ou can define data with the DB, DW, DD, DQ, DF, DP, or DT directives. These
directives define different sizes of simple data, as shown in the following table.

Directive M eaning

DB Define byte-size data.

Dw Define word-size data.

DD Define doubleword-size data.

DQ Define quadword-size data.

DF Define 48-bit 80386 far-pointer-size (6 byte) data.

Chapter 12, Allocating data 145

Table 12-1

146

continued

Directive M eaning
DP Define 48-hit 80386 far-pointer-size (6 byte) data.
DT Define tenbyte (10-byte) size data.

Datais aways stored in memory low value before high value.

The syntax of the value field for each of these directives differs, based on the capability
of each data size to represent certain quantities. (For example, it's never appropriate to
interpret byte data as a floating-point number.)

DB (byte) values can be

. A constant expression that has a value between -128 and 255 (signed bytes range
from -128 to +127; unsigned byte values are from 0 to 255).

. An8-bit relative expression using the HIGH or LOW operators.

. A character string of one or more characters, using standard quoted string format. In
this case, multiple bytes are defined, one for each character in the string.

DW (word) values can be
. A constant expression that has a value between -32,768 and 65,535 (signed words
range from -32,768 to 32,767; unsigned word values are from 0 to 65,535).

. A relative expression that requires 16 bits or fewer, (including an offset in a 16-bit
segment, or asegment or group value).

. A relative expression that requires 16 bits or fewer, (including an offset in a 16-bit
segment, or a segment or group value).

. A oneor two-byte string in standard quoted string format.

DD (doubleword) values can be

. A constant expression that has a value between -2,147,483,648 and 4,294,967,295
(when the 80386 is selected), or -32,768 and 65,535 otherwise.

. A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), 16 bits or fewer for any other processor.

. A relative address expression consisting of a 16-bit segment and a 16-bit offset.

. A string of up to four bytesin length, using standard quoted string format.

. A short (32-hit) floating-point number.

DQ (quadword) values can be

. A constant expression that has a value between -2,147,483,648 and 4,294,967,295

(when the 80386 is selected), or -32,768 and 65,535 otherwise.

. A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), or 16 bits or fewer for any other processor.

. A positive or negative constant that has a value between -2% to the 2°*-1 (signed
quadwords range in value from -2%%t0 2%1; unsigned quadwords have values from
0to 2°1).

. A string of up to 8 bytes in length, using standard quoted string format.
. A long (64-hit) floating-point number.

DF, DP (80386 48-hit far pointer) values can be

. A constant expression that has a value between -2,147,483,648 and 4,294,967,295
(when the 80386 is selected), or -32,768 and 65,535 otherwise.

Paradigm Assembler User's Guide

. A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), or 16 bits or fewer for any other processor.
. A relative address expression consisting of a 16-bit segment and a 32-bit offset.

. A positive or negative constant that has a value between -2%" and 2*% -1 (signed
6-byte values range in value from -2*" to 2%’-1; unsigned 6-byte values have values
from 0 to 2%%-1).

. A sting of up to 6 bytesin length, in standard quoted string format.
DT values can be

. A constant expression that has a value between -2,147,483,648 and 4,294,967,295
(when the 80386 is selected), or -32,768 and 65,535 otherwise.

. A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), or 16 bits or fewer for any other processor.

. A positive or negative constant that has a value between -2” and 2%%-1(signed

t%gbyt&e rangein value from -2” to 2”°-1; unsigned tenbytes have values from 0 to
2%-1)

. A 10-byte temporary real formatted floating-point number.

. A string of up to 10 bytesin length, in standard quoted string format.

. A packed decimal constant that has a value between 0 and
99,999,999,999,999,999,999.

Numerical and string constants for the simple data allocation directives differ in some
cases from those found in standard Paradigm Assembler expressions. For example, the
DB, DP, DQ, and DT directives accept quoted strings that are longer than those
accepted within an expression.

Quoted strings are delimited either by single quotes (') or double quotes (). Inside of a
string, two delimiters together indicate that the delimiter character should be part of the
string. For example,

"what''s up doc?

represents the following characters:
what's up doc?

Y ou can have floating-point numbers as the value field for the DD, DQ, and DT
directives. Here are some examples of floating-point numbers:

1.0E30 :Stands for 1.0 X 10%

2.56E-21 ; Stands for 2.56 x 10

1.28E+5 :Stands for 1.28 x 10°
0. 025 ;Stands for .025

Paradigm Assembler recognizes these floating-point numbers because they containa .’
after aleading digit. These rules are relaxed somewhat in MASM mode. For example,

DD 1E30 ; Legal MASM node floating point val ue!
DD . 123 ; Legal in MASM node only.

= For clarity, we recommend using the form with the leading digit and the decimal point.

Paradigm Assembler also allows encoded real numbersfor the DD, DQ, and DT
directives. An encoded real number is a hexadecimal number of exactly a certain length.
A suffix of Rindicates that the number will be interpreted as an encoded real number.
The length of the number must fin the required field (plus one digit if the leading digit
isazero); for example,

Chapter 12, Allocating data 147

DD 12345678r ; Legal nunber
DD 012345678r ; Legal nunber
DD 1234567r ;111 egal nunber (too short)

The other suffix values (D, H, O, Q, and B) function similarly to those found on
numbers in normal expressions.

Some of the simple data allocation directives treat other numerical constant values
specially. For example, if you don't specify radix for avalue inthe DT directive,
Paradigm Assembler uses binary coded decimal (BCD) encoding. The other directives
assume a decimal value, asfollows:

DD 1234 ; Deci mal
DT 1234 ; BCD

The default radix (that the RADI X directive specifies) isnot applied for the DD, DQ,
and DT directivesif avalueisasimple positive or negative constant. For example,

RADI X 16
DW 1234 : 1234 hexadeci mal
DD 1234 ;1234 deci nal

Chapter 5 details numerical constants and the RADI X directive.

Creating an instance of a structure or union

148

To create an instance of a structure or a union data type, use the structure or union name
as adata alocation directive. For example, assume you've defined the following:

ASTRUC STRUC
B DB "xyz"
CDbwi

D DD 2
ASTRUC ENDS

BUNI ON UNI ON
X DW?

Y DD ?

Z DB ?

BUNI ON ends

Then the statements
ATEST ASTRUC ?
BTEST BUNI ON ?

would create instances of the structure astruc (defining the variable atest) and the union
bunion (defining the variable btest). Since the example contained the ? uninitialized
data value, no initial datawill be emitted to the current segment.

Initializing union or structure instances

Initialized structure instances are more complex than uninitialized instances. When you
define a structure, you have to specify an initial default value for each of the structure
members. (Y ou can use the ? keyword as the initial value, which indicates that no
specific initial value should be saved.) When you create an instance of the structure, you
can create it using the default values or overriding values. The simplest initialized
instance of a structure contains just the initial data specified in the definition. For
example,

ASTRUC {}
IS equivaent to

Paradigm Assembler User's Guide

DB "xyz"
DW 1
DD 2

The braces ({}) represent anull initializer value for the structure. The initiaizer value
determines what members (if any) have initial values that should be overridden, and by
what new values, as you allocate data for the structure instance. The syntax of the brace
initializer follows:

[menber _name = val ue [, nenber _name = value...]]

member_name is the name of a member of the structure or union. value is the value that
you want the member to have in thisinstance. Specify anull value to tell Paradigm
Assembler to use the initial value of the member from the structure or union definition.
A ? value indicates that the member should be uninitialized. Paradigm Assembler sets
any member that doesn't appear in the initializer to the initial value of the member from
the structure or union definition. For example,

ASTRUC {C=2, D=7}

isequivaent to

m n Xyzll
DW 2
DD ?

Y ou can use the brace initializer to specify the value of any structure or union member,
even in anested structure or union.

Unions differ from structures because elements in a union overlap one another. Be
careful when you initialize a union instance since if several union members overlap,
Paradigm Assembler only lets one of those members have an initialized value in an
instance. For example,

BUNI ON {}
isvalid because al three members of the union are uninitialized in the union definition.
This statement is equivalent to

DB 4 DUP (?)
In this example, four bytes are reserved because the size of the union isthe size of its
largest member (in this case a DWORD). If the initialized member of the union is not

the largest member of the union, Paradigm Assembler makes up the difference by
reserving space but not emitting data. For example,

BUNI ON { z=1}

IS equivaent to
DB 1
DB 3 DUP (?)
Finally, multiple initialized members in a union produce an error. For example, thisis
illegal:
BUNI ON { X=1, Z=2}
Note that if two or more fields of the union have initial valuesin the union definition,

then using the simple brace initializer will also produce an error. Theinitializer must set
all but onevalueto ? for alegal instance to be generated.

An aternative method of initializing structure and union instances is to use the bracket
(< >) initidlizer. The valuesin the initializer are unnamed but are laid out in the same

Chapter 12, Allocating data 149

order as the corresponding members in the structure or union definition. Use this syntax
for the bracket initializer:

< [value [,value...]] >

val ue represents the desired value of the corresponding member in the structure or

union definition. A blank value indicates that you'll use the initial value of the member
from the structure or union definition. A ? keyword indicates that the member should be
uninitialized. For example, expression represents the desired value of the corresponding
field in the record definition. A blank value indicates that you'll use the initial value of
the field from the record definition. A ? keyword indicates that the field should be zero.
For example,

ASTRUC <"abc", , ?>

IS equivaent to
DB ' abc'
DW 1
DD ?

If you specify fewer values than there are members, Paradigm Assembler finishes the
instance by using the initial values from the structure or union definition for the
remaining members.

ASTRUC <"abc"> : Sanme as ASTRUC <"abc", , >

When you use the bracket initializer, give special consideration to nested structures and
unions. The bracket initializer expects an additional matching pair of angle brackets for
every level of nesting, so that Paradigm Assembler will treat the nested structure or
union initializer as a single entity (to match the value in the instance). Alternatively, you
can skip an entire level of nesting by leaving the corresponding entry blank (for the
default value of the nested structure or union), or by specifying the ? keyword (for an
uninitialized nested structure or union). For example, examine the following nested
structure and union:

CUNI ON STRUC

CTYPE DB ?

UNI ON :Start O union
If CTYPE = 0, use this...
STRUC
CTOPAR1 DW 1
CTOPAR2 DB 2

ENDS

I f CTYPE=1, use this...
STRUC

CT1PARL DB 3
CT1PAR2 DD 4

ENDS

ENDS ; End of union
ENDS ; End of structure data type

The bracket initializer for this complex structure/union has two levels of nesting. This
nesting must appear as matched angle brackets within the initializer, like

CUNI ON <0, <<2, >, ?>>
This directiveis equivalent to

150 Paradigm Assembler User's Guide

2525

DUP (?)

Creating an instance of arecord

To create an instance of arecord data type, use the name of the record datatype as a
data all ocation directive. For example, assume you've defined the following:

MYREC RECORD VAL: 3=4, MCDE: 2, SZE: 4=15

Then, the statement
MIEST MYREC ?

would create an instance of the record myrec (defining the variable mtest). No initial
data is emitted to the current segment in this example because the ? uninitialized data
value was specified.

Record instances are aways either a byte, aword, or a doubleword, depending on the
number of bits Allocated in the record definition.

Initializing record instances

Y ou must specify an initial value for some or all of the record fields when you define a
record. (Paradigm Assembler assumes that any unspecified initial values are 0.) The
simplest initialized instance of arecord contains just the initial field data specified in the
definition. For example,

MYREC {}
isequivaent to

DW(4 SHL 6) + (0 SHL 4) + (15 SHL 0)
;SHL is the shift left operator for expressions

The braces ({}) represent anull initializer value for the record. Theinitializer value
determines what initial values should be overridden, and by what new values (as you
allocate data for the record instance).

Use this syntax of the brace initializer for records:

{[field_name = expression [,field_name = expression...]] }
field_name isthe name of afield in the record. expression is the vaue that you want the
field to havein thisinstance. A blank value indicates that you'll use the initial value of
the field from the record definition. A ? value is equivalent to zero. Paradigm

Assembler sets any field that doesn't appear in the initializer to the initial value of the
field from the record definition. For example,

MYREC { VAL=2, SZE=?}
IS equivaent to

DW (2 SHL 6) + (0 SHL 4) +(0 SHL 0)
An dternative method of initializing record instances is to use the bracket (< >)
initializer. In this case, brackets delineate the initializer. The valuesin the initializer are

unnamed but are laid out in the same order as the corresponding fields in the record
definition. The syntax of the bracket initializer follows:

< [expression [,expression ...]] >

Chapter 12, Allocating data 151

expression represents the desired value of the corresponding field in the record
definition. A blank value indicates that you'll use the initial value of the field from the
record definition. A ? keyword indicates that the field should be zero. For example,

MYREC <, 2, ?>
IS equivaent to
DW(4 SHL 6) + (2 SHL 4) + (0 SHL 0)

If you specify fewer values than there are fields, Paradigm Assembler finishes the
instance by using the initial values from the record definition for the remaining fields.

MYREC <1> ; sane as MYREC <1, , >

Creating an instance of an enumerated data type

Y ou can create an instance of an enumerated data type by using the name of the
enumerated data type as a data allocation directive. For example, assume you have
defined the following:

ETYPE ENUM FEE, FI E, FOO, FUM

Then the statement
ETEST ETYPE ?

would create an instance of the enumerated data type etype (defining the variable etest).
In this example, no initial datais emitted to the current segment because the
uninitialized data value is specified.

Enumerated data type instances are always either a byte, aword, or a doubleword,
depending on the maximum value present in the enumerated data type definition.

Initializing enumerated data type instances

Y ou can use any expression that evaluates to a number that will fit within the
enumerated data type instance; for example,

ETYPE ? ;uninitialized instance
ETYPE Foo ;initialized instance, val ue Foo
ETYPE 255 ;a nunmber outside the ENUMthat also fits

Creating an instance of a table

152

To create an instance of atable data type, use the table name as a data allocation
directive. For example, assume you have defined the following table:

TTYPE TABLE VI RTUAL DonePr oc: WORD=DoneRt n, \
VI RTUAL MsgPr oc: DWORD- MsgRt n, \
VI RTUAL DonePr oc: WORD- DoneRt n

Then, the statement
TTEST TTYPE ?

would create an instance of the table ttype (defining the variablettest). No initial data
will be emitted to the current segment in this example because the ? uninitialized data
value was specified.

Paradigm Assembler User's Guide

Initializing table instances

When you define atable, you must specify an initial value for all table members. The
simplest initialized instance of atable contains just the initial data specified in the
definition. For example,

TTYPE {}

isequivaent to
DW MoveRt n

DD MsgRt n
DW DoneRt n

The braces ({}) represent anull initializer value for the structure. The initializer value
determines what members (if any) have initial values that should be overridden, and by
what new values, as you allocate data for the table instance. Here's the syntax of the
brace initializer:

{ [rmenber_nanme = value [, nenber_name = value...]] }

member_name is the name of a member of the table. value is the value that you want the
member to have in thisinstance. A blank value indicates that you'll use the initial value
of the member from the table definition. A ? value indicates that the member should be
uninitialized. Paradigm Assembler sets any member that doesn't appear in the initializer
to theinitial value of the member from the table definition. For example,

TTYPE (MoveProc=MoveRt n2, DonePr oc=?)

IS equivaent to

DW MoveRt n2
DD MsgRt n
DW ?

Creating and initializing a named-type instance

Y ou can create an instance of a named type by using the type name as a data allocation
directive. For example, if you define the following type:

NTTYPE TYPEDEF PTR BYTE

the statement
NTTEST NTTYPE ?
creates an instance of the named type nttype (defining the variable nttest). No initial

data is emitted to the current segment in this example because you specified the ?
uninitialized data value.

The way that you initialize a named-type instance depends on the type that the named
type represents. For example, NTTY PE in the previous example is aword, so it will be
initialized as if you had used the DW directive, as follows:

NTTYPE 1, 2,3 ; Represents pointer values 1,2, 3.
DW 1,2,3 ; Same as NITYPE 1, 2, 3.

However, if the named type represents a structure or table, it must be initialized the
same way as structures and tables are. For example,

Chapter 12, Allocating data 153

f oo STRUC

f1 DB ?
ENDS
bar TYPEDEP f oo
bar (f1=1) ; Must use structure initializer.

Creating an instance of an object

Creating an instance of an object in an initialized or uninitialized data segment is
exactly the same as creating an instance of a structure. In fact, objects in Paradigm
Assembler are structures, with some extensions. One of these extensionsisthe
@t r _<obj ect _nane> structure member.

An object data type with virtual methods is a structure having one member that points to
atable of virtual method pointers. The name of this member is

@pt r _<obj ect _nane>. Usually, you would initialize an instance of an object
using a constructor method. However, you could have objects designed to be static and
have no constructor, but are instead initialized with an initlilizer in a data segment.

If you use the @t r _<obj ect _name> member's default value, Paradigm
Assembler win correctly initialize the object instance.

Another difference between structures and objects is that objects can inherit members
from previous object definitions. When this inheritance occurs, Paradigm Assembler
handles it as a nested structure. Because of this, we do not recommend using bracket
(< >) initializersfor object data.

Creating an instance of an object's virtual method table

Every object that has virtual methods requir6s an instance of atable of virtual methods
to be available somewhere. A number of factors determine the proper placement of this
table, including what program model you're using, whether you want near or far tables,
and so forth. Paradigm Assembler requires you to place this table. Y ou can create an
instance for the most recently defined object by using the TBLINST pseudo-op, with
this syntax:

TBLI NST

TBLINST defines @abl eAddr _<obj ect _nane> asthe address of the virtua
table for the object. It is equivalent to

@abl eAddr _<obj ect _nane> @abl e_<obj ect _name> {}

154 Paradigm Assembler User's Guide

Chapter

13

Advanced coding instructions

Paradigm Assembler recognizes al standard Intel instruction mnemonics applicable to
the currently selected processor(s). This chapter describes Paradigm Assembler's
extensions to the instruction set, such as the extended CAL L instruction for calling
language procedures.

Intelligent code generation: SMART and NOSMART

Table 13-1
Intelligent code

generation
directives

Intelligent code generation means that Paradigm Assembler can determine when you
could have used different instructions more efficiently than those you supplied. For
example, there are times when you could have replaced an LEA instruction by a shorter
and faster MOV instruction, as follows:

LEA AX, Ival
can be replaced with
MOV AX, OFFSET | val

Paradigm Assembler supplies directives that let you use intelligent code generation. The
following table lists these directives.

Directive M eaning
SMART Enables smart code generation
NOSMART Disables smart code generation.

By default, smart code generation is enabled. However, smart code generation is
affected not only by the SMART and NOSMART directives, but also by the
VERSION directive (see Chapter 3 for detailson VERSION).

Smart code generation affects the following code generation situations:

. Replacement of LEA instructionswith MOV instructions if the operand of the LEA
instruction is a simple address.

. Generation of signed Boolean instructions, where possible. For example, AND
AX,+02 vs. AND AX,0002.

. Replacement of CALL FAR xxxx with acombination of PUSH CS, CALL NEAR
XXxX, when the target xxxx shares the same CS register.

Using smart instructions make it easier to write efficient code. Some standard Intel
instructions have also been extended to increase their power and ease of use. These are
discussed in the next few sections.

Extended jumps

Conditional jumps such as JC or JE on the, 80186, and 80286 processors are only
allowed to be near (within a single segment) and have a maximum extent of -128 bytes

Chapter 13, Advanced coding instructions 155

to 127 bytes, relative to the current location counter. The same istrue of the loop
conditional instructions such asJCXZ or LOOP.

Paradigm Assembler can generate complementary jump sequences where necessary and
remove this restriction. For example, Paradigm Assembler might convert

JC XXX

to

JNC t enpt ag
JMP XXX

Y ou can enable this complementary jump sequences with the JUM PS directive, and
disableit with the NOJUM PS directive. By default, Paradigm Assembler doesn't
generate this feature.

When you enable JUM PS, Paradigm Assembler reserves enough space for all forward-
referenced conditional jumps for a complementary jump sequence. When the actual
distance of the forward jump is determined, you might not need a complementary
sequence. When this happens, Paradigm Assembler generates NOP instructions to fill
the extra space.

To avoid generating extra NOPS, you can
. You can use an override for conditional jumps that you know are in range; for
example,
JC SHORT abc

ADD ax, ax
abc:

. Specify the /m command-line switch. See Chapter 2 for more about this switch.

Additional 80386 LOOP instructions

The loop instructions for the 80386 processor can either use CX or ECX as the counting
register. The standard L OOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ
mnemonics from Intel select the counting register based on whether the current code
segment is a 32-bit segment (when using ECX) or a, 16-bit segment (when using CX).

Paradigm Assembler has special instructions that increase the flexibility of the LOOP
feature. The LOOPW, LOOPWE, LOOPWZ, LOOPWNE, and LOOPWNZ
instructions use CX as the counting register, regardless of the size of the current
segment. Similarly, the LOOPD, LOOPDE, L OOPDZ, LOOPDNE, and LOOPDNZ
instructions use ECX as the counting register.

Additional 80386 ENTER and LEAVE instructions

156

Usethe ENTER and LEAVE instructions for setting up and removing a procedure's
frame on the stack. Depending on whether the current code segment is a 32-bit segment
or a 16-hit segment, the standard ENTER and L EAVE instructions will modify either
the EBP and ESP 32-bit registers, or the BP and SP 16-bit registers. These instructions
might be inappropriate if the stack segment is a 32-bit segment and the code segment is
a 16-hit segment, or the reverse.

Paradigm Assembler provides four additional instructions that always select a particular
stack frame size regardless of the code segment size. The ENTERW and LEAVEW
instructions always use BP and SP as the stack frame registers, while the ENTERD and
the LEAVED instructions always use EBP and ESP.

Paradigm Assembler User's Guide

Additional return instructions

Table 13-2
Return
instructions

The standard RET instruction generates code that terminates the current procedure
appropriately. Thisincludes generating epilog code for a procedure that uses a high-
level language interfacing convention. Even for a procedure with NOLANGUAGE as
its calling convention, the RET instruction will generate different code if you declare
the procedure NEAR or FAR. For aNEAR procedure, Paradigm Assembler generates
anear return instruction. For a FAR procedure, Paradigm Assembler generates afar
return instruction. (Outside of a procedure, a near return is always generated.)

Paradigm Assembler contains additional instructions to alow specific return
instructions to be generated (without epilog sequences). The following table lists them.

Instruction Function
RETN Always generates anear return.
RETF Always generates afar return.

RFTCODE Generates a return appropriate for the currently selected model. Generates a near return
for modelsTINY, SMALL, COMPACT, and TPASCAL. Generates afar return for
models MEDIUM, LARGE, and HUGE.

Additional IRET instructions

For Paradigm Assembler, you can use an expanded form of the IRET instruction.

IRET will pop flags from the stack DWORD-style if the current code segment is 32-bit.
Otherwise, aWORD-style POP is used. The IRETW instruction always pops WORD-
style. Note that you can use these enhancements only if you select version T320.
Otherwise, IRET will pop flags WORD-style, and IRETW is unavailable.

Extended PUSH and POP instructions

Paradigm Assembler supports severa extensionsto the PUSH and POP instructions.
These extensions greatly reduce the quantity of typing required to specify an extensive
seriesof PUSH or POP instructions.

Multiple PUSH and POPs

Y ou can specify more than one basic PUSH or POP instruction per line. For example,

PUSH ax
PUSH bx
PUSH cX
PCP cx
POP bx
PCP ax

can be written as
PUSH ax bx cx
POP cx bx ax

For Paradigm Assembler to recognize there are multiple operands present, make sure
that any operand cannot conceivably be considered part of an adjacent operand. For
example,

PUSH f oo [bx]

Chapter 13, Advanced coding instructions 157

might produce unintended results because f oo, [bx] ,andf oo [bx] areadll lega
expressions. Y ou can use brackets or parentheses to clarify the instruction, as follows:

PUSH [f oo] [bx]

Pointer PUSH and POPs

The standard PUSH and POP instructions can't push far pointers, which require 4 bytes
on the 8086, 80186, and 80286 processors, and up to 6 bytes on the 80386 processor.

Paradigm Assembler permits PUSH and POP instructions to accept DWORD-sized
pointer operands for the 8086, 80186, and 80286 processors, and PWORD and
QWORD-sized pointer operands for the 80386 processor. When such a PUSH or POP
is encountered, Paradigm Assembler will generate code to PUSH or POP the operand
into two pieces.

PUSHing constants on the 8086 processor

While the 80186, 80286, and 80386 processors have basic instructions available for
directly pushing a constant value, the 8086 does not.

Paradigm Assembler permits constants to be PUSHed on the 8086, and generates a
sequence of instructions that has the exact same result as the PUSH of a constant on the
80186 and higher processors.

Y ou can only do thisif you've turned smart code generation on.

The sequence of instructions Paradigm Assembler uses to perform the PUSH of a
constant is about ten bytes long. There are shorter and faster ways of performing the
same function, but they all involve the destruction of the contents of aregister; for
example,

MOV ax, constant
PUSH ax

This sequence is only four bytes long, but the contents of the AX register is destroyed in
the process.

Additional PUSHA, POPA, PUSHF and POPF instructions

For Paradigm Assembler, you can use an expanded form of the PUSHA, POPA,
PUSHF and POPF instructions. If the current code segment is 32-bit, the PUSHA
instruction will push registersin DWORD-style, and POPA will pop registersin
DWORD-style. Otherwise, Paradigm Assembler uses WORD-style PUSH and POP.
Similarly, PUSHF and POPF will push and pop flags DWORD-style for a 32-bit code
segment, or WORD-style otherwise.

The PUSHAW, POPAW, PUSHFW, and POPFW instructions always push and pop
WORD-style. Remember that you can use these enhancements only if you're using
version T320 or later; otherwise, the pushes and pops will be done WORD-style.

The PUSHSTATE and POPSTATE instructions

158

The PUSHSTATE directive saves the current operating state on an internal stack that is
16 levels deep. PUSHSTATE is particularly useful if you have code inside a macro that
functions independently of the current operating state, but does not affect the current
operating mode.

Paradigm Assembler User's Guide

The state information that Paradigm Assembler saves consists of

. Current emulation version (for example T310)

. Mode selection (for example IDEAL, MASM, QUIRKS, MASM51)
. EMUL or NOEMUL switches

. Current processor or coprocessor selection

. MULTERRS or NONMULTERRS switches

. SMART or NOSMART switches

. Thecurrent radix

. JUMPS or NOJUMPS switches

. LOCALSor NOLOCALS switches

. Thecurrent local symbol prefix

Use the POPSTATE directive to return to the last saved state from the stack.

; PUSHSTATE and POPSTATE exanpl e
. 386

i deal

nmodel snal |

dat aseg

pass_string db 'passed', 13, 10, 36
fail _string db 'failed', 13, 10, 36

codeseg
j unps
; Show changi ng processor sel ection, nunber radi x, and JUMPS
; mode
xor eax, eax ;Zero out eax. Can use EAK in 386 node
pushst at e ; Preserve state of processor, radix and
; JUMPS
noj unps
radi x 2 ;Set to binary radix
p286
nmov ax, 1 ;Only AX avail abl e now. EAX woul d give
;errors.
cnp ax, 1
j ne next 1 ;No extra NOPS after this
;Assenble with /la and check in .Ist file.
nmov ax, 100 ; Now 100 rmeans binary 100 or 4 deci mal.
next 1:
popst at e ; Restores JUWS and 386 npbde and defaul t
; radi x.
cnp eax, 4 ; EAX avai l abl e again. Back in deci nal node
je passl ; Extra NOPS to handl e JUWPB. Check in .|st
file,
nmov dx, OFFSET fail _string ;Load the fail string
jmp fini
passi:
nmov dx, OFFSET pass_string ; Load the pass string.
fini
mov ax, @lat a ;Print the string out

nmov ds, ax

Chapter 13, Advanced coding instructions 159

mov ah, 9h

i nt 21h
nmov ah, 4ch ;Return to DCS
i nt 21h

end

Extended shifts

On the 8086 processor, the shift instructions RCL, RCR, ROL, ROR, SHL, SHR,
SAL, and SAR cannot accept a constant rotation count other than 1. The 80186, 80286,
and 80386 processors accept constant rotation counts up to 255.

When Paradigm Assembler encounters a shift instruction with a constant rotation count
greater than 1 (with the 8086 processor selected), it generates an appropriate number of
shift instructions with arotation count of 1. For example,

. 8086
SHL ax, 4

generates

SHL ax,
SHL ax,
SHL ax,
SHL ax,

PR ERR

Forced segment overrides: SEGxx instructions

Table 13-3
Segment
override
instructions

Paradigm Assembler provides six instructions that cause the generation of segment
overrides. The following table lists these instructions.

Instruction M eaning

SEGCS Generates a CS override prefix byte.
SEGSS Generates an SS override prefix byte.
SEGDS Generatesa DS override prefix byte.
SEGES Generates an ES override prefix byte.
SEGFS Generates an FS override prefix byte.
SEGGS Generates a GS overrice prefix byte.

Y ou can use these instructions in conjunction with instructions such as XLATB, which
do not require arguments, but can use a segment overrides For example:

SEGCS XLATB

Note that most such instructions have an aternative form, where you can provide a
dummy argument to indicate that an override is required. For example,

XLAT BYTE PTR cs: [bx]
These two examples generate exactly the same code.

Additional smart flag instructions

160

Often, you can simplify an instruction that manipulates bits in a flag to improve both
code size and efficiency. For example,

OR ax, 1000h

Paradigm Assembler User's Guide

Table 13-4

Smart flag
instructions

might be smplified to
OR ah, 10h
if the only result desired was to set a specific bit in AX, and the processor flags that the

instruction affects are unimportant. Paradigm Assembler provides four additional
instructions that have this functionality, as shown in the following table:

Instruction Function Correspondsto
SETFLAG Set flag bit(s) OR
MASKFLAG Mask off flag bigs) AND
TESTFLAG Test flag bit(s) TEST
FLIPFLAG Complement flag bigs) XOR

Use these instructions to enhance the modularity of records; for example,
FOO RECORD RO:1,R1:4,R2:3,R3:1
" TESTFLAG AX, MASK RO

In thisexample, TESTFLAG will generate the most efficient instruction regardless of
where RO exists in the record.

Additional field value manipulation instructions

Table 13-5
Instructions for
setting and
retrieving values

Paradigm Assembler can generate specific code sequences for setting and retrieving
values from bit fields specified with the RECORD statement. This lets you write code
that isindependent of the actual location of afield within arecord. Used in conjunction
with the ENUM statement, records can thus achieve an unprecedented level of
modularity in assembly language. The following table lists these instructions:

Instruction Function
SETFIELD Setsavauein arecord field.
GETFIELD Retrieves avalue from arecord field.

The SETFIELD instruction

SETFIEL D generates code that sets avalue in arecord field. Its syntax follows:
SETFI ELD field _nane destination r/m, source_reg

field_name isthe name of arecord member field. destination_r/mfor SETFIELD isa
register or memory address of type BY TE or WORD (or DWORD for the 80336).
source_reg must be aregister of the same size or smaller. If the sourceis smaller than
the destination, the source register must be the least significant part of another register
that the same size as the destination. This full-size register is called the operating
register.

Use thisregister to shift the value in the source register so that it's aligned with the
destination. For example,
FOO RECORD RO:1,Rl1:4,R2:3,R3:1

SETFI ELD R1 AX, BL ;operating register is BX
SETFI ELD R1 AX, BH ;illegal!

Chapter 13, Advanced coding instructions 161

SETFIEL D shifts the source register efficiently to align it with the field in the
destination, and ORs the result into the destination register. Otherwise, SETFIELD
modifies only the operating register and the processor flags.

Using SETFIEL D will destroy the contents of the operating register.

To performits function, SETFIEL D generates an efficient but extended series of the
following instructions: XOR, XCHG, ROL, ROR, OR, and MOVZX.

If you're using SETFIEL D when your source and target registers are the same, the
instruction does not OR the source value to itself. Instead, SETFIEL D ensures that the
fields of the target register not being set will be zero.

SETFIEL D does not attempt to clear the target field before ORing the new value. If
thisis necessary, you must explicitly clear the field using the MASKFLAG instruction.

The GETFIELD instruction

GETFIELD retrieves datafrom arecord field. It functions as the logical reverse of the
SETFIELD instruction. Its syntax follows:

CETFI ELD field _nane destination reg , source_r/m
field_name and destination_reg function as they do for SETFIELD. You can use
source_r/masyou would for source _reg (for SETFIEL D). For example,

FOO RECORD RO:1,R1:4,R2:3,R3:1

éETFI ELD R1 BL, AX ;operating register is BX
GETFI ELD R1 BH, AX ;illegal!

Note that GETFIELD destroys the entire contents of the operating register.

GETFIELD retrieves the value of afield found in the source register or memory
address, and sets the pertinent portion of the destination register to that value. This
instruction affects no other registers than the operating register and the processor flags.

To accomplish its function, GETFIEL D generates an efficient but extended series of
the following instructions: MOV, XCHG, ROL, and ROR.

If you're using the GETFIEL D instruction when your source and target registers are the
same, the instruction will not generate the nonfunctional MOV t ar get, sour ce
instruction.

Additional fast immediate multiply instruction

162

Paradigm Assembler provides a specia immediate multiply operation for efficient array
indexing. FASTIM UL addresses atypical problem that occurs when you create an
array of structures. There is no immediate multiply operation available for the 8086
processor. Even for the more advanced processors, multiplication using shifts and adds
Is significantly faster in some circumstances than using the standard immediate IMUL
instruction. Based on the currently specified processor, Paradigm Assembler's
FASTIMUL instruction chooses between the most efficient sequence of shifts and adds
available, and the current processor's immediate | M UL operation (if any). FASTIMUL
has the following syntax:

FASTI MJL dest _reg, source_r/m val ue

Paradigm Assembler User's Guide

Thisinstruction is much like the ternary IMUL operation available on the 80186,80286,
and 80386 processors. The dest_reg destination register isa WORD register (or it can
be DWORD on the 80386). source _r/misaregister or memory address that must match
the size of the destination. value is afixed, signed constant multiplicand.

FASTIMUL uses acombination of IMUL, MOV, NEG, SHL, ADD, and SUB
instructions to perform its function. This function destroys the source register or
memory address, and |eaves the processor flags in an indeterminate state.

Extensions to necessary instructions for the 80386 processor

The 80386 processor has the ability to operate in both 16-bit and 32-bit mode. Many of
the standard instructions have different meanings in these two modes. In Paradigm
Assembler, you can control the operating size of the instruction using the SMALL and
L ARGE overridesin expressions.

In general, when you use SMALL or LARGE as part of an address expression, the
operator controls the generation of the address portion of the instruction, determining
whether it should be 16- or 32-hit.

When SMALL or LARGE appears outside of the address portion of an expression, it
can control whether a 16-bit instruction or a 32-bit instruction is performed. In cases
where you can determine the size of the instruction from the type of the operand,
Paradigm Assembler selects the size of the instruction. The following table shows the
instructionsthat SMALL and LARGE affect.

Table 13-6 |nstruction Effect
Instructions
affected by PUSH [SMALL/LARGE] segreg Selects whether 16-bit or 32-bit form of segment register is
SMALL and PUSHed.
LARGE
POP [SMALL/LARGE] segreg Selects whether 16-bit or 32-bit form of segment register is
POPped.
FSAVE [SMALL/LARGE] memptr Selects whether small or large version of floating-point stateis
saved.
FRSTOR [SMALL/LARGE] memptr Selects whether small or large version of floating-point stateis
restored.
FSTENV [SMALL/LARGE] memptr Selects whether small or large version of floating-point stateis
stored.
FLDENV [SMALL/LARGE] memptr Selects whether small or large version of floating-point stateis
loaded.
LGDT [SMALL/LARGE] memptr Selects whether small or large version of global descriptor
tableisloaded.
SGDT [SMALL/LARGE] memptr Selects whether small or large version of global descriptor
tableissaved.
LIDT [SMALL/LARGE] memptr Selects whether small or large version of interrupt descriptor
tableisloaded.
SIDT [SMALL/LARGE] memptr Selects whether small or large version of interrupt descriptor
tableissaved.
JMP [SMALL/LARGE] memptr For DWORD-sized memory addresses, selects between FAR
16-bit IMP and NEAR 32-bit IMP.
CALL [SMALL/LARGE] memptr For DWORD-sized memory addresses, selects between FAR

16-bit CALL and NEAR 32-bit CALL.

Chapter 13, Advanced coding instructions 163

Paradigm Assembler selects the size of the instruction using SMALL and LARGE only
when no other information is available. For further information about overriding
address sizeswith the SMALL and L ARGE operators, see Chapter 5.

=

Calling procedures with stack frames

Paradigm Assembler supports an extended form of the CALL instruction that lets you
directly call procedures that use high-level language interfacing conventions.

Arguments to procedures that use high-level language interfacing conventions are
passed on the stack in a stack frame. The caller must push these arguments onto the
stack before calling the procedure.

The interfacing convention of the procedure determines the order arguments should be
pushed into the stack frame. For BASIC, FORTRAN, and PASCAL procedures,
arguments are pushed onto the stack in the order they are encountered; for C and CPP
(C++), the arguments are pushed in the reverse order.

The interfacing convention of a procedure also determines whether the procedure or the
caller of the procedure must remove the arguments from the stack once the procedure is
called. C and C++ require the caller to clean up the stack. In al other languages, the
procedure itself must remove the arguments from the stack before returning.

Paradigm Assembler handles both the proper argument ordering and stack cleanup for
you with the extended CALL instruction. The syntax for calling a procedure with
parameters follows:

CALL expression [language] [,argunment |ist)

expression isthe target of the CAL L instruction. language specifies the interfacing
convention to use for the call. If you don't specify alanguage, Paradigm Assembler uses
the default language set by M ODEL (see Chapter 7 for further information about using
MODEL).

Arguments, if any, follow the language identifier. The syntax of each argument in the
argument list is the same as for the extended PUSH and POP instructions. Y ou can
separate these arguments with commas; for example,

CALL test PASCAL, ax, es OFFSET buffer, bl en

PASCAL, the language in the example, causes Paradigm Assembler to push the
arguments in the same order that it encounters them. This example call is equivalent to
PUSH ax
PUSH es OFFSET buffer

PUSH word PTR bl en
CALL test

A call to a C procedure requires that the arguments be pushed onto the stack in the
reverse order. Paradigm Assembler automatically does this so that a call of the form
CALL test C ax,es COFFSET buffer,word PTR bl en

results in the following code:

PUSH word PTR bl en
PUSH es COFFSET buffer
PUSH ax

CALL test

SUB sp,8

164 Paradigm Assembler User's Guide

When calling a procedure with arguments, you should aways list the argumentsin the
same order they were listed in the procedure header. Paradigm Assembler reverses them
if necessary.

= Remember to separate arguments with commas and components of arguments with
spaces. Paradigm Assembler, depending on the interfacing convention, can push
arguments in reverse order on the stack, but it won't alter the ordering of argument
components.

If the interfacing convention for the call is NOLANGUAGE, Paradigm Assembler
reports an error if any arguments are present. Although you can define arguments to a
NOLANGUAGE procedure with the ARG directive, you must explicitly push the
arguments when you make a call to a NOLANGUAGE procedure.

Calling procedures that contain RETURNS

Procedures that define some of their arguments with the RETURNS keyword must be
considered specially. These arguments are used to return values to the caller; therefore,
the caller always pops them. There is no special extension to the CALL instruction in
Paradigm Assembler to help pass those arguments specified in a procedure declaration
after the RETURNS directive. Y ou must explicitly PUSH these arguments before the
CALL, and POP them afterward.

Calling procedures that have been prototyped

If you've defined the procedure prior to the call, or used PROCDESC to prototype the
procedure (see Chapter 10), Paradigm Assembler will type check any language and
arguments specified in the call and generate awarning if the language, number of
parameters, or types of parameters don't match.

For example,

test PROCDESC pascal far :word,:dword, :word

call test pascal ax,ds bx, cx ;works fine,

call test c, ax,dx, bx,cx ;wrong | anguage!

call test pascal, eax, ebx, ecx ;Wrong paraneter types!
call test pascal, ax,ds bx ;too few paraneters!

Since the language of the procedure has been specified, don't have to include it in the
cal. If you omit it, however, make sure to include the comma that would normally
follow it:

call test, ax,ds bx, cx ;works fine

Y ou can also use procedure types (declared with PROCT Y PE) to supply a distance and
language, and force type-checking to occur. For example,

f oot ype proctype pascal near :word,:dword,:word

EAII footype ptr[bx],ax,ds bx,cs ;no error

Calling method procedures for objects: CALL..METHOD

The CALL instruction is extended to support the calling of object methods. A call to an
object method can generate either adirect call (for static methods) or an indirect call
(for virtual methods).

Chapter 13, Advanced coding instructions 165

166

Because you can use an indirect call, the instructions that perform the call can destroy
the contents of some registers. Therefore, Paradigm Assembler lets you select the
proper registersif you're using avirtual method call.

Here's the syntax of the CALL..METHOD extension:

CALL instance_ptr METHOD [obj ect nane:] net hod_nane [USES
[segreg:] of fsreg] [| anguage_and_ar gs]

instance_ptr must describe an instance of an object. In MASM mode, it's often
impossible to determine the name of the object associated with an instance. Therefore,
Paradigm Assembler allows the object_name field, so that you can specify the instance's
object name.

method_name contains the name of the method to be called for the specified object
Instance.

See Chapter 8 for further information about how to specify a method as virtual or static.

If the method is virtual and an indirect call isrequired, the CALL..METHOD
instruction normally calls indirectly through ES:BX (or ES:EBX for USE32 models on
the 80386 processor). If you want to use other registers, you can override them with the
USES clause. segreg is the optional segment register to use, and offsreg is the offset
register to use for the call.

For objects declared with near tables, CALL..METHOD only loads the offset register.
Paradigm Assembler assumes that the segment register is already set up to the correct
value.

It's good programming practice to specify an appropriate selection for indirect calling
registers, even if you know that the method you're calling is static. As objects are
modified, methods can change from being static to virtual.

Thelanguage and argsfield of the CALL..METHOD instruction contains the
optional language and argument specifications, which are identical in form to that listed
previously under "Calling procedures with stack frames'.

Calling method procedures for C++ or Pascal usually requires that the instance of the
object be passed as an argument on the stack. See Chapter 18 for further information.

Tail recursion for object methods: JMP..METHOD

Paradigm Assembler providesa JMP..METHOD instruction that corresponds to the
CALL..METHOD instruction. Here's its syntax:

JMP i nstance_ptr METHOD [obj ect nane:] et hod_nane [USES
[segreg:]of fsreg]

JMP..METHOD functions exactly like CALL..METHOD except that

. It generatesa JMP instead of a CALL instruction.

. It generates procedure epilog code to clean up the stack before the JIM P instruction
IS generated.

The IMP..METHOD instruction makes it possible to write efficient tail recursion code.
It's intended to replace the common situation wherea CALL..METHOD instruction is
issued to the current method, followed by aRET instruction.

Paradigm Assembler User's Guide

Additional instruction for object-oriented programming

When an object instance is constructed, you must initialize the instance's virtual table
pointer (if any) to point to the correct virtual method table. The TBLINIT instruction
lets you do this automatically. The syntax of the TBLINIT instruction is

TBLI NI T obj ect _instance_pointer

The object_instance pointer field isthe address of the object whose virtual table pointer
isto beinitialized. The TBLINIT instruction assumes that the object instance should be
of the current object type (in other words, the immediately preceding object definition
determines the object type that TBLINIT initializes). For example,

TBLINIT DS: S|
would initialize the virtual table pointer of the object at DS:Sl, if it has one.

Chapter 13, Advanced coding instructions 167

168 Paradigm Assembler User's Guide

Chapter
14

Using macros

Macros let you give a symbolic name to atext string or a block of code that will be used
frequently throughout your program. Macros go beyond this simple substitution,
however. Paradigm Assembler has macro operators that provide great flexibility in
designing macros. Combined with the ability to use multiline macros with arguments,
this makes Paradigm Assembler's macro facility a very powerful tool. This chapter
discusses how to use text and multiline macros in your program.

Text macros

A text macro is a symbol that represents a string of text characters. When Paradigm
Assembler encounters the symbol in expressions (and other situations), it substitutes the
text characters for the symbol. For example, if DoneMsg is atext macro whose value is
"Returning to the OS’, the following statement

GoodBye DB DoneMsg

resultsin
CoodBye DB ' Returning to the C8

Defining text macros with the EQU directive

Y ou can use the EQU directive to define simple text macros. Here's the syntax for
defining a text macro:

name EQU text _string

text_string associates with the text macro name name. Y ou should enclose text_string in
brackets (< >) to delineate the text; for example,

DoneMsg EQU <' Returning to the CS >

If you omit the bracketsin MASM mode, Paradigm Assembler will try to evaluate
text_string to an expression, and an error may result. Only if it can't evaluate text_string
will Paradigm Assembler treat it as atext macro (to remain compatible with MASM). In
Ideal mode, EQU aways defines a text macro. If you don't enclose text_stringin
brackets and it's the name of another text macro, Paradigm Assembler will use that
macro's contents. Otherwise, the macro will be defined to the text.

Y ou should always enclose text macro strings in angle brackets to make sure they're
properly defined. Consider the following mistake that can occur when you don't:

| DEAL
Earth EQU dirt ;Earth "dirt"
Pl anet EQU Earth ;Planet "dirt" (wong!)

Pl anet EQU <Eart h> ;Planet "Earth" (Correct)
In Ideal mode, the EQU statement always defines a text macro.

Text macros are redefinable; you can redefine a text macro name in the same module to
another text string.

Chapter 14, Using macros 169

170

String macro manipulation directives

Paradigm Assembler provides directives that can manipulate string macros. These
directives are available in Ideal mode, and for versions M510, M520, and P300 or later
(as specified by the VERSION directive).

A string argument for any of these directives can be any of the following:

. atext string enclosed in brackets; for instance, <abc>
. thename of apreviously defined text macro

. anexpression preceded by a % character, whose value is converted to the equivalent
numerical string representation appropriate for the current radix

The CATSTR directive
The CATSTR directive defines a new text macro by concatenating strings together.
CATSTR has the following syntax:

name CATSTR string[, string]

CATSTR concatenates from left to right. Paradigm Assembler creates a new text macro
of the name name.

The SUBSTR directive
The SUBSTR directive defines a new text macro to be a substring of a string. Here's its
syntax:

name SUBSTR string, position_expression[, size_expression]

The new text macro, name consists of the portion of string that starts at the position
expression character, and is size_expression charactersin length. If you don't supply
Size_expression, the new text macro consists of the rest of string from the character at
position_expression. Paradigm Assembler considers the first character of string to be at
position 1.

The INSTR directive
The INSTR directive returns the position of one string inside another string. INSTR
has the following syntax:

nane I NSTR [start_expression,]stringl, string2

Paradigm Assembler assigns name a numeric value that is the position of the first
instance of string2 in stringl. The first character in stringl has a position of 1. If string2
does not appear anywhere within stringl, Paradigm Assembler returns avalue of 0. If
you include start_expression, the search begins at the start_expression character. The
first character of astringis 1.

The SIZESTR directive

The SIZESTR directive returns the length of atext macro (the number of charactersin
the string). Here's its syntax:

nane S| ZESTR string

name is set to the numeric value of the length of the string. A null string < > hasa
length of zero.

Text macro manipulation examples
The following examples show how these operators work:

Paradigm Assembler User's Guide

VERSI ON P300

| DEAL

ABC EQU <abc> ; ABC = "abc"

ABC2 EQU ABC ; ABC2 = "abc"

ABC EQU <def > ; ABC = "def" (redefined)
ABC3 CATSTR ABC2, <, >, ABC, <, >, ABC2 ; ABC3 = "abc, def, abc"
ABCLEN SI ZESTR ABC ; ABCLEN = 3

ABC3LEN SI ZESTR ABC3 ; ABC3LEN = 11

COWAL | NSTR ABC3, <, > ; COMVAL = 4

COWA2 | NSTR COWAL+1, ABC3, <, > ; COWA2 = 8

ABC4 SUBSTR ABC3, 5 ; ABC4 = "def, abc"

ABC5 SUBSTR ABC3, 5, 3 ; ABC5 = "def"

ABC6 EQU 3+2+1 ;ABC6 = 6 (numeric equate)
ABC7 EQU 98+2+1 ; ABC7 = "6" (text nacro)
ABC8 EQU Y%COMVAL ; ABC8 = "4"

Multiline macros

Chapter 14, Using macros

The multiline macro facility lets you define a body of instructions, directives, or other
macros that you'll include in your source code whenever the macro isinvoked. You can
supply arguments to the macro that Paradigm Assembler will substitute into the macro
body when you include the macro in the module.

There are several types of multiline macros. One version substitutes each element of a
string, one after the other, as an argument to the macro. Another version repeats the
macro body a certain number of times. Finally, you can define still another versionin
one place, and invoke it many times. All versions have the definition of a macro body in
common.

The multiline macro body

Regardless of its actual content, Paradigm Assembler's macro processing facility treats a
multiline macro body as merely a number of lines of text. Paradigm Assembler lets you
replace symbols within the macro body with text specified at the time amacro is
invoked. Thisfeatureis called argument substitution. The symbols in the macro body
that will be replaced are called dummy arguments. For example, suppose the symbol foo
Isadummy argument in the following macro body:

PUSH f oo
mov foo, 1

If you assign foo with the text string AX when you invoke this macro, the actual text
included in the module will be

PUSH AX

MOV AX 1

The rules Paradigm Assembler uses for recognizing a dummy argument are fairly
complex. Examine the following macro body lines where the dummy argument foo
would not be recognized:

synf oo:
DB 'It is foo time'

In general, Paradigm Assembler will not recognize a dummy argument without special
help in the following situations:

. Whenitispart of another symbol
. Whenitisinside of quotation marks (' or ")

171

172

. inldea mode, when it appears after a semicolon not inside of quotes

Using & in macros

The & character has a special meaning when used with the macro parameters. In
general, & separates a dummy argument name from surrounding text, so Paradigm
Assembler can recognize it for substitution. For example, given the following Ideal
mode macro:

macro macl foo
sym&f oo:

DB 'It is & oo tine'
endm

if you assign foo the text string party when this macro is invoked, the actual text
included in the module will be

synparty:
DB 'It is party ting'
Another example might be
f oo&sym
DB 'We are in Q& 00&0'
If you assign foo the text string hi when this macro is invoked, the text included in the
module will be
hi sym
DB 'W are in Ohio
Here are the rules for the & character:

. Outside quoted strings, the & serves only as a general separator.

. Inside quoted strings and after a semicolon that's not in a quoted string in |deal
mode, & must precede a dummy argumentfor it to be recognized.

. Paradigm Assembler removes one & from any group of & s during a macro
expansion.

The last point makesit possible to place macro definitions requiring & charactersinside

other macro definitions. Paradigm Assembler will remove only one & from any group.

Including comments in macro bodies

For particularly complicated macros, you might want to include (in the macro body
text) comments that won't be included when the macro is invoked. This also reduces the
memory required for Paradigm Assembler to process macros. To do this, use the double
semicolon comment at the beginning of aline. For example, the following macro body

;;Ww, this is a nasty macro!
DB ' Nasty nmacro'

will only include the following text when it is invoked:
DB ' Nasty macro'
Comments preceded by single semicolons are always included in a macro expansion.
Local dummy arguments
At the beginning of any macro body, you can include one or more LOCAL directives.

LOCAL declares special dummy arguments that, each time the macro expands, will be
assigned a unique symbol name.

Paradigm Assembler User's Guide

The syntax for the LOCAL directive in macro bodies looks like this:
LOCAL dummy_argunent 1l [, dunmy_argunments2]. ..

When using this syntax, note that the LOCAL directive must come before any other
statements in a macro body.

If the dummy_argument name used in the LOCAL directive does not have alocal
symbol prefix the unique symbol name assigned to it win be in the form ??xxxx, where
XXXX represents a hexadecimal number. Otherwise, the unique symbol name will be

<l ocal prefi x>xxxx. For details on how to enable local symbols and set the local
symbol prefix, see Chapter 11.

You can use LOCAL dummy arguments to define labels within the macro body. For
example,
LOCAL @tagn, @zer o
XOR dx, dx
MOV cx, exp
MV ax, 1
JCXZ @@ero
MOV bx, f act or
@mgn: MJL bx
LOOP @@gn
@mer o:

= In macros, you don't have to use @@ since local labelsin macros are turned into
consecutive numbers, like ?20001. Their names are not easily accessible outside
macros.

The EXITM directive

Y ou can use the EXITM directive within a macro body to prematurely terminate the
assembly of an included macro body. Its syntax follows:

EXI TM
When Paradigm Assembler encounters EX1TM in amacro body that has been included
in the module source code, assembly of the expanded macro body stops immediately.

Instead, Paradigm Assembler will continue assembling the module at the end of the
macro.

Y ou can use the EXITM statement with a conditional assembly directive to terminate a
macro expansion when certain conditions are met.

Tags and the GOTO directive

Using macro tags and the GOTO directive lets you control the sequence in which lines
within the macro body expand. Y ou can place a macro tag at any place within the macro
body. The tag occupies an entire line in the macro, with the following syntax:

:tag_synbol
When the macro expands, al macro tags are discarded.

The GOTO directive tells the assembler to go to a specified point in your code, namely
thetag_symbol. GOTO has the following syntax:

QOTO tag_synbol

GOTO dso terminates any conditional block that contains another GOTO. Thislets
you place GOTO inside conditiona assembly blocks. For example,

Chapter 14, Using macros 173

174

I F foo
G&Oro tagl
ENDI F
DI SPLAY "foo was fal se!™
:tagl
;resune nmacro here...
;works the sane whet her foo was fal se or true

Be careful not to create infinite macro loops when you use the GOTO directive. Infinite
loops can cause Paradigm Assembler to run out of memory, or even appear to stop
functioning.

See Chapter 15 for further information about conditional assembly directives.

General multiline macros

Paradigm Assembler associates a general multiline macro's body of directives,
instructions, and other macros with a symbolic macro name. Paradigm Assembler
inserts the body of statements into your program wherever you use the macro name as a
directive. In this way, you can use a general multiline macro more than once.

Y ou can invoke a macro before you define it only when you use the /m command-line
switch as explained in Chapter 2. However, thisis considered to be poor programming
practice.

Here's the Ideal mode syntax for defining a general multiline macro:

MACRO nane paraneter |ist
macr o_body
ENDM

Here'sthe MASM mode syntax for defining a general multiline macro:

nane MACRO paraneter i st
macr o_body
ENDM

name is the name of the multiline macro you're defining. macro_body contains the
statements that make up the body of the macro expansion. Y ou can place any valid (and
any number of) Paradigm Assembler statements within a macro. The ENDM keyword
terminates the macro body.

This example defines a macro named PUSHALL that, when invoked, includes the
macro body consisting of three PUSH instructions into your program.
PUSHALL MACRO
PUSH AX BX CX DX
PUSH DS Sl

PUSH ES DI
ENDM

parameter_listisalist of dummy argument symbols for the macro. Here's its syntax:
[dummy_ar gunent [, dummy_argument ...]]

Y ou can use any number of dummy arguments with a macro, as long as they fit on one
line, or you use the line continuation character (\) to continue them to the next line. For
example,

Paradigm Assembler User's Guide

Table 14-1

Dummy
argument types

ADDUP MACRO dest , \ ;dest is 1st dummy argunent
sl,s2 781, s2 are 2nd and 3rd dunmy argunents
MOV dest, sl
ADD dest, s2

ENDM

Each dummy argument has the following syntax:
dunmmy_nane [: dummy_type]

dummy_name is a symbolic name used as a place holder for the actual argument passed
to the macro when it'sinvoked. The optional dummy_type specifies something about the
form the actual argument must take when you invoke the macro. The following types
are supported:

Type Meaning

REQ Argument cannot be null or spaces.

=<text_string> Bracketed text string isthe default value for the dummy argument when the actual
argument is null or contains spaces.

VARARG Actual argument consists of the rest of the macro invocation, interpreted asalist of
arguments. Commas and angle brackets are added to ensure this interpretation.
REST Actual argument consists of the rest of the macroinvocation, interpreted as raw text.

Invoking a general multiline macro

To invoke a general multiline macro, use the name of the macro as a directive in your
program. Paradigm Assembler inserts the macro body (after al the dummy arguments
are substituted) at that point in the module. The syntax for invoking a general multiline
macro is as follows:

macro_name [argument [[,]argunment]...]

macro_name is the symbolic name of a macro. If you invoke a macro with arguments,
the arguments are listed following the macro name. Y ou can specify any number of
arguments, but they must all fit on one fine. Separate multiple arguments with commas
or spaces. When the macro expands, Paradigm Assembler replaces the first dummy
argument in the macro definition with the first argument passed, the second dummy
argument with the second argument, and so forth.

Each argument represents a text string. Y ou can specify thistext string in the following

ways:

. asacontiguous group of characters, not containing any whitespace, commeas, or
semicolons

. asagroup of characters delineated by angle brackets (< >), which can contain
spaces, commas, and semicolons

. asasingle character preceded by a! character, which is equivalent to enclosing the
character in angle brackets

. asanexpression preceded by a % character, which represents the text value of the
expression appropriate for the currentlyselected radix

The < > literal string brackets
Use angle brackets to delineate a literal string that contains the characters between
them. Y ou should use them like this:

<t ext>

Chapter 14, Using macros 175

Table 14-2
Uses for the !

176

character

text istreated as a single string parameter, even it if contains commas, spaces, or tabs
that usually separate each parameter. Use this operator when you want to pass an
argument that contains any of these separator characters.

Y ou can also use this operator to force Paradigm Assembler to treat a character literaly,
without giving it any special meaning. For example, if you want to pass a semicolon (;)
as a parameter to a macro invocation, you have to enclose it in angle brackets.(<;>) to
prevent it from being treated as the beginning of a comment. Paradigm Assembler
removes only one level of angle brackets when it converts a bracketed string to a text
argument. This makes it possible to invoke a macro requiring angle brackets from inside
another macro body.

The ! character

The! character lets you invoke macros with arguments that contain special characters.
Using this character prior to another is similar to enclosing the second character in angle
brackets. For example, !; functions the same as <;>. Some common uses are shown in
the following table.

String Resulting character

1>
I<
I !

The % expression evaluation character

The % character causes Paradigm Assembler to evaluate an expression. The assembler
converts the result of the expression to an ASCII number in the current radix, whichis
the text that the % character produces. Use this character when you want to pass the
string representing a cal culated result, rather than the expression itself, as a macro
argument. The syntax follows:

Yexpr

expr can be either an expression (using any legal operands and operators), or it can be
the name of atext macro. If it isan expression, the text that is produced is the result of
the expression, represented as a numerical string in the current radix. If expr is atext
macro name, the text that's produced is the string that the text macro represents. See
Chapter 5 for more information about Paradigm Assembler expressions.

For example, this code

DEFSYM MACRO NUM
TVP_&NUM
ENDM

TNAME EQU <JUNK> ;defining a text macro
DEFSYM 9%6+4
DEFSYM 9% NAMVE

results in the following code macro expansions:

T™P_9:
TVP_JUNK:

Redefining a general multiline macro
Y ou can redefine general multiline macros. The new definition automatically replaces
the old definition. All preceding places where the macro had aready been invoked will

Paradigm Assembler User's Guide

not change. All invocations of the macro following the redefinition use the new
definition.

Deleting a general multiline macro: The PURGE directive
Y ou can use the PURGE directive to delete a macro. PURGE has the following syntax:

PURGE macronane [, nacronane]. ..

PURGE deletes the general multiline macro definition associated with macroname.
After you PURGE amacro, Paradigm Assembler no longer treats the symbol
macroname as if it were amacro; for example,

ADD MACRO al, a2
SUB al, a2
ENDM
ADD ax, bx ;This invocation will produce SUB ax, bx
PURGE ADD
ADD ax,bx ;This is no longer a nmacro, so ADD ax, bx is produced

Y ou can purge several macros at atime by separating their names with commas. Note,
however, that you can't redefine a purged macro symbol as anything other than another
macro.

Defining nested and recursive macros

The statements in a macro body can include statements that invoke or define other
macros. If you take this example,

MCREATE MACRO opnane, opl, op2, op3, op4, op5, op6, op7
| FNB opnane
DQ&opnane MACRO op, count
I F count LE 4
REPT count
opnane op, 1
ENDM
ELSE
MOV CL, count
opnane op, CL
ENDI F
ENDM ;end of DOopnane nacro
MCREATE opl, op2, op3, op4, op5, op6, op7 ;recurse!
ENDI F ;end of if
ENDM ;end of MCREATE nmacro

and invoke it with
MCREATE ror,rol,rcl,rcr,shl, shr, sal, sar

it will create the additional macros DOror, DOrol, and so forth, which you can then use
likethis:

DGshr ax, b
DOrcr bx, 3

Y ou can call recursive macros with alist of parameters, and set them up so that the
macro will work with anywhere from zero to a maximum number of parameters. To do
this, have the macro body use the first parameter to do its expansion, then call itself
with the remaining parameters. Every time it recurses, there will be one fewer
parameter. Eventually, it will recurse with no parameters.

Chapter 14, Using macros 177

178

When you call the macro recursively, it aways needs some way to test for the end of
the recursion. Usualy, an 1FNB conditional statement will do this for only the macro
body if the passed parameter is present. Here is a simpler example of arecursive macro:

PUSHM MACRO r1,r2,r3,r4,r5,r6,r7,r8
IFNB r1
push r1l
PUSHMr2,r3,r4,r5,r6,r7,r8
ENDI F
ENDM

See Chapter 15 for more information about the | FNB directive.

The count repeat macro

Y ou can use the REPT repeating macro directive to repeat a macro body a specific
number of times, using this syntax:

REPT expressi on

macr o_body
ENDM

expression tells Paradigm Assembler how many times to repeat the macro body
specified between the REPT and END directives. expression must evaluate to a
constant and can't contain any forward-referenced symbol names. Use ENDM to mark
the end of the repeat block. For example, this code

REPT 4

SHL ax, 1
ENDM

produces the following:

SHL ax, 1
SHL ax, 1
SHL ax, 1
SHL ax, 1

Another example shows how to use REPT in a macro to generate numbers that are the
various powers of two:
count =20

def nane nacro num
Bit&umdd (1 SHL, (&um)

endm
rept 32
def nane %ount
count = count + 1
endm

The WHILE directive

Y ou can use the WHILE macro directive to repeat a macro body until a certain
expression evaluatesto O (false). WHILE has the following syntax:

VWHI LE whi | e_expression
macr o_body
ENDM

Paradigm Assembler evaluates while_expression before each iteration of the macro
body. Be careful to avoid infinite loops, which can cause Paradigm Assembler to run
out of memory or appear to stop functioning. Here's an example using WHILE:

Paradigm Assembler User's Guide

VH LE 1
I F sone_condition
EXI T™M
ENDI F
Do not hi ng
ENDM
;W never nake it this far unless sone _condition is true

The EXITM directive can be used to break out of a WHILE loop.

String repeat macros

You can use the | RP and IRPC string repeat macro directives to repeat a macro body
once for each element in alist or each character in a string. Each of these directives
requires you to specify a single dummy argument. Here's the | RP syntax:

| RP dummy_ar gurent, argunent |i st

macr o_body
ENDM

IRPC has the following syntax:

| RPC dummy_argunent, string
macr o_body
ENDM

In both cases, dummy_argument is the dummy argument used in the macro body.
ENDM marks the end of the macro body.

For IRP, argument_list consists of alist of arguments separated by commas. The
arguments can be any text, such as symbols, strings, numbers, and so on. The form of
each argument in the list is similar to that described for general multiline macro
invocations, described earlier in this chapter. Y ou must always surround the argument
list with angle brackets (< >).

For IRPC, the argument consists of asingle string. The string can contain as many
characters as YOU want.

For each argument or character in a string, Paradigm Assembler will include the macro
body in the module, substituting the argument or character for the dummy argument
wherever it findsit. For example,

| RP reg, <ax, bx, cx, dx>

PUSH reg
ENDM

produces the following:

PUSH ax
PUSH bx
PUSH cx
PUSH dx

and the directive IRPC

I RPC LUCKY, 1379
DB LUCKY
ENDM

produces this:

Chapter 14, Using macros 179

CRCRRS:

Be careful when using |RPC because Paradigm Assembler places each character in the
string ‘asis' in the expanded macro, so that a string repeat macro such as

| RPC CHAR, HELLO
DB CHAR
ENDM

might not produce DB 'H','E','L",'L",'O', but instead would produce DB H, E, L, L, O
(where each letter is treated as a symbol name).

The % immediate macro directive

The % immediate macro directive treats aline of text asif it'samacro body. The
dummy argument names used for the macro body include all of the text macros defined
at that time. Here's its syntax:

% macr o_body_|ine

macro_body _line represents the macro body to use for the immediate macro expansion;
for example:

SEGSI ZE EQU <TI NY>
LANGUAGE EQU <W NDON5 PASCAL>

% MODEL SEGSI ZE, LANGUAGE ; Produces MODEL TI NY, W NDOAS PASCAL

Including multiline macro expansions in the list file

Multiline macro expansions are not normally included in the listing file. However,
Paradigm Assembler provides the following directives that let you list macro
expansions:

. .LALL
. SALL
. XALL
. %MACS

. %NOMACS
Refer to Chapter 17 for more details on these directives.

Saving the current operating state

180

The PUSHSTATE directive saves the current operating state on an internal stack that is
16 levels deep. PUSHSTATE is particularly useful if you have code inside a macro that
functions independently of the current operating state, but does not affect the current
operating mode.

Note that you can use PUSHSTATE outside of macros. This can be useful for include
files.

The state information that Paradigm Assembler saves consists of

. current emulation version (for example, T310)
. mode selection (for example, IDEAL, MASM, QUIRKS, MASM51)
. EMUL or NOEMUL switches

Paradigm Assembler User's Guide

. Ccurrent processor or coprocessor selection
« MULTERRS or NOMULTERRS switches
. SMART or NOSMART switches

. thecurrent radix

. JUMPS or NOJUMPS switches

. LOCALSor NOLOCALS switches

. thecurrent local symbol prefix

Use the POPSTATE directive to return to the last saved state from the stack.

Here's an example of how to use PUSHSTATE and POPSTATE.
; PUSHSTATE and POPSTATE exanpl es

i deal
nmodel smal |
codeseg
j unps
| ocal s @@
; Show changi ng processor sel ection, nunber, radix, and JUWS
; mode
pushst at e
noj unps
r adi x 2 ;Set to binary radix
p386
il next 1 ;No extra NOPS after this
nmov eax, 100 ; Now 100 means binary 100 or 4 deci nal.
next 1:
popst ate ; Restores JUWPS and non 386 node.
;Back to junps directive, no 386, and decimal radix
il next 2 ; Three extra NOPS to handl e JUWPS
xor eax, eax ;Not in 386 node anynore
nmov cx, 100 ; Now 100 means deci mal 100
pushst at e
MULTERRS
nmov ax, [bp+abc
popst at e
nmov ax, [bp+abc
; Show di sabling | ocal scoping of synbols
| ocal s
next 2:
@oa: | oop @&
next 3:
@ | oop @& ; Al l owed because of scoping of NEXT2:
;and NEXT3:
pushst at e
nol ocal s
next 4:
a: | oop @
next 5:
ad: | oop @D ;This will conflict because of nol ocal s
popst ate

Chapter 14, Using macros 181

182

; Show changi ng | ocal synbol prefix and MASM | DEAL node
pushst at e
masm
| ocal s @
testproc proc ; MASM node for procedure declaration
jmp @end
@bend: nop
@m@nd: ret

testproc endp

testproc2 proc

jmp @end
@end: nop :This doesn't conflict with | abel in TESTPROC
@@nd: ret : This | abel does conflict
testproc2 endp
popst at e
; Now back to @@as a |ocal |abel prefix, and | DEAL node
testproc2b proc ; This won't work since we are back in | DEAL
; mode!
ret
testproc2b endp ;ANd this will give an error al so.
proc testproc3
jmp @end2
@end2: nop
@@nd2: ret
endp testproc3
proc test proc4
jmp @end2
@end2: nop : This | abel does conflict
@@nd2: ret ; This | abel doesn't conflict with label in

; TESTPROC3
endp test proc4

end

Paradigm Assembler User's Guide

Chapter

15

Using conditional directives

There are two classes of conditional directives: conditional assembly directives and
conditional error-generation directives. With conditional assembly directives, you can
control which code gets assembled in your program under certain conditions.

Conditional error-generation directives let you generate an assembly-time error message
if certain conditions occur. Paradigm Assembler displays the error message on the
screen and in the listing file, and it acts like any other error message in that it prevents
the emission of an object file. This chapter describes how you can use the available
conditional directives.

General conditional directives syntax

The three types of conditional assembly directives are | Fxxx directives, EL SEI Fxxx
directives, and ERRxxx directives. Use these directives as you would conditional
statements in high-level languages.

IFxxx conditional assembly directives

Y ou can use | Fxxx conditional assembly directives to define blocks of code that are
included in the object file if certain conditions are met (such as whether a symbol is
defined or set to a particular value). Here's the syntax of a conditional assembly
statement:

I FXXX
true_condi tional _body
ENDI F

or

I FxXxx
true_condi tional _body
ELSE
fal se_conditi onal body
ENDI F

Here, | Fxxx represents any of the following conditional assembly directives:

. IF . |IFNB
. IF1 . |FIDN
. IF2 . |FIDNI
. |FDEF . |FDIF
. |IFNDEF . |FDIFI
. |IFB

Each 1 Fxxx conditional assembly directive specifies a specific condition that eval uates
to either true or false. If the condition is true, the block of assembly code in
true_conditional_body is assembled into the output object file. If the condition
evaluates to false, Paradigm Assembler skips over true_conditional _body and does not
includeit in the object file. If there is an EL SE directive, the false_conditional _body is

Chapter 15, Using conditional directives 183

184

assembled into the object file if the condition isfalse; it'signored if the condition is
true. All conditionals are terminated with an ENDIF directive.

Except for the specia cases of 1F1 and IF2 (which are discussed later), the two bodies
of code are mutually exclusive: Either true_conditional _body will be included in the
object file or false_conditional _body. but never both. Also, if you use the

| Fxxx...EL SE...ENDIF form, one of the two bodies will be included in the generated
object file. If only the I Fxxx...ENDIF form is used, true_conditional_body may or may
not be included depending on the condition.

When you nest | Fsand EL SEs, EL SE always pairs with the nearest preceding | F
directive.

In this example, test is asymbol that flags the inclusion of test code (if the symbol is
defined, then test code is generated). color isasymbol set to nonzero if the display is
color, or 0 for amonochrome display.

The actual code generated depends on these values:

r#DEF t est ;T if test defined
;test code 1 ; if test defined
I F col or T if color <> 0
;col or code ; if color <> 0
ELSE :
:nono code :if color =0
ENDI F ;
test code 2 . if test defined
ELSE ;
:non-test code ;. if test not defined
ENDI F
Test: Defined Defined Undefined Undefined
Color: 0 Nonzero 0 Nonzero
code: test code 1 test code 1 non-test code non-test code
mono code color code
test code 2 test code 2

If test is undefined, neither the color nor monochrome debug code based on the value of
color is assembled, as thislies entirely within the conditional assembly for a defined
test.

ELSEIFxxx conditional assembly directives

Y ou can use the EL SEI Fxxx as a shortcut where multiple | Fs are required. EL SEIFxxx
isequivalent to an EL SE followed by a nested | Fxxx, but provides more compact code.
For example,

I F node EQ O
;node O code
ELSElI F node LT 5
;node 1-4 code
ELSE
:node 5+ code
ENDI F

Paradigm Assembler User's Guide

compares to

I F node EQ O
;mode 0 code
ELSE
IF node LT 5
:nmode 1-4 code
ELSE
:nmode 5+ code
ENDI F
ENDI F

You can't use the EL SEI Fxxx directives outside of an | Fxxx statement.

ERRxxXx error-generation directives

ERRxxx directives generate user errors when certain conditions are met. These
conditions are the same as for the | Fxxx conditional assembly directives.

Here's the general syntax:
ERRxxx [argunents] [nessage]

In this case, ERRxxx represents any of the conditional error-generating directives (such
as ERRIFB, .ERRB, and so on).

arguments represents arguments that the directive might require to evaluate its
condition. Some directives require an expression, some require a symbol expression,
and some require one or two text expressions. Other directives require no arguments at
all.

If message isincluded, it represents an optional message that's displayed along with the
error. The message must be enclosed in single () or double () quotation marks.

The error-generating directives generate a user error that is displayed onscreen and
included in the listing file (if there is one) at the location of the directive in your code. If
the directive specifies a message, it displays on the same line immediately following the
error. For example, the directive

ERRI FNDEF foo "foo not defined!"

generates the error
User error: "foo not defined!"

if the symbol foo is not defined when the directive is encountered. No error would be
generated in this case if foo were already defined.

Specific directive descriptions

Unconditional error-generation directives

The unconditional error-generation directives are ERR and .ERR. These directives
always generate an error and require no arguments, although they can have an optional
message. Y ou can only use .ERR in MASM mode.

Expression-conditional directives

These directives provide conditional assembly or error generation based on the results
of evaluating a Paradigm Assembler expression. For all of these directives, the

Chapter 15, Using conditional directives 185

Table 15-1
Conditional

assembly

directives using
expressions

Table 15-2
Error-generation
directives using
expressions

Table 15-3
Evaluation of

defined and

186

undefined
symbol

expression must evaluate to a constant, and can't contain any forward references. If it
evaluates to 0, Paradigm Assembler considers the expression to be false; otherwise, it
considers the expression to be true.

The following table shows conditional assembly directives that use expressions.

| Fxxx directive Assemblestrue_conditional _body if
IF expression Expression evaluatesto true.

| FE expression Expression evaluatesto false.

EL SEIF expression Expression evaluatesto true.

EL SEIFE expression Expression evaluatesto false.

The following table shows the error-generation directives that use expressions.

ERRxxx directive Generatesuser error if

ERRIF expression Expression evaluatesto true.

.ERRNZ expression Expression evaluates to true (MASM mode only).
ERRIFE expression Expression evaluatesto false.

.ERRE expression Expression evaluates to false (MASM mode only).

Symbol-definition conditional directives

These directives provide conditional assembly or error generation based on whether one
or more symbols are defined. These symbols are organized into a symbol _expression.

A symbol_expression is an expression made up of symbol names, the Boolean operators
AND, OR, and NOT, and parentheses. In a symbol _expression, each symbol nameis
treated as a Boolean value that evaluates to true if the symbol currently exists, or falseif
the symbol does not exist (even if it's defined later in the module). Paradigm Assembler
combines these values using the Boolean operators to produce afinal true or false
result. In its simplest form, a symbol expression consists of a single symbol name and
evaluates to true if the symbol is defined. The parsing and syntax rules for
symbol_expression are similar to those for other Paradigm Assembler expressions.

For example, if the symbol foo is defined but the symbol bar is not, the following
symbol_expression evaluations are returned:

Symbol expression Result
foo True
bar False
not foo False
not bar True
foo OR bar True
foo AND bar False
NOT (foo AND bar) True

NOT foo OR NOT bar True (sameas"(NOT foo) OR (NOT bar)")

Paradigm Assembler User's Guide

Table 15-4
Symbol-
expression
directives using
symbol_expr

Table 15-5
Error-generation
directives

Table 15-6
Conditional
assembly
directives using
text_strings

The directives that control assembly and use symbol_expressions are shown in the
following table.

I Fxxx directive Assemblestrue conditional _body
IFDEF symbol_expr symbol_expr evaluatesto true.
IFNDEF symbol_expr symbol_expr evaluatesto false.

EL SEIFDEF symbol_expr symbol_expr evaluatesto true.

EL SEIFNDEF symbol_expr symbol_expr evaluatesto false.

The error-generation directives that use symbol_expressions are shown in the following
table.

ERRxxx directive Generates user error if

ERRIFDEF symbol_expr symbol_expr evaluatesto true.

.ERRDEF symbol_expr symbol_expr evaluatesto true (MASM mode only).
ERRIFNDEF symbol_expr symbol_expr evaluatesto false.

.ERRNDEF symbol_expr symbol_expr evaluatesto false (MASM mode only).

For example, the following error-generating conditionals are equivalents and would
generate an error only if both foo and bar are currently defined:

ERRI FDEF f oo AND bar
ERRI FNDEF NOT (foo AND bar)
ERRI FNDEF NOT foo OR NOT bar

Text-string conditional directives

These directives provide conditiona assembly or error generation based on the contents
of text_string. A text_string can be either a string constant delineated by brackets (< >)
or atext macro name preceded by a percent sign (%). For example,

<ABC> ;text string ABC
9% oo :the contents of text nmacro foo

See Chapter 14 for information about how to define and manipulate text macros.

The conditional assembly directives that use text_string are shown in the following
table:

| Fxxx directive Assemblestrue_conditional _body if

IFNB txt_str txt_str isnot blank.

IFB txt_str txt_str isblank (empty).

IFIDN txt_strl, txt_str2 txt_strl andtxt_str2 areidentical text strings.

IFIDNI txt_strl, txt_str2 txt_strl andtxt_str2 areidentical text strings, ignoring case
distinctions.

IFDIF txt_strl, txt_str2 txt_strl andtxt_str2 are different text strings.

IFDIFI txt_strl, txt_str2, txt_strl andtxt_str2 are different text strings, ignoring case
distinctions.

ELSEIFNB txt_str txt_str isnot blank.

ELSEIFB txt_str txt_str isblank (empty).

ELSEIFDN txt_strl, txt_str2 txt_strl and txt_str2 areidentical text strings.

Chapter 15, Using conditional directives 187

Table 15-6
continued

Table 15-7
Error-generation
directives using
text_strings

188

| Fxxx directive

Assembles true_conditional_body if

EL SEIFIDNI txt_strl, txt_sir2

EL SEIFDIF txt_stri, txt_str2
EL SEIFDIFI txt_strl, txt_sir2

txt_strl andtxt_str2 areidentical text strings, ignoring case
distinctions.

txt_strl andtxt_str2 are different text strings.

txt_strl andtxt_str2 are different text strings, ignoring case
distinctions.

The error-generation directives that use text_string are shown in Table 15.7:

ERRxxx directive

Generates user error if

ERRIFNB txt_str
ERRNB txt_str

ERRIFB txt_str

ERRB txt_sir

ERRIFIDN txt_stri, txt_sir2
ERRIDN txt_stri, txt_str2
ERRIFIDNI txt_sirl, txt_str2

ERRIDNI txt_sir1, txt_str2

ERRIFDIF txt_stri, txt_sir2
ERRDIF txt_sir1, txt_str2
ERRIFDIFI txt_strl, txt_sir2

ERRDIFI txt_stri, txt_str2

txt_str isnot blank.

txt_str isnot blank (MASM mode only).

txt_str isblank (null).

txt_str isblank (MASM mode only).

txt_strl andtxt_str2 areidentical text strings.

txt_strl andtxt_str2 areidentical text stringsMASM mode only).

txt_strl and txt_str2 areidentical text strings, ignoring case
distinctions.

txt_strl andtxt_str2 areidentical text strings, ignoring case distinctions
(MASM mode only).

txt_strl and txt_str2 are different text strings.
txt_strl andtxt_str2 are different text strings (MASM mode only).

txt_strl andtxt_str2 are different text strings, ignoring case
distinctions.

txt_strl and txt_str2 are different text strings, ignoring case distinctions
(MASM mode only).

Use these directives to check the arguments passed to macros. (Note that they are not
restricted to use within macros.)

When used within a macro definition, IFB and |FNB can determine whether you've
supplied the proper number of arguments to the macro. When invoking a macro,
Paradigm Assembler does not generate an error message if you've supplied too few
arguments; instead, the unspecified arguments are blank. In this way, you can define a
macro that may take arguments. For example,

| oad MACRO addr, reg

| FNB <reg>
MOV reg, addr
ELSE
MOV ax, addr
ENDI F
ENDM

Y ou could invoke this example with | oad t est,
t est instruction (or invokesmply | oad t est , which will generate anov
t est instruction because the second parameter is blank). Alternately, you could

CX,
ax,

cx, which would generate anmov

use ERRIFB to generate an error for a macro invocation with amissing critical

argument. Thus,

Paradigm Assembler User's Guide

| oad MACRO addr
ERRI FB <addr >
MOV ax, addr
ENDM

generates an error when invoked with | oad, but would not when invoked with | oad
test.

Assembler-pass conditionals

These directives provide conditional assembly or error generation based on the current

assembly pass:

I Fxxx directive Assemblestrue_conditional _body if
IF1 Assembler pass 1

1F2 Assembler pass 2

ERRxxx directive Generates user error if

ERRIF1 Assembling pass 1

.ERR1 Assembling pass 1 (MASM mode only)
ERRIF2 Assembling pass 2

.ERR2 Assembling pass 2 (MASM mode only)

Normally, Paradigm Assembler acts as a single-pass assembler. If you use Paradigm
Assembler's multi-pass capability (invoked with the /m command-line switch), multiple
passes are used if necessary.

Since there is aways at least one pass through the assembler, the | F1 conditional
assembly directive will always assemble the code in its conditional block, and the
.ERR1 and ERRIF1 directives will always generate an error (but only during the first
assembly pass).

If you use any of these directives and have not enabled multiple passes, Paradigm
Assembler will generate Pass dependent constructi on warningsfor all of
these directivesto alert you to a potentially hazardous code omission. If you enable
multiple passes, Paradigm Assembler will perform exactly two passes, and will generate
the warning

Maxi mum conpatibility pass was done

Including conditionals in the list file

Normally, false conditional assembly code is not included in alisting file. You can
override this through the use of assembler directives and command-line switches.

= See Chapter 2 and Chapter 17 for further information on this subject.

Chapter 15, Using conditional directives 189

190 Paradigm Assembler User's Guide

Chapter
16

Interfacing with the linker

Modular programs are typically constructed from several independent sections of code,
called modules. The compiler processes each of these modules independently, and the
linker puts the resulting pieces together to create an executable file. The README file
explains where you can find information about how to use the linker, but it's a'so
important to know how to define and include all the files and libraries you might want
prior to linking- This chapter describes how to do these things.

Publishing symbols externally

Y ou may find that you'll need to use some variables and proceduresin all of your
program modules. Paradigm Assembler provides severa directives that let you define
symbols and libraries so that you can use them globally, as well as use variables (which
the linker allocates space for). You'll also have to be careful about how you name your
symbols, since different languages have particular requirements. The next few sections
discuss these directives and naming requirements.

Conventions for a particular language

When you name symbols that you plan to use externally, remember to use the language
specifier for your particular language. These requirements for variable names are:

. Pascal uppercase characters

. CIC++ name must start with _.
Rest of name should be in lowercase characters (_name).

When you specify alanguage in the MODEL directive or in the PROC declaration, or
declare the language in a symbol's PUBL | C declaration, Paradigm Assembler will
automatically use the proper naming conventions for that language, as follows:

. C, CPP, and PROLOG use the C/C++ naming conventions.

. BASIC, PASCAL, FORTRAN, and NOLANGUA GE languages use the Pascal
naming conventions.

. SYSCALL specifies C calling conventions, but without prepending underscores to
symbol names (like Pascal naming conventions).

. STDCALL usesC caling conventions for procedures with variable arguments, and
Pascal calling conventions for procedures with fixed arguments. It aways uses the
C naming convention.

The /ml switch (described in Chapter 2) tells Paradigm Assembler to treat all symbol
names as case sensitive. The/mx switch (also described in Chapter 2) tellsthe
assembler to treat only external and public symbols as case sensitive, and that all other
symbols within the source file are uppercase. When you use these two switches
together, they have a special meaning for symbols declared as Pascal: These switches
cause the symbolsin question to be published as all uppercase to the linker.

Chapter 16, Interfacing with the linker 191

192

Declaring public symbols

When you declare a public symbol, you intend it to be accessible from other modules.
The following types of symbols can be public:

. datavariable names

. program labels

. numeric constants defined with EQU

Y ou can use the PUBL | C directive to define public symbols. Its syntax follows:
PUBLI C [| anguage] synbol [, [l anguage], synbol]

Notice that in order to use public symbols outside the module where they're defined,
you must use the EXTRN directive.

language is either C, CPP, PASCAL, BASIC, FORTRAN, PROLOG, or
NOLANGUAGE, and defines any language-specific conventions to be applied to the
symbol name. Using a language in the PUBL | C directive temporarily overrides the
current language setting (the default, NOL ANGUAGE, or one that you've established
with .MODEL).

Paradigm Assembler publishes symbol in the object file so that other modules can
accessit. If you don't make a symbol public, you can accessit only from the current
source file; for example:

PUBLI C XYPROC ; make procedure public
XYPROC PROC NEAR

Declaring library symbols

Y ou can aso use symbols as dynamic link entry points for adynamic link library. Use
the PUBLICDLL directive to declare symbols to be accessible thisway. Here's its
syntax:

PUBLI CDLL | anguages synbol [, [l anguage] synbol]
Paradigm Assembler publishes symbol in the object file as a dynamic link, entry point
(using EXPDEF and M PDEF records) so that it can be accessed by other programs.
language causes any language-specific conventions to be applied to the symbol name.

Valid language specifiers are C, PASCAL, BASIC, FORTRAN, PROLOG, and
NOLANGUAGE.

Here's an example of code using PUBLICDLL:

PUBLI CDLL XYPRCC ; make procedure XYPROC
XYPROC PROC NEAR ;accessible as dynamic link entry point

Defining external symbols

External symbols are symbols that are defined outside a module, that you can use within
the module. These symbols must have been declared using the PUBL I C directive.
EXTRN has the following syntax:

EXTRN definition [,definition]

definition describes a symbol and has the following format:
[language] nanme [[countl]] :conplex_type [:count?2]

Paradigm Assembler User's Guide

Defining global symbols

Globa symbols function like public symbols, without your having to specify a
PUBLIC or an EXTRN. If the variable is defined in the module, it functions like
PUBLIC. If not, it functions like EXTRN. You can use the GLOBAL directiveto
define global symbols. GLOBAL has the same syntax as PUBL I C and EXTRN (see
the previous few sections for syntax descriptions.)

GLOBAL letsyou have an INCLUDE file included by all source files; the INCLUDE
file contains al shared data defined as global symbols. When you reference these data
items in each module, the GL OBAL definition acts asan EXTRN directive, describing
how the data is defined in another module.

Y ou must define a symbol as GLOBAL before you first use it elsewhere in your source
file. Also note that each argument of GL OBAL accepts the same syntax as an argument
of EXTRN.

Here's an example:

GLOBAL X: WORD, Y: BYTE
X DWO ;made public for other nodul e
mov al, Y ;Y is defined as external

Publishing a procedure prototype

If you're using version T320 or later and you use PROCDESC to describe a procedure
prototype, Paradigm Assembler treats the procedure name asiif it were a GLOBAL
symbol. If you've defined the procedure within the module, it is treated as PUBLIC.
Otherwise, Paradigm Assembler assumes it to be EXTRN.

Y ou can place PROCDESC directives in an include file. When you reference the
procedure name in the module, PROCDESC actsasan EXTRN directive, describing
how the procedure is defined in another module. If the procedure is defined in the
module, PROCDESC acts as a PUBL | C directive to publish the procedure.

Defining communal variables

Communal variables function like external variables, with amajor difference:
communal variables are allocated by the linker. Communal variables are actually like
global variables, but you can't assign them initial values. These uninitialized variables
can be referenced from multiple modules.

One drawback to using communal variables is that there's no guarantee they'll appear in
consecutive memory locations. If thisis an issue for you, use global variables instead.

Y ou can use the COM M directive to define acommunal variable. Here's its syntax:
COW definition [,definition]...
Each definition describes a symbol and has the following format:

[di stance] [l anguage] synbol nane[[countl]]: conpl ex type [:count 2]

distanceis optional and can be either NEAR or FAR. If you don't specify a distance, it
will default to the size of the default data memory model. If you're not using the
simplified segmentation directives, the default sizeis NEAR. With the tiny, small, and
medium models, the default sizeis also NEAR; al other models are FAR.

language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or
NOLANGUAGE. Using alanguage in the COMM directive temporarily overrides the

Chapter 16, Interfacing with the linker 193

current language setting (default or one established with .M ODEL). Note that you don't
need to have a .M ODEL directive in effect to use this feature.

symbolname is the symbol that is to be communal and have storage alocated at link
time. symbolname can also specify an array element size multiplier countl to be
included in the total space computation. If distanceis NEAR, the linker uses countl to
calculate the total size of the array. If distanceisFAR, the linker uses count2 to indicate
how many elements there are of size countl times the basic element size (determined by
type). countl defaults to avalue of 1.

complex_type is the data type of the argument. It can be either asimple type, or a
complex pointer expression. See Chapter 5 for more information about the syntax of
complex types.

The optional count2 specifies how many items this communa symbol defines. If you do
not specify acount2, avalue of 1 isassumed. The total space allocated for the
communal variable is count2 times the length specified by the type field times countl.

In MASM mode, communal symbols declared outside of any segment are presumed to
be reachable using the DS register, which may not always be a valid assumption. Make
sure that you either place the correct segment value in DS or use an explicit segment
override when referring to these variables. In Ideal mode, Paradigm Assembler
correctly checks for whether the communal variable is addressable, using any of the
current segment registers as described with the ASSUME directive.

Here's an example using the COMM directive.

COW buf f er: BYTE: 512 ;512 bytes allocated at link tine

OW abc[41] : WORD: 10 ;820 bytes (10 itenms of 41 words
;each) allocated at link time

COW FAR abc[41] : WORD: 10 ;10 el enments of 82 bytes (2 bytes
;times 41 elements) allocated at
;link tine

Including alibrary

194

For the times when you know that your source file will always need to use routinesin a
specified library, you can use the INCLUDEL B directive. Using INCLUDELIB also
prevents you from having to remember to specify the library name in the linker
commands; INCLUDEL B tellsthe linker to include a particular library. The
appropriate syntaxes for this directive are:

Ideal mode:
I NCLUDELI B "fi | enane” ;note the quotes!

MASM mode:
| NCLUDELI B fil ename

filename is the name of the library you want the linker to include at link time. If you
don't supply an extension with filename, the linker assumes .LIB.

Here's an example:
I NCLUDELI B "di ski 0" ;includes DI SKIO LIB

Paradigm Assembler User's Guide

The ALIAS directive

Paradigm Assembler supports ALIAS to allow the association of an alias name with a
substitute name. When the linker encounters an alias name, it resolves the alias by
referring to the substitute name.

Chapter 16, Interfacing with the linker 195

196 Paradigm Assembler User's Guide

Chapter

17

Generating a listing

A listing file is useful if you want to see exactly what Paradigm Assembler generates
when each instruction or directiveis assembled. Thefile is basically the sourcefile
annotated with avariety of information about the results of the assembly. Paradigm
Assembler lists the actual machine code for each instruction, along with the offset in the
current segment of the machine code for each line. What's more, Paradigm Assembler
provides tables of information about the labels and segments used in the program,
including the value and type of each label, and the attributes of each segment. For
additional information on creating listings, refer to the /I and /la command-line switches
documented in Chapter 2.

Paradigm Assembler can aso, on demand, generate a cross-reference table for all labels
used in a source file, showing you where each label was defined and where it was
referenced. See the /c command-line option in Chapter 2 for more information on
generating cross-reference tables.

Listing format

The top of each page of the listing file displays a header consisting of the version of
Paradigm Assembler that assembled the file, the date and time of assembly, and the
page number within the listing.

There are two parts to the listing file: the annotated source code listing and the symbol
tables. The original assembly code is displayed first, with a header containing the name
of the file where the source code resides. The assembler source code is annotated with
information about the machine code Paradigm Assembler assembled from it. Any errors
or warnings encountered during assembly are inserted immediately following the line
they occurred on.

The code linesin the listing file follow this format:
<dept h> <li ne nunber> <of f set> <machi ne code> <source>

<depth> indicates the level of nesting of Include files and macros within your listing
file.

<line number> is the number of the line in the listing file (not including header and title
lines). Line numbers are particularly useful when the cross-reference feature of
Paradigm Assembler, which refers to lines by fine number, is used. Be aware that the
line numbersin <line number> are not the source module line numbers. For example, if
amacro is expanded or afileisincluded, the line-number field will continue to

advance, even though the current line in the source module stays the same. To trandate
aline number (for example, one that the cross-referencer produced) back to the source
file, you must look up the line number in the listing file, and then find that same line (by
eye, not by number) in the source file.

<offset> is the offset in the current segment of the start of the machine code generated
by the associated assembler source line.

Chapter 17, Generating a listing 197

<machine code> is the actual sequence of hexadecimal byte and word valuesthat is
assembled from the associated assembler source line.

<source> issimply the original assembler line, comments and all. Some assembler
lines, such as those that contain only comments, don't generate any machine code; these
lines have no <offset> or <machine code> fields, but do have aline number.

General list directives

198

There are avariety of list directives that let you control what you want in your listing
file. The generd list directives follow:

o LIST ;MASM mode only
. XLIST ;MASM mode only
.« %LIST

« %NOLIST

. %CTLS

.« %NOCTLS

« %SYMS

« %NOSYMS

The % L1ST directive shows al of the source linesin your listing. Thisis the default
condition when you create alisting file. To turn off the display of al the source lines,
use the %NOL I ST directive. Here's an example:

ONCOLI ST ;turn off listing
I NCLUDE MORE . | NC
%.1 ST ;turn on listing

The .LIST and .XLIST directives function the same way as % L1ST and %NOLIST.
Here's an example:

.LIsT

jmp xyz ;this line always |isted
. XLI ST

add dx, Byt eVar ;not in listing

You can use the %CTL S and %NOCTL Sdirectivesto control the listing directives.
%CTL S causes listing control directives (such as %LIST, %INCL, and so on) to be
placed in the listing file; normally, they are not listed. It takes effect on all subsequent
lines, so the % CTL Sdirective itself will not appear in the listing file. %NOCTLS
reverses the effect of aprevious % CTL Sdirective. After issuing %NOCTLS, all
subsequent listing-control directives will not appear in thelisting file. (%NOCTLSis
the default listing-control mode that Paradigm Assembler uses when it starts assembling
asourcefile.); for example,

UCTLS

ONOLI ST ;this will be inlisting file
YNCCTLS

%.1 ST ;this will not appear in listing

Y ou can use the % SYM S and %NOSYM S directives to cause the symbol table to
either appear or not to appear in your listing file (the default isfor it to appear). The
symbol table will appear at the end of the listing file.

Here's the syntax for %SYM S:
YBYNB

Paradigm Assembler User's Guide

Here'sthe syntax for %NOSYM S:
9YNOSYNMB

Include file list directives

In the event that you might want to list the include filesin your listing file, you can turn
this capability on and off using the %I NCL and %NOINCL directives. By defaullt,
INCLUDE files are normally contained in the listing file. %NOINCL stops all
subsequent INCLUDE files source lines from appearing in the listing until a %INCL is
enabled. Thisis useful if you have alarge INCLUDE file that contains things such as a
lot of EQU definitions that never change.

Here's an example:

9% NCL

| NCLUDE DEFS. | NC ;contents appear in listing
YNO NCL

I NCLUDE DEF1. | NC ;contents don't appear

Conditional list directives

When you have conditional blocks of code in your source files, you might not want all
of that information to appear in the listing file. Showing conditional blocks can be very
helpful in some instances when you want to see exactly how your code is behaving.
Paradigm Assembler provides the following conditional list directives:

. .LFCOND ;MASM mode only
. .SFCOND ;MASM mode only
. .TFCOND ;MASM mode only
. %CONDS

. %NOCONDS
Paradigm Assembler does not usually list conditional blocks.

The % CONDS directive displays all statementsin conditional blocksin the listing file.
Thisincludes the listing of false conditional blocks in assembly listings. The LFCOND
directive functions the same as % CONDS. %NOCONDS prevents statements in false
conditional blocks from appearing in the listing file. The . SFCONDS directive
functions exactly the same as %NOCOND. If you want to toggle conditiona block-
listing mode, use the . TFCOND directive.

The first TFCOND that Paradigm Assembler encounters enables a listing of
conditional blocks. If you use the /X command-line option, conditional blocks start off
being listed, and the first . TFCOND encountered disables listing them. Each time
.TFCOND appears in the source file, the state of false conditional listingsis reversed.

To invoke any of these directives, placeit by itself on alinein your code. They will
affect the conditional blocks that immediately follow them.

Macro list directives

Macro expansions are not normally included in listing files. Having this information in
listing files can be very helpful when you want to see what your code is doing.
Paradigm Assembler provides several directives that let turn this feature on and off.
They are:

Chapter 17, Generating a listing 199

. .LALL ;MASM mode only

. .SALL ;MASM mode only
. XALL ;MASM mode only
. %MACS

. %NOMACS

The % M ACS directive enables the listing of macro expansions. The .LALL directive
does the same thing, but only worksin MASM mode. Y ou can use these macros to
toggle macro expansion in listings on.

% M ACS has the following syntax:
%VACS

Y ou can specify .LALL as follows:
. LALL

If you want to suppress the listing of al statements in macro expansions, use either the
%NOMACSor .SALL directives. Note that you can use these directives to toggle
macro expansion in listings off.

%NOMACS has the following syntax:
YNOVACS

Y ou can specify .SALL asfollows:
. SALL

The .XALL directive, whichisonly availablein MASM mode, lets you list only the
macro expansions that generate code or data. . XALL hasthe syntax . XALL.

Cross-reference list directives

200

The symbol table portion of the listing file normally tells you a great deal about |abels,
groups, and segments, but there are two things it doesn't tell you: where labels, groups,
and segments are defined, and where they're used. Cross-referenced symbol information
makes it easier to find labels and follow program execution when debugging a program.

There are several ways of enabling cross-referencing information in your listing file.

Y ou can use /c to produce cross-referencing information for an entire file (see Chapter 2
for details), or you can include directives in your code that let you enable and disable
cross-referencing in selected portions of your listings. These directives are:

. .CREF ;MASM mode only
. XCREF ;MASM mode only
. %CREF

. %NOCREF

. %CREFALL

. %CREFREF

. %CREFUREF

Paradigm Assembler includes cross referencing information in the listing file. In

addition, you can specify a .XRF file in your Paradigm Assembler command to get a
separate .XRF file.

The % CREF and .CREF directives let you accumulate cross-reference information for
all symbols encountered from that point forward in the source file. %0 CREF and CREF

Paradigm Assembler User's Guide

reverse the effects of any %NOCREF or . XCREF directives, which inhibit the
collection of cross-reference information.

% CREF and .CREF have the following syntaxes:
YCREF

or
. CREF

%NOCREF and .XCREF have the following syntaxes:
OYNOCREF [synbol , ...]

or
. XCREF [synbol, ...]

If you use % NOCREF or . XCREF aone without specifying any symbols, cross-
referencing is disabled completely. If you supply one or more symbol names, cross-
referencing is disabled only for those symbols.

The % CREFALL directivelists all symbolsin the cross reference. % CREFALL
reverses the effect of any previous % CREFREF (which disables listing of
unreferenced symbolsin the cross reference), or % CREFUREF (which lists only the
unreferenced symbolsin the cross reference). After issuing % CREFALL, all
subsequent symbols in the source file will appear in the cross-reference listing. Thisis
the default mode that Paradigm Assembler uses when assembling your source file.

The syntax for % CREFALL, % CREFREF, and % CREFUREF follows:

YECREFALL
UCREFREF
YCREFUREF

Changing list format parameters

The listing format control directives alter the format of the listing file. Y ou can use
these directives to tailor the appearance of the listing file to your tastes and needs.

The PAGE directive sets the listing page height and width, and starts new pages.
PAGE only worksin MASM mode. PAGE has the following syntax:

PAGE [rows] [, col s]
PACE +

rows specifies the number of lines that will appear on each listing page. The minimum
is 10 and the maximum is 255. cols specifies the number of columns wide the page will
be. The minimum width is 59; the maximum is 255. If you omit either rows or cols, the
current setting for that parameter will remain unchanged. To change only the number of
columns, precede the column width with a comma; otherwise, you'll end up changing
the number of rows instead.

If you follow the PAGE directive with aplus sign (+), a new page starts, the section
number isincremented, and the page number restarts at 1. If you use PAGE with no
arguments, the listing resumes on a new page, with no change in section number.

The % PAGESI ZE directive functions exactly like the PAGE directive, except that it
doesn't start a new page and that it worksin both MASM and Ideal modes.

%PAGESI ZE has the following syntax:
%UPAGESI ZE [rows] [, col s]

Chapter 17, Generating a listing 201

202

% NEWPAGE functions like PAGE, with no arguments. Source lines appearing after
%NEWPAGE will begin at the start of anew page in the listing file. % NEWPAGE
has the following syntax:

OYNEWPAGE

The % BI N directive sets the width of the object code field in the listing file. % BIN has
the following syntax:

o8BI N si ze

size isaconstant. If you don't use this directive, the instruction opcode field takes up 20
columnsin thelisting file. For example,

98BI N 12 ;set listing width to 12 col uns

% DEPTH sets the size of the depth field in the listing file. %0 DEPTH has the
following syntax:

YOEPTH wi dt h

width specifies how many columns to reserve for the nesting depth field in the listing
file. The depth field indicates the nesting level for INCLUDE files and macro
expansions. If you specify awidth of O, thisfield does not appear in the listing file.
Usually, you won't need to specify awidth of more than 2, since that would display a
depth of up to 99 without truncation. The default width for thisfield is| column.

%L INUM sets the width of the line-number field in the listing file. %L INUM has the
following syntax:

%1 NUM si ze

%LINUM lets you set how many columns the line numbers take up in the listing file
size must be a constant. If you want to make your listing as narrow as possible, you can
reduce the width of thisfield. Also, if your source file contains more than 9,999 lines,
you can increase the width of thisfield so that the fine numbers are not truncated. The
default width for thisfield is 4 columns.

% TRUNC truncates listing fields that are too long. % TRUNC has the following
syntax:

%'RUNC

The object code field of the listing file has enough room to show the code emitted for
most instructions and data allocations. Y ou can adjust the width of thisfield with

% BIN. If asingle source line emits more code than can be displayed on asingle line,
the rest is normally truncated and therefore not visible. When you want to see al the
code generated, use %NOTRUNC (which word-wraps too-long fields in the listing
file). Otherwise, use % TRUNC. You can use these directives to toggle truncation on
and off.

%NOTRUNC has the following syntax:

YNOTRTUNC
%PCNT sets the segment:offset field width in the listing file. %PCNT has the
following syntax:

%°CNT wi dt h
where width is the number of columns you want to reserve for the offset within the
current segment being assembled. Paradigm Assembler sets the width to 4 for ordinary

16-bit segments and sets it to 8 for 32-bit segments used by the 386 processor. %PCNT
overrides these defaults.

Paradigm Assembler User's Guide

The TITLE directive, which you can use only in MASM mode, sets thetitle in the
listing file. TITLE has the following syntax:

TI TLE text
The title text appears at the top of each page, after the name of the source file and before

any subtitle set with the SUBTTL directive. You can use TITLE as many times as you
want.

%TITLE functions like TITLE, but you can useit for either MASM or Ideal mode.
% TITLE has the following syntax:

%Il TLE "text"
SUBTTL, which only worksin MASM mode, sets the subtitle in the listing file.
SUBTTL has the following syntax:

SUBTTL t ext

The subtitle appears at the top of each page, after the name of the source file, and after
any titleset with TITLE.

Y ou can place asmany SUBTTL directives in your program as you wish. Each
directive changes the subtitle that will appear at the top of the next listing page.

%SUBTTL functions like SUBTTL, but it works in both MASM and Ideal modes.
%SUBTTL has the following syntax:

YSUBTTL "text"
%TABSI ZE sets the tab column width in the listing file. % TABSIZE has the
following syntax:

YABSI ZE wi dt h

width is the number of columns between tabs in the listing file. The default tab column
width is 8 columns.

You can use the % TEXT directive to set the width of the source field in the listing file.
It has the following syntax:

9TEXT wi dth
width is the number of columns to use for source linesin the listing file. If the source

lineislonger than thisfield, it will either be truncated or wrapped to the following line,
depending on whether you've used % TRUNC or %NOTRUNC.

You can use the %PUSHL CTL directive to save the listing controls on a 16-level
stack. It only saves the listing controls that can be enabled or disabled (%INCL,
%NOINCL, and so on). Thelisting field widths are not saved. Thisdirectiveis
particularly useful in macros, where you can invoke special listing modes that disappear
once the macro expansion terminates.

%PUSHL CTL has the following syntax:

WPUSHLCTL

Conversely, the %POPL CTL directive recalls listing controls from the stack. Here's its
syntax:

%POPLCTL
%POPLCTL resets the listing controls to the way they were when the last

%PUSHL CTL directive was issued. None of the listing controls that set field width are
restored (such as % DEPTH, %PCNT).

Chapter 17, Generating a listing 203

204 Paradigm Assembler User's Guide

Chapter

18

Interfacing with Paradigm C++

While many programmers can--and do--develop entire programs in assembly language,
many others prefer to do the bulk of their programming in a high-level language,
dipping into assembly language only when low-level control or very high-performance
codeisrequired. Still others prefer to program primarily in assembler, taking occasiona
advantage of high-level language libraries and constructs.

Paradigm C++ lends itself particularly well to supporting mixed C++ and assembler
code on an as-needed basis, providing not one but three mechanisms for integrating
assembler and C++ code. The inline assembly feature of Paradigm C++ provides a
quick and simple way to put assembler code directly into a C++ function. Y ou can
assemble the inline code with Paradigm Assembler or use Paradigm C++'s built-in
assembler. For further information about using in-line assembly in Paradigm C++ or the
built-in assembler, see the Paradigm C++ Programmer's Guide. For those who prefer
to do their assembler programming in separate modules written entirely in assembly
language, Paradigm Assembler modules can be assembled separately and linked to
Paradigm C++ code.

First, we'll discuss the details of linking separately assembled Paradigm Assembler
modules to Paradigm C++, and explore the process of calling Paradigm Assembler
functions from Paradigm C++ code. Then, we'll cover calling Paradigm C++ functions
from Paradigm Assembler code.

Calling Paradigm Assembler functions from Paradigm C++

C++ and assembler have traditionally been mixed by writing separate modules entirely
in C++ or assembler, compiling the C++ modules and assembling the assembler
modules, and then linking the separately compiled modules together. Paradigm C++
modules can readily be linked with Paradigm Assembler modules in this fashion.

The executable file is produced from mixed C++ and assembler source files. Y ou start
this cycle with

pcc -c-filenaml. cpp fil enanR. asm

This instructs Paradigm C++ to first compile FILENAML.CPP to FILENAMI.OBJ,
then invoke Paradigm Assembler to assemble FILENAM2.ASM to FILENAM2.0BJ,
and finaly invoke PLINK to link FILENAMI.OBJ and FILENAM2.0BJinto
FILENAM1.EXE.

Separate compilation is very useful for programs that have sizable amounts of
assembler code. It makes the full power of Paradigm Assembler available and allows
you to do your assembly language programming in a pure assembler environment,
without the asm keywords, extra compilation time, and C++-related overhead of inline
assembly.

Thereisapriceto be paid for separate compilation: The assembler programmer must
attend to all the details of interfacing C++ and assembler code. Where Paradigm C++
handles segment specification, parameter-passing, reference to C++ variables, register

Chapter 18, Interfacing with Paradigm C++ 205

206

variable preservation, and the like for inline assembly, separately compiled assembler
functions must explicitly do all that and more.

There are two major aspects to interfacing Paradigm C++ and Paradigm Assembler.
First, the various parts of the C++ and assembler code must be linked together properly,
and functions and variables in each part of the code must be made available to the rest
of the code as needed. Second, the assembler code must properly handle C-style
function calls. This includes accessing passed parameters, returning values, and
following the register preservation rules required of C++ functions.

Let's start by examining the rules for linking together Paradigm C++ and Paradigm
Assembler code.

The framework

In order to-link Paradigm C++ and Paradigm Assembler modul es together, three things
must happen:

. The Paradigm Assembler modules must use a Paradigm C++-compatible segment-
naming scheme.

. TheParadigm C++ and Paradigm Assembler modules must share appropriate
function and variable names in aform acceptable to Paradigm C++.

. PLINK must be used to combine the modules into an executable program.

This says nothing about what the Paradigm Assembler modules actually do; at this
point, we're only concerned with creating a framework within which C++-compatible
Paradigm Assembler functions can be written.

Linking assembly language modules with C++

Type-safe linkage is an important concept in C++. The compiler and linker must work
together to ensure function calls between modules use the correct argument types. A
process called name-mangling provides the necessary argument type information.

Name-mangling modifies the name of the function to indicate what arguments the
function takes.

When you build a program entirely in C++, name-mangling occurs automatically and
transparently. However, when you write a module in assembly language to be linked
into a C++ program, you must be sure the assembler module contains mangled names.
Y ou can do this easily by writing adummy function in C++ and compiling it to
assembler. The . ASM file that ParadigmC++ generates will have the proper mangled
names. Y ou use these names when you write the real assembler module.

For example, the following code fragment defines four different versions of the function
named test:

voi d test()

void test(int)

{

}

void test(int, int)
{

}

void test(float, double)

Paradigm Assembler User's Guide

{
}

If the code is compiled using the -S option, the compiler produces an assembly
language output file ((ASM). Thisis how the output |ooks (edited to remove extraneous

details):
; void test()
@ est $qv proc near
@ est $qv endp
; void test(int)
@ est $qi proc near
@ est $qi endp
; void test(int, int)
@est $qi i proc near
@est $qi i endp
; void test(float, double)
@est $qf d proc near
@ est $qf d endp

Using Extern "C" to simplify linkage

If you prefer, you can use unmangled names for your assembler functions, instead of
tying to figure out what the mangled names would be. Using unmangled names will
protect your assembler functions from possible future changes in the name-mangling
algorithm. Paradigm C++ alows you to define standard C function names in your C++
programs.

Look at this example:
extern "C' {
int add(int *a,int b);
}

Any functions declared within the braces will be given C style names. Here isthe
matching assembler procedure definition.

public _add
_add proc

Declaring an assembler function with an extern "C" block can save you the trouble of
determining what the mangled names will be. Y our code will be more readable, also.

Memory models and segments

For a given assembler function to be callable from C++, that function must use the same
memory model as the C++ program and must use a C++-compatible code segment.
Likewise, in order for data defined in an assembler module to be accessed by C++ code
(or for C++ datato be accessed by assembler code), the assembler code must follow
C++ data segment-naming conventions.

Memory models and segment handling can be quite complex to implement in
assembler. Fortunately, Paradigm Assembler does virtually al the work of
implementing Paradigm C++-compatible memory models and segments for you in the
form of the simplified segment directives.

Simplified segment directives and Paradigm C++

The .M ODEL directive tells Paradigm Assembler that segments created with the
simplified segment directives should be compatible with the selected memory model

Chapter 18, Interfacing with Paradigm C++ 207

208

(tiny, small, compact, medium, large, huge, or tchuge), and controls the default type
(near or far) of procedures created with the PROC directive. Memory models defined
with the .MODEL directive are compatible with the equivalently named Paradigm C++
models except that you should use Paradigm Assembler's tchuge memory model when
you want to support Paradigm C++'s huge memory model. (The huge memory model is
more appropriate for compatibility with other C compilers.) You should use the
FARSTACK modifier with the .M ODEL directive for large model, so the stack does
not become a part of DGROUP.

Findly, the .CODE, .DATA, .DATA?, .FARDATA, and .FARDATA? simplified
segment directives generate Paradigm C++-compatible segments. (Don't use .DATA?
or FARDATA? in huge model as they do not exist in Paradigm C++.)

For example, consider the following Paradigm Assembler module, named
DOTOTAL.ASM:

; select Intel-convention segnment ordering

.MDEL small ;select snmall nodel (near code and data)
. DATA ; PCC-conpatible initialized data segnent
EXTRN _Repetitions: WORD ;external ly defined
PUBLIC _ StartingVal ue ;avail abl e to ot her nodul es
_StartingValue DWO
. DATA? ; PCC-conpatible uninitialized data segmnent
Runni ngTot al DW ?
. CODE ; PCC- conpati bl e code segnent
PUBLI C _DoTot al
_DoTot al PRCC ; function (near-callable in small nodel)
nmov cX, [_Repetitions] ;# of counts to do
nmov ax, [_StartingVal ue]
nmov [Runni ngTot al], ax ;set initial value
Tot al Loop:
inc [Runni ngTot al] ; Runni ngTot al ++
| oop Tot al Loop
nmov ax, [Runni ngTot al] ;return final total
ret
_DoTot al ENDP

END
The assembler procedure DoTotal isreadily callable from a small-model Paradigm
C++ program with the statement
DoTotal ();
Notethat DoTotal expects some other part of the program to define the external
variable Repetitions. Similarly, the variable SartingValue is made public, so other
portions of the program can accessit. The following Paradigm C++ module,

SHOWTOT.CPP, accesses public datain DOTOTAL.ASM and provides external data
to DOTOTAL.ASM:

#i ncl ude <stdi o. h>

extern "C' int DoTotal (void);
extern int StartingVal ue;

int Repetitions;

Paradigm Assembler User's Guide

int main()

{
Repetitions = 10;
StartingVal ue = 2;
printf ("%\n", DoTotal ());
return O;
}
SartingValue doesn't have to go in the extern "C" block because variable names are not
mangled.

To create the executable program SHOWTOT.EXE from SHOWTOT.CPP and
DOTOTAL.ASM, enter the command line

pcc showtot. cpp dototal.asm

If you wanted to link _DoTotal to a compact-model C++ program, you would simply
change the .M ODEL directiveto .M ODEL COMPACT. If you wanted to use a far
segment in DOTOTAL.ASM, you could use the .FARDATA directive.

In short, generating the correct segment ordering, memory model, and segment names
for linking with Paradigm C++ is easy with the simplified segment directives.

Old-style segment directives and Paradigm C++

Simply put, it's a nuisance interfacing Paradigm Assembler code to C++ code using the
old-style segment directives. For example, If you replace the ssmplified segment
directivesin DOTOTAL.ASM with old-style segment directives, you get

DGROUP GROUP _DATA, _BSS
_DATA SEGVENT WORD PUBLI C ' DATA
EXTRN _Repetitions: WORD ; externally defined
PUBLI C _StartingVal ue ;avail abl e to other nodul es
_StartingVal ue DW O
_DATA ENDS
_BSs SEGVENT WORD PUBLI C ' BSS
Runni ngTot al DW ?
_BSs ENDS
_TEXT SEGVENT BYTE PUBLI C ' CODE'
ASSUVE cs: _TEXT, ds: DGROUP, ss: DGROUP
PUBLI C _DoTot al
_DoTot al PROC ;function (near-callable in
;smal | nodel)
nmov cX, [_Repetitions] ;# of counts to do
nmov ax, [_StartingVal ue]
nmov [Runni ngTot al], ax ;set initial value
Tot al Loop:
inc [Runni ngTot al] ; Runni ngTot al ++
|l oop Total Loop
nmov ax, [Runni ngTot al] ;return final total

ret
_DoTotal ENDP
_TEXT ENDS
END

The version with old-style segment directivesis not only longer, but also much harder
to read and harder to change to match a different C++ memory model. When you're
interfacing to Paradigm C++, there's generally no advantage to using the old-style
segment directives. If you still want to use the old-style segment directives when
interfacing to Paradigm C++, you'll have to identify the correct segments for the
memory model your C++ code uses.

Chapter 18, Interfacing with Paradigm C++ 209

==

Table 18-1
Register settings
when Paradigm
C++ enters

210

assembler

The easy way to determine the appropriate old-style segment directives for linking with
agiven Paradigm C++ program is to compile the main module of the Paradigm C++
program in the desired memory model with the -S option. This causes Paradigm C++ to
generate an assembler version of the C++ code. In that C++ code, you'll find al the old-
style segment directives used by Paradigm C++; just copy them into your assembler
code.

Segment defaults: When is it necessary to load segments?

Under some circumstances, your C++-callable assembler functions might have to load
DS and/or ES in order to access data. It's also useful to know the relationships between
the settings of the segment registers on a call from Paradigm C++, since sometimes
assembler code can take advantage of the equivalence of two segment registers. Let's
take a moment to examine the settings of the segment registers when an assembler
function is called from Paradigm C++, the relationships between the segment registers,
and the cases in which an assembler function might need to load one or more segment
registers.

On entry to an assembler function from Paradigm C++, the CS and DS registers have
the following settings, depending on the memory model in use (SSis always used for
the stack segment, and ES is always used as a scratch segment register):

M odel CS DS

Tiny _TEXT DGROUP

Small _TEXT DGROUP

Compact _TEXT DGROUP

Medium filename TEXT DGROUP

Large filename TEXT DGROUP

Huge filename TEXT calling_filename DATA

filename is the name of the assembler module, and calling_filename is the name of the
module calling the assembler module.

In the tiny model, TEXT and DGROUP are the same, so CS equals DS on entry to
functions. Also in the tiny, small, and medium models, SS equals DS on entry to
functions.

So, when is it necessary to load a segment register in a C++-callable assembler
function? First, you should never have to (or want to) directly load the CS or SS
registers. CSisautomatically set as needed on far calls, jumps, and returns, and can't be
tampered with otherwise. SS always points to the stack segment, which should never
change during the course of a program (unless you're writing code that switches stacks,
in which case you had best know exactly what you're doing).

ESisaways available for you to use as you wish. You can use ESto point at far data,
or you can load ES with the destination segment for a string instruction.

That leaves the DS register; in al Paradigm C++ models other than the huge model, DS
points to the static data segment (DGROUP) on entry to functions, and that's generally
where you'll want to leave it. Y ou can always use ES to access far data, although you
may find it desirable to instead temporarily point DS to far data that you're going to
access intensively, thereby saving many segment override instructions in your code. For
example, you could access a far segment in either of the following ways:

Paradigm Assembler User's Guide

_FARDATA

Counter DW 0
. CCDE
PUBLI C _Asnfuncti on
_Asnfunct i on PROC
nmov ax, @ardata
mov es, ax ;point ES to far data segnent
inc es: [Counter] ;increment counter variable
_AsnFuncti on ENDP
or
. FARDATA
Count er DwW 0
PUBLIC _Asnfunction
_Asnfunction PROC
ASSUME ds: @ardata
mov ax, @ ar dat a
nmov ds, ax ;point DS to far data segment
i nc [Count er] ;increment counter variable
ASSUVE ds: @lat a
nmov ax, @at a
mov ds, ax ;point DS back to DGROUP

_AsnFuncti on ENDP

The second version has the advantage of not requiring an ES: override on each memory
access to the far data segment. If you do load DS to point to afar segment, be sureto
restore it like in the preceding example before attempting to access any variablesin
DGROUP. Even if you don't access DGROUP in a given assembler function, be sure
to restore DS before exiting since Paradigm C++ assumes that functions leave DS
unchanged.

Handling DS in C++-callable huge model functionsis a bit different. In the huge model,
Paradigm C++ doesn't use DGROUP at all. Instead, each module has its own data
segment, which is afar segment relative to all the other modules in the program; thereis
no commonly shared near data segment. On entry to a function in the huge model, DS,
should be set to point to that modul€e's, far segment and |eft there for the remainder of
the function, asfollows:

Chapter 18, Interfacing with Paradigm C++ 211

212

. FARDATA

. CODE

PUBLI C_Asnfuncti on
_Asnfuncti on PRCC

push ds

mov ax, @ ar dat a
nmov ds, ax

pop ds
ret
_Asnfuncti on ENDP

Note that the original state of DSis preserved with a PUSH on entry to AsmFunction
and restored with a POP before exiting; even in the huge model, Paradigm C++
requires all functions to preserve DS.

Publics and externals

Paradigm Assembler code can call C++ functions and reference external C++ variables.
Paradigm C++ code can likewise call public Paradigm Assembler functions and
reference public Paradigm Assembler variables. Once Paradigm C++-compatible
segments are set up in Paradigm Assembler, as described in the preceding sections, only
the following few simple rules are necessary to share functions and variables between
Paradigm C++ and Paradigm Assembler.

Underscores and the C language

If you are programming in C or C++, all external labels should start with an underscore
character (). The C and C++ compilers automatically prefix an underscore to all
function and external variable names when they're used in C/C++ code, so you only
need to attend to underscores in your assembler code. Y ou must be sure that all
assembler references to C and C++ functions and variables begin with underscores, and
you must begin all assembler functions and variables that are made public and
referenced by C/C++ code with underscores.

For example, the following C code (link2asm.cpp),

i nt Toggl eFl ag();
int Flag;
mai n()

Toggl eFl ag() ;

links properly with the following assembler program (CASMLINK.ASM):

. MODEL snal |

. DATA

EXTRN _Fl ag: WORD
CODE

PUBLI C _Toggl eFl ag
_Toggl eFl ag PRCC

cnp [_Flag],O0 ;is the flag reset?
jz Set TheFl ag ;yes, set it

nmov [_Flag],O0 ;no, reset it

jmp short EndToggl eFl ag ; done

Paradigm Assembler User's Guide

Set TheFl ag:

nmov [Flag],1 ;set flag
EndToggl eFl ag:

ret
_Toggl eFl ag ENDP

END

= L abels not referenced by C code, such as SetTheFlag, don't need leading underscores.

When you use the C language specifier in your EXTRN and PUBL I C directives, asin
the following program (CSPEC.ASM),

. MCDEL smal |

. DATA

EXTRN C Fl ag: word

. CODE

PUBLI C C Toggl eFl ag
Toggl eFl ag PRCC

cnp [Flag], O

jz Set TheFl ag

nmov [Flag], O

jmp short EndToggl eFl ag
Set TheFl ag:

nmov [Flag], 1
EndToggl eFl ag:

ret
Toggl eFl ag ENDP

END

Paradigm Assembler causes the underscores to be prefixed automatically when Flag
and ToggleFlag are published in the object module.

The significance of uppercase and lowercase

Paradigm Assembler is normally insensitive to case when handling symbolic names,
making no distinction between uppercase and lowercase letters. Since C++ is case-
sengitive, it's desirable to have Paradigm Assembler be case-sensitive, at least for those
symbols that are shared between assembler and C++. /ml and /mx make this possible.

The /ml command-line switch causes Paradigm Assembler to become case-sensitive for
all symbols. The /mx command-line switch causes Paradigm Assembler to become
case-sengitive for public (PUBLIC), external (EXTRN), global (GLOBAL), and
communal (COM M) symbols only. When Paradigm C++ calls Paradigm Assembler, it
uses the /ml switch. Most of the time you should use /ml also.

Label types

While assembler programs are free to access any variable as data of any size (8 bit, 16
bit, 32 bit, and so on), it is generally a good idea to access variablesin their native size.
For instance, it usually causes problems if you write aword to a byte variable:

Smal | Count DB 0

mov WORD PTR [smal | Count], Of fffh

Consequently, it's important that your assembler EXTRN statements that declare
external C++ variables specify the right size for those variables, since Paradigm

Chapter 18, Interfacing with Paradigm C++ 213

Assembler has only your declaration to go by when deciding what size access to
generate to a C++ variable. Given the statement

char c

in a C++ program, the assembler code
EXTRN ¢: WORD
inc [c]
could lead to problems, since every 256th time the assembler code incremented c, ¢

would turn over. And, since c is erroneously declared as a word variable, the byte at
OFFSET c + 1isincorrectly incremented, and with unpredictable results.

Correspondence between C++ and assembler data typesis as follows:

C++ data type Assembler datatype
unsigned char byte
char byte
enum word
unsigned short word
short word
unsigned int word
int word
unsigned long dword
long dword
float dword
double gword
long double tbyte
near * word
far * dword

Far externals

If you're using the ssmplified segment directives, EXTRN declarations of symbolsin
far segments must not be placed within any segment, since Paradigm Assembler
considers symbols declared within a given segment to be associated with that segment.
This has its drawbacks: Paradigm Assembler cannot check the addressability of
symbols declared EXTRN outside any segment, and so can neither generate segment
overrides as needed nor inform you when you attempt to access that variable when the
correct segment is not loaded. Paradigm Assembler still assembles the correct code for
references to such external symbols, but can no longer provide the normal degree of
segment addressability checking.

Y ou can use the old-style segment directives to explicitly declare the segment each
external symbol isin, and then place the EXTRN directive for that symbol inside the
segment declaration. Thisisalot of work, however; if you make sure that the correct
segment is loaded when you access far data, it's easiest to just put EXTRN declarations
of far symbols outside all segments. For example, suppose that FILEL.ASM contains

214 Paradigm Assembler User's Guide

. FARDATA
Fil elvari abl e DB 0

Then if FILEL.ASM islinked to FILE2.ASM, which contains

" DATA

EXTRN Fil elVari abl e: BYTE
. CODE
Start PRCC
nmov ax, SEG Fi | elvari abl e
mov ds, ax

SEG FilelVariable will not return the correct segment. The EXTRN directiveis placed
within the scope of the DATA directive of FILE2.ASM, go Paradigm Assembler
considers FilelVariable to bein the near DATA segment of FILE2.ASM rather than in
the FARDATA segment.

The following code for FILE2.ASM allows SEG FilelVariable to return the correct
segment:

. DATA
@urseg ENDS
EXTRN Fil elVari abl e: BYTE

. CODE

Start PRCC
nmov ax, SEG Fi | elVvVari abl e
mov ds, ax

Here, the @curseg ENDS directive ends the .DATA segment, so no segment directive
isin effect when FilelVariable is declared external.

Linker command line

The simplest way to link Paradigm C++ modules with Paradigm Assembler modulesis
to enter asingle Paradigm C++ command line and let Paradigm C++ do al the work.
Given the proper command line, Paradigm C++ will compile the C++ code, invoke
Paradigm Assembler to do the assembling, and invoke PLINK to link the object files
into an executable file. Suppose, for example, that you have a program consisting of the
C++ files MAIN.CPP and STAT.CPP and the assembler files SUMM.ASM and
DISPLAY.ASM. The command line

pcc main.cpp stat.cpp summ asm di spl ay. asm

compiles MAIN.CPP and STAT.CPP, assembles SUMM.ASM and DISPLAY .ASM,
and links all four object files, along with the C++ start-up code and any required library
functions, into MAIN.EXE. Y ou only need remember the . ASM extensions when
typing your assembler file names.

If you use PLINK in stand-alone mode, the object files generated by Paradigm
Assembler are standard object modules and are treated just like C++ object modules.
See Appendix C for more information about using PLINK in stand-alone mode.

Chapter 18, Interfacing with Paradigm C++ 215

216

Parameter passing

Paradigm C++ passes parameters to functions on the stack. Before calling a function,
Paradigm C++ first pushes the parameters to that function onto the stack, starting with
the right-most parameter and ending with the left-most parameter. The C++ function
call

Test (i, j, 1):

compilesto

nmov ax, 1

push ax

push WORD PTR DGROUP: _j
push WORD PTR DGROUP: _i
call NEAR PTR _Test

add sp, 6

in which you can clearly see the right-most parameter, 1, being pushed first, then j, and
findly i.

Upon return from afunction, the parameters that were pushed on the stack are il
there, but are no longer useful. Consequently, immediately following each function call,
Paradigm C++ adjusts the stack pointer back to the value it contained before the
parameters were pushed, thereby discarding the parameters. In the previous example,
the three parameters of 2 bytes each take up 6 bytes of stack space altogether, so
Paradigm C++ adds 6 to the stack pointer to discard the parameters after the call to Test.
The important point here is that under the default C/C++ calling conventions, the
calling code is responsible for discarding the parameters from the stack.

Assembler functions can access parameters passed on the stack relative to the BP
register. For example, suppose the function Test in the previous exampleisthe
following assembler function, called PRMSTACK.ASM:

. MODEL snal |

. CCDE

PUBLIC Test
_Test PROC

push bp
nmov bp, sp
nmov ax, [bp+4] ;get paraneter 1
add ax, [bp+6] ;add parameter 2 to paraneter 1
sub ax, [bp+8] ;subtract parameter 3 from sum
pop bp
ret
_Test ENDP
END

Y ou can seethat Test is getting the parameters passed by the C++ code from the stack,
relative to BP. (Remember that BP addresses the stack segment.) But just how are you
to know where to find the parametersrelative to BP?

i = 25;

=4

Test(i, j, 1);
The parametersto Test are at fixed locations relative to SP, starting at the stack location
2 bytes higher than the location of the return address that was pushed by the call. After
loading BP with SP, you can access the parameters relative to BP. However, you must

Paradigm Assembler User's Guide

first preserve BP, since the calling C++ code expects you to return with BP unchanged.
Pushing BP changes all the offsets on the stack.

6ﬁsh bp
mov bp, sp

Thisisthe standard C++ stack frame, the organization of afunction's parameters and
automatic variables on the stack. As you can see, no matter how many parameters a
C++ program might have, the left-most parameter is always stored at the stack address
immediately above the pushed return address, the next parameter to the right is stored
just above the left-most parameter, and so on. Aslong as you know the order and type
of the passed parameters, you always know where to find them on the stack.

Space for automatic variables can be reserved by subtracting the required number of
bytes from SP. For example, room for a 100-byte automatic array could be reserved by
starting Test with

6ﬁsh bp
nmov bp, sp

sub sp, 100

Since the portion of the stack holding automatic variablesis at alower address than BP,
negative offsets from BP are used to address automatic variables. For example,

mov BYTE PTR [bp- 100], O

would set the first byte of the 100-byte array you reserved earlier to zero. Passed
parameters, on the other hand, are always addressed at positive offsets from BP.

While you can, if you wish, allocate space for automatic variables as shown previously,
Paradigm Assembler provides a special version of the LOCAL directive that makes
allocation and naming of automatic variables a snap. When LOCAL is encountered
within a procedure, it is assumed to define automatic variables for that procedure. For
example,

LOCAL Local Array: BYTE: 100, Local Count : WORD = AUTO SI ZE
defines the automatic variables Local Array and Local Count. LocalArray is actualy a
label equated to [BP-100], and Local Count is actually alabel equated to [BP-102], but
you can use them as variable names without ever needing to know their values.

AUTO_SZE isthe total number of bytes of automatic storage required; you must
subtract this value from SP in order to allocate space for the automatic variables.

Here's how you might use LOCAL :

Chapter 18, Interfacing with Paradigm C++ 217

218

_TestSub PROC

LOCAL Local Array: BYTE: 100, Local Count : WORD=AUTO S| ZE

push bp ;preserve caller's stack franme pointer
mov bp, sp ;set up our own stack frame pointer
sub sp, AUTO SI ZE ;allocate roomfor automatic variabl es
mov [Local Count], 10 ;set local count variable to 10

; (Local Count is actually [BP-102])

mov ¢Xx, [Local Count] ;get count fromlocal variable

mv al,'A ;we' Il fill with character "A"

| ea bx,[Local Array] ;point to local array
;(Local Array is actually [BP-100])

Fill Loop:

mov [bx], al ;fill next byte

inc bx ;point to followi ng byte

| oop Fill Loop ;do next byte, if any

mov - sp, bp ;deal | ocate storage for autonatic
;vari abl es (add sp, AUTO SI ZE woul d
;al so have wor ked)

pop bp ;restore caller's stack frame pointer

ret
_Test Sub ENDP

In this example, note that the first field after the definition of a given automatic variable
is the data type of the variable: BY TE, WORD, DWORD, NEAR, and so on. The
second field after the definition of a given automatic variable is the number of elements
of that variable'stype to reserve for that variable. Thisfield is optional and defines an
automatic array if used; if it is omitted, one element of the specified typeis reserved.

Consequently, Local Array consists of 100 byte-sized elements, while Local Count
consists of 1 word-sized element.

Also note that the LOCAL line in the preceding example ends with =AUTO_SIZE. This
field, beginning with an equal sign, isoptiona; if present, it sets the label following the
equal sign to the number of bytes of automatic storage required. Y ou must then use that
label to allocate and deallocate storage for automatic variables, since the LOCAL
directive only generates labels, and doesn't actually generate any code or data storage.
To put this another way: L OCAL doesn't allocate automatic variables, but smply
generates labels that you can readily use to both alocate storage for and access
automatic variables.

Asyou can see, LOCAL makes it much easier to define and use automatic variables.
Note that the LOCAL directive has a completely different meaning when used in
macros.

By the way, Paradigm C++ handles stack frames in just the way we've described here.
You might find it instructive to compile afew Paradigm C++ modules with the -S
option, and then look at the assembler code Paradigm C++ generates to see how
Paradigm C++ creates and uses stack frames.

Thislooks good so far, but there are further complications. First of all, this business of
accessing parameters at constant offsets from BP is a nuisance; not only isit easy to
make mistakes, but if you add another parameter, all the other stack frame offsetsin the
function must be changed. For example, suppose you change Test to accept four
parameters:

Test (Flag, i, j, 1);

Paradigm Assembler User's Guide

Suddenly i is at offset 6, not offset 4, | is at offset 8, not offset 6, and so on. Y ou can use

equates for the parameter offsets:
Flag EQU 4
AddPar nil EQU 6
AddPar n2 EQU 8
SubPar ml EQU 10

nmov ax, [bp+AddPar n]
add ax, [bp+AddPar n]
sub ax, [bp+SubPar ml]

but it's still a nuisance to calculate the offsets and maintain them. There's a more serious
problem, too: The size of the pushed return address grows by 2 bytesin far code models
as do the sizes of passed code pointers and data pointer in far code and far data models,
respectively. Writing a function that can be easily assembled to access the stack frame
properly in any memory model would thus seem to be a difficult task.

Paradigm Assembler, however, provides you with the ARG directive, which makes it
easy to handle passed parameters in your assembler routines.

The ARG directive automatically generates the correct stack offsets for the variables
you specify. For example,

arg Fill Array: WORD, Count : WORD, Fi | | Val ue: BYTE

specifies three parameters: FillArray, aword-sized parameter; Count, aword-sized
parameter, and FillValue, a byte-sized parameter. ARG actually setsthe label FillArray
to [BP+4] (assuming the example code resides in anear procedure), the label Count to
[BP+6], and the label FillValue to [BP+8]. However, ARG isvauable precisely
because you can use ARG-defined labels without ever knowing the values they're set to.

For example, suppose you've got afunction FillSub, called from C++ asfollows:

extern "C' {
voi d Fill Sub(
char *Fill Array,
int Count,
char Fill Val ue);

}
mai n()

{
const int ARRAY_LENGTH=100;

char Test Array[ARRAY_LENGTH) ;

Fill Sub(Test Array, ARRAY_LENGTH, ' *');
}

You could use ARG in FillSub to handle the parameters as follows:

Chapter 18, Interfacing with Paradigm C++ 219

220

_FillSub PROC NEAR
ARG Fill Array: WORD, Count : WORD, Fi | | Val ue: BYTE

push bp ;preserve caller's stack frane
mov bp, sp ;set our own stack frame
mov bx, [Fill Array] ;get pointer to array to fill
mov c¢x, [Count] ;get length to fill
mov al,[FillVal ue] ;get value to fill with
Fi Il Loop:
mov [bx], al ;fill a character
inc bx ;point to next character
| oop Fill Loop ; do next character
pop bp ;restore caller's stack frane

ret
_FillSub ENDP

That'sreally all it takes to handle passed parameters with ARG. Better yet, ARG
automatically accounts for the different sizes of near and far returns.

Preserving registers

Asfar as Paradigm C++ is concerned, C++-callable assembler functions can do
anything as long as they preserve the following registers. BP, SP, CS, DS, and SS.
While these registers can be atered during the course of an assembler function, when
the calling code is returned, they must be exactly as they were when the assembler
function was called. AX, BX, CX, DX, ES, and the flags can be changed in any way.

Sl and DI are special cases, since they're used by Paradigm C++ asregister variables. If
register variables are enabled in the C++ module calling your assembler function, you
must preserve Sl and DI; but if register variables are not enabled, S| and DI need not be
preserved.

It's good practice to always preserve Sl and DI in your C++-callable assembler
functions, regardless of whether register variables are enabled. Y ou never know when
you might link a given assembler module to a different C++ module, or recompile your
C++ code with register variables enabled, without remembering that your assembler
code needs to be changed as well.

Returning values

A C++-callable assembler function can return avalue, just like a C++ function.
Function values are returned as follows:

Return value type Return value location

unsigned char AX

char AX

enum AX

unsigned short AX

short AX

unsigned int AX

int AX

unsigned long DX:AX

long DX:AX

float 8087 top-of-stack (TOS) register (ST(0))
double 8087 top-of-stack (TOS) register (ST(0))
long double 8087 top-of-stack (TOS) register (ST(0))
near * AX

Paradigm Assembler User's Guide

Table continued Return value type Return value location

far * DX:AX

In general, 8- and 16-bit values are returned in AX, and 32-bit values are returned in
DX:AX, with the high 16 bits of the value in DX. Floating-point values are returned in
ST(0), which is the 8087s top-of-stack (TOS) register, or in the 8087 emulator's TOS
register if the floating-point emulator is being used.

Structures are a bit more complex. Structuresthat are 1 or 2 bytesin length are returned
in AX, and structures that are 4 bytes in length are returned in DX:AX. When a function
that returns a three-byte structure or a structure larger than 4 bytesis caled, the caller
must allocate space for the return value (usually on the stack), and pass the address of
this space to the function as an additional "hidden" parameter. The function assigns the
return value through this pointer argument, and returns that pointer as its result. As with
all pointers, near pointers to structures are returned in AX, and far pointers to structures
arereturned in DX:AX.

Let'slook at a small model C++-callable assembler function, FindLastChar, that returns
anear pointer to the last character of a passed string. The C++ prototype for this
function would be

extern char * FindLastChar(char * StringToScan);
where StringToScan is the non-empty string for which a pointer to the last character is

to be returned.
Here's FindLastChar, from FINDCHAR.ASM:

.MCDEL snmal |
. CODE
PUBLI C _Fi ndLast Char

_Fi ndLast Char PROC
ARG StringToScan: WORD
push bp
nmov bp, sp
cld ;we need string instructions to count up
nmov ax, ds
nmov es, ax ;set ESto point to the near data segnent
nmov di, [StringToScan] ;point ES:DI to start of

; passed string

nmov al,0 ;search for the null that ends the string
nmov cx, Offffh ;search up to 64K-1 bytes
repnz scasb ;1 ook for the nul
dec di ; point back to the nul
dec di ; point back to the last character
nmov ax, di ;return the near pointer in AX
pop bp
ret

_Fi ndLast Char ENDP
END

The final result, the near pointer to the last character in the passed string, is returned in
AX.

Calling an assembler function from C++

Now look at an example of Paradigm C++ code calling a Paradigm Assembler function.
The following Paradigm Assembler module, COUNT.ASM, contains the function

Chapter 18, Interfacing with Paradigm C++ 221

LineCount, which returns counts of the number of lines and charactersin a passed

string:

;Smal | nodel C++-call abl e assenbl er function to count the nunber

:of line
:Functio

’

s and characters in a zero-term nated string.

n prototype:
extern unsigned int LineCount(char * near StringToCount,
unsigned int near * CharacterCountPtr);

; I nput :
; char near * StringToCount: pointer to the string on which
; a line count is to be perforned
; unsigned int near * CharacterCountPtr: pointer to the
; int variable in which the character count is
: to be stored
NEWLI NE EQU Oah :the linefeed character is Cs
:new i ne char act er
. MODEL smal |
. CODE
PUBLI C _Li neCount
_Li neCount PRCC
push bp
nmov bp, sp
push Si ;preserve calling program s register
;variable, if any
nmov si, [bp+4] ;point SI to the string
sub CX, CX ;set character count to O
mov dx, cx :set line count to O
Li neCount Loop:
| odsb ;get the next character
and al , al ;is it null, to end the string?
jz EndLi neCount ;yes, we're done
inc cX ; no, count anot her character
cnp al , NEWLI NE ;is it a newine?
jnz Li neCount Loop ; no, check the next character
inc dx ;yes, count another line
jnmp Li neCount Loop
EndLi neCount :
i nc dx ;count the line that ends with the
;null character
nmov bx, [bp+6] ;point to the location at which to
:return the character count
nmov [bx], cx ;set the character count variable
mov ax, dx :return line count as function val ue
pop Si ;restore calling progranis register
;variable, if any
pop bp
ret
_Li neCount ENDP
END
The following C++ module, CALLCT.CPP, is a sample invocation of the LineCount
function:
#i ncl ude <stdio. h>

char * TestString="Line 1\nline 2\nline3";

extern "

222

C' unsigned int LineCount(char * StringToCount,
unsigned int * CharacterCountPtr);

Paradigm Assembler User's Guide

int main()

{
unsi gned int LCount;
unsi gned i nt CCount;
LCount = LineCount(TestString, &CCount);
printf("Lines: %\ nCharacters: %\ n", LCount, CCount);
return O,

}

The two modules are compiled and linked together with the command line

pcc -ns callct.cpp count.asm

As shown here, LineCount will work only when linked to small-model C++ programs
since pointer sizes and locations on the stack frame change in other models. Here's a
version of LineCount, COUNTLG.ASM, that will work with large-model C++ program
(but not small-model ones, unless far pointers are passed, and LineCount is declared

far):
; Large nodel, C++-call able assenbler function to count the nunber
;of lines and characters in a zero-termnated string.
;Function pr ot ot ype:
; extern unsigned int LineCount(char * far StringToCount,
; unsigned int * far CharacterCountPtr);
; char far * StringToCount: pointer to the string on which a
; line count is to be perforned
; unsigned int far * CharacterCountPtr: pointer to the
; int variable in which the character count
; is to be stored
NEW.I NE EQU Oah ;the |inefeed character

:new i ne char act er
. MODEL | arge

. CODE
PUBLI C _Li neCount
_Li neCount PRCC

push bp

nmov bp, sp

push Si ;preserve calling program s
;register variable, if any

push ds ;preserve Cs standard data seg

| ds si, [bp+6] ;point DS:SI to the string

sub CX, CX ;set character count to O

nmov dx, cx ;set line count to O

Li neCount Loop

| odsb ;get the next character

and al , al ;is it null, to end the string?

jz EndLi neCount ;yes, we're done

i nc CcX ;no, count another character

cnp al , NEWLI NE ;is it a newine?

j nz Li neCount Loop ;no, check the next character

i nc dx ;yes, count another line

jmp Li neCount Loop

Chapter 18, Interfacing with Paradigm C++

223

224

EndLi neCount :

inc dx ;count line ending with nul
; charact er

| es bx, [bp+10] ;point ES:BX to the |location at
;which to return char count

nmov es: [bx], cx ;set the char count variable

nmov ax, dx ;return the line count as the
; function val ue

pop ds ;restore Cs standard data seg

pop Si ;restore calling program s
;register variable, if any

pop bp

ret

_Li neCount ENDP
END

COUNTLG.ASM can be linked to CALLCT.CPP with the following command line:
pcc -m callct.cpp countlg.asm

Writing C++ member functions in assembly language

While you can write amember function of a C++ class completely in assembly
language, it is not easy. For example, all member functions of C++ classes are name-
mangled to provide the type-safe linkage that makes things like overridden functions
available, and your assembler function would have to know exactly what name C++
would be expecting for the member function. To access the member variables you must
prepare a STRUC definition in your assembler code that defines al the member
variables with exactly the same sizes and locations. If your classis a derived class, there
may be other member variables derived from a base class. Even if your classis not a
descendant of another class, the location of member variablesin memory changesif the
classincludes any virtual functions.

If you write your function using inline assembler, Paradigm C++ can take care of these
issues for you. But if you must write your function in assembly language, (perhaps
because you are reusing some existing assembler code), there are some special
techniques you can use to make things easier.

Create adummy stub C++ function definition for the assembler function. This stub will
satisfy the linker because it will have a properly mangled name for the member
function. The dummy stub then calls your assembler function and passesto it the
member variables and other parameters. Since your assembler code has al the
parameters it needs passed as arguments, you don't have to worry about changes in the
class definition. Y our assembler function can be declared in the C++ code as an extern
"C' function, just as we have shown you in other examples.

For an example of how to write assembly functions using mangled names, see the
example on page 199.

Here's an example, called COUNTER.CPP:
#i ncl ude <stdio. h>

Paradigm Assembler User's Guide

class counter {
/1 Private nmenber variabl es
int count; / / The ongoi ng count
publi c:
counter(void) {count = 0; }
int get_count(void){return count;}
[/ Two functions that will actually be witten
/1 in assenbler:
voi d increment (void);
voi d add(int what _to _add=-1);
/I Note that the default value only affects
// calls to add, it does not affect the code for add.
b
extern "C' {
/1 To create some uni que, neani ngful names for the assenbl er
/[lroutines, prepend the nane of the class to the assenbl er
[/routine. Unlike sone assenbl ers, Paradi gm Assenbl er has no
[l problemw th | ong nanes.
voi d counter_increment(int *count); //We will pass a
/I pointer to the count
//variable. Assenbler
[Iwill do the increnenting.
voi d counter_add(int *count,int what to_add);
}
voi d counter::increment(void) {
count er _i ncrenent (&count) ;
}

voi d counter::add(int what _to_add) {
count er _add(&count, what to_add);
}

int main() {
count er Counter;

printf("Before count: %\ n", Counter.get_count());
Counter.increment();

Counter.add(5);

printf("After count: %\n", Counter.get count());
return O;

}

Y our assembler module that defines the count_add increment and count_add add
routines could look like this example, called COUNTADD.ASM:

Chapter 18, Interfacing with Paradigm C++ 225

. MODEL snal | ; Sel ect small nodel (near code and data)
. CODE
PUBLI C _count er _i ncrement

_counter_increment PRCC

ARG count _of fset:word ; Address of the nenber variabl e
push bp ; Preserve caller's stack frane
nmov bp, sp ; Set our own stack frame

nmov bx, [count _of f set] ; Load pointer

inc word ptr [bx] ;I ncrement menber vari abl e

pop bp i Restore callers stack frame

ret
_counter_increnment ENDP
PUBLI C _count er_add
_counter_add PROC
ARG count _of f set: word, what _to_add: word

push bp
nmov bp, sp
nmov bx, [count _of fset] ; Load pointer

nmov ax, [what _to_add]
add [bx], ax
pop bp
ret
_counter_add ENDP

end

Using this method, you don't have to worry about changes in your class definition. Even
if you add or delete member variables, make this class a derived class, or add virtual
functions, you won't have to change your assembler module. Y ou need to reassemble
your module only if you change the structure of the count member variable, or if you
make a large model version of this class. Y ou need to reassemble because you have to
deal with a segment and an offset when referring to the count member variable.

Pascal calling conventions

So far, you've seen how C++ normally passes parameters to functions by having the
calling code push parameters right to left, call the function, and discard the parameters
from the stack after the call. Paradigm C++ is also capable of following the conventions
used by Pascal programsin which parameters are passed from left to right, and the
called function discards the parameters from the stack. In Paradigm C++, Pascal
conventions are enabled with the -p command-line option or the pascal keyword.

The following example, ASMPSCL.ASM, shows an assembler function that uses Pascal

conventions:
;Called as: TEST_PROC(i, j, K);
i equ 8 ;| ef t most paranet er
i equ 6
k equ 4 ;rightnost paraneter

226 Paradigm Assembler User's Guide

. MODEL smal |

. CODE
PUBLI C TEST_PRCC
TEST_PROC PRCOC
push bp
nmov bp, sp
nmov ax, [bp+i] ;get i
add ax,[bp+j] ;add j to
sub ax, [bp+k] ;subtract k fromthe sum
pop bp
ret 6 ;return, discarding 6 paraneter
; bytes
TEST_PRCC ENDP
END
Notethat RET 6 is used by the called function to clear the passed parameters from the

stack.

Pascal calling conventions also require all external and public symbolsto bein
uppercase, with no leading underscores. Why would you want to use Pascal calling
conventions in a C++ program? Code that uses Pascal conventions tends to be
somewhat smaller and faster than normal C++ code since there's no need to execute an
ADD SP ninstruction to discard the parameters after each call.

Calling Paradigm C++ from Paradigm Assembler

Although it's most common to call assembler functions from C++ to perform
specialized tasks, you might occasionally want to call C++ functions from assembler.
Asitturnsout, it's actually easier to call a Paradigm C++ function from a Paradigm
Assembler function than the reverse since no stack-frame handling on the part of the
assembler code is required. Let's take a quick ook at the requirements for calling
Paradigm C++ functions from assembler.

Link in the C++ startup code

Asageneral rule, you should only call Paradigm C++ library functions from assembler
code in programs that link in the C++ startup module as the first module linked.

= Generally, you should not call Paradigm C++ library functions from programs that don't
link in the C++ startup module since some Paradigm C++ library functions will not
operate properly if the startup code is not linked in. If you really want to call Paradigm
C++ library functions from such programs, we suggest you look at the startup source
code (the file CO.ASM on the Paradigm C++ distribution disks) and purchase the C++
library source code from Paradigm. Thisway, you can be sure to provide the proper
initialization for the library functions you need.

Calling user-defined C++ functions that in turn call C++ library functions falls into the
same category as calling library functions directly; lack of the C++ startup can
potentially cause problems for any assembler program that calls C++ library functions,
directly or indirectly.

The segment setup

Aswe learned earlier, you must make sure that Paradigm C++ and Paradigm Assembler
are using the same memory model and that the segments you use in Paradigm
Assembler match those used by Paradigm C++. Paradigm Assembler has atchuge
memory model that supports Paradigm C++'s huge memory model. Refer to the

Chapter 18, Interfacing with Paradigm C++ 227

228

previous section if you need a refresher on matching memory models and segments.
Also, remember to put EXTRN directives for far symbols either outside all segments or
inside the correct segment.

Performing the call

All you need to do when passing parameters to a Paradigm C++ function is push the
right-most parameter first, then the next right-most parameter, and so on, until the left-
most parameter has been pushed. Then just call the function. For example, when
programming in Paradigm C++, to call the Paradigm C++ library function strcpy to
copy SourceString to DestSring, you would type

strcpy(Dest String, SourceString);
To perform the same call in assembler, you would use

| ea ax, SourceString ; rightmost paraneter

| ea bx, Dest Stri ng ;| ef t most paranet er
push ax ;push rightnost first
push bx ; push | eft nost next

call _strcpy ;copy the string

add sp, 4 ;discard the paraneters

Don't forget to discard the parameters by adjusting SP after the call.

Y ou can simplify your code and make it language independent at the same time by
taking advantage of Paradigm Assembler's CALL instruction extension:

call destination [language [,argl] ...]

where language is C, CPP, PASCAL, BASIC, FORTRAN, PROLOG or
NOLANGUAGE, and arg is any valid argument to the routine that can be directly
pushed onto the processor stack.

Using this feature, the preceding code can be reduced to

lea ax, SourceString
| ea bx, Dest Stri ng
call strcpy c, bx, ax

Paradigm Assembler automatically inserts instructions to push the arguments in the
correct order for C++ (AX first, then BX), performsthe call to _strcpy (Paradigm
Assembler automatically inserts an underscore in front of the name for C++), and cleans
up the stack after the call.

If you're calling a C++ function that uses Pascal calling conventions, you have to push
the parameters left to right and not adjust SP afterward:

|l ea bx,DestString ;1 eftnost paranet er
|l ea ax, SourceString ;rightnost paraneter
push bx ;push leftnost first
push ax ; push rightnost next
call STRCPY ;copy the string

;1 eave the stack al one
Again, you can use Paradigm Assembler's CALL instruction extension to simplify your
code:

| ea bx,DestString ;lef t most paranet er
|l ea ax, SourceString ; rightmost paranet er
call strcpy pascal, bx, ax

Paradigm Assembler User's Guide

Paradigm Assembler automatically inserts instructions to push the argumentsin the
correct order for Pascal (BX first, then AX) and performs the call to STRCPY
(converting the name to all uppercase, asisthe Pascal convention).

The last example assumes that you've recompiled strcpy with the -p switch, since the
standard library version of strcpy uses C++ rather than Pascal calling conventions.

Rely on C++ functions to preserve the following registers and only the following
registers. SI, DI, BP, DS, SS, SP, and CS. Registers AX, BX, CX, DX, ES, and the
flags may be changed arbitrarily.

Calling a Paradigm C++ function from Paradigm Assembler

One case in which you may wish to call a Paradigm C++ function from Paradigm
Assembler is when you need to perform complex calculations. Thisis especially true
when mixed integer and floating-point calculations are involved; while it's certainly
possible to perform such operations in assembler, it's ssmpler to let C++ handle the
details of type conversion and floating-point arithmetic.

Let'slook at an example of assembler code that calls a Paradigm C++ function in order
to get afloating-point calculation performed. In fact, let's look at an example in which a
Paradigm C++ function passes a series of integer numbers to a Paradigm Assembler
function, which sums the numbers and in turn calls another Paradigm C++ function to
perform the floating-point calculation of the average value of the series.

The C++ portion of the program in CALCAVG.CPPis
#i ncl ude <stdio. h>
extern "C' float Average(int far * ValuePtr, int Nunber O Val ues);

#define NUVBER OF TEST VALUES 10
int TestVal ues[NUVBER OF TEST VALUES] = {
1, 2, 3, 4, 5, 6, 7, 8 9, 10

b
int main()
{
printf ("The average value is: %\n",
Aver age(Test Val ues, NUMBER OF TEST _VALUES));
return O;
}
extern "C'
float IntDivide(int Dividend, int Dvisor)
{

return((float) Dividend / (float) Divisor);
}

and the assembler portion of the program in AVERAGE.ASM is

; Paradi gm C++-cal | abl e snal | -nmodel function that returns the
;average of a set of integer values. Calls the Paradi gm C++
;function IntDivide() to performthe final division

;Function pr ot ot ype:
extern float Average(int far * ValuePtr, int Nunber O Val ues);

; I nput :

Chapter 18, Interfacing with Paradigm C++ 229

230

: int far * Val uePtr:
; i nt Number O Val ues:

. MODEL
EXTRN
. CODE
PUBLI C
_Aver age
push
nov
| es
nov
nov
Aver agelLoop:
add
add
| oop
push

push
cal |
add

pop
ret

_Aver age
END

smal |

_I nt D vi de: PROC

_Aver age
PRCC

bp

bp, sp
bx, [bp+4]
cX, [bp+8]
ax, 0

ax, es: [bx]

bx, 2

Aver agelLoop
WORD PTR [bp+8]
ax

_IntDivide
sp, 4

bp

ENDP

;the array of values to average
;the nunber of values to average

;point ES:BX to array of val ues
;# of values to average
;clear the running total

;add the current val ue
;point to the next val ue

;get back the nunber of val ues
;passed to IntDivide as the
;rightnost paraneter

;pass the total as the | eftnost
; par aret er s,

;cal culate the floating-point

; aver age

;discard the paraneters

;average is in 8087's TOS
;register

The C++ main function passes a pointer to the array of integers TestValues and the
length of the array to the assembler function Average. Average sums the integers, then
passes the sum and the number of values to the C++ function IntDivide. IntDivide casts
the sum and number of values to floating-point numbers and calculates the average
value, doing in asingle line of C++ code what would have taken severa assembler
lines. IntDivide returns the average to Average in the 8087 TOS register, and Average
just leaves the average in the TOS register and returnsto main.

CALCAVG.CPP and AVERAGE.ASM could be compiled and linked into the
executable program CALCAV G.EXE with the command

pcc cal cavg. cpp average. asm

Note that Average will handle both small and large data models without the need for
any code change since afar pointer ispassed in al models. All that would be needed to
support large code models (huge, large, and medium) would be use of the appropriate

.MODEL directive.

Taking full advantage of Paradigm Assembler's language-independent extensions, the
assembly code in the previous example could be written more concisely as shown here

in CONCISE.ASM:

Paradigm Assembler User's Guide

. MODEL smal |, ¢

EXTRN C IntDi vi de: PROC
. CCDE
PUBLI C C Aver age
Aver age PROC C Val uePt r: DWORD, Nunber O Val ues: WORD
| es bx; Val uePtr
nmov cx, Nunber O Val ues
nmov ax, 0
Aver agelLoop:
add ax, es: [bx]
add bx, 2 ;point to the next val ue
| oop Aver agelLoop
cal | I nt D vi de C, ax, Nunber of Val ues
ret
Aver age ENDP
END

Chapter 18, Interfacing with Paradigm C++ 231

232 Paradigm Assembler User's Guide

Appendix
A

Program blueprints

This appendix describes basic program construction information depending on specific
memory models and executable object formats.

Simplified segmentation segment description

The following tables show the default segment attributes for each memory model.

TabéefA-ll Directive Name Align Combine Class Group
efault
segments and .CODE _TEXT WORD PUBLIC '‘CODE' DGROUP
types for TINY . ' '
memory model .FARDATA FAR_DATA PARA private FAR_DATA
.FARDATA? FAR BSS PARA private 'FAR_BSS
.DATA _DATA WORD PUBLIC 'DATA' DGROUP
.CONST CONST WORD PUBLIC '‘CONST DGROUP
.DATA? _BSS WORD PUBLIC 'BSS DGROUP
STACK! STACK PARA STACK 'STACK' DGROUP

1. STACK not assumed to bein DGROUP if FARSTACK specified in the MODEL

directive.
TabéefA-IZ Directive Name Align Combine Class Group
efault
segments and .CODE _TEXT WORD PUBLIC '‘CODE'
types for SMALL : ' '

memory model FARDATA FAR DATA PARA private FAR DATA
.FARDATA? FAR BSS PARA private 'FAR_BSS
.DATA _DATA WORD PUBLIC 'DATA' DGROUP
.CONST CONST WORD PUBLIC '‘CONST DGROUP
.DATA? _BSS WORD PUBLIC '‘BSS DGROUP
STACK* STACK PARA STACK 'STACK' DGROUP

1. STACK not assumed to bein DGROUP if FARSTACK specified in the MODEL

directive.
TabgefA-? Directive Name Align Combine Class Group
efault
segments and .CODE name TEXT WORD PUBLIC 'CODE'
,\;ygglsljﬁﬂr FARDATA FAR DATA PARA private 'FAR_DATA'

memory model .FARDATA? FAR BSS PARA private 'FAR_BSS
DATA _DATA WORD PUBLIC DATA' DGROUP
.CONST CONST WORD PUBLIC 'CONST' DGROUP
DATA? _BSS WORD PUBLIC 'BSS DGROUP
STACK* STACK PARA STACK 'STACK' DGROUP

Appendix A, Program blueprints

Table A-4
Default
segments and
types for
COMPACT
memory model

Table A-5
Default
segments and
types for LARGE
or HUGE
memory model

Table A-6
Default
segments and
types for
Paradigm C++
HUGE
(TCHUGE)
memory model

234

1. STACK not assumed to bein DGROUP if FARSTACK specified in the MODEL

directive.
Directive Name Align Combine Class Group
.CODE _TEXT WORD PUBLIC '‘CODE'
.FARDATA FAR_DATA PARA private 'FAR_DATA!'
.FARDATA? FAR BSS PARA private 'FAR_BSS
.DATA _DATA WORD PUBLIC 'DATA' DGROUP
.CONST CONST WORD PUBLIC '‘CONST DGROUP
.DATA? _BSS WORD PUBLIC '‘BSS DGROUP
STACK! STACK PARA STACK 'STACK' DGROUP

1. STACK not assumed to bein DGROUP if FARSTACK specified in the MODEL

directive.
Directive Name Align Combine Class Group
.CODE name_TEXT WORD PUBLIC 'CODE'
.FARDATA FAR_DATA PARA private 'FAR_DATA'
.FARDATA? FAR_BSS PARA private 'FAR_BSS
.DATA _DATA WORD PUBLIC 'DATA' DGROUP
.CONST CONST WORD PUBLIC 'CONST DGROUP
.DATA? _BSS WORD PUBLIC 'BSS DGROUP
STACK?! STACK PARA STACK 'STACK' DGROUP

1. STACK not assumed to bein DGROUP if FARSTACK specified in the MODEL

directive.
Directive Name Align Combine Class Group
.CODE name_TEXT WORD PUBLIC '‘CODE'
.FARDATA FAR_DATA PARA private 'FAR_DATA'
.FARDATA? FAR_BSS PARA private 'FAR_BSS
.DATA name_DATA PARA private 'DATA'
STACK! STACK PARA STACK 'STACK'

1. STACK isautomatically FAR

Paradigm Assembler User's Guide

Appendix
B

Syntax summary

This appendix describes the syntax of Paradigm Assembler expressions in a modified
Backus-Naur form (BNF). The symbol ::= describes a syntactical production. Ellipses
(...) indicate that an element is repeated as many times asit isfound. This appendix
also discusses keywords and their precedences.

Lexical grammar

valid line::=
white_space valid_line
punctuation valid_line
number_string valid_line
id_string valid_line

null

white_space::=
space_char white_space
space_char

space char ::=
All control characters; character > 128, '

id_string ::=
id_char id_strng2

id_strng2 ::=
id_chr2id_strng2
null

id_char ::=
Any of $, %, , ?, or any aphabetic characters

id chr2::=
id_chars plus numerics

number_string ::=
num_string
str_string

num_string ::=

digits alphanums

digits'.' digits exp

digitsexp ;Only MASM mode DD, DQ, or DT
digits::=

digit digits

digit

digit ::=

0 through 9

Appendix B, Syntax summary 235

alphanums::=
digit alphanum
alpha alphanum
null

alpha::=
alphabetic characters

exp =
E + digits

E - digits

E digits

null

str_string ::=

Quoted string, quote enterable by two quotes in arow

punctuation ::=
Everything that is not aspace char, id char,""*,""'", or digits

The period (.) character is handled differently in MASM mode and Ideal mode. This
character is not required in floating-point numbersin MASM mode and also can't be
part of asymbol name in Ideal mode. In MASM mode, it is sometimes the start of a
symbol name and sometimes a punctuation character used as the structure member
selector.

Here are the rules for the period (.) character:

1. In Ideal mode, it's always treated as punctuation.
2. INnMASM mode, it's treated as the first character of an ID in the following cases
. Whenitisthefirst character on theline, or in other special caseslike EXTRN

and PUBL 1 C symboals, it gets attached to the following symbol if the character
that followsitisan id_chr2, as defined in the previous rules.

. If it appears other than as the first character on the line, or if the resulting
symbol would make a defined symbol, the period gets appended to the start of
the symbol following it.

MASM mode expression grammar

Expression parsing starts at MASM_expr .

MASM_expr ::=
mexpr 1

mexprl::=

SHORT mexprl

.TYPE mexprl

SVIALL mexprl ;If 386
LARGE mexprl ;If 386
expr2

expr2::=

expr3 OR expr3 ...
expr3 XOR expr3 ...
expr3

236 Paradigm Assembler User's Guide

expr3::=
expr4 AND expr4
expr4

expré .=
NOT expr4
exprs

exprs:i=

expré EQ expr6 ...
expr6 NE expr6 ...
expré LT expr6 ...
expré LE expr6 ...
expré GT expr6 ...
expré GE expr6 ...
exproé

exproé ::=
expr7 +exprv ...
expr7 -exprv ...
expr’

exprv7::=

mexpr10 * mexpr10 ...
mexpr10 / mexpr10 ...
mexpr10 MOD mexpr 10 ...
mexpr10 SHR mexpr10 ...
mexpr10 SHL mexpr10 ...
mexpr10

expr8::=
+ expr8

- expr8
expr12

exprl0::=
OFFSET pointer
SEG pointer

S ZE symbol
LENGTH symbol
WIDTH symbol
MASK symbol
THISitype
symbol

(pointer)
[pointer]

mexpr10 ::=
mexprll PTR mexpr10
mexprl1l

TYPE mexpr10
HIGH mexpr10
LOWmexpr 10
OFFSET mexpr10
SEG mexpr10
THIS mexpr10

Appendix B, Syntax summary 237

mexprll::=
expr8: exprs ...

mexpril2::=

mexpr13 [mexprl13 ... ;Implied addition if bracket
mexpr13 (mexprl3 ... ;Implied addition if parenthesis
mexprl13"." mexprl10

mexprl3::=
LENGTH symbol
S ZE symbol
WIDTH symbol
MASK symbol
(mexpr1)
[mexpri]

expr10

Ideal mode expression grammar

Expression parsing starts at ideal _expr.

ideal_expr ::=
pointer

itype::=
UNKNOWN
BYTE
WORD
DWORD
PWORD
FWORD
QWORD
TBYTE
SHORT
NEAR

FAR

PROC
DATAPTR
CODEPTR
structure_name
table name
enum_namer
record name
TYPE pointer

pointer ::=

SMALL pointer ;If 386
LARGE pointer ;If 386
itype PTR pointer

itype LOW pointer

itype HIGH pointer

itype pointer

pointer2

238 Paradigm Assembler User's Guide

pointer2::=
pointer3 . symbol ...
pointer3

pointer3:.=
expr : pointer3
expr

expr ;=
SYMTYPE expr
expr2

expr2::=

expr3 OR expr3 ...
expr3 XOR expr3 ...
expr3

expr3::=
exprd AND expr4 ...
expr4

expré ::=
NOT expr4
exprs

expr5::=

expré EQ expr6 ...
expr6 NE expr6 ...
expré LT expr6 ...
expré LE expr6 ...
expré GT expr6 ...
expré GE expr6 ...
exproé

expré::=
expr7 +exprv ...
expr7 -exprv ...
expr’

exprv7 .=

expr8 * expr§ ...
expr8/ expr8 ...
expr8 MOD exvr8 ...
expr8 SHR expr8 ...
expr8 SHL expr8 ...
expr8

expr8::=
+ expr8

- expr8
expr9

expr9 ::=

HIGH expr9
LOW expr9
exprl1O
exprl0::=
OFFSET pointer

Appendix B, Syntax summary 239

SEG pointer

S ZE symbol
LENGTH symbol
WIDTH symbol
MASK symbol
THISitype
symbol

(pointer)
[pointer]

Keyword precedence

It's important to understand how Paradigm Assembler parses source lines so that you
can avoid writing code that produces unexpected results. For example, examine the
following program fragment:

NAVE SEGVENT

If you had written this line hoping to open a segment called NAME, you would be
disappointed. Paradigm Assembler recognizes the NAME directive before the
SEGMENT directive, thus naming your code SEGMENT.

In general, Paradigm Assembler determines the meaning of aline based on the first two
symbols on the fine. The left-most symbol isin the first position, while the symbol to its
right isin the second position.

Ideal mode precedence

240

The following precedence rules for parsing lines apply to Ideal mode:

1. All keywords in the first position of the line have the highest priority (priority 1)
and are checked first.

2. The keywords in the second position have priority 2 and are checked second.

MASM mode precedence

The precedence rulesfor parsing linesin MASM mode are much more complicated
than in Ideal mode. There are three levels of priority instead of two, as follows:

1. The highest priority (priority 1) is assigned to certain keywords found in the first

position, such as NAME or % OUT.

2. The next highest priority (priority 2) belongsto all symbols found in the second

position.

3. All other keywords found in first position have the lowest priority (priority 3).
Paradigm Assembler treats priority 1 keywords like priority 3 keywords inside structure
definitions. In this case, priority 2 keywords have the highest priority.

For example, in the code fragment
NAVE SEGVENT
NAME isapriority 1 keyword, while SEGMENT isapriority 2 keyword. Therefore,

Paradigm Assembler will interpret thisline asa NAME directive rather than a
SEGMENT directive. In another example,

MOV | NSTR, 1

Paradigm Assembler User's Guide

Keywords and predefined symbols

MOV isapriority 3 keyword, while INSTR isa priority 2 keyword. Thus, Paradigm
Assembler interpretsthisline asan INSTR directive, not a MOV instruction (which
you might have wanted).

TableB-1
Paradigm
Assembler v1.0
(VERSION
T100) keywords

This section contains a complete listing of all Paradigm Assembler keywords.

The values in parentheses next to keywords indicate the priority of the keyword (1 or 2)
in MASM mode. Keywords are labeled with a priority only if they have priority 1 or 2.
All others are assumed to be priority 3. Paradigm Assembler recognizes the keyword
only if it finds them. In MASM mode, priority 1 or 3 keywords always are located in
the first position, while priority 2 keywords occur in the second position.

An M next to a keyword indicates that you can use a keyword only in MASM mode,
and an | indicates a keyword that is available only in Ideal mode. If thereis no letter, the
keyword works in either mode. A number next to the keyword indicates its priority.

Directive keywords

The following list contains all Paradigm Assembler directive keywords. The keywords
are grouped by the version of Paradigm Assembler in which they were introduced.

These keywords were introduced in Paradigm Assembler 1.0.

% (1)
186 (M)
286 (M)
.286¢ (M)
.286p (M)
386 (M)
.386¢ (M)
.386p (M)
387 (M)
.8086 (M)
.8087 (M)
1 (2)

=(2
AAA
AAD
AAM
AAS
ADC
ADD
ALIGN

CMPSD
.CODE (M)
CODESEG
COMM (1)
COMMENT ()
%CONDS
CONST
.CONST (M)
%CREF
.CREF (M)
%CREFALL
%CREFREF
%CREFUREF
%CTLS

CWD

CWDE

DAA

DAS

DATA (M)
DATA? (M)

ALPHA (M) DATASEG

Appendix B, Syntax summary

EMUL

END

ENDIF (1)
ENDM

ENDP (2)

ENDS (2)
ENTER

EQU (2)

ERR (1)(M)
ERR

ERR1 (1)(M)
ERR2 (1)(M)
ERRB (1)(M)
ERRDEF (1)(M)
ERRDIF (1)(M)
ERRDIFI (1)(M)
ERRE (1)(M)
ERRIDN (1)(M)
ERRIDNI (1)(M)
ERRIF

ERRIF1

FBLD
FBSTP
FCHS
FCLEX
FCOM
FCOMP
FCOMPP
FDECSTP
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FENI
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD

241

242

continued

TableB-1 AND

ARG
ARPL
ASSUME
%BIN
BOUND
BSF

BSR

BT

BTC

BTR

BTS
CALL
CATSTR (2)
CBW
CDQ

CLC

CLD

CLI

CLTS
CMC
CMP
CMPBW
CMPS
CMPSB
FNSTCW
FNSTENV
FNSTSW
FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSORT

DB (2)

DD (2)

DEC

%DEPTH

DF (2)
DISPLAY

DIV

DOSSEG

DP (2)

DQ (2)

DT (2)

DW (2)

ELSE (1)
ELSEIF (1)
ELSEIF1 (1)
ELSEIF2 (1)
ELSEIFB (1)
EL SEIFDEF (1)
ELSEIFDIF (1)
ELSEIFDIFI (1)
ELSEIFE (1)
ELSEIFDN (1)
ELSEIFDNI (1)
ELSEIFNB (1)
EL SEIFNDEF (1)
IFIDN (1)
IFIDNI (1)
IFNB (1)
IFNDEF (1)
|IJECXZ

IMUL

IN

INC

%INCL
INCLUDE (1)
INCLUDELIB (1)

ERRIF2
ERRIFB
ERRIFDEF
ERRIFDIF
ERRIFDIFI
ERRIFE
ERRIFIDN
ERRIFIDNI
ERRIFNB
ERRIFNDEF
ERRNB (1)(M)
ERRNDEF (1)(M)
ERRNZ (1)(M)
ESC

EVEN
EVENDATA
EXITM

EXTRN (1)
F2XM1

FABS

FADD

FADDP
FARDATA
FARDATA (M)
FARDATA? (M)
P

JPE

JPO

JS

JUMP

JUMPS

Jz

LABEL (2)
LAHF

LALL (M)
LAR

Paradigm Assembler User's Guide

FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FISBR
FLD

FLD!
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
LTR
%MACS
MACRO (2)
MASM
MODEL
MODEL (M)
MOV
MOVMOVS
MOVSB
MOVSD
MOV SW

Table B-1
continued

FST
FSTCW
FSTENV
FSTP
FSTSW
FSUB
FSUBP
FSUBR
FSUBRP
FTST
FWAIT
FXAM
FXCH
FXTRACT
FYL2X
FYL2xP1
FSETPM
FPCOS
FPREM1
FPSIN
FPSINCOS
FUCOM
FUCOMP
FUCOMPP
GLOBAL (1)
GROUP (2)
HLT
IDEAL
IDIV

IF (1)

IF1 (1)

IF2 (1)

IFb (1)
IFDEF (1)
IFDIF (1)
IFDIFI (1)

INS
INSB
INSD
INSTR (2)
INSW
INT
INTO
IRET
IRETD
IRP (1)
IRPC (1)
JA
JAE
JB
JBE
Jc
JCXZ
JE

JG
JGE
AL
LE
INA
INAE
INB
INBE
INC
INE
ING
INGE
INL
INLE
INO
INP
NS
INZ

Appendix B, Syntax summary

LDS

LEA
LEAVE
LES
LFCOND (M)
LFS
LGDT
LGS
LIDT
%LINUM
%LIST
LIST (M)
LLDT
LMSW
LOCAL
LOCALS
LOCK
LODS
LODSB
LODSD
LODSW
LOOP
LOOPD
LOOPDE
LOOPDNE
LOOPDNZ
LOOPDZ
LOOPE
LOOPNE
LOOPNZ
LOOPW
LOOPWE
LOOPWNE
LOOPWNZ
LOOPWZ
LOOPZ

MOV SX
MOVZX
MUL
MULTERRS
NAME (1)
NEG
%NEWPAGE
%NOCONDS
%NOCREF
%NOCTLS
NOEMUL
9%NOINCL
NOJUMPS
%NOLIST
NOLOCALS
NOMASM51
%NOMACS
NOMULTERRS
NOP
NOSMART
%NOSYMS
NOT
%NOTRUNC
NOWARN
OR

ORG

ouT

%O0UT (1)
oUTS
OUTSB
OUTSD
OUTSW
P186

P286

P286N

P287

243

244

Table B-1
continued

IFE (1) Jo

P336N REPT (1)
P387 REP
P3086 REPE
P8087 REPNE
PAGE REPNZ

%PAGESIZE REPZ
%PCNT RET

PNO87 RETF
POP RETN
POPA ROL
POPAD ROR
POPFD SAHF

%POPLCTL SAL

PPF SALL (M)

PROC(2) SAR
PUSH SBB
PUSHA SCAS
PUSHAD SCASB
PUSHF SCASD
PUSHFD SCASW

%PUSHLCTL SEGMENT (2)
PUBLIC (1) .SEQ(M)

PURGE SETA
%PAGESIZE SETAE
%PCNT SETB
PNO87 SETBE
%POPLCTL SETC
PROC(2) SETE
%PUSHLCTLSETG
PUBLIC (1) SETGE
PURGE SETL
QUIRKS SETLE
RADIX SETNA

RADIX (M) SETNAE

RCL SETNB

LSLLSS P386
SETNE STR
SETNG STRUC (2)
SETNGE SuB

SETNL SUBSTR (2)
SETNLE SUBTTL (1)
SETNO %SUBTTL
SETNP %SYMS
SETNS %TABSIZE
SETNZ TEST
SETO %TEXT
SETP .TFCOND (M)
SETPE TITLE (1)
SETPO %TITLE
SETS %TRUNC
SETZ UDATASEG
.SFCOND (M) UFARDATA
SGDT UNION (2)
SHL USES
SHLD VERR

SHR VERW
SHRD WAIT

SIDT WARN
SIZESTR (2) XALL (M)
SLDT XCHG
SMART XCREF (M)
SMSW XLAT

SOR XLATB
STACK XLIST (M)
STACK (M) USECS
STARTUP (M) USEDS
STC USEES
STD USEFS

STI USEGS
STOS USESS
STOSB

Paradigm Assembler User's Guide

Table B-1
continued

TableB-2
Paradigm
Assembler v2.0
(VERSION
T200) new
keywords

Table B-3
Paradigm
Assembler v2.5
(VERSION
T250) new
keywords

Table B-4
Paradigm
Assembler v3.0
(VERSION
P300) new
keywords

Table B-5
Paradigm
Assembler v3.1
(VERSION
T310) new
keywords

Table B-6
Paradigm
Assembler v3.2
(VERSION
T320) new
keywords

Appendix B, Syntax summary

STOSD
STOSW

RCR SETNBE
RECORD (2) SETNC

Paradigm Assembler version 2.0 supports all version 1.0 keywords, with the following
additions:

BSWAP PA86 STARTUPCODE
CMPXCHG PAB6N WBINVD

INVD PA87 PUBLICDLL (1)
XADD INVLPG RETCODE

Paradigm Assembler version 2.5 supports all version 2.0 keywords, plus the following
keyword additions:

ENTERD
ENTERW

LEAVED
LEAVEW

Paradigm Assembler version 3.0 supports keywords from all previous versions, with the
following additions:

CLRFLAG GOTO (1) TBLINIT

ENUM (2) LARGESTACK TBLINST

EXITCODE SETFIELD TYPEDEF

FASTIMUL SETFLAG TBLINIT

FLIPFLAG SMALLSTACK TBLINST

GETFIELD TABLE (2) VERSION
WHILE (1)

Paradigm Assembler version 3.1 supports keywords from all previous versions, with the
following additions:

PUSHSTATE POPSTATE

Paradigm Assembler version 3.2 supports keywords from all previous versions, with the
following additions:

IRETW POPFW PROCTY PE (2)
POPAW PROCDESC (2) PUSHAW
PUSHFW

245

Table B-7

Paradigm

Assembler v4.0
(VERSION
T400) new

keywords

TableB-8

Paradigm

Assembler v5.0
(VERSION
T500) new

Su

246

keywords

TableB-9
Options
pported by
OPTION

Paradigm Assembler version 4.0 supports keywords from all previous versions, with the

following additions:
ALIAS
CMPXCHGS8B
CPUID

P586

P586N
P587
RDMSR
RDTSC

RSM
WRMSR

Paradigm Assembler version 5.0 supports keywords from all previous versions, with the

following additions:

BREAK
.ELSEIF

F
.LISTMACRO
.NOLISTIF
{UNTIL
CARRY?
EXTERN
FAR32
NEAR16
OVERFLOW?
PROTO
REAL4
SBYTE
STRUCT
ZERQO?

.CONTINUE
.ENDIF
LISTALL
LISTMACROALL
.NOLISTMACRO
UNTILCXZ
ECHO
EXTERNDEF
FOR

NEARS32
PARITY?
PUBLIC

REALS
SDWORD
SUBTITLE

.ELSE
.ENDW
LISTIF
.NOLIST
.REPEAT
WHILE
EXPORT
FAR16
FORC
OPTION
PRIVATE
REAL10
REPEAT
SIGN?
SWORD

The following options are supported with the OPTION keyword:

CASEMAP
EMULATOR
EXPR16

LIMP

NOM510
OFFSET
OLDSTRUCTS
PROLOGUE
SCOPED
SETIF2

DOTNAME
NOEMULATOR
EXPR32

NOLIMP
NOKEYWORD
OLDMACROS
NOOLDSTRUCTS
READONLY
NOSCOPED

NODOTNAME
EPILOGUE
LANGUAGE
M510
NOSIGNEXTEND
NOOLDMACROS
PROC
NOREADONLY
SEGMENT

Paradigm Assembler User's Guide

Appendix

C
MASM 6.1 compatibility

Paradigm Assembler supports most of the features of Microsoft MASM version 6.1.
This Appendix documents the new features added to Paradigm Assembler specifically
to provide compatibility with MASM 6.0/6.1

Basic data types

Paradigm Assembler now supports the use of type names as directives when defining
variables. For example, the line:

var, DB 10

can now be written as:
var BYTE 10

Table C.1 shows the type names and their equivalent directives.

TableC-1 Type Equivalent directive
Paradigm
Assembler types BYTE DB
an.d their DWORD DD
equivalent
directives FWORD DF
QWORD DQ
TBYTE DT
WORD DW

Signed types

Table C.2 list the specifications of the new signed integer types.

~ TableC-2 Type Bytes Value range
Signed integer
data types SBYTE 1 -128to+127
SWORD 2 -32,768 t0 +32,767
SDWORD 4 -2,147,483,648 to +2,147,483,647
Floating-point types
Table C.3 lists the specifications for the new floating point types.
TableC-3 Type Description Bits Significant digits Approximate range
Floating-point
data types REAL4 Short real 32 6-7 1.18x 10%¥103.40 x 10°®
REALS Long real 64 15-16 2.23x10%® t0 1.79 x 10%®
REAL10 10-bytered 80 19 3.37x 10%%2t0 1.18 X102

Appendix C, MASM 6.1 compatibility 247

Floating point constants can be designated as decimal constants or encoded
hexadecimal constants, as shown in the following examples:

: Real decimal nunbers

dshort REAL4 34.56 ; | EEE f or mat

ddoubl e REALS 3. 456E1 ; | EEE f or mat

dt enbyt e REAL10 3456. OE- 2 ; 10-byte real format
; Hexadeci mal s, note the required trailing "r", and | eadi ng deci nal
;digit

hexshort REAL4 4E700000r ; | EEE short

hexdoubl e REALS8 4E70000000000000r ; | EEE | ong

hext enbyt e REAL10 4E776000000000000000r ; 10-byte real

New decision and looping directives

Paradigm Assembler now supports several high level directivesto permit program
structures similar to those in higher level languages, such as C++ and Object Pascal.
These directives generate code for loops and decisions, which are executed depending
on the status of a conditional statement. The conditions are tested at run-time, and can
use the new run-time operators = =, I=, >=, <=, > <, &&, ||, and !.

IF .ELSE. ELSEIF .ENDIF

Thedirectives .IF, .EL SE, .ENDIF generate conditional jumps. If the expression
following .1 F evaluates to true, then the statements following the .| F are executed until
an .EL SE (if any), .EL SEIF (if any), or .ENDIF directive is encountered. If the .IF
expression evaluates to false, the statements following the .EL SE (if any) are executed
until an .ENDIF directive is encountered. Use .EL SEIF to cause a secondary
expression to be evaluated if the .| F expression evaluates to fal se.

The syntax for the .1 F directivesis:

IF expressionl
statements

[.EL SEIF expression2
statements]

[.ELSE

statements]

.ENDIF

Example
.IF bx == 16 ;if the value in bx equals 16
nmov ax, 20
. ELSE ;if the value in bx does not equal 16
nmov ax, 30
. ENDI F

WHILE .ENDW

The WHILE directive executes the statements between the WHILE and the . ENDW
aslong as the expression following .WHILE evaluatesto true, or until a.BREAK
directive is encountered. Because the expression is evaluated at the beginning of the
loop, the statements within the loop will not execute at all if the expression initially
evaluatesto false. If a.CONTINUE directive is encountered within the body of the
loop, control is passed immediately back to the WHIL E where the expression isre-

248 Paradigm Assembler User's Guide

evaluated. If .BREAK isencountered, control isimmediately passed to the statement
following the .ENDW directive.

The syntax for the WHILE directivesis:
WHILE expression

statements

.ENDW

Example
mov ax, O ;initialize ax to 0
.WH LE ax < 128 ;while ax is less than 128
mov dx, cX ;put the value of c¢cx in dx
I F dx == bx ;i f dx and bx are equa
mov ax, dx ;put the value of dx in ax
. CONTI NUE ;re-evaluate . WH LE expression
.ELSEI F ax == dx ;i f ax equal s dx
. BREAK ;break out of the .WH LE | oop
. ENDI F
inc ax ;increment ax by 1
. ENDW ;end of .VH LE | oop

.REPEAT .UNTIL. UNTILCXZ

The .REPEAT directive executes the statements between the . REPEAT and the
UNTIL aslong as the expression following the .UNTIL (or .UNTILCXZ) evaluates
totrue, or until a.BREAK directive is encountered. Because the expression is
evaluated at the end of the loop, the statements within the loop will execute at least
once, even if the expression initially evaluatesto false. If a .CONTINUE directiveis
encountered within the body of the loop, control is passed immediately to the UNTIL
where the expression is re-evaluated. If .BREAK isencountered, control isimmediately
passed to the statement following the .UNTIL (or .UNTILCXZ) directive. The
UNTIL directive generates conditional jumps. The .UNTILCXZ directive generates a
L OOP ingtruction.

The syntax for the .REPEAT directivesis:

.REPEAT
statements
UNTIL expression

Example
mov ax, O ;initialize ax to 0
. REPEAT ;while ax is less than 128
i nc ax ;increment ax by 1
.UNTIL ax >= 128 ;end of . REPEAT | oop

.BREAK .CONTINUE

Asnoted above, .BREAK and .CONTINUE can be used to alter the program flow
within aloop. .CONTINUE causes the loop to immediately re-evaluate its expression,
bypassing any remaining statements in the loop. .BREAK terminates the loop and
passes control to the statement following the end of the loop.

Both .BREAK and .CONTINUE can be combined with an optional .IF directive. If the
IF expression evaluatesto true, the . BREAK or .CONTINUE are carried out,
otherwise they are ignored.

Appendix C, MASM 6.1 compatibility 249

Example
mov ax, bx
.WH LE ax != cx
.BREAK .| F ax == dx
.CONTINUE .IF ax > dx
inc ax
. ENDW

Logical operators

Paradigm Assembler now supports several C-like logical operators, as shownin

Table C.4.

TableC-4 Qperator Meaning

New Paradigm
Assembler == isequal to
logical operators 1= isnot equal to

>= isgreater than or equal to
<= islessthan or equal to
> isgreater than
< islessthan
&& and
1 or
! not
& bit test

Using flags in conditions

Paradigm Assembler permits the use flag value in conditions. The supported flag names
are ZERO?, CARRY?, OVERFLOW?, SIGN?, and PARITY ?. For example, to use
the value of the CARRY flag in aloop expression, use:

. VWH LE (CARRY?) ; if the CARRY flag is set...

statenents
. ENDW

Text macros

A string of characters can be given a symbolic name, and have that name used in the
source code rather than the string itself. The named text is referred to as a text macro.
Use the TEXTEQU directive to define a text macro.

To assign aliteral string to atext macro, enclose the string in angle brackets (< >). For
example:

myString TEXTEQU <This is ny string>

To assign one macro to another text macro, assign the macro name as in the example

below:
myString TEXTEQU <This is ny string>
myNewSt ri ng TEXTEQU nyString ;value of nyString now in

; MyNewSt ring as wel |

To assign atext representation of a constant expression to a text macro, precede the
expression with a percent sign (%). For example:

250 Paradigm Assembler User's Guide

val ue TEXTEQU %41 + num ;assigns text representation of resol ved
; expression to val ue

Text macros are useful for naming strings of text that do not evaluate to integers. For

example:
pi TEXTEQU <3. 14159> ;floating point constant
WPT TEXTEQU <WORD PTR> ; keywor ds
arg TEXTEQU <[bp+4] > ; expressi on

Macro repeat blocks with loop directives

Paradigm Assembler supports "repeat blocks®, or unnamed macros within aloop
directive. The loop directive generates the statements inside the repeat block a specified
number of times.

REPEAT loops

Use REPEAT to specify the number of times to generate the statements inside the
macro. The syntax is:

REPEAT constant

statements
ENDM
Example
nunber LABEL BYTE ;name the generated data
counter = 0 ;initialize counter
REPEAT 128 ;repeat 128 tines
BYTE count er ;all ocat ed new nunber
counter = counter + 1 ;increnent counter
ENDM
FOR loops

Use the FOR loop to iterate through alist of arguments, using the first argument the
first time through, the second argument the second time through, and so on. The syntax
Is:

FOR parameter, <argumentList>

statements

ENDM

The parameter represents the name of each argument inside the FOR block. The
argumentList is comma separated and enclosed in angle brackets.

Example
power s LABEL BYTE,
FOR arg, <1,2,4,8,16, 32,64, 128>
BYTE arg DUP (arg)
ENDM

The first iteration through the FOR loop setsarg to 1. The second iteration setsarg to
2. Thethird setsarg to 4, and so on.

Text macros may be used in place of literal strings of values. The VARARG directive
can be used in the argumentList to create a variable number of arguments.

Appendix C, MASM 6.1 compatibility 251

FORC loops

FORC loops are aimost identical to FOR loops, except that the argumentList isgiven a
string, rather than as a comma separated list. The loop reads the string, character by
character (including spaces), and uses one character per iteration. The syntax is:

FORC parameter, <text>
statements
ENDM

The parameter represents the name of each argument inside the FOR block. Thetext is
a character string and enclosed in angle brackets.

Example
al phabet LABEL BYTE
FORC arg, <ABCDEFCHI JKLMNOPQRSTUVWKYZ>
BYTE ' &ar g’ ;allocate letter
ENDM

New directives

252

For MASM compatibility, Paradigm Assembler now supports the directive STRUCT,
EXTERN, and PROTO. These directives are synonyms for the STRUC, EXTRN, and
PROCDESC directives, respectively.

ECHO directive

The ECHO directive displays its argument to the standard output device during
assembly. It is useful for debugging purposes. The syntax is:

ECHO argument

EXTERNDEF directive

Paradigm Assembler treats EXTERNDEF as a PUBL | C declaration in the defining
module, and as an external declaration in the referencing module(s). Use
EXTERNDEF to make a variable or procedure common to two or more modules. If an
EXTERNDEF variable or procedure is defined but not referenced in a given module,
the EXTERNDEF isignored; you need not create a symbol as you would using
EXTERN. The syntax of the EXTERNDEF statement is:

EXTERNDEF [langType] name : type

OPTION directive

The OPTION directive lets you make global changes to the behavior of the assembler.
The basic syntax, of the directiveis:

OPTION argument

For example, to make the expression word size 16 bits, use the statement:
OPTI ON EXPR16

To make the expression word size 32 bits, use the statement:
OPTI ON EXPR32

The available options are listed below:

Paradigm Assembler User's Guide

CASEMAP: NONE/NOTPUBLIC/ALL

NONE causes internal symbol recognition to be case sensitive, and causes the case of
identifiersin the .OBJfile to be the same as specified in the EXTERNDEF, PUBLIC,
or COMM statement.

NOTPUBLIC (default) causes case insensitivity for internal symbol recognition, and
has the same behavior as NONE for identifiersin .OBJ files.

ALL specifies universal case insensitivity and converts al identifiers to uppercase.

DOTNAME/NODOTNAME

Enables or disables the use of the dot (.) as the leading character in variable, macro,
structure, union, and member names. The default is disabled.

EMULATOR/NOEMULATOR
NOEMULATOR (default) tells the assembler to generate floating point math
coprocessor instructions directly.

EMULATOR generates floating point math instructions with special fixups for linking
with a coprocessor emulator library.

EXPR16/EXPR32
Sets the expression word size to 16 or 32 bits. The default is 32 bits.

LIMP/NOLIJMP
Enables or disables automatic conditional-jump lengthening. The default is enabled.

NOKEYWORD: <keywordList>
Disables the keywords listed in keywordList. For example:

OPTI ON NOKEYWORD: <MASK EXPORT NAME>

PROC: PRIVATE/PUBLIC/EXPORT

Allows you to set the default PROC visibility as PRIVATE, PUBLIC, or EXPORT.
The default isPUBLIC.

SCOPED/NOSCOPED
SCOPED (the default) guarantees that all labels inside procedures are local to the
procedure.

SEGMENT: USE16/USE32/FLAT

Sets the global default segment size and the default address size for external symbols
defined outside any segment.

Visibility in procedure declarations

Paradigm Assembler supports three visibility modes in procedure (PROC) declarations;
PRIVATE, PUBLIC, and EXPORT. The visibility indicates whether the procedureis
available to other modules. PUBL I C procedures are available to other modules, All
procedures are PUBL I C by default. PRIVATE procedures are available only within
that module in which they are declared. Code in other modules cannot call PRIVATE

Appendix C, MASM 6.1 compatibility 253

procedures. If the visibility is EXPORT, the linker places the procedure's name in the
export table for segmented executables. EXPORT also enables PUBL I C visibility.

Distance in procedure declarations

In addition to the ability to specify NEAR or FAR distance in procedure (PROC)
declarations, Paradigm Assembler now supports the modifiers NEAR16, NEAR32,
FAR16. It supports FAR32 when programming for the 80386, and up, and using both
16 and 32-bit segments.

SIZE operator in MASM mode

In MASM mode the size operator returns the valuesin Table C.5 for the given labels.

TableC-5 | ABEL SIZE
Return value of
SIZE in MASM SHORT OFFO01h
mode \EAR16 OFFO2h
NEAR32 OFF04h
FAR16 OFFO05h
FAR32 OFFO06h

Compatibility issues

Paradigm Assembler in MASM mode is very compatible with MASM version 6.1.
However, 100% compatibility is an ideal that can only be approached, since thereisno
formal specification for the language and different versions of MASM are not even
compatible with each other.

For most programs, you will have no problem using Paradigm Assembler as a direct
replacement for MASM. Occasionally, Paradigm Assembler will issue warnings or
errorswhere MASM would not, winch usually means that MASM has not detected an
erroneous statement. For example, MASM accepts

abc EQU [BP+2]
PUBLI C abc

and generates a nonsense object file. Paradigm Assembler correctly detects this and
many other questionable constructs.

If you are having trouble assembling a program with Paradigm Assembler, you might
try using the QUIRK S directive (which enables potentially troublesome features of
MASM). For example,

PASM / JQUI RKS MYFI LE
might make your program assemble properly. If it does, add QUIRK S to the top of
your source file. Even better, review Chapter 3 and determine which statement in your

source file needs the QUIRK S directive. Then you can rewrite the line(s) of code so
that you don't even have to use QUIRKSS.

For maximum compatibility with MASM, you should use the NOSM ART directive
along with QUIRK S mode.

254 Paradigm Assembler User's Guide

One-pass versus two-pass assembly

Normally, Paradigm Assembler performs only one pass when assembling code, while
MASM performs two. This feature gives Paradigm Assembler a speed advantage, but
can introduce minor incompatibilities when forward references and pass-dependent
constructions are involved. The command-line option /m specifies the number of passes
desired. For maximum compatibility with MASM, two passes (/m2) should be used.
(See Chapter 2 for a complete discussion of this option.) The /m2 command-line switch
will generate a MA SM-style compatibility when the following constructs are present:

. IF1and IF2 directives

. ERR1and ERR2 directives

. ESLEIF1 and ELSEIF2 directives

. Forward referenceswith IFDEF or IFNDEF

. Forward references with the .TY PE operator

. Recursively defined numbers, sudi as NVMBR=NVBR+1

. Forward-referenced or recursively defined text macros, such as
LNAVE CATSTR LNAME, <1>

. Forward-referenced macros

Environment variables

Paradigm Assembler doesn't use environment variables to control default options.
However, you can place default optionsin a configuration file and then set up different
configuration files for different projects.

If you use INCLUDE or MASM environment variables to configure MASM, you'll
have to make a configuration file for Paradigm Assembler. Any options that you have
specified using the M ASM variable can simply be placed in the configuration file. Any
directories that you have specified using the INCL UDE variable should be placed in
the configuration file using the /I command-line option.

Microsoft binary floating-point format

By default, older versions of MASM generated floating-point numbers in a format
incompatible with the |EEE standard floating-point format. MASM version 6.1
generates | EEE floating-point data by default and has the .M SFLOAT directive to
specify that the older format be used.

Paradigm Assembler does not support the old floating-point format, and therefore does
not let you use .M SFLOAT.

Appendix C, MASM 6.1 compatibility 255

256 Paradigm Assembler User's Guide

Appendix

D

Predefined symbols

All the predefined symbols can be used in both MASM and Ideal mode.
$

Current location counter within the current segment

@code

Alias equate for .CODE segment name

@CodeSize

Numeric equate that indicates code memory model. (O=near, 1=far)

@Cpu

Numeric equate that returns information about current processor directive

@curseg

Alias equate for current segment

@data

Alias equate for near data group name

@DataSize

Numeric equate that indicates the data memory model (O=near, 1=far,2=huge)

??date

String equate for today's date

@fardata

Alias equate for initialized far data segment name

@fardata?
Alias equate for uninitialized far data segment name

@FileName

Alias equate for current assembly filename

Appendix D, Predefined symbols 257

??filename

String equate for current assembly filename

@Model

Numeric equate representing the model currently in effect.

@Startup

Label that marks the beginning of startup code.

??time

String equate for the current time

??version

Numeric equate for current Paradigm Assembler version number

@WordSize

Numeric equate that indicates 16- or 32-bit segments (2=16-bit,4=32-bit)

@@Object

Text macro containing the name of the current object.

@Table_<objectname>

Data type containing the object's method table.

@@TableAddr_<objectname>

Label describing the address of the instance of the object's virtual method table.

@@32Bit

Numeric equate indicating whether segments in the current model are declared as 16 bit
or 32-hit.

@@Interface

Numeric equate indicating the language and operating system selected by MODEL.

258 Paradigm Assembler User's Guide

Appendix

E

Operators

All the predefined symbols can be used in both MASM and Ideal mode.
Ideal mode operator precedence

The following table lists the operatorsin order of priority (highest isfirst, lowest is
last).

« (,[1, LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH
. HIGH, LOW

. +, - (unary)

. *,/,MOD, SHL, SHR

. +,-(binary)

. EQ,GE,GT,LE,LT,NE

. NOT

. AND

. OR, XOR

« (segment override)

« . (structure member selector)

. HIGH (before pointer), LARGE, LOW (before pointer), PTR, SHORT, SMALL,
SYMTYPE

MASM mode operator precedence

« (,[1, LENGTH, MASK, SIZE, WIDTH
« . (structure member selector)

. HIGH, LOW

.+, - (unary)

« (segment override)

. OFFSET, PTR, SEG, THIS, TYPE
. *,/,MOD, SHL, SHR

. +,-(binary)

. EQ,GE,GT,LE,LT,NE

. NOT

. AND

. OR,XOR

. LARGE, SHORT, SMALL, .TYPE

Operators

The following are Paradigm Assembler expressions.

Appendix E, Operators 259

260

() Ideal, MASM

(expression)
Marks expression for priority evaluation.

* Ideal, MASM

expressionl * expression2
Multiplies two integer expressions. Also used with 80386 addressing modes where one
expression is aregister.

+ (binary) Ideal, MASM

expressionl + expression2
Adds two integer expressions.

+ (unary) Ideal, MASM

+ expression
Indicates that expression is positive.

- (binary) Ideal, MASM

expressionl - expression2
Subtracts two expressions.

- (unary) Ideal, MASM

- expression
Changesthe sign of expression.

Ideal, MASM
memptr.fieldname
Selects a structure member.
/ Ideal, MASM
expressionl / expression2
Divides two integer expressions.

Ideal, MASM
segorgroup : expression
Generates segment or group override.
? Ideal, MASM

Dx ?
Initializes with indeterminate data (where Dx is DB, DD, DF, DP, DQ, DT, or DW).

Paradigm Assembler User's Guide

[] Ideal, MASM

expressionl[expression?)

[expressionl][expression2]

MASM mode: The [] operator can be used to specify addition or register indirect
memory operands. | deal mode: The [] operator specifies amemory reference.

AND ldeal, MASM

expressionl AND expression2
Performs a bit-by-bit logical AND of two expressions.

BYTE Ideal

BY TE expression
Forces address expression to be byte size.

BYTE PTR Ideal, MASM
BYTE PTR expression

Forces address expression to be byte size.

CODEPTR Ideal, MASM
CODEPTR expression

Returns the default procedure address size.

DATAPTR Ideal

DATAPTR expression
Forces address expression to model-dependent size.

DUP Ideal, MASM

count DUP (expression [,expression]...)
Repeats a data all ocation operation count times.

DWORD Ideal

DWORD expression
Forces address expression to be doubleword size.

DWORD PTR Ideal, MASM

DWORD PTR expression
Forces address expression to be doubleword size.

FAR Ideal

FAR expression
Forces an address expression to be afar code pointer.

Appendix E, Operators 261

262

FAR PTR Ideal, MASM

FAR PTR expression
Forces an address expression to be afar code pointer.

FWORD Ideal

FWORD expression
Forces address expression to be 32-bit far pointer size.

FWORD PTR Ideal, MASM

FWORD PTR expression
Forces address expression to be 32-bit far pointer size.

EQ Ideal, MASM

expressionl EQ expression2
Returnstrue if expressions are equal.

GE Ideal, MASM

expressionl GE expression2
Returns true if first expression is greater than or equal to the second expression.

GT Ideal, MASM

expressionl GT expression2
Returnstrue if first expression is greater than the second expression.

HIGH Ideal, MASM

HIGH expression
Returns the high part (8 bits or type size) of expression.

HIGH Ideal

type HIGH expression
Returns the high part (8 bits or type size) of expression.

LARGE Ideal, MASM

LARGE expression

Sets expression's offset size to 32 bits. In Ideal mode, this operation islegal only if 386
code generation is enabled.

LE Ideal, MASM

expressionl LE expression2
Returnstrue if first expression is less than or equal to the other.

Paradigm Assembler User's Guide

LENGTH Ideal, MASM

LENGTH name
Returns number of data elements allocated as part of name.

LOW Ideal, MASM

LOW expression
Returns the low part (8 bits or type size) of expression.

LOW Ideal

type LOW expression
Returns the low part (8 bits or type size) of expression.

LT Ideal, MASM

expressionl LT expression2
Returnstrue if one expression is less than the other.

MASK Ideal, MASM

MASK recordfieldname
MASK record

Returns abit mask for arecord field or an entire record.

MOD Ideal, MASM

expressionl MOD expression2
Returns remainder (modulus) from dividing two expressions.

NE Ideal, MASM

expressionl NE expression2
Returns true if expressions are not equal.

NEAR Ideal

NEAR expression
Forces an address expression to be a near code pointer.

NEAR PTR Ideal, MASM

NEAR PTR expression
Forces an address expression to be a near code pointer.

NOT Ideal, MASM

NOT expression
Performs a bit-by-bit complement (invert) of expression.

Appendix E, Operators 263

OFFSET Ideal, MASM

OFFSET expression

Returns the offset of expression within the current segment (or the group that the
segment belongsto, if using simplified segmentation directives or Ideal mode).

OR Ideal, MASM

expressionl OR expression?2
Performs a bit-by-bit logical OR of two expressions.

PROC Ideal

PROC expression
Forces an address expression to be a near or far code pointer.

PROC PTR Ideal, MASM

PROC PTR expression
Forces an address expression to be a near or far code pointer.

PTR Ideal, MASM

type PTR expression
Forces address expression to have type size.

PWORD Ideal

PWORD expression
Forces address expression to be 32-bit far pointer size.

PWORD PTR Ideal, MASM

PWORD PTR expression
Forces address expression to be 32-bit far pointer size.

QWORD Ideal

QWORD expression
Forces address expression to be quadword size.

QWORD PTR Ideal, MASM

QWORD PTR expression
Forces address expression to be quadword size.

RETCODE Ideal, MASM
It isthe equivalent of RETN for models with NEAR code and RETF for models with
FAR code.

264 Paradigm Assembler User's Guide

SEG Ideal, MASM

SEG expression
Returns the segment address of an expression that references memory.

SHL Ideal, MASM

expression SHL count

Shifts the value of expression to the left count bits. A negative count causes the data to
be shifted the opposite way.

SHORT Ideal, MASM

SHORT expression

Forces expression to be a short code pointer (within -128 to +127 bytes of the current
code location).

SHR Ideal, MASM

expression SHR count

Shiftsthe value of expression to the right count bits. A negative count causes the data to
be shifted the opposite way.

SIZE Ideal, MASM

SIZE name
Returns size of data item allocated with name.

In MASM mode, SIZE returns the value of LENGTH name multiplied by TYPE
name. In Ideal mode, Sl ZE returns the byte count within name's DUP.

SMALL Ideal, MASM

SMALL expression

Sets expression’'s offset size to 16 hits. In Ideal mode, this operation islegal only if 386
code generation is enabled.

SYMTYPE Ideal

SYMTY PE <expression>
Returns a byte describing expression.

TBYTE Ideal

TBYTE expression
Forces address expression to be 10-byte size.

TBYTE PTR Ideal, MASM

TBYTE PTR expression
Forces address expression to be 10-byte size.

Appendix E, Operators 265

266

THIS Ideal, MASM

THIS type

Creates an operand whose address is the current segment and location counter. type
describes the size of the operand and whether it refers to code or data.

.TYPE MASM

.TYPE expression
Returns a byte describing the mode and scope of expression.

TYPE Ideal

TY PE namel name2

Appliesthe type of an existing variable or structure member to another variable or
structure member.

TYPE Ideal, MASM

TYPE expression
Returns a number indicating the size or type of expression.

UNKNOWN Ideal

UNKNOWN expression
Removes type information from address expression.

WIDTH Ideal, MASM

WIDTH recordfieldname
WIDTH record

Returns the width in bits of afield in arecord, or of an entire record.

WORD Ideal

WORD expression
Forces address expression to be word size.

WORD PTR Ideal, MASM

WORD PTR expression
Forces address expression to be word size.

XOR Ideal, MASM

expressionl XOR expression2

Performs bit-by-bit logical exclusive OR of two expressions. Unconditional page break
inserted for print formatting.

Macro operators

The following are special macro operators.

Paradigm Assembler User's Guide

& Ideal, MASM

&name
Substitutes actual value of macro parameter name.

<> Ideal, MASM

<text>
Treats text literaly, regardless of any special charactersit might contain.

! Ideal, MASM

Icharacter
Treats character literally, regardless of any special meaning it might otherwise have.

% Ideal, MASM

Obtext

Treats text as an expression, computes its value and replaces text with the result. text
may be either a numeric expression or atext equate.

. Ideal, MASM

;;comment
Suppresses storage of a comment in a macro definition.

Appendix E, Operators 267

268 Paradigm Assembler User's Guide

Appendix

F

Error messages

This chapter describes all the messages that Paradigm Assembler generates. Messages
usually appear on the screen when run from the command line, but you can redirect
them to afile or printer using the standard redirection mechanism of putting the device
or file name on the command line, preceded by the greater than (>) symbol. For
example,

PASM MYFI LE >ERRORS
Paradigm Assembler generates several types of messages:
. Information messages
. Warning messages
. Error messages
. Fatal error messages

Information messages

Paradigm Assembler displays two information messages: one when it starts assembling
your source file(s) and another when it has finished assembling each file. Here's a
sample startup display:
Par adi gm Assenbl er Version 5.0 Copyright © 1999 Paradi gm Systens
Assenbling file: TEST. ASM

When Paradigm Assembler finishes assembling your source file, it displays a message
that summarizes the assembly process; the message looks like this:

Error nessages: None

War ni ng nessages: None

Passes: 1
Remai ni ng menory: 279k

Y ou can suppress al information messages by using the /T command-line option. This
only suppresses the information messages if no errors occur during assembly. If there
are any errors, the /T option has no effect and the normal startup and ending messages

appear.

Warning and error messages

Warning messages let you know that something undesirable may have happened while
assembling a source statement. This might be something such as the Paradigm
Assembler making an assumption that is usualy valid, but might not always be correct.
Y ou should always examine the cause of warning messages to see if the generated code
iswhat you wanted. Warning messages won't stop Paradigm Assembler from generating
an object file. These messages are displayed using the following format:

Warni ng fil ename(line) nmessage

Appendix F, Error messages 269

If the warning occurs while expanding a macro or repeat block, the warning message
contains additional information, naming the macro and the line within it where the
warning occurred:

Warni ng filenanme(line) nmacronane(nacroline) nessage

Error messages, on the other hand, will prohibit Paradigm Assembler from generating
an object file, but assembly will continue to the end of the file. Here's atypical error
message format:

Error filenanme(line) nessage

If the error occurs while expanding a macro or repeat block, the error message contains
additional information, naming the macro and the line within it where the error
occurred:

Error filenane(line) macronane(mnacroline) nessage

Fatal error messages cause Paradigm Assembler to immediately stop assembling your
file. Whatever caused the error prohibited the assembler from being able to continue.

The following list arranges Paradigm Assembler's messages in alphabetical order:

Sample error and warning messages

Hereisalist of errors and warnings produced by Paradigm Assembler:

32-bit segments not allowed without .386
Has been extended to work with the new ability to specify USE32 in the .MODEL
statement and the LARGESTACK command. Formerly was "USE32 not allowed
without .386."

Argument needs type override
The expression needs to have a specific size or type supplied, sinceits size can't be
determined from the context. For example,

mov [bx],1
Y ou can usually correct this error by using the PTR operator to set the size of the
operand:

mov WORD PTR] bx], 1

Argument to operation or instruction has illegal size
An operation was attempted on something that could not support the required operation.

For example,
Q LABEL QMAORD
ONOT = not Q ;can't negate a qword

Arithmetic overflow
A loss of arithmetic precision occurred somewhere in the expression. For example,

X = 20000h * 20000h ;overflows 32 bits
All calculations are performed using 32-bit arithmetic.

270 Paradigm Assembler User's Guide

ASSUME must be segment register
Y ou have used something other than a segment register in an ASSUME statement. For
example,

ASSUME ax: CODE
Y ou can only use segment registers with the ASSUME directive.

Assuming segment is 32 bit
Y ou have started a segment using the SEGMENT directive after having enabled 80386
instructions, but you have not specified whether thisis a 16- or 32-bit segment with
either the USE16 or USE32 keyword.

In this case, Paradigm Assembler presumes that you want a 32-bit segment. Since that
type of code segment won't execute properly under real mode (without you taking
special measures to ensure that the 80386 processor is executing instructions in a 32-bit
segment), the warning is issued as USE32.

Y ou can remove this warning by explicitly specifying USE16 as an argument to the
SEGMENT directive.

Bad keyword in SEGMENT statement
One of the align/combine/use arguments to the SEGMENT directiveisinvalid. For
example,

DATA SEGMVENT PAFA PUBLIC ; PAFA shoul d be PARA

Can't add relative quantities
Y ou have specified an expression that attempts to add together two addresses, which is
ameaningless operation. For example,

ABC DB *?
DEF = ABC + ABC ;error, can't add two relatives
Y ou can subtract two relative addresses, or you can add a constant to arelative address,
asin:
XYz DB 5 DUP (0)
XYZEND EQU $
XYZLEN = SYZEND - XYZ ;perfectly | ega
XYZ2 = XYZ + 2 ;legal al so

Can't address with currently ASSUMEd segment registers
An expression contains a reference to a variable for which you have not specified the
segment register needed to reach it. For example,
DSEG SEGVENT
ASSUME ds: DSEG
nmov si, MPTR ;N0 segnment register to reach XSEG
DSEG ENDS
XSEG SEGVENT
MPTR DW ?
XSEG ENDS

Can’t convert to pointer
Part of the expression could not be converted to a memory pointer, for example, by
using the PTR operator,

mov cl,[BYTE PTR al] ;can't make AL into pointer

Appendix F, Error messages 271

Can't emulate 8087 instruction
The Paradigm Assembler is set to generate emulated floating-point instructions, either
viathe /E command-line option or by using the EM UL directive, but the current
instruction can't be emulated. For example,

EMUL
FNSAVE [WPTR] ;can't enulate this

The following instructions are not supported by floating-point emulators: FNSAVE,
FNSTCW, FNSTENV, and FNST SW.

Can't make variable public
The variable is already declared in such away that it can't be made public. For example,

EXTRN ABC. NEAR
PUBLI C ABC ;error, already EXTRN

Can't override ES segment
The current statement specifies an override that can't be used with that instruction. For
example,

stos DS:BYTE PTR di]

Here, the ST OSinstruction can only use the ES register to access the destination
address.

Can't subtract dissimilar relative quantities
An expression subtracts two addresses that can't be subtracted from each other, such as
when they are each in a different segment:
SEGL SEGVENT
A
SEGL ENDS

SEG2 SEGQVENT
B:

mov ax, B-A ;illegal, A and Bin different segnents
SE&2 ENDS

Can't use macro name in expression
A macro name was encountered as part of an expression. For example,
My Mac MACRO
ENDM
nmov ax, MyMac ; W ong!

Can't use this outside macro
Y ou have used a directive outside a macro definition that can only be used inside a
macro definition. Thisincludes directiveslike ENDM and EXITM. For example,

DATA SEGVENT
ENDM ;error, not inside nacro

Code or data emission to undeclared segment
A statement that generated code or data is outside of any segment declared with the
SEGMENT directive. For example,

cFirst line of file

inc bx ;error, no segment
END

272 Paradigm Assembler User's Guide

Y ou can only emit code or data from within a segment.

Constant assumed to mean immediate constant
Thiswarning appearsif you use an expression such as [0], which under MASM is
interpreted as ssimply 0. For example,

mov ax, [0] ;means nov ax, 0 NOT nov ax, DS:[0]

Constant too large
Y ou have entered a constant value that is properly formatted, but istoo large. For
example, you can only use numbers larger than Offffh when you have enabled 80386 or
1486 instructions with the .386/.386P or .486/.486P directive.

CS not correctly assumed
A near CALL or JMP instruction can't have as its target an address in a different
segment. For example,

SEGL SEGQVENT
LAB1 LABEL NEAR
SEGL ENDS
SE&R SEGVENT
jmp LABL ;error, wong segnent
SE& ENDS

Thiserror only occursin MASM mode. Ideal mode correctly handles this situation.
CS override in protected mode

The current instruction requires a CS override, and you are assembling instructions for
the 80286, 80386 or 1486 in protected mode (P286P, P386P, or P486 directives). For

example,
P286P
. CODE
CVAL Dw 7
mov CVAL, 1 ;generates CS override

The /P command-line option enables this warning. When running in protected mode,
instructions with CS overrides won't work without you taking special measures.

CS unreachable from current segment
When defining a code label using colon (:), LABEL or PROC, the CSregister is not
assumed to either the current code segment or to a group that contains the current code
segment. For example,
PROGL SEGVENT

ASSUME cs: PRO&
START: ;error, bad CS assune

Thiserror only occursin MASM mode. Ideal mode correctly handles this situation.

Declaration needs name
Y ou have used a directive that needs a symbol name, but none has been supplied. For
example,
PROC ;error, PROC needs a nane

ret
ENDP

Appendix F, Error messages 273

Y ou must always supply a name as part of a SEGMENT, PROC, or STRUC
declaration. In MASM mode, the name precedes the directive; in Ideal mode, the name
comes after the directive.

Directive ignored in Turbo Pascal model
Y ou have tried to use one of the directives that can't be used when writing an assembler
modul e to interface with Turbo Pascal. Read about the .MODEL directive that specifies
Turbo Pascal in Chapter (3) of this reference guide manual. Refer to Chapter (8) of the
User's Guide for information about interfacing to Turbo Pascal.

Directive not allowed inside structure definition
Y ou have used adirective inside a STRUC definition block that can't be used there. For
example,
X STRUC
MEML DB ?
ORG $+4 rerror, can't use ORG inside STRUC
MEM2 DW ?
ENDS

Also, when declaring nested structures, you cannot give a name to any that are nested.
For example,
FOO STRUC
FO®2 STRUC ;can't name inside

ENDS
ENDS

If you want to use a named structure inside another structure, you must first define the
structure and then use that structure name inside the second structure.

Duplicate dummy argument:
A macro defined with the MACRO directive has more than one dummy parameter with
the same name. For example,
XYZ NACRO A A ;error, duplicate dumy nane

DB A
ENDM

Each dummy parameter in a macro definition must have a different name.

ELSE or ENDIF without IF
An EL SE or ENDIF directive has no matching | F directive to start a conditional
assembly block. For example,

BUF DB 10 DUP (?)
ENDI F ;error, no matching | Fxxx

Expecting METHOD keyword
The extended structure statement for defining objects expects the keyword METHOD
after the parent object.

Expecting offset quantity
An expression expected an operand that referred to an offset within a segment, but did
not encounter the right sort of operand. For example,

274 Paradigm Assembler User's Guide

CCDE SEQVENT
mov ax, LOW CCDE
CCDE ENDS

Expecting offset or pointer quantity
An expression expected an operand that referred to an offset within a specific segment,
but did not encounter the right sort of operand. For example,

CODE SEGVENT
mov ax, SEG CODE ;error, code is a segment not
;a location within a segnent
CODE ENDS

Expecting pointer type
The current instruction expected an operand that referenced memory. For example,

les di,4 ;no good, 4 is a constant

Expecting record field name
You used aSETFIELD or GETFIELD instruction without a field name following it.

Expecting register ID
The USES part of the CALL..METHOD expects register name(s).

Expecting scalar type
An instruction operand or operator expects a constant value. For example,

BB DB 4
rol ax, BB ; ROL needs const ant

Expecting segment or group quantity
A statement required a segment or group name, but did not find one. For example,

DATA SEGVENT
ASSUME ds: FOO ;error, FOOis not group or segnent nhane

FOO Dw O
DATA ENDS

Extra characters on line
A valid expression was encountered, but there are still characters left on the line. For
example,

ABC = 4 shl 3 3 ;M ssing operator between 3 and 3

This error often happens in conjunction with another error that caused the expression
parser to lose track of what you intended to do.

Forward reference needs override
An expression containing a forward-referenced variable resulted in more code being
required than Paradigm Assembler anticipated. This can happen either when the
variable is unexpectedly afar addressfor aJMP or CALL or when the variable
requires a segment override in order to accessit. For example,

Appendix F, Error messages 275

ASSUME cs: DATA

call A ; presume near call
A PROCC FAR ;oops, it's far

mov ax, MEMAR ;doesn't know it needs override
DATA SEGVENT
VMEMWAR DW ? ; 00ps, heeds override

Correct this by explicitly supplying the ssgment override or FAR override.

Global type doesn't match symbol type
Thiswarning is given when a symbol is declared using the GLOBAL statement and is
also defined in the same module, but the type specified in the GLOBAL and the actua
type of the symbol don't agree.

ID not member of structure
In Ideal mode, you have specified a symbol that is not a structure member name after
the period (.) structure member operator. For example,
| DEAL
STRUC DEMD
DB ?
ENDS
COUNT DW 0
mov ax, [(DEMO bx). COUNT] ; COUNT not part of structure

Y ou must follow the period with the name of a member that belongs to the structure
name that precedes the period.

This error often happens in conjunction with another error that caused the expression
parser to lose track of what you intended to do.

lllegal forward reference
A symbol has been referred to that has not yet been defined, and a directive or operator
requires that its argument not be forward-referenced. For example,

| F MYSYM ;error, MYSYM not defined yet

ENDIF
MYSYM EQU 1

Forward references may not be used in the argument to any of the | Fxxx directives, nor
as the count in a DUP expression.

lllegal immediate
An instruction has an immediate (constant) operand where one is not alowed. For
example,

mov 4, al

lllegal indexing mode
An instruction has an operand that specifies an illegal combination of registers. For
example,

mov al, [si +ax]

On all processors except the 80386 or later, the only valid combinations of index
registersare: BX, BP, Sl, DI, BX+Sl, BX+DI, BP+Sl|, BP+DI.

276 Paradigm Assembler User's Guide

lllegal instruction
A source line starts with a symbol that is neither one of the known directives nor avalid
instruction mnemonic.

nove ax, 4 ;shoul d be "MW

lllegal instruction for currently selected processor(s)
A source line specifies an instruction that can't be assembled for the current processor.
For example,

. 8086
push 1234h ;no i nmedi ate push on 8086

When Paradigm Assembler first starts assembling a source file, it generates instructions
for the 8086 processor, unless told to do otherwise.

If you wish to use the extended instruction mnemonics available on the 186/286/386
processors, you must use one of the directives that enables those instructions (P186,
P286, P386).

lllegal local argument
The LOCAL directive inside a macro definition has an argument that is not avalid
symbol name. For example,
X MACRO

LOCAL 123 ;not a synbol
ENDM

lllegal local symbol prefix
The argument to the LOCAL S directive specifies an invalid start for local symbols. For
example,

LOCALS XYZ error, not 2 characters

The local symbol prefix must be exactly two characters that themselves are avalid
symbol name, suchas__, @@, and so on (the default is @@).

lllegal macro argument
A macro defined with the MACRO directive has adummy argument that is not avalid
symbol name. For example,

X MACRO 123 ;invalid dummy ar gunent
ENDM

lllegal memory reference
An instruction has an operand that refers to a memory location, but a memory location
is not allowed for that operand. For example,

mov [bx], BYTE PTR A ;error, can't nove from MEMto MEM
Here, both operands refer to a memory location, which isnot alegal form of the MOV

instruction. On the 80x86 family of processors, only one of the operands to an
instruction can refer to a memory location.

lllegal number

A number contains one or more characters that are not valid for that type of number.
For example,

Z = 0ABCCGh

Appendix F, Error messages 277

278

Here, Gisnot avalid letter in a hexadecimal number.

lllegal origin address
Y ou have entered an invalid address to set the current segment location ($). Y ou can
enter either a constant or an expression using the location counter ($), or asymbol in the
current segment.

lllegal override in structure
Y ou have attempted to initialize a structure member that was defined using the DUP
operator. Y ou can only initialize structure members that were declared without DUP.

lllegal override register
A register other than a segment register (CS, DS, ES, SS, and on the 80386, FS and GS)
was used as a segment override, preceding the colon (:) operator. For example,

mov dx: XYZ, 1 ; DX not a segnent register

lllegal radix
The number supplied to the .RADI X directive that sets the default number radix is
invalid. For example,

.RADI X 7 ; no good

The radix can only be set to one of 2, 8, 10, or 16. The number is interpreted as decimal
no matter what the current default radix is.

lllegal register for instruction
Anillegal register was used as the source of a SETFIEL D instruction or the destination
of aGETFIELD instruction.

lllegal register multiplier
Y ou have attempted to multiply aregister by avalue, which is not alegal operation; for
example,

mov ax*3,1

The only context where you can multiply aregister by a constant expression is when
specifying a scaled index operand on the 80386 processor or |ater.

lllegal segment address
This error appears if an address greater than 65,535 is specified as a constant segment
address; for example,

FOO SEGMVENT AT 12345h

lllegal use of constant
A constant appears as part of an expression where constants can't be used. For example,

mov bx+4,5

lllegal use of register
A register name appeared in an expression where it can't be used. For example,

X = 4 shl ax ;can't use register with SHL operator

Paradigm Assembler User's Guide

lllegal use of segment register
A segment register name appears as part of an instruction or expression where segment
registers cannot be used. For example,

add SS 4 ; ADD can't use segnent regs

lllegal USES register
Y ou have entered an invalid register to push and pop as part of entering and leaving a
procedure. The valid registers follow:

AX BX CX DI
DS DX ES Sl

If you have enable the 80386 processor with the .386 or .386P directive, you can use the
32-bit equivalents for these registers.

lllegal version ID
Occurswhen aniillegal version ID was selected in the VERSION statement or /U
switch.

lllegal warning ID
Y ou have entered an invalid three-character warning identifier. See the options
discussed in Chapter (3) of the User's Guide for a complete list of the allowed warning
identifiers.

Instruction can be compacted with override
The code generated contains NOP padding, due to some forward-referenced symbol.
Y ou can either remove the forward reference or explicitly provide the type information
as part of the expression. For example,
jmp X ;warni ng here
jmp SHORT X ;no warning
X

Invalid model type
The modéel directive has an invalid memory model keyword. For example,

. MODEL G GANTI C
Valid memory models are small, compact, medium, large, and huge.

Invalid operand(s) to instruction
The instruction has a combination of operands that are not permitted. For example,

fadd ST(2), ST(3)

Here, FADD can only refer to one stack register by name; the other must be the stack
top.

Labels can't start with numeric characters
Y ou have entered a symbol that is neither avalid number nor avalid symbol name, such
as 123XYZ.

Line too long--truncating
The current line in the source file is longer than 255 characters. The excess characters
will be ignored.

Appendix F, Error messages 279

280

Location counter overflow
The current segment has filled up, and subsequent code or data will overwrite the
beginning of the segment. For example,

ORG OFFFOh
ARRAY DW 20 DUP (0) ;overfl ow

Method CALL requires object name
The CALL..METHOD statement cannot obtain the object type from this instance
pointer. Y ou must specify the object name.

Missing argument list
An IRP or IRPC repeat block directive does not have an argument to substitute for the
dummy parameter. For example,
IRP X ;no argunent |ist

DB X
ENDM

IRP and IRPC must always have both a dummy parameter and an argument list.

Missing argument or <
Y ou forgot the angle brackets or the entire expression in an expression that requires
them. For example,

ifb ;needs an argument in <>s

Missing argument size variable
An ARG or LOCAL directive does not have a symbol name following the optional = at
the end of the statement. For example,

ARG A: WORD, B: DWORD= ;error, no nane after =
LOCAL X: TBYTE= ;sanme error here

ARG and LOCAL must aways have a symbol name if you have used the optional
equal sign (=) to indicate that you want to define a size variable.

Missing COMM ID
A COMM directive does not have a symbol name before the type specifier. For
example,

COW NEAR ;error, no synbol nane before "NEAR'

COMM must aways have a symbol name before the type specifier, followed by a
colon (:) and then the type specifier.

Missing dummy argument
An IRP or IRPC repeat block directive does not have a dummy parameter. For
example,

| RP ;no dummy par amnet er
DB X
ENDM

IRP and IRPC must always have both a dummy parameter and an argument list.

Missing end quote
A string or character constant did not end with a quote character. For example,

Paradigm Assembler User's Guide

DB "abc ;mssing " at end of ABC
mov al,'X ;mssing ' after X

Y ou should always end a character or string constant with a quote character matching
the one that started it.

Missing macro ID
A macro defined with the MACRO directive has not been given a name. For example,
MACRO ;error, no nane

DB A
ENDM

Macros must always be given a name when they are defined.

Missing module name
Y ou have used the NAME directive but you haven't supplied a module name after the
directive. Remember that the NAME directive only has an effect in Ideal mode.

Missing or illegal language ID
Y ou have entered something other than one of the allowed language identifiers after the
.MODEL directive.

Missing or illegal type specifier
A statement that needed a type specifier (like BY TE, WORD, and so on) did not find
one where expected. For example,

RED LABEL XXX ;error, "XXX' is not a type specifier

Missing table member ID
A CALL..METHOD statement was missing the method name after the METHOD

keyword.

Missing term in list
In Ideal mode, a directive that can accept multiple arguments (EXTRN, PUBLIC, and
S0 on) separated by commas does not have an argument after one of the commasin the
list. For example,

EXTRN XXX: BYTE, , YYY: WORD

In Ideal mode, all argument lists must have their elements separated by precisely one
comma, with no comma at the end of thelist.

Missing text macro
Y ou have not supplied a text macro argument to a directive that requires one. For
example,

NEWSTR SUBSTR ; ERROR - SUBSTR NEEDS ARGUVMENTS

Model must be specified first
Y ou used one of the simplified segmentation directives without first specifying a
memory model. For example,

. CODE error, no . MODEL first

Y ou must always specify a memory model using the .MODEL directive before using
any of the other simplified segmentation directives.

Appendix F, Error messages 281

282

Module is pass-dependent--compatibility pass was done
Thiswarning occurs if a pass-dependent construction was encountered and the /m
command-line switch was specified. A MASM-compatible pass was done.

Name must come first
Y ou put a symbol name after a directive, and the symbol name should come first. For
example,

STRUC ABC error, ABC nust cone before STRUC

Since Ideal mode expects the name to come after the directive, you will encounter this
error if you try to assemble Ideal mode programsin MASM mode.

Near jump or call to different CS
This error occurs if the user attemptsto perfform aNEAR CALL or JMP to a symbol
that's defined in an area where CSis assumed to a different segment.

Need address or register
An instruction does not have a second operand supplied, even though there is acomma
present to separate two operands; for example,

nmov ax, ;no second oper and

Need angle brackets for structure fill
A statement that allocates storage for a structure does not specify an initializer list. For
example,

STR1 STRUC
ML Dw ?
we Db 2
ENDS
STR1 ;no initializer |ist
Need colon

An EXTRN, GLOBAL, ARG, or LOCAL statement is missing the colon after the
type specifier (BYTE, WORD, and so on). For example,

EXTRN X BYTE, Y: WORD : X has no col on

Need expression
An expression has an operator that is missing an operand. For example,

X=4+*6

Need file name after INCLUDE
An INCLUDE directive did not have afile name after it. For example,

I NCLUDE ;include what ?
In Ideal mode, the file name must be enclosed in quotes.

Need left parenthesis
A left parenthesis was omitted that is required in the expression syntax. For example,

DB 4 DUP 7
Y ou must always enclose the expression after the DUP operator in parentheses.

Paradigm Assembler User's Guide

Need method name
The CALL..METHOD statement requires a method name after the METHOD

keyword.

Need pointer expression
This error only occursin Ideal mode and indicates that the expression between brackets,
[_], does not evaluate to a memory pointer. For example,

_mov ax, [WORD PTR]

In Ideal mode, you must always supply a memory-referencing expression between the
brackets.

Need quoted string
Y ou have entered something other than a string of characters between quotes whereit is
required. In Ideal mode, several directives require their argument to be a quoted string.
For example,

| DEAL
DI SPLAY "ALL DONE"

Need register in expression
Y ou have entered an expression that does not contain aregister name where one is
required.

Need right angle bracket
An expression that initializes a structure, union, or record does not end with a> to
match the < that started the initializer list. For example,

MYSTRUC STRUCNAME <1, 2, 3

Need right curly bracket
Occurs during a named structure, table, or record fill when a'}' is expected but not
found.

Need right parenthesis
An expression contains a left parenthesis, but no matching right parenthesis. For
example,
X=5%*(4+3

Y ou must always use left and right parentheses in matching pairs.

Need right square bracket
An expression that references a memory location does not end with a] to match the [
that started the expression. For example,

mov ax, [si ;error, no closing] after Sl

Y ou must always use square brackets in matching pairs.

Need stack argument
A floating-point instruction does not have a second operand supplied, even though there
IS acomma present to separate two operands. For example,

fadd ST,

Appendix F, Error messages 283

Need structure member name
In Ideal mode, the period (.) structure member operator was followed by something that
was not a structure member name. For example,
| DEAL
STRUC DEMD
DB ?
ENDS
COUNT DW 0
mov ax, [(DEMO bx).]

Y ou must always follow the period operator with the name of a member in the structure
toitsleft.

Not expecting group or segment quantity
Y ou have used a group or segment name where it can't be used. For example,

CODE SEGVENT
rol ax, CODE ;error, can't use segnent nane here

One non-null field allowed per union expansion
When initializing a union defined with the UNION directive, more than one value was
supplied. For example,
U UNI ON
DW 2
DD ?
ENDS
U NST U <1, 2> ;error, should be <?,2> or <1, 7?>

A union can only be initialized to one vaue.

Only one startup sequence allowed
This error appearsif you have more than one .STARTUP or STARTUPCODE
statement in a module.

Open conditional
The end of the source file has been reached as defined with the END directive, but a
conditional assembly block started with one of the | Fxxx directives has not been ended
with the ENDI F directive. For example,

| F Bl GBBUF
END :no ENDI F bef ore END

This usually happens when you type END instead of ENDIF to end a conditional block.

Open procedure
The end of the source file has been reached as defined with the END directive, but a
procedure block started with the PROC directive has not been ended with the ENDP
directive. For example,

MYFUNC PRCC
END ;no ENDI F bef ore ENDP

This usually happens when you type END instead of ENDP to end a procedure block.

284 Paradigm Assembler User's Guide

Open segment
The end of the source file has been reached as defined with the END directive, but a

segment started with the SEGMENT directive has not been ended with the ENDS
directive. For example,

DATA SEGVENT
END :no ENDS before END

This usually happens when you type END instead of ENDS to end a segment.

Open structure definition
The end of the source file has been reached as defined with the END directive, but a

structure started with the STRUC directive has not been ended with the ENDS
directive. For example,

X STRUC
VALL DW 2
END ;no ENDS before it
This usually happens when you type END instead of ENDS to end a structure
definition.

Operand types do not match
The size of an instruction operand does not match either the other operand or one valid

for the instruction. For example,
ABC DB 5

mov ax, ABC

Operation illegal with static table member
A" operator was used to obtain the address of a static table member. Thisisillegal.

Pass-dependent construction encountered
The statement may not behave as you expect, due to the one-pass nature of Paradigm

Assembler. For example,

| F1

; Happens on assenbly pass
ENDI F
| F2

; Happens on |isting pass
ENDI F

Most constructs that generate this error can be re-coded to avoid it, often by removing
forward references.

Also, use of /m multi-pass switch can enable PASM to resolve these kinds of
constructs.

Pointer expression needs brackets
In Ideal mode, the operand contained a memory-referencing symbol that was not
surrounded by brackets to indicate that it references a memory location. For example,

B DB O
mov al,B ;warning, |deal node needs [B]

Since MASM mode does not require the brackets, thisis only awarning.

Appendix F, Error messages 285

286

Positive count expected
A DUP expression has a repeat count less than zero. For example,

BUF -1 DUP (?) ;error, count < 0
The count preceding a DUP must aways be 1 or greater.

Record field too large
When you defined arecord, the sum total of all the field widths exceeded 32 bits. For
example,

AREC RECCRD RANGE: 12, TOP: 12, BOTTOM 12

Record member not found
A record member was specified in a named record fill that was not part of the specified
record.

Recursive definition not allowed for EQU
An EQU definition contained the same name that you are defining within the definition
itself. For example,

ABC EQU TWOTI MES ABC

Register must be AL or AX
Aninstruction which requires one operand to be the AL or AX register has been given
an invalid operand. For example,

IN CL, dx error, "IN nust be to AL or AX

Register must be DX
An instruction which requires one operand to be the DX register has been given an
invalid operand. For example,

IN AL, cx ;error, nust be DX register instead of CX

Relative jump out of range by __ bytes
A conditional jump tried to reference an address that was greater than 128 bytes before
or 127 bytes after the current location. If thisisin a USE32 segment, the conditional
jump can reference between 32,768 bytes before and 32,767 bytes after the current
location.

Relative quantity illegal
An instruction or directive has an operand that refers to amemory address in a way that
can't be known at assembly time, and thisis not allowed. For example,
DATA SEGVENT PUBLI C

X DB 0O
| F OFFSET X GI 127 :not known at assenble tine

Reserved word used as symbol
Y ou have created a symbol name in your program that Paradigm Assembler reserves for
itsown use. Y our program will assemble properly, but it is good practice not to use
reserved words for your own symbol names.

Paradigm Assembler User's Guide

Rotate count must be constant or CL
A shift or rotate instruction has been given an operand that is neither a constant nor the

CL register. For example,
rol ax, DL cerror, can't use DL as count

Y ou can only use a constant value or the CL register as the second operand to arotate
or shift instruction.

Rotate count out of range
A shift or rotate instruction has been given a second operand that istoo large. For
example,
. 8086
shl DL, 3 ;error, 8086 can only shift by 1

. 286
ror ax,40 ;error, max shift is 31

The 8086 processor only allows a shift count of 1, but the other processors alow a shift
count up to 31.

Segment alignment not strict enough
The align boundary value supplied isinvalid. Either it isnot a power of 2, or it specifies
an alignment stricter than that of the align type in the SEGMENT directive. For

example,
DATA SEGVENT PARA
ALI GN 32 ;error, PARAis only 16
ALI GN 3 ;error, not power of 2

Segment attributes illegally redefined
A SEGMENT directive reopens a segment that has been previously defined, and tries
to giveit different attributes. For example,
DATA SEGVENT BYTE PUBLI C
DATA ENDS

DATA SEGQVENT PARA ;error, previously had byte alignnent
DATA ENDS

If you reopen a segment, the attributes you supply must either match exactly or be
omitted entirely. If you don't supply any attributes when reopening a segment, the old
attributes will be used.

Segment name is superfluous
Thiswarning appears with a .CODE xxx statement, where the model specified doesn't
allow more than code segment.

Smart code generation must be enabled
Certain special features of code generation require SMART code generation to be
enabled. These include PUSH of a pointer, POP of a pointer, and PUSH of a constant
(8086 only).

String too long
Y ou have built a quoted string that is longer than the maximum allowed length of 255.

Symbol already define:
The indicated symbol has previously been declared with the same type. For example,

Appendix F, Error messages 287

BB DB 1,2,3
BB DB ? ;error, BB already defined

Symbol already different kind
The indicated symbol has already been declared before with a different type. For
example,

BB DB 1,2,3
BB DW ? ;error, BB already a byte

Symbol has no width or mask
The operand of aWIDTH or MASK operator is not the name of arecord or record
field. For example,

B DB O
mov ax, MASK B :Bis not arecord field

Symbol is not a segment or already part of a group
The symbol has either already been placed in agroup or it is not a segment name. For

example,
DATA SEGVENT
DATA ENDS

DCGROUP GROUP DATA
DGROUP2 GROUP DATA ;error, DATA already bel ongs to DGROUP

Text macro expansion exceeds maximum line length
This error occurs when expansion of atext macro causes the maximum allowable line
length to be exceeded.

Too few operands to instruction
The instruction statement requires more operands than were supplied. For example,

add ax ;m ssing second arg

Too many errors or warnings
No more error messages will be displayed. The maximum number of errors that will be
displayed is 100; this number has been exceeded. Paradigm Assembler continues to
assemble and prints warnings rather than error messages.

Too many initial values
Y ou have supplied too many values in a structure or union initialization. For example,
XYZ STRUC
Al DB ?
A2 DD ?
XYZ ENDS
ANXYZ XYz <1, 2,3> ;error, only 2 nenbers in XYZ

Y ou can supply fewer initializers than there are membersin a structure or union, but
never more.

Too many register multipliers in expression
An 80386 scaled index operand had a scale factor on more than one register. For
example,

mov EAX [2* EBX+4* EDX] ;too many scal es

288 Paradigm Assembler User's Guide

Too many registers in expression
The expression has more than one index and one base register. For example,

mov ax, [BP+SI +Dl] ;can't have Sl and DI

Too many USES registers
Y ou specified more than 8 USES registers for the current procedure.

Trailing null value assumed
A data statement like DB, DW, and so on, ends with acomma. PASM treatsthisas a
null value. For example,

db '"hello', 13, 10, ;same as ...,13,10,?

Undefined symbol
The statement contains a symbol that wasn't defined anywhere in the sourcefile.

Unexpected end of file (no END directive)
The source file does not have an END directive asits last statement. All source files
must have an END statement.

Unknown character
The current source line contains a character that is not part of the set of characters that
make up Paradigm Assembler symbol names or expressions. For example,

add ax,!1 ;error, exclamation is illegal character

Unmatched ENDP:
The ENDP directive has a name that does not match the PROC directive that opened
the procedure block. For example,

ABC PRCC
XYZ ENDP error, XYZ should be ABC

Unmatched ENDS:
The ENDS directive has a name that does not match either the SEGMENT directive
that opened a segment or the STRUC or UNION directive that started a structure or
union definition. For example,

ABC STRUC

XYZ ENDS error, XYZ should be ABC
DATA SEGVENT

CCDE ENDS ;error, code should be DATA

USE32 not allowed without .386
Y ou have attempted to define a 32-bit segment, but you have not specified the 80386
processor first. You can only define 32-bit segments after you have used the .386 or
.386P directivesto set the processor to be 80386.

User-generated error
An error has been forced by one of the directives, which then forces an error. For
example,

. ERR ;shouldn't get here

Appendix F, Error messages 289

USES has no effect without language
Thiswarning appears if you specify a USES statement when no language is in effect.

Value out of range
The constant is avalid number, but it is too large to be used where it appears. For
example,

DB 400

Fatal error messages

Fatal error messages cause Paradigm Assembler to immediately stop assembling your
file. Whatever caused the error prohibited the assembler from being able to continue.
Here'salist of possible fatal error messages.

Bad switch ___
Y ou have used an invalid command-line option. See Chapter 2 of the User's Guide for a
description of the command-line options.

Can't find @file
Y ou have specified an indirect command file name that does not exist. Make sure that
you supply the complete file name. Paradigm Assembler does not presume any default
extension for the file name. Y ou've probably run out of space on the disk where you
asked the cross-reference file to be written.

Can't locate file
Y ou have specified afile name with the INCL UDE directive that can't be found. An
INCLUDE file could not be located. Make sure that the name contains any necessary
disk letter or directory path.

Read about the INCLUDE directive in Chapter 3, “Using INCLUDE files,” page 3-29
of the reference guide to learn where Paradigm Assembler searches for included files.

Error writing to listing file
Y ou've probably run out of space on the disk where you asked the listing file to be
written.

Error writing to object file
Y ou've probably run out of space on the disk where you asked the object file to be
written.

File not found
The source file name you specified on the command line does not exist. Make sure you
typed the name correctly, and that you included any necessary drive or path information
if the fileisnot in the current directory.

File was changed or deleted while assembly in progress
Another program, such as a pop-up utility, has changed or deleted the file after
Paradigm Assembler opened it. Paradigm Assembler can't reopen afile that was
previously opened successfully.

290 Paradigm Assembler User's Guide

Insufficient memory to process command line
Y ou have specified acommand line that is either longer than 64K or can't be expanded
in the available memory. Either simplify the command line or run Paradigm Assembler
with more memory free.

Internal error
This message should never happen during normal operation of Paradigm Assembler.
Save the file(s) that caused the error and report it to Paradigm's Technical Support
department.

Invalid command line
The command line that you used to start Paradigm Assembler is badly formed. For
example,

PASM , MYFI LE

does not specify a source file to assemble. See Chapter (3) of the User's Guide for a
complete description of the Paradigm Assembler command line.

Invalid number after
Y ou have specified a valid command-line switch (option), but have not supplied avalid
numeric argument following the switch. See Chapter (3) of the User's Guide for a
discussion of the command-line options.

Maximum macro expansion size exceeded
A macro expanded into more text than would fit in the macro expansion area. Since this
areais up to 64 KB long, you will usually only see this message if you have a macro
with abug in it, causing it to expand indefinitely.

Out of hash space
The hash space has one entry for each symbol you define in your program. It starts out
allowing 16,384 symbols to be defined, as long as Paradigm Assembler is running with
enough free memory. If your program has more than this many symbols, use the /KH
command-line option to set the number of symbol entries you need in the hash table.

Out of memory
Y ou don't have enough free memory for Paradigm Assembler to assemble your file.

Another solution isto split the source file into two or more source files, or rewrite
portions of it so that it requires less memory to assemble. Y ou can also use shorter
symbol names, reduce the number of comments in macros, and reduce the number of
forward referencesin your program.

Out of string space
Y ou don't have enough free memory for symbol names, file names, forward-reference
tracking information, and macro text. A maximum of 512K is allowed, and your module
has exceeded this maximum. Y ou can use the /KS command-line option to alocate
more memory to the string space. Normally, half of the free memory is assigned for use
as string space.

Too many errors found
Paradigm Assembler has stopped assembling your file because it contained so many
errors. Y ou may have made afew errors that have snowballed. For example, failing to

Appendix F, Error messages 291

define a symbol that you use on many linesisreally asingle error (failing to define the
symbol), but you will get an error message for each line that referred to the symbol.

Paradigm Assembler will stop assembling your fileif it encounters atotal of 100 errors
or warnings.

Unexpected end of file (no END directive)
Y our source file ended without aline containing the END directive. All sourcefiles
must end with an END directive.

292 Paradigm Assembler User's Guide

#

| character 176
$ symbol 123, 257

% expression evaluation character 176
% immediate macro directive 180

& character 172

(\) line continuation character 29

/? 13

: operator 126

@@32Bit symbol 258
@32Bit symbol 102

<> bracket initializer 175
8087 coprocessor directives 67
80x86 processor directives 63

A

ALPHA directive 109
ASM files 206
/a 11
About cScript 9
ADD instructions 162
addition 60
address subtypes

complex 50

simple 49
addresses 58, 59
advanced coding 155
ALIAS directive 195
ALIGN directive 125
ALL 253
Allocating data 145
allocating memory 45
ancestor virtual methods 44
AND directive 186
angle brackets 175
applications

building 8
ARG directive 133, 219
ARG scope 135
ARG syntax 134
arguments

defining 133

local dummy arguments 172
arithmetic operators

general 54

logical 55

simple 55
asm 205

Index

Index

ASMDEMO.ASM 7
ASMPSCL.ASM 226
assembler-pass conditional directives 189
assembling applications 8
assembling with Paradigm C++ 206
assembly language

writing C++ member functions 224
assembly, MASM 255
assigning symbol values 31
ASSUME directive 27, 108, 193
AVERAGE.ASM 229

B

%BIN directive 201
.BREAK directive 248, 249
/b 12
base objects 36
basic data types, MASM 247
basic signed types, MASM 247
bit shift operators 55
bit-field records 112
block scoping 142

MASM 142
BOUND 26
byte values 60

C

%CONDS directive 199
%CREF directive 200
%CREFALL directive 200
%CREFREF directive 200
%CREFUREF directive 200
%CTLS directive 198
.CODE directive 208
.CONTINUE directive 248, 249
.CREF directive 200
/c 12,197
@code symbol 257
@CodeSize symbol 102, 257
@Cpu symbol 97
@CPU symbol 257
@curseg symbol 257
C++ startup code linking 227
CALCAVG.CPP 229
CALCAVG.EXE 230
CALL instruction
ancestor virtual methods 44
static method 41

293

virtual method 42
CALL instructions 41, 155, 164, 228
call procedures 164, 165, 166
CALL..METHOD directive 45, 165
CALLCT.CPP 222
calling conventions 39
Pascal 226
caling functionsin PASM 229
caling methods 45
caling Paradigm C++ 227
CARRY? 250
case-sengitivity 213
CASMLINK.ASM 212
CATSTR directive 170
code generation 155
coding 155
code generation 155
extended jumps 155
extended shifts 160
flag instructions 160
manipulation instructions 161
multiply instructions 162
object-oriented programming 167
segment overrides 160
COMM directive 193, 213, 253
command m 30
commandw 33
command-line options 11
/c 197
/I 255
/m 30, 156, 255
/m2 255
/ml 191, 213
/mx 191, 213
/W 33
indirect command files 21
-p 226
summary 9
command-line switches
/I 197
lla 197
-p 229
COMMENT directive 28
commenting programs 28
communal variables
defining 193
COMPACT memory model 234
comparison operators 55
compatibility
MASM 23
CONCISE.ASM 230

conditional assembly directives 187, 189

conditional directives 183, 186

294

assembly 183, 184

syntax 183
conditional jumps 155
conditional list directives 199
conditionals

including in thelist file 189
configuration file 21
constants 47, 51

numeric 47

string 48
conventions 191
coprocessor emulation directives 68
count repeat macro 178
COUNT.ASM 221
COUNTADD.ASM 225
COUNTER.CPP 224
COUNTLG.ASM 223
cross-reference list directives 200
cScript

overview 9
CSPEC.ASM 213

D

%DEPTH directive 201
.DATA directive 208, 214
.DATA? 208
/d 12
??2date symbol 30, 257
@data symbol 257
@DataSize symbol 102, 257
data allocation 145
DATA directive 214
data directives 145
data type instances

creating 152

initializing 152
data types

defining 111

enumerated 111, 152
DB directive 30
declaring library symbols 192
declaring method procedures 39
declaring public symbols 192
defining external symbols 192
defining global symbols 193
derived objects 36
DGROUP 27, 210
directive keywords 241
directives 63, 68, 252

127
%BIN 201
%CREF 200

Paradigm Assembler User's Guide

%CREFALL 200
%CREFREF 200
%CREFUREF 200
%CTLS 198
%DEPTH 201
%INCL 199
%INCL 201
%LINUM 201
%LIST 198
%MACS 199
%NEWPAGE 201
%NOCONDS 199
%NOCREF 200
%NOCTLS 198
%NOINCL 199, 201
%NOLIST 198
%NOMACS 199
%NOSYMS 198
%NOTRUNC 201
%PAGESIZE 201
%PCNT 201
%POPLCTL 201
%PUSHLCTL 201
%SUBTTL 201
%SYMS 198
%TABSIZE 201
%TEXT 201
%TITLE 201
%TRUNC 201
2CONDS 199
ALPHA 109
.BREAK 248, 249
.CONTINUE 248, 249
.CREF 200
.DATA 214
.ELSE 248
.ELSEIF 248
.ENDIF 248
.ENDW 248

AF 248

.LALL 199
.LFCOND 199
.LIST 198
.MODEL 192, 193, 207, 230
MSFLOAT 255
.REPEAT 249
SALL 199

SEQ 109
.SFCOND 199
.TFCOND 199
UNTIL 249
UNTILCXZ 249
WHILE 248

Index

XALL 199

XCREF 200

XLIST 198

8087 coprocessor directives 67
ALIAS 195

ALIGN 125

AND 186

ARG 133, 219
assembler-pass conditionals 189
ASSUME 27, 108, 193
CALL.METHOD 45
CATSTR 170

COMM 193, 213, 253
COMMENT 28

conditional 183, 186
conditional assembly 187, 189
coprocessor emulation directives 68
cross-reference list directives 200
DATA 214

DB 30, 145

DD 145

DF 145

DOSSEG 109

DP 145

DQ 145

DT 145

DW 145

DWORD 37

ECHO 252

ELSE 183, 184, 185

ELSEIF 183, 184

ELSEIF1 255

ELSEIF2 255

EL SExxx 187, 189

END 32,107,178

ENDIF 184

ENDM 178

ENDP 24

ENDS 24, 113, 214

EQU 23, 30, 31, 169, 192, 199
ERR 183, 185

ERR1 255

ERR2 255

ERRIFB 188
error-generation 185, 187, 188, 189
ERRxxx 187, 188, 189

EVEN 125

EVENDATA 125
EXITCODE 104

EXITM 173
expression-conditional 185
EXTERN 252

EXTERNDEF 252, 253

295

EXTRN 32, 192, 193, 213, 214, 228 PROC 24, 119, 136, 138, 191

GLOBAL 37,193, 213 PROC 207

GOTO 173 PROCDESC 138, 193, 252
GROUP 107 PROCTYPE 119, 136
high level directives 248 PROTE 252

IAPx86 processor 63 PUBLIC 126, 191, 192, 193, 213, 252, 253
IDEAL 24 PUBLICDLL 192

IF 183, 184, 185 PURGE 177

IF1 255 PUSH 120

IF2 255 PUSHSTATE 180

IFB 188 QUIRKS 32, 254

IFDEF 255 RADIX 148

IFNB 177, 188 RECORD 161

IFNDEF 255 REPT 178

IFxxx 187, 189 SEGMENT 24, 105
INCLUDE 29, 37, 45, 193, 255 SEGS 214

includefilelist 199 simple data directive 145
INCLUDELIB 194 simplified segment directives 103
INSTR 170 SIZESTR 170

IRP 179 SMART 32, 155

IRPC 179 STARTUPCODE 104
JMP 45 STRUC 36, 37,120
JMP.METHOD 45 symbols 121

JUMPS 156 STRUCT 252

LABEL 114, 126, 127 SUBSTR 170
LARGESTACK 110 SUBTTL 201

list directives 198, 199 symbol-definition conditional 186
LOCAL 133,138, 172, 217 symbol-expression 187
LOCALS 142 TABLE 36, 37

looping directives 248 TBLINIT 41

macro list directives 199 TBLINST 40

MASM 24, 255 TBLPTR 121

MASM51 32 TEXTEQU 250
METHOD 37, 39, 45 text-string conditional 187
MODEL 99, 102, 131, 132, 191, 233 TITLE 201

MULTERRS 34 TYPEDEF 119

NAME 32 VARARG 251
NOJUMPS 156 VERSION 31, 170
NOLANGUAGE 193 WARN 33

NOLOCALS 142 WHILE 178
NOMASM51 32 WORD 37
NOMULTERRS 34 directives ASSUME 108
NONLANGUAGE 192 DISPLAY 33

NOSMART 32, 155, 254 DISPLAY.ASM 215

NOT 186 displaying messages and warnings 33
NOWARN 33 DOSSEG directive 109
OFFSET 26, 214 DOTNAME 253

OPTION 252 DOTOTAL.ASM 208, 209
OR 186 dummy arguments 172
ORG 123 types 175

PAGE 201 DWORD directive 26, 37
POP 212

POPSTATE 180

296 Paradigm Assembler User's Guide

E

.EL SE directive 248
.ELSEIF directive 248
.ENDIF directive 248
.ENDW directive 248
/e 13
ECHO directive 252
EL SE directive 183, 184, 185
ELSEIF directive 183, 184
ELSEIF1 directive 255
ELSEIF2 directive 255
EL SExxx directive 187, 189
EMUL 68
emulation 68
EMULATOR 253
END directive 32, 178
END directives 107
ENDIF directive 184
ENDM directive 178
ENDP directive 24
ENDS directive 24, 113, 214
ENTER instructions 156
ENUM 111, 161
environment variables 255
EQU directive 23, 30, 31, 169, 192, 199
ERR directive 183, 185
ERR1 directive 255
ERR2 directive 255
ERRIFB directive 188
error list 270
error messages 34, 269
fatal 269, 290
information 269
sample errors 270
warning and error 269
error-generation directives 185, 187, 188, 189
unconditional 185
ERRxxx directives 187, 188, 189
EVEN directive 125
EVENDATA directive 125
EXITCODE directives 104
EXITM directive 173
EXPORT 253
EXPR16 253
EXPR32 253
expression-conditional directives 185
expressions 25, 47, 50, 259
bit shift operators 55
comparison operators 55
constants in expressions 51
creating addresses 58
describing address contents 59

Index

determining characteristics 58
expression precision 51
general arithmetic operators 54
LENGTH operator 53
logical arithmetic operators 55
MASK operator 54
naming structures 117
obtaining byte values 60
obtaining segments 57
obtaining the type 56
overriding segments 57
referencing offsets 59
registers 51
setting address subtype 56
simple arithmetic operators 55
SIZE operator 53
specifying 16- and 32-bit 60
standard symbol values 52
symbol values 52
symbolsin expressions 51
WIDTH operator 54

extended jumps 155

extended shifts 160

extending lines 29

Extern"C" 207

EXTERN directive 252

external symbols
defining 192
far 214

externals 212

EXTERNDEF directive 252, 253

EXTRN directive 32, 192, 193, 213, 214, 228

F

.FARDATA directive 208
.FARDATA?directive 208
??filename symbol 30, 258
@fardata symbol 257
@fardata? symbol 257
@FileName symbol 257
far externals 214
FAR procedures 129, 133, 157, 193, 254
FAR16 254
FAR32 254
FASTIMUL instructions 162
fatal error messages 290
FILELASM 214
files
ASM 206
ASMDEMO.ASM 7
ASMPSCL.ASM 226
AVERAGE.ASM 229

CALCAVG.CPP 229
CALCAVG.EXE 230
CALLCT.CPP 222
CASMLINK.ASM 212
CONCISE.ASM 230
COUNT.ASM 221
COUNTADD.ASM 225
COUNTER.CPP 224
COUNTLG.ASM 223
CSPEC.ASM 213
DISPLAY.ASM 215
DOTOTAL.ASM 208, 209
FILEL.ASM 214
FINDCHAR.ASM 221
MAIN.CPP 215
MAIN.EXE 215
PRMSTACK.ASM 216
SHOWTOT.CPP 209
SHOWTOT.EXE 209
STAT.CPP 215
SUMM.ASM 215
FINDCHAR.ASM 221
fixups 25
flag instructions 160
flags 250
CARRY? 250
OVERFLOW? 250
PARITY? 250
SIGN? 250
ZERO? 250
FLAT 253
FLIPFLAG instructions 160
floating-point 255
floating-point types, MASM 247
foo 172
FOR loops 251
FORC loops 252
format parameters 201
function
assembler function call from C++ 221
functions
LineCount 221
writing C++ member functions 224

G

generic segments 105
GETFIELD instructions 161, 162
GLOBAL directive 37, 193, 213
globa symbols

defining 193
GOTO directive 173
grammar

298

Ideal mode expression 238
lexical 235
MASM mode expression 236
GROUP directives 107
groups 26, 105

H

/h 13
HUGE memory model 234

%INCL directive 199, 201
F directive 248
/i 13
/I 255
@@Interface symbol 258
@Interface symbol 102
IDEAL directive 24
Ideal mode 23
entering and leaving 24
MASM compatibility 23, 25
accessing group data 26
expressions and operands 25
operand for BOUND instruction 26
operators 25
segments and groups 26
suppressed fixups 25
Ideal mode expression grammar 238
Ideal mode precedence 240
|EEE floating-point format 255
IF directive 183, 184, 185
IF1 directive 255
IF2 directive 255
IFB directive 188
IFDEF directive 255
IFNB directive 177, 188
IFNDEF directive 255
IFxxx directives 187, 189
implied addition 60
IMUL instructions 162
INCLUDE directive 29, 37, 45, 193, 255
INCLUDELIB directive 194
indirect command files 21
instance 45
INSTR 240
INSTR directive 170
instructions
ADD 162
CALL 155, 164, 228
CALL.METHOD 165
ENTER 156
extensions for 80386 processor 163

Paradigm Assembler User's Guide

FASTIMUL 162
flag instructions 160
FLIPFLAG 160
GETFIELD 161, 162
IMUL 162
IRET 157
JMP.METHOD 166
LEAVE 156
LOOP 155, 156, 249
manipulation instructions 161
MASKFLAG 160
MOV 155, 162
multiply instructions 162
NEG 162
NOP 156
object-oriented programming 167
POP 157
POPSTATE 158
PROCDESC 165
PUSH 157
PUSHSTATE 158
RCL 160
RCR 160
RET 157
RETURNS 165
ROL 160
ROR 160
SAL 160
SAR 160
SEGxx 160
SETFIELD 161
SETFLAG 160
SHL 160, 162
SHR 160
SUB 162
TBLINIT 167
TESTFLAG 160
XLATB 160
Intelligent code generation 155
Interfacing with Paradigm C++ 205
IRET instructions 157
IRP directive 179
IRPC directive 179

J
/i 14
JCXZ instructions 155
JMP directive 45
JMP.METHQOD directive 45

JMP..METHQOD instructions 166
JUMPS directive 156

Index

K

keyword precedence 240
keywords 241
%OUT 240
asm 205
FAR 130, 138, 193, 254
INSTR 240
MOV 240
NAME 240
NEAR 130, 138, 193, 254
pascal 226
SEGMENT 240

L

%LINUM directive 201
%L IST directive 198
.LALL directive 199
.LFCOND directive 199
.LIST directive 198
/l 14, 197
lla 15, 197
LABEL directive 114, 126, 127
label types 213
labels
defining 126
language modifiers 132
language specifier 191
languages
declaring for procedures 131
LARGE memory model 234
LARGESTACK directive 110
LEAVE instructions 156
LENGTH unary operator 53
lexical grammar 235
libraries
declaring symbols 192
including 194
line continuation character (\) 29
linker 206
linker command line 215
linker, PLINK 191
linking
C++ startup code 227
linking assembly language 206
linking with Extern "C" 207
linking with Paradigm C++ 206
list directives 198, 199, 200
include file 199
list format parameters 201
listing file
conditional list directives 199
cross-reference list directives 200

299

filelist directives 199
format 197
generating 197
generating list directives 198
list format parameters 201
macro list directives 199
LIMP 253
loading segments 210
LOCAL directive 133, 138, 172, 217
local dummy arguments 172
local labels
MASM 143
LOCAL scope 135
LOCAL syntax 134
local variables
defining 133
LOCALS directive 142
location counter 58, 123
$ symbol 123
directives 123
ALIGN 125
EVEN 125
EVENDATA 125
ORG 123
logical operators 250
LOOP instructions 155, 156, 249
loops
FOR loops 251
FORC loops 252
repeat loops 251

M

%MACS directive 199
.MODEL directive 192, 193, 207, 230
.MSFLOAT directives 255
/m 15, 156, 191, 255
/m2 255
/ml 15, 30, 213
/mu 16
/mv 16
/mx 16, 191, 213
@Model symbol 102, 258
macro bodies 180
including comments 172
multiline 171
macros 169
count repeat macro 178
defining nested and recursive 177
list directives 199
loop directive 251
multiline macros 171
operators 266

300

string macros 170
string repeat 179
tags 173
text macros 169, 170, 250
using & 172
main 230
MAIN.CPP 215
MAIN.EXE 215
manipulation instructions 161
MASK unary operator 54
MASKFLAG instructions 160
MASM block scoping 142
MASM compatibility 23, 25, 32, 247
accessing group data 26
basic data types 247
block scoping 142
compatibility issues 254
expressions and operands 25
floating-point types 247
generating floating-point numbers 255
local labels 143
mode expression grammar 236
one-pass assembly 255
operand for BOUND instruction 26
operators 25
segments and groups 26
signed types 247
SIZE operator 254
suppressed fixups 25
MASM directive 24, 255
MASM mode precedence 240
MASM51 directive 32
MEDIUM memory model 233
memory allocation 45
memory model
COMPACT 234
HUGE 234
LARGE 234
MEDIUM 233
SMALL 233
tchuge 227
TCHUGE 234
TINY 233
memory models 207, 230
huge 207
tchuge 207
METHOD directive 37, 39, 45
method procedures 39
declaring 138
methods
ancestor virtual 44
caling 45
object 41

Paradigm Assembler User's Guide

procedure 39
static 41
virtual 40, 42
Microsoft binary floating-point 255
mode expression grammar, MASM 236
MODEL directives 99, 131, 132, 191, 233
@32Bit symbol 102
@CodeSize symbol 102
@DataSize symbol 102
@Interface symbol 102
@Model symbol 102
models 99
module structure 31
MOV 240
MOQV instructions 162
MOV instructions 155
MULTERRS directive 34
multiline macros 171, 180
general 174, 175, 176, 177
multiply instructions 162

N

%NEWPAGE directive 201
%NOCONDS directive 199
%NOCREF directive 200
%NOCTLS directive 198
%NOINCL directive 199, 201
%NOLIST directive 198
%NOMACS directive 199
%NOSY M S directive 198
%NOTRUNC directive 201
/n 17
NAME directive 32, 240
named-type instances

creating and initializing 153
name-mangling 206
naming conventions 191
NEAR procedures 129, 133, 157, 193, 254
NEAR16 254
NEAR32 254
NEG instructions 162
nested macros 177
NODOTNAME 253
NOEMUL 68
NOEMULATOR 253
NOJUMPS directive 156
NOKEYWORD 253
NOLANGUAGE directive 193
NOLIJMP 253
NOLOCALS directive 142
NOMASMH51 directive 32
NOMULTERRS directive 34

Index

NONE 253
NONLANGUAGE directive 192
NOP instructions 156
NOSCOPED 253
NOSMART directive 32, 155, 254
NOT directive 186
NOTPUBLIC 253
NOWARN

directives 33
numeric constants 47

@)

%O0UT 33, 240
@@0ODbject symbol 258
object instances 45
creating 154
object methods 41
object programming form 45
object-oriented programs
creating 35
objects 35, 36
base object 36
declaring 37
defining 120
derived 39
derived object 36
OFFSET directive 26, 27, 214
offsets 59
operands 25
BOUND instruction 26
DWORD 26
WORD 26
operating state
saving 180
operator precedence 259
ideal mode 259
MASM mode 259
operators 25, 259
logical 250
macro 266
OFFSET 26, 27
SIZE, MASM 254
operators, : 126
OPTION directive 252
OR directive 186
ORG directive 123
OVERFLOW? 250

P

%PAGESIZE directive 201
%PCNT directive 201
%POPLCTL directive 201

301

%PUSHLCTL directive 201
Ip 17
-p 226, 229
PAGE directive 201
Paradigm Assembler
Assigning symbol values 31
building programs 8
CALL instruction 41
ancestor virtual methods 44
static method 41
virtua method 42
COMMENT directive 28
commenting programs 28
declaring method procedures 39
displaying messages and warnings 33
error messages 34
extending lines 29
Ideal mode 23, 24
INCLUDE files 29
module structure 31
object-oriented programs 35
objects 35, 36, 37, 45
predefined symbols 30
programming 23
programming form 45
starting 7
terminology 35
virtual method table 40
writing source modules 7
Paradigm C++
C++ startup code linking 227
calling an assembler function 221
caling from PASM 227
calling functions 205, 229
case-sengitivity 213
compatible segments 207
far externals 214
interfacing with PASM 205
label types 213
linker command line 215
linking with PASM 206
loading segments 210
memory models 207
old-style segment directives 209
parameter passing 216
Pascal calling conventions 226
performing acall 228
preserving registers 220
publics and externals 212
returning values 220
segment directives 207
segment setup 227
underscores 212

302

writing C++ member functions 224
parameters
listing file format 201
passing 216
PARITY? 250
Pascal calling conventions 226
PASM expressions 259
performing acall 228
PLINK 191, 206, 215
pointers 25
POP directive 212
POP instructions 157
additional instructions 158
multiple 157
pointer 158
POPSTATE directive 180
POPSTATE instructions 158
precedence 259
Ideal mode 240
keyword 240
MASM mode 240
predefined symbols 30, 97, 241, 257
@Cpu 97
@WordSize 98
preserving registers 220
PRIVATE 253
PRMSTACK.ASM 216
PROC 253, 254
PROC directive 24, 119, 136, 138, 191, 207
PROCDESC directive 138, 165, 193, 252
procedure declarations
visibility 253
procedure defining syntax 129
procedure prototypes 193
procedure types 119, 136
procedures
calling prototyped procedures 165
calingwith CALL..METHOD 165
caling with IMP..METHOD 166
caling with RETURNS 165
calling with stack frames 164
decaring languages 131
declaring 129
declaring NEAR and FAR 129
defining 136
defining argument and variables 133
method procedures 138
nested procedures 136
procedure prototypes 138
specifying language modifiers 132
processor selection 63
PROCTY PE directive 119, 136
program blueprint 233

Paradigm Assembler User's Guide

programs
commenting 28
concepts 23
construction 233
extending lines 29
form 45
models 99
writing 7
PROTO directive 252
PUBLIC 253
PUBLIC directive 126, 127, 191, 192, 193, 213,
252, 253
public symbols
declaring 192
PUBLICDLL directive 192
publics 212
PURGE directive 177
PUSH 139
PUSH directive 120
PUSH instructions 157
additional instructions 158
multiple 157
pointer 158
pushing constants 158
PUSHSTATE directive 180
PUSHSTATE instructions 158

Q

lq 17
QUIRKS directive 32, 254

R

.REPEAT directive 249
/r 18
RADIX directive 48, 148
RCL instructions 160
RCR instructions 160
RECORD directive 161
records 112
creating an instance 151
initializing record instances 151
recursive macros 177
redefinable symbols 141
registers 51
preserving 136, 220
repeat loops 251
REPT directive 178
RET instructions 157
returning values 220
RETURNS instructions 165
ROL instructions 160
ROR instructions 160

Index

S

%SUBTTL directive 201
%SYMS directive 198
SALL directive 199
SEQ directive 109
.SFCOND directive 199
/s 18
@Startup symbol 258
-Soption 207
SAL instructions 160
sample errors 270
SAR instructions 160
saving operating state See PUSHSTATE
scope 135
block scoping 142
MASM block scoping 142
rules 136
SCOPED 253
SEGMENT 253
segment attributes
COMPACT memory model 234
HUGE memory model 234
LARGE memory model 234
MEDIUM memory model 233
SMALL memory model 233
TCHUGE memory model 234
TINY memory model 233
SEGMENT directive 24, 105, 240
segment directives
simplified 103
segment ordering 109
segments 26, 57, 105, 207
access attribute 107
alignment attribute 106
class attribute 106
loading 210
overrides 160
segment ordering 109
segmentation 99
setup 227
size attribute 107
SEGS directive 214
SEGxx instructions 160
SETFIELD instructions 161
SETFLAG instructions 160
SHL instructions 162
SHL instructions 160
SHOWTOT.CPP 209
SHOWTOT.EXE 209
SHR instructions 160
SIGN?flag 250
simple data directives 145

303

SIZE unary operator 53
SIZESTR directive 170
SMALL memory model 233
SMART directive 32, 155
special macro 266
stack size 110
startup code linking 227
STARTUPCODE directive 104
STAT.CPP 215
statements
ENUM 161
RECORD 161
static methods 41
string constants 48
string macros 170
string repeat macros 179
strings 175
STRUC directive 36, 37, 120
symbols 121
STRUCT directive 252
structure data type
creating 148
initializing 148
structure members 114
aligning 114
closing 114
labeling 114
nesting 115
structure offsets 59
structures 113
naming 117
SUB instructions 162
SUBSTR directive 170
SUBTTL directive 201
SUMM.ASM 215
symbol values 47
simple 52
standard 52
symbol-definition conditional directives 186
symbol-expression directives 187
symbols 31, 36, 48, 51, 191, 241
@32Bit 102
@CodeSize 102
@Cpu 97
@DataSize 102
@Interface 102
@Model 102
@Startup 104
@WordSize 98
complex address subtype 50
controlling scope 141
external 192
global 193

304

library 192
predefined 257
public 192
redefinable symbols 141
simple address subtypes 49
simplified segment directives 104
symbol names 48
symbol types 49
symbol values 47
syntax 235
procedure definition 129

T

%TABSIZE directive 201
%TEXT directive 201
%TITLE directive 201
%TRUNC directive 201
.TFCOND directive 199
.TYPE directive 255
/It 18
?2time symbol 30, 258
@@TableAddr _ member 258
@TableAddr member 258
_TEXT 210
TABLE directive 36, 37
table member offsets 59
tables

creating table instances 152

defining 117

initializing 153

overriding table members 119
tags, macros 173
TBLINIT directive 41
TBLINIT instructions 167
TBLINST directive 40
TBLPTR directives 121
tchuge memory model 227
TCHUGE memory model 234
terminology 35
TESTFLAG instructions 160
text macros 169

defining with EQU directive 169

manipulation example 170
TEXTEQU directive 250
text-string conditional directives 187
TINY memory model 233
TITLE directive 201
TYPEDEF directive 119
types 56

defining 119

Paradigm Assembler User's Guide

U

{UNTIL directive 249
UNTILCXZ directive 249
/u 19
unary operators
LENGTH 53
MASK 54
SIZE 53
WIDTH 54
underscores, C 212
uninitialized data 145
union data type
creating 148
initializing 148
union members 114
closing 114
nesting 115
union offsets 59
unions 113
unmangled names 207
USE16 253
USE32 253

Vv

/v 19
?version symbol 30, 258
values
returning 220
VARARG directive 251
variables
communa 193
environment variables 255
VERSION directive 31, 170
VIRTUAL directive 37

Index

virtual method table (VMT) 40, 154

initializing 41
virtua methods 40, 42

w

WHILE directive 248
/w 19
/W 33
@WordSize 98
@WordSize symbol 258
WARN (\W)

directives 33
warnclass 33
warning messages 33, 269
WHILE directive 178
WIDTH unary operator 54
WORD directive 26, 37
WORDPTR 25
writing source modules 7

X

XALL directive 199
XCREF directive 200
XLIST directive 198

Ix 20

x86 processor directives 63
XLATB instructions 160

Z

[z 20
/zd 20
1zi 21
ZERO? 250

305

306 Paradigm Assembler User's Guide

