ASxxxx Assemblers and ASLINK Relocating Linker Version 3.11 January 2002 Page 2 P R E F A C E The ASxxxx assemblers were written following the style of several cross assemblers found in the Digital Equipment Corpora- tion Users Society (DECUS) distribution of the C programming language. The DECUS code was provided with no documentation as to the input syntax or the output format. Study of the code revealed that the unknown author of the code had attempted to formulate an assembler with attributes similiar to those of the PDP-11 MACRO assembler (without macro's). The incomplete code from the DECUS C distribution has been largely rewritten, only the program structure, and C source file organization remains relatively unchanged. However, I wish to thank the author for his contribution to this set of assemblers. The ASLINK program was written as a companion to the ASxxxx assemblers, its design and implementation was not derived from any other work. The ASxxxx assemblers and the ASLINK relocating linker are placed in the Public Domain. Publication or distribution of these programs for non-commercial use is hereby granted with the stipulation that the copyright notice be included with all copies. I would greatly appreciate receiving the details of any changes, additions, or errors pertaining to these programs and will attempt to incorporate any fixes or generally useful changes in a future update to these programs. Alan R. Baldwin Kent State University Physics Department Kent, Ohio 44242 U.S.A. http://shop-pdp.kent.edu/ashtml/asxxxx.htm baldwin@shop-pdp.kent.edu tel: (330) 672 2531 fax: (330) 672 2959 Page 3 C O N T R I B U T O R S Thanks to Marko Makela for his contribution of the AS6500 cross assembler. Marko Makela Sillitie 10 A 01480 Vantaa Finland Internet: Marko.Makela@Helsinki.Fi EARN/BitNet: msmakela@finuh Thanks to John Hartman for his contribution of the AS8051 cross assembler and updates to the ASxxxx and ASLINK internals. John L. Hartman jhartman@compuserve.com http://ourworld.compuserve.com/homepages/jhartman/ Thanks to G. Osborn for his contributions to LKS19.C and LKIHX.C. G. Osborn gary@s-4.com Thanks to Ken Hornstein for his contribution of object libraries contained in LKLIBR.C. Ken Hornstein kenh@cmf.nrl.navy.mil Page 4 Thanks to Bill McKinnon for his contributions to the AS8XCXXX cross assembler for the DS8XCXXX series of microprocessors. Bill McKinnon w_mckinnon@conknet.com Thanks to Roger Ivie for his contribution of the ASGB cross assembler for the GameBoy. Roger Ivie ivie@cc.usu.edu Page 5 ASxxxx Cross Assemblers, Version 3.11, January 2002 Submitted by Alan R. Baldwin, Kent State University, Kent, Ohio Operating System: MS-DOS, Windows, Linux or other supporting K&R C. Source Langauge: C Abstract: The ASxxxx assemblers are a series of microprocessor assem- blers written in the C programming language. This collection contains cross assemblers for the 6800(6802/6808), 6801(hd6303), 6804, 6805, 68HC08, 6809, 68HC11, 68HC12, 68HC16, 8051, 8085(8080), z80(hd64180), GameBoy(Z80), H8/3xx, DS8xCxxx and 6500 series microprocessors. Each assembler has a device specific section which includes: (1) device description, byte order, and file extension information, (2) a table of assembler general directives, special directives, assembler mnemonics and associated operation codes, (3) machine specific code for pro- cessing the device mnemonics, addressing modes, and special directives. The assemblers have a common device independent section which handles the details of file input/output, symbol table genera- tion, program/data areas, expression analysis, and assembler directive processing. The assemblers provide the following features: (1) alpha- betized, formatted symbol table listings, (2) relocatable object modules, (3) global symbols for linking object modules, (4) con- ditional assembly directives, (5) reusable local symbols, and (6) include-file processing. The companion program ASLINK is a relocating linker perform- ing the following functions: (1) bind multiple object modules into a single memory image, (2) resolve inter-module symbol references, (3) resolve undefined symbols from specified librarys of object modules, (4) process absolute, relative, con- catenated, and overlay attributes in data and program sections, (5) perform byte and word program-counter relative (pc or pcr) addressing calculations, (6) define absolute symbol values at link time, (7) define absolute area base address values at link time, (8) produce Intel Hex or Motorola S record output file, (9) produce a map of the linked memory image, and (10) update the ASxxxx assembler listing files with the absolute linked ad- dresses and data. The assemblers and linker have been tested using Linux, DJGPP, Cygwin-1.3.x, Sun Solaris (GCC), Symantec C/C++ V6.1/V7.2, and VC6 with MS-DOS/Windows 3.x/9x/NT/2000/XP. Com- plete source code and documentation for the assemblers and linker is included with the distribution. Additionally, test code for each assembler and several microprocessor monitors ( ASSIST05 for the 6805, MONDEB and ASSIST09 for the 6809, and Page 6 BUFFALO 2.5 for the 6811) are included as working examples of use of these assemblers. CHAPTER 1 THE ASSEMBLER 1-1 1.1 THE ASXXXX ASSEMBLERS 1-1 1.1.1 Assembly Pass 1 1-2 1.1.2 Assembly Pass 2 1-2 1.1.3 Assembly Pass 3 1-2 1.2 SOURCE PROGRAM FORMAT 1-3 1.2.1 Statement Format 1-3 1.2.1.1 Label Field 1-3 1.2.1.2 Operator Field 1-5 1.2.1.3 Operand Field 1-5 1.2.1.4 Comment Field 1-6 1.3 SYMBOLS AND EXPRESSIONS 1-6 1.3.1 Character Set 1-6 1.3.2 User-Defined Symbols 1-10 1.3.3 Local Symbols 1-10 1.3.4 Current Location Counter 1-12 1.3.5 Numbers 1-13 1.3.6 Terms 1-14 1.3.7 Expressions 1-14 1.4 GENERAL ASSEMBLER DIRECTIVES 1-16 1.4.1 .module Directive 1-16 1.4.2 .title Directive 1-16 1.4.3 .sbttl Directive 1-17 1.4.4 .page Directive 1-17 1.4.5 .error Directive 1-17 1.4.6 .byte and .db Directives 1-18 1.4.7 .word and .dw Directives 1-18 1.4.8 .3byte Directive 1-19 1.4.9 .4byte or .quad Directive 1-19 1.4.10 .blkb, .blkw, .ds, .blk3, and .blk4 Directives 1-20 1.4.11 .ascii Directive 1-20 1.4.12 .ascis Directive 1-20 1.4.13 .asciz Directive 1-21 1.4.14 .assume Directive 1-21 1.4.15 .radix Directive 1-22 1.4.16 .even Directive 1-22 1.4.17 .odd Directive 1-22 1.4.18 .area Directive 1-23 1.4.19 .org Directive 1-24 1.4.20 .globl Directive 1-25 1.4.21 .if, .else, and .endif Directives 1-25 1.4.22 .include Directive 1-26 1.4.23 .setdp Directive 1-27 1.4.24 .16bit, .24bit, and .32bit Directives 1-29 1.5 INVOKING ASXXXX 1-30 1.6 ERRORS 1-31 1.7 LISTING FILE 1-32 1.8 SYMBOL TABLE FILE 1-34 1.9 OBJECT FILE 1-35 CHAPTER 2 THE LINKER 2-1 2.1 ASLINK RELOCATING LINKER 2-1 2.2 INVOKING ASLINK 2-2 2.3 LIBRARY PATH(S) AND FILE(S) 2-3 2.4 ASLINK PROCESSING 2-4 Page ii 2.5 LINKER INPUT FORMAT 2-6 2.5.1 Object Module Format 2-7 2.5.2 Header Line 2-7 2.5.3 Module Line 2-7 2.5.4 Symbol Line 2-7 2.5.5 Area Line 2-8 2.5.6 T Line 2-8 2.5.7 R Line 2-8 2.5.8 P Line 2-9 2.5.9 24-Bit and 32-Bit Addressing 2-9 2.6 LINKER ERROR MESSAGES 2-10 2.7 INTEL IHX OUTPUT FORMAT (16-BIT) 2-12 2.8 INTEL I86 OUTPUT FORMAT (24 OR 32-BIT) 2-13 2.9 MOTORLA S1-S9 OUTPUT FORMAT (16-BIT) 2-14 2.10 MOTORLA S2-S8 OUTPUT FORMAT (24-BIT) 2-15 2.11 MOTORLA S3-S7 OUTPUT FORMAT (32-BIT) 2-16 CHAPTER 3 BUILDING ASXXXX AND ASLINK 3-1 3.1 BUILDING AN ASSEMBLER 3-1 3.2 BUILDING ASLINK 3-2 APPENDIX A AS6800 ASSEMBLER A-1 A.1 6800 REGISTER SET A-1 A.2 6800 INSTRUCTION SET A-1 A.2.1 Inherent Instructions A-2 A.2.2 Branch Instructions A-2 A.2.3 Single Operand Instructions A-3 A.2.4 Double Operand Instructions A-4 A.2.5 Jump and Jump to Subroutine Instructions A-4 A.2.6 Long Register Instructions A-5 APPENDIX B AS6801 ASSEMBLER B-1 B.1 .hd6303 DIRECTIVE B-1 B.2 6801 REGISTER SET B-1 B.3 6801 INSTRUCTION SET B-1 B.3.1 Inherent Instructions B-2 B.3.2 Branch Instructions B-2 B.3.3 Single Operand Instructions B-3 B.3.4 Double Operand Instructions B-4 B.3.5 Jump and Jump to Subroutine Instructions B-5 B.3.6 Long Register Instructions B-5 B.3.7 6303 Specific Instructions B-5 APPENDIX C AS6804 ASSEMBLER C-1 C.1 6804 REGISTER SET C-1 C.2 6804 INSTRUCTION SET C-1 C.2.1 Inherent Instructions C-2 C.2.2 Branch Instructions C-2 C.2.3 Single Operand Instructions C-2 C.2.4 Jump and Jump to Subroutine Instructions C-2 C.2.5 Bit Test Instructions C-2 C.2.6 Load Immediate data Instruction C-3 Page iii C.2.7 6804 Derived Instructions C-3 APPENDIX D AS6805 ASSEMBLER D-1 D.1 6805 REGISTER SET D-1 D.2 6805 INSTRUCTION SET D-1 D.2.1 Control Instructions D-2 D.2.2 Bit Manipulation Instructions D-2 D.2.3 Branch Instructions D-2 D.2.4 Read-Modify-Write Instructions D-3 D.2.5 Register\Memory Instructions D-3 D.2.6 Jump and Jump to Subroutine Instructions D-4 APPENDIX E AS6808 ASSEMBLER E-1 E.1 68HC08 REGISTER SET E-1 E.2 68HC08 INSTRUCTION SET E-1 E.2.1 Control Instructions E-2 E.2.2 Bit Manipulation Instructions E-2 E.2.3 Branch Instructions E-3 E.2.4 Complex Branch Instructions E-3 E.2.5 Read-Modify-Write Instructions E-4 E.2.6 Register\Memory Instructions E-5 E.2.7 Double Operand Move Instruction E-5 E.2.8 16-Bit <H:X> Index Register Instructions E-5 E.2.9 Jump and Jump to Subroutine Instructions E-5 APPENDIX F AS6809 ASSEMBLER F-1 F.1 6809 REGISTER SET F-1 F.2 6809 INSTRUCTION SET F-1 F.2.1 Inherent Instructions F-3 F.2.2 Short Branch Instructions F-3 F.2.3 Long Branch Instructions F-3 F.2.4 Single Operand Instructions F-4 F.2.5 Double Operand Instructions F-5 F.2.6 D-register Instructions F-5 F.2.7 Index/Stack Register Instructions F-5 F.2.8 Jump and Jump to Subroutine Instructions F-6 F.2.9 Register - Register Instructions F-6 F.2.10 Condition Code Register Instructions F-6 F.2.11 6800 Compatibility Instructions F-6 APPENDIX G AS6811 ASSEMBLER G-1 G.1 68HC11 REGISTER SET G-1 G.2 68HC11 INSTRUCTION SET G-1 G.2.1 Inherent Instructions G-2 G.2.2 Branch Instructions G-2 G.2.3 Single Operand Instructions G-3 G.2.4 Double Operand Instructions G-4 G.2.5 Bit Manupulation Instructions G-4 G.2.6 Jump and Jump to Subroutine Instructions G-5 G.2.7 Long Register Instructions G-5 Page iv APPENDIX H AS6812 ASSEMBLER H-1 H.1 68HC12 REGISTER SET H-1 H.2 68HC12 INSTRUCTION SET H-1 H.2.1 Inherent Instructions H-3 H.2.2 Short Branch Instructions H-3 H.2.3 Long Branch Instructions H-3 H.2.4 Branch on Decrement, Test, or Increment H-4 H.2.5 Bit Clear and Set Instructions H-4 H.2.6 Branch on Bit Clear or Set H-4 H.2.7 Single Operand Instructions H-5 H.2.8 Double Operand Instructions H-6 H.2.9 Move Instructions H-6 H.2.10 D-register Instructions H-6 H.2.11 Index/Stack Register Instructions H-7 H.2.12 Jump and Jump/Call to Subroutine Instructions H-7 H.2.13 Other Special Instructions H-7 H.2.14 Register - Register Instructions H-7 H.2.15 Condition Code Register Instructions H-7 H.2.16 M68HC11 Compatibility Mode Instructions H-8 APPENDIX I AS6816 ASSEMBLER I-1 I.1 68HC16 REGISTER SET I-1 I.2 68HC16 INSTRUCTION SET I-1 I.2.1 Inherent Instructions I-2 I.2.2 Push/Pull Multiple Register Instructions I-3 I.2.3 Short Branch Instructions I-3 I.2.4 Long Branch Instructions I-3 I.2.5 Bit Manipulation Instructions I-3 I.2.6 Single Operand Instructions I-4 I.2.7 Double Operand Instructions I-5 I.2.8 Index/Stack Register Instructions I-5 I.2.9 Jump and Jump to Subroutine Instructions I-6 I.2.10 Condition Code Register Instructions I-6 I.2.11 Multiply and Accumulate Instructions I-6 APPENDIX J ASH8 ASSEMBLER J-1 J.1 H8/3XX REGISTER SET J-1 J.2 H8/3XX INSTRUCTION SET J-1 J.2.1 Inherent Instructions J-2 J.2.2 Branch Instructions J-2 J.2.3 Single Operand Instructions J-3 J.2.4 Double Operand Instructions J-4 J.2.5 Mov Instructions J-5 J.2.6 Bit Manipulation Instructions J-6 J.2.7 Extended Bit Manipulation Instructions J-7 J.2.8 Condition Code Instructions J-7 J.2.9 Other Instructions J-8 J.2.10 Jump and Jump to Subroutine Instructions J-8 APPENDIX K AS8051 ASSEMBLER K-1 K.1 ACKNOWLEDGMENT K-1 Page v K.2 8051 REGISTER SET K-1 K.3 8051 INSTRUCTION SET K-2 K.3.1 Inherent Instructions K-2 K.3.2 Move Instructions K-3 K.3.3 Single Operand Instructions K-3 K.3.4 Two Operand Instructions K-4 K.3.5 Call and Return Instructions K-4 K.3.6 Jump Instructions K-4 K.3.7 Predefined Symbols: SFR Map K-5 K.3.8 Predefined Symbols: SFR Bit Addresses K-6 K.3.9 Predefined Symbols: Control Bits K-7 APPENDIX L AS8085 ASSEMBLER L-1 L.1 8085 REGISTER SET L-1 L.2 8085 INSTRUCTION SET L-1 L.2.1 Inherent Instructions L-2 L.2.2 Register/Memory/Immediate Instructions L-2 L.2.3 Call and Return Instructions L-2 L.2.4 Jump Instructions L-2 L.2.5 Input/Output/Reset Instructions L-3 L.2.6 Move Instructions L-3 L.2.7 Other Instructions L-3 APPENDIX M AS8XCXXX ASSEMBLER M-1 M.1 ACKNOWLEDGMENTS M-1 M.2 DS8XCXXX ASSEMBLER DIRECTIVES M-1 M.2.1 DS80C390 Addressing Mode Directive M-2 M.3 DS8XCXXX REGISTER SET M-3 M.4 DS8XCXXX INSTRUCTION SET M-3 M.4.1 Inherent Instructions M-4 M.4.2 Move Instructions M-4 M.4.3 Single Operand Instructions M-4 M.4.4 Two Operand Instructions M-5 M.4.5 Call and Return Instructions M-5 M.4.6 Jump Instructions M-5 M.5 DS8XCXXX SPECIAL FUNCTION REGISTERS M-6 M.5.1 SFR Map M-6 M.5.2 Bit Addressable Registers: Generic M-7 M.5.3 Bit Addressable Registers: Specific M-8 M.5.4 Optional Symbols: Control Bits M-9 M.6 DS80C310 SPECIAL FUNCTION REGISTERS M-10 M.6.1 SFR Map M-10 M.6.2 Bit Addressable Registers: Generic M-11 M.6.3 Bit Addressable Registers: Specific M-12 M.6.4 Optional Symbols: Control Bits M-13 M.7 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS M-14 M.7.1 SFR Map M-14 M.7.2 Bit Addressable Registers: Generic M-15 M.7.3 Bit Addressable Registers: Specific M-16 M.7.4 Optional Symbols: Control Bits M-17 M.8 DS80C390 SPECIAL FUNCTION REGISTERS M-18 M.8.1 SFR Map M-18 Page vi M.8.2 Bit Addressable Registers: Generic M-19 M.8.3 Bit Addressable Registers: Specific M-20 M.8.4 Optional Symbols: Control Bits M-21 M.9 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS M-23 M.9.1 SFR Map M-23 M.9.2 Bit Addressable Registers: Generic M-24 M.9.3 Bit Addressable Registers: Specific M-25 M.9.4 Optional Symbols: Control Bits M-26 M.10 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS M-27 M.10.1 SFR Map M-27 M.10.2 Bit Addressable Registers: Generic M-28 M.10.3 Bit Addressable Registers: Specific M-29 M.10.4 Optional Symbols: Control Bits M-30 M.11 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS M-31 M.11.1 SFR Map M-31 M.11.2 Bit Addressable Registers: Generic M-33 M.11.3 Bit Addressable Registers: Specific M-34 M.11.4 Optional Symbols: Control Bits M-36 APPENDIX N ASZ80 ASSEMBLER N-1 N.1 .hd64 DIRECTIVE N-1 N.2 Z80 REGISTER SET AND CONDITIONS N-1 N.3 Z80 INSTRUCTION SET N-2 N.3.1 Inherent Instructions N-3 N.3.2 Implicit Operand Instructions N-3 N.3.3 Load Instruction N-4 N.3.4 Call/Return Instructions N-4 N.3.5 Jump and Jump to Subroutine Instructions N-4 N.3.6 Bit Manipulation Instructions N-5 N.3.7 Interrupt Mode and Reset Instructions N-5 N.3.8 Input and Output Instructions N-5 N.3.9 Register Pair Instructions N-5 N.3.10 HD64180 Specific Instructions N-6 APPENDIX O ASGB ASSEMBLER O-1 O.1 ACKNOWLEDGEMENT O-1 O.2 INTRODUCTION O-1 O.3 GAMEBOY REGISTER SET AND CONDITIONS O-1 O.4 GAMEBOY INSTRUCTION SET O-2 O.4.1 .tile Directive O-2 O.4.2 Potentially Controversial Mnemonic Selection O-4 O.4.2.1 Auto-Indexing Loads O-4 O.4.2.2 Input and Output Operations O-4 O.4.2.3 The 'stop' Instruction O-5 O.4.3 Inherent Instructions O-5 O.4.4 Implicit Operand Instructions O-5 O.4.5 Load Instructions O-6 O.4.6 Call/Return Instructions O-6 O.4.7 Jump Instructions O-6 O.4.8 Bit Manipulation Instructions O-6 O.4.9 Input and Output Instructions O-7 O.4.10 Register Pair Instructions O-7 Page vii APPENDIX P AS6500 ASSEMBLER P-1 P.1 ACKNOWLEDGMENT P-1 P.2 6500 REGISTER SET P-2 P.3 6500 INSTRUCTION SET P-2 P.3.1 Processor Specific Directives P-3 P.3.2 65xx Core Inherent Instructions P-3 P.3.3 65xx Core Branch Instructions P-3 P.3.4 65xx Core Single Operand Instructions P-3 P.3.5 65xx Core Double Operand Instructions P-4 P.3.6 65xx Core Jump and Jump to Subroutine Instructions P-4 P.3.7 65xx Core Miscellaneous X and Y Register Instructions P-4 P.3.8 65F11 and 65F12 Specific Instructions P-5 P.3.9 65C00/21 and 65C29 Specific Instructions P-5 P.3.10 65C02, 65C102, and 65C112 Specific Instructions P-6 CHAPTER 1 THE ASSEMBLER 1.1 THE ASXXXX ASSEMBLERS The ASxxxx assemblers are a series of microprocessor assem- blers written in the C programming language. Each assembler has a device specific section which includes: 1. device description, byte order, and file extension in- formation 2. a table of the assembler general directives, special device directives, assembler mnemonics and associated operation codes 3. machine specific code for processing the device mnemon- ics, addressing modes, and special directives The device specific information is detailed in the appendices. The assemblers have a common device independent section which handles the details of file input/output, symbol table genera- tion, program/data areas, expression analysis, and assembler directive processing. The assemblers provide the following features: 1. Command string control of assembly functions 2. Alphabetized, formatted symbol table listing 3. Relocatable object modules 4. Global symbols for linking object modules 5. Conditional assembly directives THE ASSEMBLER PAGE 1-2 THE ASXXXX ASSEMBLERS 6. Program sectioning directives ASxxxx assembles one or more source files into a single relo- catable ascii object file. The output of the ASxxxx assemblers consists of an ascii relocatable object file(*.rel), an assembly listing file(*.lst), and a symbol file(*.sym). 1.1.1 Assembly Pass 1 During pass 1, ASxxxx opens all source files and performs a rudimenatry assembly of each source statement. During this pro- cess all symbol tables are built, program sections defined, and number of bytes for each assembled source line is estimated. At the end of pass 1 all undefined symbols may be made global (external) using the ASxxxx switch -g, otherwise undefined sym- bols will be flagged as errors during succeeding passes. 1.1.2 Assembly Pass 2 During pass 2 the ASxxxx assembler resolves forward refer- ences and determines the number of bytes for each assembled line. The number of bytes used by a particular assembler in- struction may depend upon the addressing mode, whether the in- struction allows multiple forms based upon the relative distance to the addressed location, or other factors. Pass 2 resolves these cases and determines the address of all symbols. 1.1.3 Assembly Pass 3 Pass 3 by the assembler generates the listing file, the relo- catable output file, and the symbol tables. Also during pass 3 the errors will be reported. The relocatable object file is an ascii file containing sym- bol references and definitions, program area definitions, and the relocatable assembled code, the linker ASLINK will use this information to generate an absolute load file (Motorola or Intel formats). THE ASSEMBLER PAGE 1-3 SOURCE PROGRAM FORMAT 1.2 SOURCE PROGRAM FORMAT 1.2.1 Statement Format A source program is composed of assembly-language statements. Each statement must be completed on one line. A line may con- tain a maximum of 128 characters, longer lines are truncated and lost. An ASxxxx assembler statement may have as many as four fields. These fields are identified by their order within the statement and/or by separating characters between fields. The general format of the ASxxxx statement is: [label:] Operator Operand [;Comment(s)] The label and comment fields are optional. The operator and operand fields are interdependent. The operator field may be an assembler directive or an assembly mnemonic. The operand field may be optional or required as defined in the context of the operator. ASxxxx interprets and processes source statements one at a time. Each statement causes a particular operation to be per- formed. 1.2.1.1 Label Field - A label is a user-defined symbol which is assigned the value of the current location counter and entered into the user de- fined symbol table. The current location counter is used by ASxxxx to assign memory addresses to the source program state- ments as they are encountered during the assembly process. Thus a label is a means of symbolically referring to a specific statement. When a program section is absolute, the value of the current location counter is absolute; its value references an absolute memory address. Similarly, when a program section is relocat- able, the value of the current location counter is relocatable. A relocation bias calculated at link time is added to the ap- parent value of the current location counter to establish its effective absolute address at execution time. (The user can also force the linker to relocate sections defined as absolute. This may be required under special circumstances.) If present, a label must be the first field in a source statement and must be terminated by a colon (:). For example, THE ASSEMBLER PAGE 1-4 SOURCE PROGRAM FORMAT if the value of the current location counter is absolute 01F0(H), the statement: abcd: nop assigns the value 01F0(H) to the label abcd. If the location counter value were relocatable, the final value of abcd would be 01F0(H)+K, where K represents the relocation bias of the program section, as calculated by the linker at link time. More than one label may appear within a single label field. Each label so specified is assigned the same address value. For example, if the value of the current location counter is 1FF0(H), the multiple labels in the following statement are each assigned the value 1FF0(H): abcd: aq: $abc: nop Multiple labels may also appear on successive lines. For ex- ample, the statements abcd: aq: $abc: nop likewise cause the same value to be assigned to all three la- bels. A double colon (::) defines the label as a global symbol. For example, the statement abcd:: nop establishes the label abcd as a global symbol. The distinguish- ing attribute of a global symbol is that it can be referenced from within an object module other than the module in which the symbol is defined. References to this label in other modules are resolved when the modules are linked as a composite execut- able image. The legal characters for defining labels are: A through Z a through z 0 through 9 . (Period) $ (Dollar sign) _ (underscore) A label may be any length, however only the first 79 characters are significant and, therefore must be unique among all labels in the source program (not necessarily among THE ASSEMBLER PAGE 1-5 SOURCE PROGRAM FORMAT separately compiled modules). An error code(s) (m or p) will be generated in the assembly listing if the first 79 characters in two or more labels are the same. The m code is caused by the redeclaration of the symbol or its reference by another state- ment. The p code is generated because the symbols location is changing on each pass through the source file. The label must not start with the characters 0-9, as this designates a local symbol with special attributes described in a later section. The label must not start with the sequence $$, as this represents the temporary radix 16 for constants. 1.2.1.2 Operator Field - The operator field specifies the action to be performed. It may consist of an instruction mnemonic (op code) or an assembler directive. When the operator is an instruction mnemonic, a machine in- struction is generated and the assembler evaluates the addresses of the operands which follow. When the operator is a directive ASxxxx performs certain control actions or processing operations during assembly of the source program. Leading and trailing spaces or tabs in the operator field have no significance; such characters serve only to separate the operator field from the preceeding and following fields. An operator is terminated by a space, tab or end of line. 1.2.1.3 Operand Field - When the operator is an instruction mnemonic (op code), the operand field contains program variables that are to be evaluated/manipulated by the operator. Operands may be expressions or symbols, depending on the operator. Multiple expressions used in the operand fields may be separated by a comma. An operand should be preceeded by an operator field; if it is not, the statement will give an error (q or o). All operands following instruction mnemonics are treated as expressions. The operand field is terminated by a semicolon when the field is followed by a comment. For example, in the following statement: label: lda abcd,x ;Comment field THE ASSEMBLER PAGE 1-6 SOURCE PROGRAM FORMAT the tab between lda and abcd terminates the operator field and defines the beginning of the operand field; a comma separates the operands abcd and x; and a semicolon terminates the operand field and defines the beginning of the comment field. When no comment field follows, the operand field is terminated by the end of the source line. 1.2.1.4 Comment Field - The comment field begins with a semicolon and extends through the end of the line. This field is optional and may contain any 7-bit ascii character except null. Comments do not affect assembly processing or program execu- tion. 1.3 SYMBOLS AND EXPRESSIONS This section describes the generic components of the ASxxxx assemblers: the character set, the conventions observed in con- structing symbols, and the use of numbers, operators, and ex- pressions. 1.3.1 Character Set The following characters are legal in ASxxxx source programs: 1. The letters A through Z. Both upper- and lower-case letters are acceptable. The assemblers, by default, are not case sensitive, i.e. ABCD and abcd are the same symbols. (The assemblers can be made case sensi- tive by using the -z command line option.) 2. The digits 0 through 9 3. The characters . (period), $ (dollar sign), and _ (un- derscore). 4. The special characters listed in Tables 1 through 6. Tables 1 through 6 describe the various ASxxxx label and field terminators, assignment operators, operand separators, as- sembly, unary, binary, and radix operators. THE ASSEMBLER PAGE 1-7 SYMBOLS AND EXPRESSIONS Table 1 Label Terminators and Assignment Operators ---------------------------------------------------------------- : Colon Label terminator. :: Double colon Label Terminator; defines the label as a global label. = Equal sign Direct assignment operator. == Double equal Direct assignment operator; sign defines the symbol as a global symbol. ---------------------------------------------------------------- Table 2 Field Terminators and Operand Separators ---------------------------------------------------------------- Tab Item or field terminator. Space Item or field terminator. , Comma Operand field separator. ; Semicolon Comment field indicator. ---------------------------------------------------------------- Table 3 Assembler Operators ---------------------------------------------------------------- # Number sign Immediate expression indicator. . Period Current location counter. ( Left parenthesis Expression delimiter. ) Right parenthesis Expression delimeter. ---------------------------------------------------------------- THE ASSEMBLER PAGE 1-8 SYMBOLS AND EXPRESSIONS Table 4 Unary Operators ---------------------------------------------------------------- < Left bracket <FEDC Produces the lower byte value of the expression. (DC) > Right bracket >FEDC Produces the upper byte value of the expression. (FE) + Plus sign +A Positive value of A - Minus sign -A Produces the negative (2's complement) of A. ~ Tilde ~A Produces the 1's comple- ment of A. ' Single quote 'D Produces the value of the character D. " Double quote "AB Produces the double byte value for AB. \ Backslash '\n Unix style characters \b, \f, \n, \r, \t or '\001 or octal byte values. ---------------------------------------------------------------- THE ASSEMBLER PAGE 1-9 SYMBOLS AND EXPRESSIONS Table 5 Binary Operators ---------------------------------------------------------------- << Double 0800 << 4 Produces the 4 bit Left bracket left-shifted value of 0800. (8000) >> Double 0800 >> 4 Produces the 4 bit Right bracket right-shifted value of 0800. (0080) + Plus sign A + B Arithmetic Addition operator. - Minus sign A - B Arithmetic Subtraction operator. * Asterisk A * B Arithmetic Multiplica- tion operator. / Slash A / B Arithmetic Division operator. & Ampersand A & B Logical AND operator. | Bar A | B Logical OR operator. % Percent sign A % B Modulus operator. ^ Up arrow or A ^ B EXCLUSIVE OR operator. circumflex ---------------------------------------------------------------- Table 6 Temporary Radix Operators ---------------------------------------------------------------- $%, 0b, 0B Binary radix operator. $&, 0o, 0O, 0q, 0Q Octal radix operator. $#, 0d, 0D Decimal radix operator. $$, 0h, 0H, 0x, 0X Hexidecimal radix operator. Potential ambiguities arising from the use of 0b and 0d as temporary radix operators may be circumvented by THE ASSEMBLER PAGE 1-10 SYMBOLS AND EXPRESSIONS preceding all non-prefixed hexidecimal numbers with 00. Leading 0's are required in any case where the first hexidecimal digit is abcdef as the assembler will treat the letter sequence as a label. ---------------------------------------------------------------- 1.3.2 User-Defined Symbols User-defined symbols are those symbols that are equated to a specific value through a direct assignment statement or appear as labels. These symbols are added to the User Symbol Table as they are encountered during assembly. The following rules govern the creation of user-defined symbols: 1. Symbols can be composed of alphanumeric characters, dollar signs ($), periods (.), and underscores (_) only. 2. The first character of a symbol must not be a number (except in the case of local symbols). 3. The first 79 characters of a symbol must be unique. A symbol can be written with more than 79 legal characters, but the 80th and subsequent characters are ignored. 4. Spaces and Tabs must not be embedded within a symbol. 1.3.3 Local Symbols Local symbols are specially formatted symbols used as labels within a block of coding that has been delimited as a local sym- bol block. Local symbols are of the form n$, where n is a decimal integer from 0 to 255, inclusive. Examples of local symbols are: 1$ 27$ 138$ 244$ THE ASSEMBLER PAGE 1-11 SYMBOLS AND EXPRESSIONS The range of a local symbol block consists of those state- ments between two normally constructed symbolic labels. Note that a statement of the form: ALPHA = EXPRESSION is a direct assignment statement but does not create a label and thus does not delimit the range of a local symbol block. Note that the range of a local symbol block may extend across program areas. Local symbols provide a convenient means of generating labels for branch instructions and other such references within local symbol blocks. Using local symbols reduces the possibility of symbols with multiple definitions appearing within a user pro- gram. In addition, the use of local symbols differentiates entry-point labels from local labels, since local labels cannot be referenced from outside their respective local symbol blocks. Thus, local symbols of the same name can appear in other local symbol blocks without conflict. Local symbols require less sym- bol table space than normal symbols. Their use is recommended. The use of the same local symbol within a local symbol block will generate one or both of the m or p errors. Example of local symbols: a: ldx #atable ;get table address lda #0d48 ;table length 1$: clr ,x+ ;clear deca bne 1$ b: ldx #btable ;get table address lda #0d48 ;table length 1$: clr ,x+ ;clear deca bne 1$ THE ASSEMBLER PAGE 1-12 SYMBOLS AND EXPRESSIONS 1.3.4 Current Location Counter The period (.) is the symbol for the current location coun- ter. When used in the operand field of an instruction, the period represents the address of the first byte of the instruction: AS: ldx #. ;The period (.) refers to ;the address of the ldx ;instruction. When used in the operand field of an ASxxxx directive, it represents the address of the current byte or word: QK = 0 .word 0xFFFE,.+4,QK ;The operand .+4 in the .word ;directive represents a value ;stored in the second of the ;three words during assembly. If we assume the current value of the program counter is 0H0200, then during assembly, ASxxxx reserves three words of storage starting at location 0H0200. The first value, a hex- idecimal constant FFFE, will be stored at location 0H0200. The second value represented by .+4 will be stored at location 0H0202, its value will be 0H0206 ( = 0H0202 + 4). The third value defined by the symbol QK will be placed at location 0H0204. At the beginning of each assembly pass, ASxxxx resets the lo- cation counter. Normally, consecutive memory locations are as- signed to each byte of object code generated. However, the value of the location counter can be changed through a direct assignment statement of the following form: . = . + expression The new location counter can only be specified relative to the current location counter. Neglecting to specify the current program counter along with the expression on the right side of the assignment operator will generate the (.) error. (Absolute program areas may use the .org directive to specify the absolute location of the current program counter.) The following coding illustrates the use of the current location counter: .area CODE1 (ABS) ;program area CODE1 ;is ABSOLUTE THE ASSEMBLER PAGE 1-13 SYMBOLS AND EXPRESSIONS .org 0H100 ;set location to ;0H100 absolute num1: ldx #.+0H10 ;The label num1 has ;the value 0H100. ;X is loaded with ;0H100 + 0H10 .org 0H130 ;location counter ;set to 0H130 num2: ldy #. ;The label num2 has ;the value 0H130. ;Y is loaded with ;value 0H130. .area CODE2 (REL) ;program area CODE2 ;is RELOCATABLE . = . + 0H20 ;Set location counter ;to relocatable 0H20 of ;the program section. num3: .word 0 ;The label num3 has ;the value ;of relocatable 0H20. . = . + 0H40 ;will reserve 0H40 ;bytes of storage as will .blkb 0H40 ;or .blkw 0H20 The .blkb and .blkw directives are the preferred methods of allocating space. 1.3.5 Numbers ASxxxx assumes that all numbers in the source program are to be interpreted in decimal radix unless otherwise specified. The .radix directive may be used to specify the default as octal, decimal, or hexidecimal. Individual numbers can be designated as binary, octal, decimal, or hexidecimal through the temporary radix prefixes shown in table 6. Negative numbers must be preceeded by a minus sign; ASxxxx translates such numbers into two's complement form. Positive numbers may (but need not) be preceeded by a plus sign. THE ASSEMBLER PAGE 1-14 SYMBOLS AND EXPRESSIONS Numbers are always considered to be absolute values, therefor they are never relocatable. 1.3.6 Terms A term is a component of an expression and may be one of the following: 1. A number. 2. A symbol: 1. A period (.) specified in an expression causes the current location counter to be used. 2. A User-defined symbol. 3. An undefined symbol is assigned a value of zero and inserted in the User-Defined symbol table as an un- defined symbol. 3. A single quote followed by a single ascii character, or a double quote followed by two ascii characters. 4. An expression enclosed in parenthesis. Any expression so enclosed is evaluated and reduced to a single term before the remainder of the expression in which it ap- pears is evaluated. Parenthesis, for example, may be used to alter the left-to-right evaluation of expres- sions, (as in A*B+C versus A*(B+C)), or to apply a un- ary operator to an entire expression (as in -(A+B)). 5. A unary operator followed by a symbol or number. 1.3.7 Expressions Expressions are combinations of terms joined together by binary operators. Expressions reduce to a value. The evalua- tion of an expression includes the determination of its attri- butes. A resultant expression value may be one of three types (as described later in this section): relocatable, absolute, and external. THE ASSEMBLER PAGE 1-15 SYMBOLS AND EXPRESSIONS Expressions are evaluate with an operand hierarchy as follows: * / % multiplication, division, and modulus first. + - addition and subtraction second. << >> left shift and right shift third. ^ exclusive or fourth. & logical and fifth. | logical or last except that unary operators take precedence over binary operators. A missing or illegal operator terminates the expression analysis, causing error codes (o) and/or (q) to be generated depending upon the context of the expression itself. At assembly time the value of an external (global) expression is equal to the value of the absolute part of that expression. For example, the expression external+4, where 'external' is an external symbol, has the value of 4. This expression, however, when evaluated at link time takes on the resolved value of the symbol 'external', plus 4. Expressions, when evaluated by ASxxxx, are one of three types: relocatable, absolute, or external. The following dis- tinctions are important: 1. An expression is relocatable if its value is fixed re- lative to the base address of the program area in which it appears; it will have an offset value added at link time. Terms that contain labels defined in relocatable program areas will have a relocatable value; simi- larly, a period (.) in a relocatable program area, representing the value of the current program location counter, will also have a relocatable value. 2. An expression is absolute if its value is fixed. An expression whose terms are numbers and ascii characters will reduce to an absolute value. A relocatable ex- pression or term minus a relocatable term, where both elements being evaluated belong to the same program area, is an absolute expression. This is because every THE ASSEMBLER PAGE 1-16 SYMBOLS AND EXPRESSIONS term in a program area has the same relocation bias. When one term is subtracted from the other the reloca- tion bias is zero. 3. An expression is external (or global) if it contains a single global reference (plus or minus an absolute ex- pression value) that is not defined within the current program. Thus, an external expression is only par- tially defined following assembly and must be resolved at link time. 1.4 GENERAL ASSEMBLER DIRECTIVES An ASxxxx directive is placed in the operator field of the source line. Only one directive is allowed per source line. Each directive may have a blank operand field or one or more operands. Legal operands differ with each directive. 1.4.1 .module Directive Format: .module string The .module directive causes the string to be included in the assemblers output file as an identifier for this particular ob- ject module. The string may be from 1 to 79 characters in length. Only one identifier is allowed per assembled module. The main use of this directive is to allow the linker to report a modules' use of undefined symbols. At link time all undefined symbols are reported and the modules referencing them are listed. 1.4.2 .title Directive Format: .title string The .title directive provides a character string to be placed on the second line of each page during listing. THE ASSEMBLER PAGE 1-17 GENERAL ASSEMBLER DIRECTIVES 1.4.3 .sbttl Directive Format: .sbttl string The .sbttl directive provides a character string to be placed on the third line of each page during listing. 1.4.4 .page Directive Format: .page The .page directive causes a page ejection with a new heading to be printed. The new page occurs after the next line of the source program is processed, this allows an immediately follow- ing .sbttl directive to appear on the new page. The .page source line will not appear in the file listing. Paging may be disabled by invoking the -p directive. 1.4.5 .error Directive Format: .error exp where: exp represents an absolute expression. If the evaluation of the expression results in a non zero value then an 'e' error is reported and the text line is listed in the generated error. The .error directive is useful to report configuration or value errors during the assembly process. (The .error directive is identical in function to the .assume directive, just perhaps more descriptive.) THE ASSEMBLER PAGE 1-18 GENERAL ASSEMBLER DIRECTIVES 1.4.6 .byte and .db Directives Format: .byte exp ;Stores the binary value .db exp ;of the expression in the ;next byte. .byte exp1,exp2,expn ;Stores the binary values .db exp1,exp2,expn ;of the list of expressions ;in successive bytes. where: exp, represent expressions that will be exp1, truncated to 8-bits of data. . Each expression will be calculated, . the high-order byte will be truncated. . Multiple expressions must be expn separated by commas. The .byte or .db directives are used to generate successive bytes of binary data in the object module. 1.4.7 .word and .dw Directives Format: .word exp ;Stores the binary value .dw exp ;of the expression in ;the next word. .word exp1,exp2,expn ;Stores the binary values .dw exp1,exp2,expn ;of the list of expressions ;in successive words. where: exp, represent expressions that will occupy two exp1, bytes of data. Each expression will be . calculated as a 16-bit word expression. . Multiple expressions must be expn separated by commas. The .word or .dw directives are used to generate successive words of binary data in the object module. THE ASSEMBLER PAGE 1-19 GENERAL ASSEMBLER DIRECTIVES 1.4.8 .3byte Directive Format: .3byte exp ;Stores the binary value ;of the expression in ;the next triple (3 bytes). .3byte exp1,exp2,expn ;Stores the binary values ;of the list of expressions ;in successive triples ;(3 bytes). where: exp, represent expressions that will occupy three exp1, bytes of data. Each expression will be . calculated as a 24-bit word expression. . Multiple expressions must be expn separated by commas. The .3byte directive is used to generate successive triples of binary data in the object module. (This directive is only available in assemblers supporting 24-bit addressing.) 1.4.9 .4byte or .quad Directive Format: .4byte exp ;Stores the binary value .quad exp ;of the expression in ;the next quad (4 bytes). .4byte exp1,exp2,expn ;Stores the binary values .quad exp1,exp2,expn ;of the list of expressions ;in successive quads ;(4 bytes). where: exp, represent expressions that will occupy three exp1, bytes of data. Each expression will be . calculated as a 32-bit word expression. . Multiple expressions must be expn separated by commas. The .4byte or .quad directive is used to generate successive quads of binary data in the object module. (This directive is only available in assemblers supporting 32-bit addressing.) THE ASSEMBLER PAGE 1-20 GENERAL ASSEMBLER DIRECTIVES 1.4.10 .blkb, .blkw, .ds, .blk3, and .blk4 Directives Format: .blkb N ;reserve N bytes of space .blkw N ;reserve N words of space .ds N ;reserve N bytes of space .blk3 N ;reserve N triples of space .blk4 N ;reserve N quads of space The .blkb and .ds directives reserve byte blocks in the ob- ject module; the .blkw directive reserves word blocks; the .blk3 reserves 3 byte blocks(available in assembles supporting 24-bit addressing); the .blk4 reserves 4 byte blocks (available in assemblers supporting 32-bit addressing). 1.4.11 .ascii Directive Format: .ascii /string/ where: string is a string of printable ascii characters. / / represent the delimiting characters. These delimiters may be any paired printing characters, as long as the characters are not contained within the string itself. If the delimiting characters do not match, the .ascii directive will give the (q) error. The .ascii directive places one binary byte of data for each character in the string into the object module. 1.4.12 .ascis Directive Format: .ascis /string/ where: string is a string of printable ascii characters. / / represent the delimiting characters. These delimiters may be any paired printing characters, as long as the characters are not contained within the string itself. If the delimiting characters do not match, the .ascis directive will give the (q) error. The .ascis directive places one binary byte of data for each THE ASSEMBLER PAGE 1-21 GENERAL ASSEMBLER DIRECTIVES character in the string into the object module. The last character in the string will have the high order bit set. 1.4.13 .asciz Directive Format: .asciz /string/ where: string is a string of printable ascii characters. / / represent the delimiting characters. These delimiters may be any paired printing characters, as long as the characters are not contained within the string itself. If the delimiting characters do not match, the .asciz directive will give the (q) error. The .asciz directive places one binary byte of data for each character in the string into the object module. Following all the character data a zero byte is inserted to terminate the character string. 1.4.14 .assume Directive Format: .assume exp where: exp represents an absolute expression. If the evaluation of the expression results in a non zero value then an 'e' error is reported and the text line is listed in the generated error. The .assume directive is useful to check assumptions about assembler values. (The .assume directive is identical in func- tion to the .error directive, just perhaps more descriptive.) THE ASSEMBLER PAGE 1-22 GENERAL ASSEMBLER DIRECTIVES 1.4.15 .radix Directive Format: .radix character where: character represents a single character specifying the default radix to be used for succeeding numbers. The character may be any one of the following: B,b Binary O,o Octal Q,q D,d Decimal 'blank' H,h Hexidecimal X,x 1.4.16 .even Directive Format: .even The .even directive ensures that the current location counter contains an even boundary value by adding 1 if the current loca- tion is odd. 1.4.17 .odd Directive Format: .odd The .odd directive ensures that the current location counter contains an odd boundary value by adding one if the current lo- cation is even. THE ASSEMBLER PAGE 1-23 GENERAL ASSEMBLER DIRECTIVES 1.4.18 .area Directive Format: .area name [(options)] where: name represents the symbolic name of the program sec- tion. This name may be the same as any user-defined symbol as the area names are in- dependent of all symbols and labels. options specify the type of program or data area: ABS absolute (automatically invokes OVR) REL relocatable OVR overlay CON concatenate PAG paged area The .area directive provides a means of defining and separat- ing multiple programming and data sections. The name is the area label used by the assembler and the linker to collect code from various separately assembled modules into one section. The name may be from 1 to 79 characters in length. The options are specified within parenthesis and separated by commas as shown in the following example: .area TEST (REL,CON) ;This section is relocatable ;and concatenated with other ;sections of this program area. .area DATA (REL,OVR) ;This section is relocatable ;and overlays other sections ;of this program area. .area SYS (ABS,OVR) ;(CON not allowed with ABS) ;This section is defined as ;absolute. Absolute sections ;are always overlayed with ;other sections of this program ;area. .area PAGE (PAG) ;This is a paged section. The ;section must be on a 256 byte ;boundary and its length is ;checked by the linker to be ;no larger than 256 bytes. ;This is useful for direct page ;areas. THE ASSEMBLER PAGE 1-24 GENERAL ASSEMBLER DIRECTIVES The default area type is REL|CON; i.e. a relocatable sec- tion which is concatenated with other sections of code with the same area name. The ABS option indicates an absolute area. The OVR and CON options indicate if program sections of the same name will overlay each other (start at the same location) or be concatenated with each other (appended to each other). Multiple invocations of the .area directive with the same name must specify the same options or leave the options field blank, this defaults to the previously specified options for this program area. The ASxxxx assemblers automatically provide two program sections: '. .ABS.' This dumby section contains all absolute symbols and their values. '_CODE' This is the default program/data area. This program area is of type (REL,CON). The ASxxxx assemblers also automatically generate two symbols for each program area: 's_<area>' This is the starting address of the pro- gram area. 'l_<area>' This is the length of the program area. The .area names and options are never case sensitive. 1.4.19 .org Directive Format: .org exp where: exp is an absolute expression that becomes the cur- rent location counter. The .org directive is valid only in an absolute program section and will give a (q) error if used in a relocatable program area. The .org directive specifies that the current location counter is to become the specified absolute value. THE ASSEMBLER PAGE 1-25 GENERAL ASSEMBLER DIRECTIVES 1.4.20 .globl Directive Format: .globl sym1,sym2,...,symn where: sym1, represent legal symbolic names. When sym2,... When multiple symbols are specified, symn they are separated by commas. A .globl directive may also have a label field and/or a com- ment field. The .globl directive is provided to define (and thus provide linkage to) symbols not otherwise defined as global symbols within a module. In defining global symbols the directive .globl J is similar to: J == expression or J:: Because object modules are linked by global symbols, these symbols are vital to a program. All internal symbols appearing within a given program must be defined at the end of pass 1 or they will be considered undefined. The assembly directive (-g) can be be invoked to make all undefined symbols global at the end of pass 1. 1.4.21 .if, .else, and .endif Directives Format: .if expr . ;} . ;} range of true condition . ;} .else . ;} . ;} range of false condition . ;} .endif The conditional assembly directives allow you to include or exclude blocks of source code during the assembly process, based on the evaluation of the condition test. The range of true condition will be processed if the expres- sion 'expr' is not zero (i.e. true) and the range of false con- dition will be processed if the expression 'expr' is zero (i.e false). The range of true condition is optional as is the .else directive and the range of false condition. The following are all valid .if/.else/.endif constructions: THE ASSEMBLER PAGE 1-26 GENERAL ASSEMBLER DIRECTIVES .if A-4 ;evaluate A-4 .byte 1,2 ;insert bytes if A-4 is .endif ;not zero .if K+3 ;evaluate K+3 .else .byte 3,4 ;insert bytes if K+3 .endif ;is zero .if J&3 ;evaluate J masked by 3 .byte 12 ;insert this byte if J&3 .else ;is not zero .byte 13 ;insert this byte if J&3 .endif ;is zero The .if/.else/.endif directives may be nested upto 10 levels. The .page directive is processed within a false condition range to allow extended textual information to be incorporated in the source program with out the need to use the comment delimiter (;): .if 0 .page This text will be bypassed during assembly but appear in the listing file. . . . .endif 1.4.22 .include Directive Format: .include string where: string represents a delimited string that is the file specification of an ASxxxx source file. The .include directive is used to insert a source file within the source file currently being assembled. When this directive is encountered, an implicit .page directive is issued. When the end of the specified source file is reached, an implicit .page directive is issued and input continues from the previous source file. The maximum nesting level of source files specified by a .include directive is five. THE ASSEMBLER PAGE 1-27 GENERAL ASSEMBLER DIRECTIVES The total number of separately specified .include files is unlimited as each .include file is opened and then closed during each pass made by the assembler. The default directory path, if none is specified, for any .include file is the directory path of the current file. For example: if the current source file, D:\proj\file1.asm, in- cludes a file specified as "include1" then the file D:\proj\include1.asm is opened. 1.4.23 .setdp Directive Format: .setdp [base [,area]] The set direct page directive has a common format in all the AS68xx assemblers. The .setdp directive is used to inform the assembler of the current direct page region and the offset ad- dress within the selected area. The normal invocation methods are: .area DIRECT (PAG) .setdp or .setdp 0,DIRECT for all the 68xx microprocessors (the 6804 has only the paged ram area). The commands specify that the direct page is in area DIRECT and its offset address is 0 (the only valid value for all but the 6809 microprocessor). Be sure to place the DIRECT area at address 0 during linking. When the base address and area are not specified, then zero and the current area are the defaults. If a .setdp directive is not issued the assembler defaults the direct page to the area "_CODE" at offset 0. The assembler verifies that any local variable used in a direct variable reference is located in this area. Local vari- able and constant value direct access addresses are checked to be within the address range from 0 to 255. External direct references are assumed by the assembler to be in the correct area and have valid offsets. The linker will check all direct page relocations to verify that they are within the correct area. The 6809 microprocessor allows the selection of the direct page to be on any 256 byte boundary by loading the appropriate THE ASSEMBLER PAGE 1-28 GENERAL ASSEMBLER DIRECTIVES value into the dp register. Typically one would like to select the page boundary at link time, one method follows: .area DIRECT (PAG) ; define the direct page .setdp . . . .area PROGRAM . ldd #DIRECT ; load the direct page register tfr a,dp ; for access to the direct page At link time specify the base and global equates to locate the direct page: -b DIRECT = 0x1000 -g DIRECT = 0x1000 Both the area address and offset value must be specified (area and variable names are independent). The linker will verify that the relocated direct page accesses are within the direct page. The preceeding sequence could be repeated for multiple paged areas, however an alternate method is to define a non-paged area and use the .setdp directive to specify the offset value: .area DIRECT ; define non-paged area . . . .area PROGRAM . .setdp 0,DIRECT ; direct page area ldd #DIRECT ; load the direct page register tfr a,dp ; for access to the direct page . . .setdp 0x100,DIRECT ; direct page area ldd #DIRECT+0x100 ; load the direct page register tfr a,dp ; for access to the direct page The linker will verify that subsequent direct page references are in the specified area and offset address range. It is the programmers responsibility to load the dp register with the cor- rect page segment corresponding to the .setdp base address specified. For those cases where a single piece of code must access a defined data structure within a direct page and there are many pages, define a dumby direct page linked at address 0. This dumby page is used only to define the variable labels. Then THE ASSEMBLER PAGE 1-29 GENERAL ASSEMBLER DIRECTIVES load the dp register with the real base address but donot use a .setdp directive. This method is equivalent to indexed address- ing, where the dp register is the index register and the direct addressing is the offset. 1.4.24 .16bit, .24bit, and .32bit Directives Format: .16bit ;specify 16-bit addressing .24bit ;specify 24-bit addressing .32bit ;specify 32-bit addressing The .16bit, .24bit, and .32bit directives are special direc- tives for assembler configuration when default values are not used. (Currently only the as8xCxxx assembler can use the .16bit and .24bit directives in special mode.) THE ASSEMBLER PAGE 1-30 GENERAL ASSEMBLER DIRECTIVES 1.5 INVOKING ASXXXX The ASxxxx assemblers are command line oriented. Most sytems require the option(s) and file(s) arguments to follow the ASxxxx assembler name: as6809 [-dqxgalopswzff] file1 [file2 file3 ... file6] Some systems may request the arguments after the assembler is started at a system specific prompt: as6809 argv: [-dqxgalopswzff] file1 [file2 file3 ... file6] The options are: d decimal listing q octal listing x hex listing (default) The listing radix affects the .lst, .rel, and .sym files. g undefined symbols made global a all user symbols made global l create list output file1.lst o create object output file1.rel s create symbol output file1.sym p disable listing pagination w wide listing format for symbol table z enable case sensitivity for symbols relocatable reference flagging: f by ` in the listing file ff by mode in the listing file The file name for the .lst, .rel, and .sym files is the first file name specified in the command line. All output files are ascii text files which may be edited, copied, etc. The output files are the concatenation of all the input files, if files are to be assembled independently invoke the assembler for each file. THE ASSEMBLER PAGE 1-31 INVOKING ASXXXX The .rel file contains a radix directive so that the linker will use the proper conversion for this file. Linked files may have different radices. If the list (l) option is specified without the symbol table (s) option, the symbol table is placed at the end of the listing file. 1.6 ERRORS The ASxxxx assemblers provide limited diagnostic error codes during the assembly process, these errors will be noted in the listing file and printed on the stderr device. The assembler reports the errors on the stderr device as ?ASxxxx-Error-<*> in line nnn of filename where * is the error code, nnn is the line number, and filename is the source/include file. The errors are: (.) This error is caused by an absolute direct assign- ment of the current location counter . = expression (incorrect) rather than the correct . = . + expression (a) Indicates a machine specific addressing or address- ing mode error. (b) Indicates a direct page boundary error. (d) Indicates a direct page addressing error. (e) Caused by a .error or .assume directive. (i) Caused by an .include file error or an .if/.endif mismatch. (m) Multiple definitions of the same label, multiple .module directives, or multiple conflicting attri- butes in an .area directive. (o) Directive or mnemonic error or the use of the .org directive in a relocatable area. (p) Phase error: label location changing between passes 2 and 3. Normally caused by having more than one THE ASSEMBLER PAGE 1-32 ERRORS level of forward referencing. (q) Questionable syntax: missing or improper operators, terminators, or delimiters. (r) Relocation error: logic operation attempted on a relocatable term, addition of two relocatable terms, subtraction of two relocatable terms not within the same programming area or external symbols. (u) Undefined symbol encountered during assembly. (z) Divide by 0 or Modulus by 0 error: result is 0. 1.7 LISTING FILE The (-l) option produces an ascii output listing file. Each page of output contains a five line header: 1. The ASxxxx program name and page number 2. Assembler Radix and Address Bits 3. Title from a .title directive (if any) 4. Subtitle from a .sbttl directive (if any) 5. Blank line Each succeeding line contains five fields: 1. Error field (first three characters of line) 2. Current location counter 3. Generated code in byte format 4. Source text line number 5. Source text The error field may contain upto 2 error flags indicating any errors encountered while assembling this line of source code. THE ASSEMBLER PAGE 1-33 LISTING FILE The current location counter field displays the 16-bit, 24-bit, or 32-bit program position. This field will be in the selected radix. The generated code follows the program location. The listing radix determines the number of bytes that will be displayed in this field. Hexidecimal listing allows six bytes of data within the field, decimal and octal allow four bytes within the field. If more than one field of data is generated from the assembly of a single line of source code, then the data field is repeated on successive lines. The source text line number is printed in decimal and is fol- lowed by the source text. Two special cases will disable the listing of a line of source text: 1. Source line with a .page directive is never listed. 2. Source line with a .include file directive is not listed unless the .include file cannot be opened. Two data field options are available to flag those bytes which will be relocated by the linker. If the -f option is specified then each byte to be relocated will be preceeded by the '`' character. If the -ff option is specified then each byte to be relocated will be preceeded by one of the following characters: 1. * paged relocation 2. u low byte of unsigned word or unsigned byte 3. v high byte of unsigned word 4. p PCR low byte of word relocation or PCR byte 5. q PCR high byte of word relocation 6. r low byte relocation or byte relocation 7. s high byte relocation Assemblers which use 24-bit or 32-bit addressing use an ex- tended flagging mode: 1. * paged relocation THE ASSEMBLER PAGE 1-34 LISTING FILE 2. u 1st byte of unsigned value 3. v 2nd byte of unsigned value 4. U 3rd byte of unsigned value 5. V 4th byte of unsigned value 6. p PCR 1st byte of relocation value or PCR byte 7. q PCR 2nd byte of relocation value 8. P PCR 3rd byte of relocation value 9. Q PCR 4th byte of relocation value 10. r 1st byte of relocation value or byte relocation 11. s 2nd byte of relocation value 12. R 3rd byte of relocation value 13. S 4th byte of relocation value 1.8 SYMBOL TABLE FILE The symbol table has two parts: 1. The alphabetically sorted list of symbols and/or labels defined or referenced in the source program. 2. A list of the program areas defined during assembly of the source program. The sorted list of symbols and/or labels contains the follow- ing information: 1. Program area number (none if absolute value or exter- nal) 2. The symbol or label 3. Directly assigned symbol is denoted with an (=) sign 4. The value of a symbol, location of a label relative to the program area base address (=0), or a **** indicat- ing the symbol or label is undefined. THE ASSEMBLER PAGE 1-35 SYMBOL TABLE FILE 5. The characters: G - global, R - relocatable, and X - external. The list of program areas provides the correspondence between the program area numbers and the defined program areas, the size of the program areas, and the area flags (attributes). 1.9 OBJECT FILE The object file is an ascii file containing the information needed by the linker to bind multiple object modules into a com- plete loadable memory image. The object module contains the following designators: [XDQ][HL][234] X Hexidecimal radix D Decimal radix Q Octal radix H Most significant byte first L Least significant byte first 2 16-Bit Addressing 3 24-Bit Addressing 4 32-Bit Addressing H Header M Module A Area S Symbol T Object code R Relocation information P Paging information Refer to the linker for a detailed description of each of the designators and the format of the information contained in the object file. CHAPTER 2 THE LINKER 2.1 ASLINK RELOCATING LINKER ASLINK is the companion linker for the ASxxxx assemblers. The program ASLINK is a general relocating linker performing the following functions: 1. Bind multiple object modules into a single memory image 2. Resolve inter-module symbol references 3. Combine code belonging to the same area from multiple object files into a single contiguous memory region 4. Search and import object module libraries for undefined global variables 5. Perform byte and word program counter relative (pc or pcr) addressing calculations 6. Define absolute symbol values at link time 7. Define absolute area base address values at link time 8. Produce Intel Hex or Motorola S output files 9. Produce a map of the linked memory image 10. Produce an updated listing file with the relocated ad- dresses and data THE LINKER PAGE 2-2 INVOKING ASLINK 2.2 INVOKING ASLINK Most sytems require the options to be entered on the command line: aslink -[options] -[option arg] files Some systems may request the arguments after the linker is started at a system specific prompt: aslink argv: -[options] -[option arg] files The allowed linker commands are: 1. -c ASlink >> prompt mode. The ASlink >> prompt mode reads linker commands from stdin. 2. -f file Command file mode. The command file mode imports linker commands from the specified file (extension must be .lnk), imported -c and -f commands are ignored. If the directory path, for a file to be linked, is not specified in the com- mand file then the path defaults to the .lnk file directory path. 3. -p/-n enable/disable echoing commands to stdout. 4. -i/-s Intel Hex (file.i--) or Motorola S (file.s--) image output file. 5. -o/-v Specifies that subsequent linked files/libraries will generate object output (default) or suppress object output. (if option -s or -i was specified) 6. -z Specifies that symbol names are case sensitive. 7. -m Generate a map file (file.map). This file con- tains a list of the symbols (by area) with absolute ad- dresses, sizes of linked areas, and other linking information. 8. -w Specifies that a wide listing format be used for the map file. 9. -xdq Specifies the number radix for the map file (Hexidecimal, Decimal, or Octal). THE LINKER PAGE 2-3 INVOKING ASLINK 10. -u Generate an updated listing file (file.rst) derived from the relocated addresses and data from the linker. 11. file File(s) to be linked. Files may be on the same line as the above options or on a separate line(s) one file per line or multiple files separated by spaces or tabs. 12. -b area=expression (one definition per line) This specifies an area base address where the expres- sion may contain constants and/or defined symbols from the linked files. 13. -g symbol=expression (one definition per line) This specifies the value for the symbol where the ex- pression may contain constants and/or defined symbols from the linked files. 14. -k library directory path (one definition per line) This specifies one possible path to an object library. More than one path is al- lowed. 15. -l library file specification (one definition per line) This specifies a possible library file. More than one file is allowed. 16. -e or null line, terminates input to the linker. 2.3 LIBRARY PATH(S) AND FILE(S) The process of resolving undefined symbols after scanning the input object files includes the scanning of object module libraries. The linker will search through all combinations of the library path specifications (input by the -k option) and the library file specifications (input by the -l option) that lead to an existing library file. Each library file contains a list (one file per line) of modules included in this particular library. Each existing object module is scanned for a match to the undefined symbol. The first module containing the symbol is then linked with the previous modules to resolve the symbol de- finition. The library object modules are rescanned until no more symbols can be resolved. The scanning algorithm allows resolution of back references. No errors are reported for non existant library files or object modules. The library file specification may be formed in one of two ways: THE LINKER PAGE 2-4 LIBRARY PATH(S) AND FILE(S) 1. If the library file contained an absolute path/file specification then this is the object module's path/file. (i.e. C:\... or C:/...) 2. If the library file contains a relative path/file specification then the concatenation of the path and this file specification becomes the object module's path/file. (i.e. \... or /...) As an example, assume there exists a library file termio.lib in the syslib directory specifying the following object modules: \6809\io_disk first object module d:\special\io_comm second object module and the following parameters were specified to the linker: -k c:\iosystem\ the first path -k c:\syslib\ the second path -l termio the first library file -l io the second library file (no such file) The linker will attempt to use the following object modules to resolve any undefined symbols: c:\syslib\6809\io_disk.rel (concatenated path/file) d:\special\io_comm.rel (absolute path/file) all other path(s)/file(s) don't exist. (No errors are reported for non existant path(s)/file(s).) 2.4 ASLINK PROCESSING The linker processes the files in the order they are presented. The first pass through the input files is used to define all program areas, the section area sizes, and symbols defined or referenced. Undefined symbols will initiate a search of any specified library file(s) and the importing of the module containing the symbol definition. After the first pass the -b (area base address) definitions, if any, are processed and the areas linked. The area linking proceeds by first examining the area types ABS, CON, REL, OVR and PAG. Absolute areas (ABS) from separate object modules are always overlayed and have been assembled at a specific address, these are not normally relocated (if a -b THE LINKER PAGE 2-5 ASLINK PROCESSING command is used on an absolute area the area will be relocated). Relative areas (normally defined as REL|CON) have a base address of 0x0000 as read from the object files, the -b command speci- fies the beginning address of the area. All subsequent relative areas will be concatenated with proceeding relative areas. Where specific ordering is desired, the first linker input file should have the area definitions in the desired order. At the completion of the area linking all area addresses and lengths have been determined. The areas of type PAG are verified to be on a 256 byte boundary and that the length does not exceed 256 bytes. Any errors are noted on stderr and in the map file. Next the global symbol definitions (-g option), if any, are processed. The symbol definitions have been delayed until this point because the absolute addresses of all internal symbols are known and can be used in the expression calculations. Before continuing with the linking process the symbol table is scanned to determine if any symbols have been referenced but not defined. Undefined symbols are listed on the stderr device. if a .module directive was included in the assembled file the module making the reference to this undefined variable will be printed. Constants defined as global in more than one module will be flagged as multiple definitions if their values are not identi- cal. After the preceeding processes are complete the linker may output a map file (-m option). This file provides the following information: 1. Global symbol values and label absolute addresses 2. Defined areas and there lengths 3. Remaining undefined symbols 4. List of modules linked 5. List of library modules linked 6. List of -b and -g definitions The final step of the linking process is performed during the second pass of the input files. As the xxx.rel files are read the code is relocated by substituting the physical addresses for the referenced symbols and areas and may be output in Intel or Motorola formats. The number of files linked and symbols THE LINKER PAGE 2-6 ASLINK PROCESSING defined/referenced is limited by the processor space available to build the area/symbol lists. If the -u option is specified then the listing files (file.lst) associated with the relocation files (file.rel) are scanned and used to create a new file (file.rst) which has all addresses and data relocated to their final values. The -o/-v options allow the simple creation of loadable or overlay modules. Loadable and overlay modules normally need to be linked with a main module(s) to resolve external symbols. The -o/-v options can be used to enable object output for the loadable or overlay module(s) and suppress the object code from the linked main module(s). The -o/-v options can be applied repeatedly to specify a single linked file, groups of files, or libraries for object code inclusion or suppression. 2.5 LINKER INPUT FORMAT The linkers' input object file is an ascii file containing the information needed by the linker to bind multiple object modules into a complete loadable memory image. The object module contains the following designators: [XDQ][HL][234] X Hexidecimal radix D Decimal radix Q Octal radix H Most significant byte first L Least significant byte first 2 16-Bit Addressing 3 24-Bit Addressing 4 32-Bit Addressing H Header M Module A Area S Symbol T Object code R Relocation information P Paging information THE LINKER PAGE 2-7 LINKER INPUT FORMAT 2.5.1 Object Module Format The first line of an object module contains the [XDQ][HL][234] format specifier (i.e. XH2 indicates a hex- idecimal file with most significant byte first and 16-bit ad- dressing) for the following designators. 2.5.2 Header Line H aa areas gg global symbols The header line specifies the number of areas(aa) and the number of global symbols(gg) defined or referenced in this ob- ject module segment. 2.5.3 Module Line M name The module line specifies the module name from which this header segment was assembled. The module line will not appear if the .module directive was not used in the source program. 2.5.4 Symbol Line S string Defnnnn or S string Refnnnn The symbol line defines (Def) or references (Ref) the symbol 'string' with the value nnnn. The defined value is relative to the current area base address. References to constants and ex- ternal global symbols will always appear before the first area definition. References to external symbols will have a value of zero. THE LINKER PAGE 2-8 LINKER INPUT FORMAT 2.5.5 Area Line A label size ss flags ff The area line defines the area label, the size (ss) of the area in bytes, and the area flags (ff). The area flags specify the ABS, REL, CON, OVR, and PAG parameters: OVR/CON (0x04/0x00 i.e. bit position 2) ABS/REL (0x08/0x00 i.e. bit position 3) PAG (0x10 i.e. bit position 4) 2.5.6 T Line T xx xx nn nn nn nn nn ... The T line contains the assembled code output by the assem- bler with xx xx being the offset address from the current area base address and nn being the assembled instructions and data in byte format. 2.5.7 R Line R 0 0 nn nn n1 n2 xx xx ... The R line provides the relocation information to the linker. The nn nn value is the current area index, i.e. which area the current values were assembled. Relocation information is en- coded in groups of 4 bytes: 1. n1 is the relocation mode and object format, for the adhoc extension modes refer to asxxxx.h or aslink.h 1. bit 0 word(0x00)/byte(0x01) 2. bit 1 relocatable area(0x00)/symbol(0x02) 3. bit 2 normal(0x00)/PC relative(0x04) relocation 4. bit 3 1-byte(0x00)/2-byte(0x08) object format for byte data 5. bit 4 signed(0x00)/unsigned(0x10) byte data 6. bit 5 normal(0x00)/page '0'(0x20) reference 7. bit 6 normal(0x00)/page 'nnn'(0x40) reference 8. bit 7 LSB byte(0x00)/2nd byte(0x80) with 2-byte mode 2. n2 is a byte index into the corresponding (i.e. pre- ceeding) T line data (i.e. a pointer to the data to be updated by the relocation). The T line data may be 1-byte or 2-byte byte data format or 2-byte word format. THE LINKER PAGE 2-9 LINKER INPUT FORMAT 3. xx xx is the area/symbol index for the area/symbol be- ing referenced. the corresponding area/symbol is found in the header area/symbol lists. The groups of 4 bytes are repeated for each item requiring relo- cation in the preceeding T line. 2.5.8 P Line P 0 0 nn nn n1 n2 xx xx The P line provides the paging information to the linker as specified by a .setdp directive. The format of the relocation information is identical to that of the R line. The correspond- ing T line has the following information: T xx xx aa aa bb bb Where aa aa is the area reference number which specifies the selected page area and bb bb is the base address of the page. bb bb will require relocation processing if the 'n1 n2 xx xx' is specified in the P line. The linker will verify that the base address is on a 256 byte boundary and that the page length of an area defined with the PAG type is not larger than 256 bytes. The linker defaults any direct page references to the first area defined in the input REL file. All ASxxxx assemblers will specify the _CODE area first, making this the default page area. 2.5.9 24-Bit and 32-Bit Addressing When 24-bit or 32-bit addressing is specified in the file format line [XDQ][HL][234] then the S and T Lines have modified formats: S string Defnnnnnn (24-bit) S string Refnnnnnn (24-bit) T xx xx xx nn nn nn nn nn ... (24-bit) S string Defnnnnnnnn (32-bit) S string Refnnnnnnnn (32-bit) T xx xx xx xx nn nn nn nn nn ... (32-bit) The multibyte formats for byte data replace the 2-byte form for 16-bit data with 3-byte or 4-byte data for 24-bit or 32-bit data respectively. The 2nd byte format (also named MSB) always uses the second byte of the 2, 3, or 4-byte data. THE LINKER PAGE 2-10 LINKER ERROR MESSAGES 2.6 LINKER ERROR MESSAGES The linker provides detailed error messages allowing the pro- grammer to quickly find the errant code. As the linker com- pletes pass 1 over the input file(s) it reports any page boundary or page length errors as follows: ?ASlink-Warning-Paged Area PAGE0 Boundary Error and/or ?ASlink-Warning-Paged Area PAGE0 Length Error where PAGE0 is the paged area. During Pass two the linker reads the T, R, and P lines per- forming the necessary relocations and outputting the absolute code. Various errors may be reported during this process The P line processing can produce only one possible error: ?ASlink-Warning-Page Definition Boundary Error file module pgarea pgoffset PgDef t6809l t6809l PAGE0 0001 The error message specifies the file and module where the .setdp direct was issued and indicates the page area and the page offset value determined after relocation. The R line processing produces various errors: ?ASlink-Warning-Byte PCR relocation error for symbol bra2 file module area offset Refby t6809l t6809l TEST 00FE Defin tconst tconst . .ABS. 0080 ?ASlink-Warning-Unsigned Byte error for symbol two56 file module area offset Refby t6800l t6800l DIRECT 0015 Defin tconst tconst . .ABS. 0100 ?ASlink-Warning-Page0 relocation error for symbol ltwo56 file module area offset Refby t6800l t6800l DIRECT 000D Defin tconst tconst DIRECT 0100 ?ASlink-Warning-Page Mode relocation error for symbol two56 file module area offset Refby t6809l t6809l DIRECT 0005 Defin tconst tconst . .ABS. 0100 THE LINKER PAGE 2-11 LINKER ERROR MESSAGES ?ASlink-Warning-Page Mode relocation error file module area offset Refby t Pagetest PROGRAM 0006 Defin t Pagetest DIRECT 0100 ?ASlink-Warning-2K Page relocation error file module area offset Refby t Pagetest A 0000 Defin t Pagetest A 0800 ?ASlink-Warning-512K Page relocation error file module area offset Refby t Pagetest A 000000 Defin t Pagetest A 080000 These error messages specify the file, module, area, and offset within the area of the code referencing (Refby) and defining (Defin) the symbol. If the symbol is defined in the same module as the reference the linker is unable to report the symbol name. The assembler listing file(s) should be examined at the offset from the specified area to locate the offending code. The errors are: 1. The byte PCR error is caused by exceeding the pc rela- tive byte branch range. 2. The Unsigned byte error indicates an indexing value was negative or larger than 255. 3. The Page0 error is generated if the direct page vari- able is not in the page0 range of 0 to 255. 4. The page mode error is generated if the direct variable is not within the current direct page (6809). 5. The 2K Page relocation error is generated if the destination is not within the current 2K page (8051, DS8xCxxx). 6. The 512K Page relocation error is generated if the destination is not within the current 512K page (DS80C390). THE LINKER Page 2-12 INTEL IHX OUTPUT FORMAT 2.7 INTEL IHX OUTPUT FORMAT (16-BIT) Record Mark Field - This field signifies the start of a record, and consists of an ascii colon (:). Record Length Field - This field consists of two ascii characters which indicate the number of data bytes in this record. The characters are the result of converting the number of bytes in binary to two ascii characters, high digit first. An End of File record contains two ascii zeros in this field. Load Address Field - This field consists of the four ascii characters which result from converting the the binary value of the address in which to begin loading this record. The order is as follows: High digit of high byte of address. Low digit of high byte of address. High digit of low byte of address. Low digit of low byte of address. In an End of File record this field con- sists of either four ascii zeros or the program entry address. Currently the entry address option is not supported. Record Type Field - This field identifies the record type, which is either 0 for data records or 1 for an End of File record. It consists of two ascii characters, with the high digit of the record type first, followed by the low digit of the record type. Data Field - This field consists of the actual data, converted to two ascii characters, high digit first. There are no data bytes in the End of File record. Checksum Field - The checksum field is the 8 bit binary sum of the record length field, the load address field, the record type field, and the data field. This sum is then negated (2's complement) and converted to two ascii characters, high digit first. THE LINKER Page 2-13 INTEL I86 OUTPUT FORMAT 2.8 INTEL I86 OUTPUT FORMAT (24 OR 32-BIT) Record Mark Field - This field signifies the start of a record, and consists of an ascii colon (:). Record Length Field - This field consists of two ascii characters which indicate the number of data bytes in this record. The characters are the result of converting the number of bytes in binary to two ascii characters, high digit first. An End of File record contains two ascii zeros in this field. Load Address Field - This field consists of the four ascii characters which result from converting the the binary value of the address in which to begin loading this record. The order is as follows: High digit of high byte of address. Low digit of high byte of address. High digit of low byte of address. Low digit of low byte of address. In an End of File record this field con- sists of either four ascii zeros or the program entry address. Currently the entry address option is not supported. Record Type Field - This field identifies the record type, which is either 0 for data records, 1 for an End of File record, or 4 for a segment record. It consists of two ascii characters, with the high digit of the record type first, followed by the low digit of the record type. Data Field - This field consists of the actual data, converted to two ascii characters, high digit first. There are no data bytes in the End of File record. Checksum Field - The checksum field is the 8 bit binary sum of the record length field, the load address field, the record type field, and the data field. This sum is then negated (2's complement) and converted to two ascii characters, high digit first. THE LINKER Page 2-14 MOTOROLA S1-S9 OUTPUT FORMAT 2.9 MOTORLA S1-S9 OUTPUT FORMAT (16-BIT) Record Type Field - This field signifies the start of a record and identifies the the record type as follows: Ascii S1 - Data Record Ascii S9 - End of File Record Record Length Field - This field specifies the record length which includes the address, data, and checksum fields. The 8 bit record length value is converted to two ascii characters, high digit first. Load Address Field - This field consists of the four ascii characters which result from converting the the binary value of the address in which to begin loading this record. The order is as follows: High digit of high byte of address. Low digit of high byte of address. High digit of low byte of address. Low digit of low byte of address. In an End of File record this field con- sists of either four ascii zeros or the program entry address. Currently the entry address option is not supported. Data Field - This field consists of the actual data, converted to two ascii characters, high digit first. There are no data bytes in the End of File record. Checksum Field - The checksum field is the 8 bit binary sum of the record length field, the load address field, and the data field. This sum is then complemented (1's comple- ment) and converted to two ascii characters, high digit first. THE LINKER Page 2-15 MOTOROLA S2-S8 OUTPUT FORMAT 2.10 MOTORLA S2-S8 OUTPUT FORMAT (24-BIT) Record Type Field - This field signifies the start of a record and identifies the the record type as follows: Ascii S2 - Data Record Ascii S8 - End of File Record Record Length Field - This field specifies the record length which includes the address, data, and checksum fields. The 8 bit record length value is converted to two ascii characters, high digit first. Load Address Field - This field consists of the six ascii characters which result from converting the the binary value of the address in which to begin loading this record. The order is as follows: High digit of 3rd byte of address. Low digit of 3rd byte of address. High digit of high byte of address. Low digit of high byte of address. High digit of low byte of address. Low digit of low byte of address. In an End of File record this field con- sists of either six ascii zeros or the program entry address. Currently the entry address option is not supported. Data Field - This field consists of the actual data, converted to two ascii characters, high digit first. There are no data bytes in the End of File record. Checksum Field - The checksum field is the 8 bit binary sum of the record length field, the load address field, and the data field. This sum is then complemented (1's comple- ment) and converted to two ascii characters, high digit first. THE LINKER Page 2-16 MOTOROLA S3-S7 OUTPUT FORMAT 2.11 MOTORLA S3-S7 OUTPUT FORMAT (32-BIT) Record Type Field - This field signifies the start of a record and identifies the the record type as follows: Ascii S3 - Data Record Ascii S7 - End of File Record Record Length Field - This field specifies the record length which includes the address, data, and checksum fields. The 8 bit record length value is converted to two ascii characters, high digit first. Load Address Field - This field consists of the eight ascii characters which result from converting the the binary value of the address in which to begin loading this record. The order is as follows: High digit of 4th byte of address. Low digit of 4th byte of address. High digit of 3rd byte of address. Low digit of 3rd byte of address. High digit of high byte of address. Low digit of high byte of address. High digit of low byte of address. Low digit of low byte of address. In an End of File record this field con- sists of either eight ascii zeros or the program entry address. Currently the entry address option is not supported. Data Field - This field consists of the actual data, converted to two ascii characters, high digit first. There are no data bytes in the End of File record. Checksum Field - The checksum field is the 8 bit binary sum of the record length field, the load address field, and the data field. This sum is then complemented (1's comple- ment) and converted to two ascii characters, high digit first. CHAPTER 3 BUILDING ASXXXX AND ASLINK The assemblers and linker have been successfully compiled us- ing GCC 2.7.2 with Linux, Symantec C/C++ V6.1/V7.2, DJGPP (GCC 2.8.2) and VC6 with MS-DOS and Windows 3.x/95/98. A Linux makefile, DJGPP makefile, Symantec project files, and VC6 pro- ject files are available to build all the assemblers and the linker. 3.1 BUILDING AN ASSEMBLER The building of a typical assembler (6809 for example) re- quires the following files: 1. m6809.h 2. m09ext.c 3. m09mch.c 4. m09adr.c 5. m09pst.c 6. asxxxx.h 7. asmain.c 8. aslex.c 9. assym.c 10. assubr.c 11. asexpr.c 12. asdata.c 13. aslist.c 14. asout.c The first five files are the 6809 processor dependent sec- tions which contain the following: 1. m6809.h - header file containing the machine specific definitions of constants, variables, structures, and types BUILDING ASXXXX AND ASLINK PAGE 3-2 BUILDING AN ASSEMBLER 2. m09ext - device description, byte order, and file ex- tension information 3. m09pst - a table of the assembler general directives, special device directives, and assembler mnemonics with associated operation codes 4. m09mch / m09adr - machine specific code for processing the device mnemonics, addressing modes, and special directives The remaining nine files provide the device independent sec- tions which handle the details of file input/output, symbol table generation, program/data areas, expression analysis, and assembler directive processing. 3.2 BUILDING ASLINK The building of the linker requires the following files: 1. aslink.h 2. lkmain.c 3. lklex.c 4. lkarea.c 5. lkhead.c 6. lksym.c 7. lkeval.c 8. lkdata.c 9. lklist.c 10. lkrloc.c 11. lklibr.c 12. lks19.c 13. lkihx.c APPENDIX A AS6800 ASSEMBLER A.1 6800 REGISTER SET The following is a list of the 6800 registers used by AS6800: a,b - 8-bit accumulators x - index register A.2 6800 INSTRUCTION SET The following tables list all 6800/6802/6808 mnemonics recog- nized by the AS6800 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6800: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 ,x register indirect addressing zero offset offset,x register indirect addressing 0 <= offset <= 255 ext extended addressing label branch label The terms data, dir, offset, ext, and label may all be expres- sions. AS6800 ASSEMBLER PAGE A-2 6800 INSTRUCTION SET Note that not all addressing modes are valid with every in- struction, refer to the 6800 technical data for valid modes. A.2.1 Inherent Instructions aba cba clc cli clv daa des dex ins inx nop rti rts sba sec sei sev swi tab tap tba tpa tsx txs wai psha pshb psh a psh b pula pulb pul a pul b A.2.2 Branch Instructions bra label bhi label bls label bcc label bhs label bcs label blo label bne label beq label bvc label bvs label bpl label bmi label bge label blt label bgt label ble label bsr label AS6800 ASSEMBLER PAGE A-3 6800 INSTRUCTION SET A.2.3 Single Operand Instructions asla aslb asl a asl b asl [] asra asrb asr a asr b asr [] clra clrb clr a clr b clr [] coma comb com a com b com [] deca decb dec a dec b dec [] inca incb inc a inc b inc [] lsla lslb lsl a lsl b lsl [] lsra lsrb lsr a lsr b lsr [] nega negb neg a neg b neg [] rola rolb rol a rol b rol [] rora rorb ror a ror b ror [] tsta tstb tst a tst b tst [] AS6800 ASSEMBLER PAGE A-4 6800 INSTRUCTION SET A.2.4 Double Operand Instructions adca [] adcb [] adc a [] adc b [] adda [] addb [] add a [] add b [] anda [] andb [] and a [] and b [] bita [] bitb [] bit a [] bit b [] cmpa [] cmpb [] cmp a [] cmp b [] eora [] eorb [] eor a [] eor b [] ldaa [] ldab [] lda a [] lda b [] oraa [] orab [] ora a [] ora b [] sbca [] sbcb [] sbc a [] sbc b [] staa [] stab [] sta a [] sta b [] suba [] subb [] sub a [] sub b [] A.2.5 Jump and Jump to Subroutine Instructions jmp [] jsr [] AS6800 ASSEMBLER PAGE A-5 6800 INSTRUCTION SET A.2.6 Long Register Instructions cpx [] lds [] sts [] ldx [] stx [] APPENDIX B AS6801 ASSEMBLER B.1 .hd6303 DIRECTIVE Format: .hd6303 The .hd6303 directive enables processing of the HD6303 specific mnemonics not included in the 6801 instruction set. HD6303 mnemonics encountered without the .hd6303 directive will be flagged with an 'o' error. B.2 6801 REGISTER SET The following is a list of the 6801 registers used by AS6801: a,b - 8-bit accumulators d - 16-bit accumulator <a:b> x - index register B.3 6801 INSTRUCTION SET The following tables list all 6801/6303 mnemonics recognized by the AS6801 assembler. The designation [] refers to a re- quired addressing mode argument. The following list specifies the format for each addressing mode supported by AS6801: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 AS6801 ASSEMBLER PAGE B-2 6801 INSTRUCTION SET ,x register indirect addressing zero offset offset,x register indirect addressing 0 <= offset <= 255 ext extended addressing label branch label The terms data, dir, offset, ext, and label may all be expres- sions. Note that not all addressing modes are valid with every in- struction, refer to the 6801/6303 technical data for valid modes. B.3.1 Inherent Instructions aba abx cba clc cli clv daa des dex ins inx mul nop rti rts sba sec sei sev swi tab tap tba tpa tsx txs wai B.3.2 Branch Instructions bra label brn label bhi label bls label bcc label bhs label bcs label blo label bne label beq label bvc label bvs label bpl label bmi label bge label blt label bgt label ble label bsr label AS6801 ASSEMBLER PAGE B-3 6801 INSTRUCTION SET B.3.3 Single Operand Instructions asla aslb asld asl a asl b asl d asl [] asra asrb asr a asr b asr [] clra clrb clr a clr b clr [] coma comb com a com b com [] deca decb dec a dec b dec [] eora eorb eor a eor b eor [] inca incb inc a inc b inc [] lsla lslb lsld lsl a lsl b lsl d lsl [] lsra lsrb lsrd lsr a lsr b lsr d lsr [] nega negb neg a neg b neg [] psha pshb pshx psh a psh b psh x pula pulb pulx pul a pul b pul x rola rolb rol a rol b rol [] AS6801 ASSEMBLER PAGE B-4 6801 INSTRUCTION SET rora rorb ror a ror b ror [] tsta tstb tst a tst b tst [] B.3.4 Double Operand Instructions adca [] adcb [] adc a [] adc b [] adda [] addb [] addd [] add a [] add b [] add d [] anda [] andb [] and a [] and b [] bita [] bitb [] bit a [] bit b [] cmpa [] cmpb [] cmp a [] cmp b [] ldaa [] ldab [] lda a [] lda b [] oraa [] orab [] ora a [] ora b [] sbca [] sbcb [] sbc a [] sbc b [] staa [] stab [] sta a [] sta b [] suba [] subb [] subd [] sub a [] sub b [] sub d [] AS6801 ASSEMBLER PAGE B-5 6801 INSTRUCTION SET B.3.5 Jump and Jump to Subroutine Instructions jmp [] jsr [] B.3.6 Long Register Instructions cpx [] ldd [] lds [] ldx [] std [] sts [] stx [] B.3.7 6303 Specific Instructions aim #data, [] eim #data, [] oim #data, [] tim #data, [] xgdx slp APPENDIX C AS6804 ASSEMBLER Requires the .setdp directive to specify the ram area. C.1 6804 REGISTER SET The following is a list of the 6804 registers used by AS6804: x,y - index registers C.2 6804 INSTRUCTION SET The following tables list all 6804 mnemonics recognized by the AS6804 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6804: #data immediate data byte or word data ,x register indirect addressing dir direct addressing (see .setdp directive) 0 <= dir <= 255 ext extended addressing label branch label The terms data, dir, and ext may be expressions. The label for the short branchs beq, bne, bcc, and bcs must not be external. Note that not all addressing modes are valid with every in- struction, refer to the 6804 technical data for valid modes. AS6804 ASSEMBLER PAGE C-2 6804 INSTRUCTION SET C.2.1 Inherent Instructions coma decx decy incx incy rola rti rts stop tax tay txa tya wait C.2.2 Branch Instructions bne label beq label bcc label bcs label C.2.3 Single Operand Instructions add [] and [] cmp [] dec [] inc [] lda [] sta [] sub [] C.2.4 Jump and Jump to Subroutine Instructions jsr [] jmp [] C.2.5 Bit Test Instructions brclr #data,[],label brset #data,[],label bclr #label,[] bset #label,[] AS6804 ASSEMBLER PAGE C-3 6804 INSTRUCTION SET C.2.6 Load Immediate data Instruction mvi [],#data C.2.7 6804 Derived Instructions asla bam label bap label bxmi label bxpl label bymi label bypl label clra clrx clry deca decx decy inca incx incy ldxi #data ldyi #data nop tax tay txa tya APPENDIX D AS6805 ASSEMBLER D.1 6805 REGISTER SET The following is a list of the 6805 registers used by AS6805: a - 8-bit accumulator x - index register D.2 6805 INSTRUCTION SET The following tables list all 6805 mnemonics recognized by the AS6805 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6805: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 ,x register indirect addressing zero offset offset,x register indirect addressing 0 <= offset <= 255 --- byte mode 256 <= offset <= 65535 --- word mode (an externally defined offset uses the word mode) ext extended addressing label branch label AS6805 ASSEMBLER PAGE D-2 6805 INSTRUCTION SET The terms data, dir, offset, and ext may all be expressions. Note that not all addressing modes are valid with every in- struction, refer to the 6805 technical data for valid modes. D.2.1 Control Instructions clc cli nop rsp rti rts sec sei stop swi tax txa wait D.2.2 Bit Manipulation Instructions brset #data,*dir,label brclr #data,*dir,label bset #data,*dir bclr #data,*dir D.2.3 Branch Instructions bra label brn label bhi label bls label bcc label bcs label bne label beq label bhcc label bhcs label bpl label bmi label bmc label bms label bil label bih label bsr label AS6805 ASSEMBLER PAGE D-3 6805 INSTRUCTION SET D.2.4 Read-Modify-Write Instructions nega negx neg [] coma comx com [] lsra lsrx lsr [] rora rorx ror [] asra asrx asr [] lsla lslx lsl [] rola rolx rol [] deca decx dec [] inca incx inc [] tsta tstx tst [] clra clrx clr [] D.2.5 Register\Memory Instructions sub [] cmp [] sbc [] cpx [] and [] bit [] lda [] sta [] eor [] adc [] ora [] add [] ldx [] stx [] AS6805 ASSEMBLER PAGE D-4 6805 INSTRUCTION SET D.2.6 Jump and Jump to Subroutine Instructions jmp [] jsr [] APPENDIX E AS6808 ASSEMBLER E.1 68HC08 REGISTER SET The following is a list of the 68HC08 registers used by AS68HC08: a - 8-bit accumulator x - index register <H:X> s - stack pointer E.2 68HC08 INSTRUCTION SET The following tables list all 68HC08 mnemonics recognized by the AS6808 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6808: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 ,x register indexed addressing zero offset offset,x register indexed addressing 0 <= offset <= 255 --- byte mode 256 <= offset <= 65535 --- word mode (an externally defined offset uses the word mode) ,x+ register indexed addressing zero offset with post increment AS6808 ASSEMBLER PAGE E-2 68HC08 INSTRUCTION SET offset,x+ register indexed addressing unsigned byte offset with post increment offset,s stack pointer indexed addressing 0 <= offset <= 255 --- byte mode 256 <= offset <= 65535 --- word mode (an externally defined offset uses the word mode) ext extended addressing label branch label The terms data, dir, offset, and ext may all be expressions. Note that not all addressing modes are valid with every in- struction, refer to the 68HC08 technical data for valid modes. E.2.1 Control Instructions clc cli daa div mul nop nsa psha pshh pshx pula pulh pulx rsp rti rts sec sei stop swi tap tax tpa tsx txa txs wait E.2.2 Bit Manipulation Instructions brset #data,*dir,label brclr #data,*dir,label bset #data,*dir bclr #data,*dir AS6808 ASSEMBLER PAGE E-3 68HC08 INSTRUCTION SET E.2.3 Branch Instructions bra label brn label bhi label bls label bcc label bcs label bne label beq label bhcc label bhcs label bpl label bmi label bmc label bms label bil label bih label bsr label bge label blt label bgt label ble label E.2.4 Complex Branch Instructions cbeqa [],label cbeqx [],label cbeq [],label dbnza label dbnzx label dbnz [],label AS6808 ASSEMBLER PAGE E-4 68HC08 INSTRUCTION SET E.2.5 Read-Modify-Write Instructions nega negx neg [] coma comx com [] lsra lsrx lsr [] rora rorx ror [] asra asrx asr [] asla aslx asl [] lsla lslx lsl [] rola rolx rol [] deca decx dec [] inca incx inc [] tsta tstx tst [] clra clrx clr [] clrh aix #data ais #data AS6808 ASSEMBLER PAGE E-5 68HC08 INSTRUCTION SET E.2.6 Register\Memory Instructions sub [] cmp [] sbc [] cpx [] and [] bit [] lda [] sta [] eor [] adc [] ora [] add [] ldx [] stx [] E.2.7 Double Operand Move Instruction mov [],[] E.2.8 16-Bit <H:X> Index Register Instructions cphx [] ldhx [] sthx [] E.2.9 Jump and Jump to Subroutine Instructions jmp [] jsr [] APPENDIX F AS6809 ASSEMBLER F.1 6809 REGISTER SET The following is a list of the 6809 registers used by AS6809: a,b - 8-bit accumulators d - 16-bit accumulator <a:b> x,y - index registers s,u - stack pointers pc - program counter cc - condition code dp - direct page F.2 6809 INSTRUCTION SET The following tables list all 6809 mnemonics recognized by the AS6809 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6809: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 label branch label r,r1,r2 registers cc,a,b,d,dp,x,y,s,u,pc ,-x ,--x register indexed autodecrement AS6809 ASSEMBLER PAGE F-2 6809 INSTRUCTION SET ,x+ ,x++ register indexed autoincrement ,x register indexed addressing zero offset offset,x register indexed addressing -16 <= offset <= 15 --- 5-bit -128 <= offset <= -17 --- 8-bit 16 <= offset <= 127 --- 8-bit -32768 <= offset <= -129 --- 16-bit 128 <= offset <= 32767 --- 16-bit (external definition of offset uses 16-bit mode) a,x accumulator offset indexed addressing ext extended addressing ext,pc pc addressing ( pc <- pc + ext ) ext,pcr pc relative addressing [,--x] register indexed indirect autodecrement [,x++] register indexed indirect autoincrement [,x] register indexed indirect addressing zero offset [offset,x] register indexed indirect addressing -128 <= offset <= 127 --- 8-bit -32768 <= offset <= -129 --- 16-bit 128 <= offset <= 32767 --- 16-bit (external definition of offset uses 16-bit mode) [a,x] accumulator offset indexed indirect addressing [ext] extended indirect addressing [ext,pc] pc indirect addressing ( [pc <- pc + ext] ) [ext,pcr] pc relative indirect addressing The terms data, dir, label, offset, and ext may all be expres- sions. AS6809 ASSEMBLER PAGE F-3 6809 INSTRUCTION SET Note that not all addressing modes are valid with every in- struction, refer to the 6809 technical data for valid modes. F.2.1 Inherent Instructions abx daa mul nop rti rts sex swi swi1 swi2 swi3 sync F.2.2 Short Branch Instructions bcc label bcs label beq label bge label bgt label bhi label bhis label bhs label ble label blo label blos label bls label blt label bmi label bne label bpl label bra label brn label bvc label bvs label bsr label F.2.3 Long Branch Instructions lbcc label lbcs label lbeq label lbge label lbgt label lbhi label lbhis label lbhs label lble label lblo label lblos label lbls label lblt label lbmi label lbne label lbpl label lbra label lbrn label lbvc label lbvs label lbsr label AS6809 ASSEMBLER PAGE F-4 6809 INSTRUCTION SET F.2.4 Single Operand Instructions asla aslb asl [] asra asrb asr [] clra clrb clr [] coma comb com [] deca decb dec [] inca incb inc [] lsla lslb lsl [] lsra lsrb lsr [] nega negb neg [] rola rolb rol [] rora rorb ror [] tsta tstb tst [] AS6809 ASSEMBLER PAGE F-5 6809 INSTRUCTION SET F.2.5 Double Operand Instructions adca [] adcb [] adda [] addb [] anda [] andb [] bita [] bitb [] cmpa [] cmpb [] eora [] eorb [] lda [] ldb [] ora [] orb [] sbca [] sbcb [] sta [] stb [] suba [] subb [] F.2.6 D-register Instructions addd [] subd [] cmpd [] ldd [] std [] F.2.7 Index/Stack Register Instructions cmps [] cmpu [] cmpx [] cmpy [] lds [] ldu [] ldx [] ldy [] leas [] leau [] leax [] leay [] sts [] stu [] stx [] sty [] pshs r pshu r puls r pulu r AS6809 ASSEMBLER PAGE F-6 6809 INSTRUCTION SET F.2.8 Jump and Jump to Subroutine Instructions jmp [] jsr [] F.2.9 Register - Register Instructions exg r1,r2 tfr r1,r2 F.2.10 Condition Code Register Instructions andcc #data orcc #data cwai #data F.2.11 6800 Compatibility Instructions aba cba clc cli clv des dex ins inx ldaa [] ldab [] oraa [] orab [] psha pshb pula pulb sba sec sei sev staa [] stab [] tab tap tba tpa tsx txs wai APPENDIX G AS6811 ASSEMBLER G.1 68HC11 REGISTER SET The following is a list of the 68HC11 registers used by AS6811: a,b - 8-bit accumulators d - 16-bit accumulator <a:b> x,y - index registers G.2 68HC11 INSTRUCTION SET The following tables list all 68HC11 mnemonics recognized by the AS6811 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6811: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 ,x register indirect addressing zero offset offset,x register indirect addressing 0 <= offset <= 255 ext extended addressing label branch label The terms data, dir, offset, and ext may all be expressions. AS6811 ASSEMBLER PAGE G-2 68HC11 INSTRUCTION SET Note that not all addressing modes are valid with every in- struction, refer to the 68HC11 technical data for valid modes. G.2.1 Inherent Instructions aba abx aby cba clc cli clv daa des dex dey fdiv idiv ins inx iny mul nop rti rts sba sec sei sev stop swi tab tap tba tpa tsx txs wai xgdx xgdy psha pshb psh a psh b pshx pshy psh x psh y pula pulb pul a pul b pulx puly pul x pul y G.2.2 Branch Instructions bra label brn label bhi label bls label bcc label bhs label bcs label blo label bne label beq label bvc label bvs label bpl label bmi label bge label blt label bgt label ble label bsr label AS6811 ASSEMBLER PAGE G-3 68HC11 INSTRUCTION SET G.2.3 Single Operand Instructions asla aslb asld asl a asl b asl d asl [] asra asrb asr a asr b asr [] clra clrb clr a clr b clr label coma comb com a com b com [] deca decb dec a dec b dec [] inca incb inc a inc b inc [] lsla lslb lsld lsl a lsl b lsl d lsl [] lsra lsrb lsrd lsr a lsr b lsr d lsr [] nega negb neg a neg b neg [] rola rolb rol a rol b rol [] rora rorb ror a ror b ror [] tsta tstb tst a tst b tst [] AS6811 ASSEMBLER PAGE G-4 68HC11 INSTRUCTION SET G.2.4 Double Operand Instructions adca [] adcb [] adc a [] adc b [] adda [] addb [] addd [] add a [] add b [] add d [] anda [] andb [] and a [] and b [] bita [] bitb [] bit a [] bit b [] cmpa [] cmpb [] cmp a [] cmp b [] eora [] eorb [] eor a [] eor b [] ldaa [] ldab [] lda a [] lda b [] oraa [] orab [] ora a [] ora b [] sbca [] sbcb [] sbc a [] sbc b [] staa [] stab [] sta a [] sta b [] suba [] subb [] subd [] sub a [] sub b [] sub d [] G.2.5 Bit Manupulation Instructions bclr [],#data bset [],#data brclr [],#data,label brset [],#data,label AS6811 ASSEMBLER PAGE G-5 68HC11 INSTRUCTION SET G.2.6 Jump and Jump to Subroutine Instructions jmp [] jsr [] G.2.7 Long Register Instructions cpx [] cpy [] ldd [] lds [] ldx [] ldy [] std [] sts [] stx [] sty [] APPENDIX H AS6812 ASSEMBLER H.1 68HC12 REGISTER SET The following is a list of the 68HC12 registers used by AS6812: a,b - 8-bit accumulators d - 16-bit accumulator <a:b> x,y - index registers sp,s - stack pointer pc - program counter ccr,cc - condition code register H.2 68HC12 INSTRUCTION SET The following tables list all 68HC12 mnemonics recognized by the AS6812 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6812: #data immediate data byte or word data ext extended addressing pg memory page number *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 label branch label r,r1,r2 registers ccr,a,b,d,x,y,sp,pc AS6812 ASSEMBLER PAGE H-2 68HC12 INSTRUCTION SET -x x- register indexed, pre or ,-x ,x- post autodecrement by 1 n,-x n,x- register indexed, pre or post autodecrement by 1 - 8 +x x+ register indexed, pre or ,+x ,x+ post autoincrement by 1 n,+x n,x+ register indexed, pre or post autoincrement by 1 - 8 offset,x register indexed addressing -16 <= offset <= 15 --- 5-bit -256 <= offset <= -17 --- 9-bit 16 <= offset <= 255 --- 9-bit -32768 <= offset <= -257 --- 16-bit 256 <= offset <= 32767 --- 16-bit (external definition of offset uses 16-bit mode) [offset,x] register indexed indirect addressing -32768 <= offset <= 32767 --- 16-bit [,x] register indexed indirect addressing zero offset a,x accumulator offset indexed addressing [d,x] d accumulator offset indexed indirect addressing The terms data, dir, label, offset, and ext may all be expres- sions. Note that not all addressing modes are valid with every in- struction, refer to the 68HC12 technical data for valid modes. AS6812 ASSEMBLER PAGE H-3 68HC12 INSTRUCTION SET H.2.1 Inherent Instructions aba bgnd cba daa dex dey ediv edivs emul emuls fdiv idiv idivs inx iny mem mul nop psha pshb pshc pshd pshx pshy pula pulb pulc puld pulx puly rev revw rtc rti rts sba stop swi tab tba wai wav wavr H.2.2 Short Branch Instructions bcc label bcs label beq label bge label bgt label bhi label bhis label bhs label ble label blo label blos label bls label blt label bmi label bne label bpl label bra label brn label bvc label bvs label bsr label H.2.3 Long Branch Instructions lbcc label lbcs label lbeq label lbge label lbgt label lbhi label lbhis label lbhs label lble label lblo label lblos label lbls label lblt label lbmi label lbne label lbpl label lbra label lbrn label lbvc label lbvs label AS6812 ASSEMBLER PAGE H-4 68HC12 INSTRUCTION SET H.2.4 Branch on Decrement, Test, or Increment dbeq r,label dbne r,label ibeq r,label ibne r,label tbeq r,label tbne r,label H.2.5 Bit Clear and Set Instructions bclr [],#data bset [],#data H.2.6 Branch on Bit Clear or Set brclr [],#data,label brset [],#data,label AS6812 ASSEMBLER PAGE H-5 68HC12 INSTRUCTION SET H.2.7 Single Operand Instructions asla aslb asl [] asra asrb asr [] clra clrb clr [] coma comb com [] deca decb dec [] inca incb inc [] lsla lslb lsl [] lsra lsrb lsr [] nega negb neg [] rola rolb rol [] rora rorb ror [] tsta tstb tst [] AS6812 ASSEMBLER PAGE H-6 68HC12 INSTRUCTION SET H.2.8 Double Operand Instructions adca [] adcb [] adda [] addb [] anda [] andb [] bita [] bitb [] cmpa [] cmpb [] eora [] eorb [] ldaa [] <=> lda [] ldab [] <=> ldb [] oraa [] <=> ora [] orab [] <=> orb [] sbca [] sbcb [] staa [] <=> sta [] stab [] <=> stb [] suba [] subb [] H.2.9 Move Instructions movb [],[] movw [],[] H.2.10 D-register Instructions addd [] subd [] cpd [] <=> cmpd [] ldd [] std [] AS6812 ASSEMBLER PAGE H-7 68HC12 INSTRUCTION SET H.2.11 Index/Stack Register Instructions cps [] <=> cmps [] cpx [] <=> cmpx [] cpy [] <=> cmpy [] lds [] ldx [] ldy [] leas [] leax [] leay [] sts [] stx [] sty [] H.2.12 Jump and Jump/Call to Subroutine Instructions call [],pg jmp [] jsr [] H.2.13 Other Special Instructions emacs [] emaxd [] emaxm [] emind [] eminm [] etbl [] maxa [] maxm [] mina [] minm [] tbl [] trap #data H.2.14 Register - Register Instructions exg r1,r2 sex r1,r2 tfr r1,r2 H.2.15 Condition Code Register Instructions andcc #data orcc #data AS6812 ASSEMBLER PAGE H-8 68HC12 INSTRUCTION SET H.2.16 M68HC11 Compatibility Mode Instructions abx aby clc cli clv des ins sec sei sev tap tpa tsx tsy txs tys xgdx xgdy APPENDIX I AS6816 ASSEMBLER I.1 68HC16 REGISTER SET The following is a list of the 68HC16 registers used by AS6816: a,b - 8-bit accumulators d - 16-bit accumulator <a:b> e - 16-bit accumulator x,y,z - index registers k - address extension register s - stack pointer ccr - condition code I.2 68HC16 INSTRUCTION SET The following tables list all 68HC16 mnemonics recognized by the AS6816 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6816: #data immediate data byte or word data #xo,#yo local immediate data (mac / rmac) label branch label r register ccr,a,b,d,e,x,y,z,s ,x zero offset register indexed addressing ,x8 ,x16 offset,x register indexed addressing AS6816 ASSEMBLER PAGE I-2 68HC16 INSTRUCTION SET 0 <= offset <= 255 --- 8-bit -32768 <= offset <= -1 --- 16-bit 256 <= offset <= 32767 --- 16-bit (external definition of offset uses 16-bit mode) offset,x8 unsigned 8-bit offset indexed addressing offset,x16 signed 16-bit offset indexed addressing e,x accumulator offset indexed addressing ext extended addressing bank 64K bank number (jmp / jsr) The terms data, label, offset, bank, and ext may all be expres- sions. Note that not all addressing modes are valid with every in- struction, refer to the 6816 technical data for valid modes. I.2.1 Inherent Instructions aba abx aby abz ace aced ade adx ady adz aex aey aez bgnd cba daa ediv edivs emul emuls fdiv fmuls idiv ldhi lpstop mul nop psha pshb pshmac pula pulb pulmac rtr rts sba sde sted swi sxt tab tap tba tbek tbsk tbxk tbyk tbzk tde tdmsk tdp ted tedm tekb tem tmer tmet tmxed tpa tpd tskb tsx tsy tsz txkb txs txy txz tykb tys tyx tyz tzkb tzs tzx tzy wai xgab xgde xgdx xgdy xgdz xgex xgey xgez AS6816 ASSEMBLER PAGE I-3 68HC16 INSTRUCTION SET I.2.2 Push/Pull Multiple Register Instructions pshm r,... pulm r,... I.2.3 Short Branch Instructions bcc label bcs label beq label bge label bgt label bhi label bhis label bhs label ble label blo label blos label bls label blt label bmi label bne label bpl label bra label brn label bvc label bvs label bsr label I.2.4 Long Branch Instructions lbcc label lbcs label lbeq label lbge label lbgt label lbhi label lbhis label lbhs label lble label lblo label lblos label lbls label lblt label lbmi label lbne label lbpl label lbra label lbrn label lbvc label lbvs label lbsr label I.2.5 Bit Manipulation Instructions bclr [],#data bset [],#data brclr [],#data,label brset [],#data,label AS6816 ASSEMBLER PAGE I-4 68HC16 INSTRUCTION SET I.2.6 Single Operand Instructions asla aslb asld asle aslm asl [] aslw [] asra asrb asrd asre asrm asr [] asrw [] clra clrb clrd clre clrm clr [] clrw [] coma comb comd come com [] comw [] deca decb dec [] decw [] inca incb inc [] incw [] lsla lslb lsld lsle lslm lsl [] lslw [] lsra lsrb lsrd lsre lsr [] lsrw [] nega negb negd nege neg [] negw [] rola rolb rold role rol [] rolw [] rora rorb rord rore ror [] rorw [] tsta tstb tsta tste tst [] tstw [] AS6816 ASSEMBLER PAGE I-5 68HC16 INSTRUCTION SET I.2.7 Double Operand Instructions adca [] adcb [] adcd [] adce [] adda [] addb [] addd [] adde [] anda [] andb [] andd [] ande [] bita [] bitb [] cmpa [] cmpb [] cpd [] cpe [] eora [] eorb [] eord [] eore [] ldaa [] ldab [] ldd [] lde [] oraa [] orab [] ord [] ore [] sbca [] sbcb [] sbcd [] sbce [] staa [] stab [] std [] ste [] suba [] subb [] subd [] sube [] I.2.8 Index/Stack Register Instructions cps [] cpx [] cpy [] cpz [] lds [] ldx [] ldy [] ldz [] sts [] stx [] sty [] stz [] AS6816 ASSEMBLER PAGE I-6 68HC16 INSTRUCTION SET I.2.9 Jump and Jump to Subroutine Instructions jmp bank,[] jsr bank,[] I.2.10 Condition Code Register Instructions andp #data orp #data I.2.11 Multiply and Accumulate Instructions mac #data rmac #data mac #xo,#yo rmac #xo,#yo APPENDIX J ASH8 ASSEMBLER J.1 H8/3XX REGISTER SET The following is a list of the H8 registers used by ASH8: r0 - r7,sp 16-bit accumulators r0L - r7L,spL 8-bit accumulators r0H - r7H,spH 8-bit accumulators spL,spH,sp stack pointers ccr condition code J.2 H8/3XX INSTRUCTION SET The following tables list all H8/3xx mnemonics recognized by the ASH8 assembler. The designation [] refers to a required ad- dressing mode argument. The following list specifies the format for each addressing mode supported by ASH8: #xx:3 immediate data (3 bit) #xx:8 immediate data (8 bit) #xx:16 immediate data (16 bit) *dir direct page addressing (see .setdp directive) 0xFF00 <= dir <= 0xFFFF label branch label rn registers (16 bit) r0-r7,sp rnB registers (8 bit) r0H-r7H,r0L-r7L,spH,spL ASH8 ASSEMBLER PAGE J-2 H8/3XX INSTRUCTION SET ccr condition code register @rn register indirect @-rn register indirect (auto pre-decrement) @rn+ register indirect (auto post-increment) @[offset,rn] register indirect, 16-bit displacement @@offset memory indirect, (8-bit address) ext extended addressing (16-bit) The terms data, dir, label, offset, and ext may all be expres- sions. Note that not all addressing modes are valid with every in- struction, refer to the H8/3xx technical data for valid modes. J.2.1 Inherent Instructions eepmov nop sleep rte rts J.2.2 Branch Instructions bcc label bcs label beq label bf label bge label bgt label bhi label bhis label bhs label ble label blo label blos label bls label blt label bmi label bne label bpl label bra label brn label bt label bvc label bvs label bsr label ASH8 ASSEMBLER PAGE J-3 H8/3XX INSTRUCTION SET J.2.3 Single Operand Instructions Free Form daa rnB das rnB dec rnB inc rnB neg rnB not rnB rotxl rnB rotxr rnB rotl rnB rotr rnB shal rnB shar rnB shll rnB shlr rnB push rn pop rn Byte / Word Form daa.b rnB das.b rnB dec.b rnB inc.b rnB neg.b rnB not.b rnB rotxl.b rnB rotxr.b rnB rotl.b rnB rotr.b rnB shal.b rnB shar.b rnB shll.b rnB shlr.b rnB push.w rn pop.w rn ASH8 ASSEMBLER PAGE J-4 H8/3XX INSTRUCTION SET J.2.4 Double Operand Instructions Free Form add rnB,rnB add #xx:8,rnB add rn,rn adds #1,rn adds #2,rn addx rnB,rnB addx #xx:8,rnB cmp rnB,rnB cmp #xx:8,rnB cmp rn,rn sub rnB,rnB sub rn,rn subs #1,rn subs #2,rn subx rnB,rnB subx #xx:8,rnB and rnB,rnB and #xx:8,rnB and #xx:8,ccr or rnB,rnB or #xx:8,rnB or #xx:8,ccr xor rnB,rnB xor #xx:8,rnB xor #xx:8,ccr Byte / Word Form add.b rnB,rnB add.b #xx:8,rnB add.w rn,rn cmp.b rnB,rnB cmp.b #xx:8,rnB cmp.w rn,rn sub.b rnB,rnB sub.w rn,rn addx.b rnB,rnB addx.b #xx:8,rnB and.b rnB,rnB and.b #xx:8,rnB and.b #xx:8,ccr or.b rnB,rnB or.b #xx:8,rnB or.b #xx:8,ccr subx.b rnB,rnB subx.b #xx:8,rnB xor.b rnB,rnB xor.b #xx:8,rnB xor.b #xx:8,ccr ASH8 ASSEMBLER PAGE J-5 H8/3XX INSTRUCTION SET J.2.5 Mov Instructions Free Form mov rnB,rnB mov rn,rn mov #xx:8,rnB mov #xx:16,rn mov @rn,rnB mov @rn,rn mov @[offset,rn],rnB mov @[offset,rn],rn mov @rn+,rnB mov @rn+,rn mov @dir,rnB mov dir,rnB mov *@dir,rnB mov *dir,rnB mov @label,rnB mov @label,rn mov label,rnB mov label,rn mov rnB,@rn mov rn,@rn mov rnB,@[offset,rn] mov rn,@[offset,rn] mov rnB,@-rn mov rn,@-rn mov rnB,@dir mov rnB,dir mov rnB,*@dir mov rnB,*dir mov rnB,@label mov rn,@label mov rnB,label mov rn,label Byte / Word Form mov.b rnB,rnB mov.w rn,rn mov.b #xx:8,rnB mov.w #xx:16,rn mov.b @rn,rnB mov.w @rn,rn mov.b @[offset,rn],rnB mov.w @[offset,rn],rn mov.b @rn+,rnB mov.w @rn+,rn mov.b @dir,rnB mov.b dir,rnB mov.b *@dir,rnB mov.b *dir,rnB mov.b @label,rnB mov.w @label,rn mov.b label,rnB mov.w label,rn mov.b rnB,@rn mov.w rn,@rn mov.b rnB,@[offset,rn] mov.w rn,@[offset,rn] mov.b rnB,@-rn mov.w rn,@-rn mov.b rnB,@dir mov.b rnB,dir mov.b rnB,*@dir mov.b rnB,*dir mov.b rnB,@label mov.w rn,@label mov.b rnB,label mov.w rn,label ASH8 ASSEMBLER PAGE J-6 H8/3XX INSTRUCTION SET J.2.6 Bit Manipulation Instructions bld #xx:3,rnB bld #xx:3,@rn bld #xx:3,@dir bld #xx:3,dir bld #xx:3,*@dir bld #xx:3,*dir bild #xx:3,rnB bild #xx:3,@rn bild #xx:3,@dir bild #xx:3,dir bild #xx:3,*@dir bild #xx:3,*dir bst #xx:3,rnB bst #xx:3,@rn bst #xx:3,@dir bst #xx:3,dir bst #xx:3,*@dir bst #xx:3,*dir bist #xx:3,rnB bist #xx:3,@rn bist #xx:3,@dir bist #xx:3,dir bist #xx:3,*@dir bist #xx:3,*dir band #xx:3,rnB band #xx:3,@rn band #xx:3,@dir band #xx:3,dir band #xx:3,*@dir band #xx:3,*dir biand #xx:3,rnB biand #xx:3,@rn biand #xx:3,@dir biand #xx:3,dir biand #xx:3,*@dir biand #xx:3,*dir bor #xx:3,rnB bor #xx:3,@rn bor #xx:3,@dir bor #xx:3,dir bor #xx:3,*@dir bor #xx:3,*dir bior #xx:3,rnB bior #xx:3,@rn bior #xx:3,@dir bior #xx:3,dir bior #xx:3,*@dir bior #xx:3,*dir bxor #xx:3,rnB bxor #xx:3,@rn bxor #xx:3,@dir bxor #xx:3,dir bxor #xx:3,*@dir bxor #xx:3,*dir bixor #xx:3,rnB bixor #xx:3,@rn bixor #xx:3,@dir bixor #xx:3,dir bixor #xx:3,*@dir bixor #xx:3,*dir ASH8 ASSEMBLER PAGE J-7 H8/3XX INSTRUCTION SET J.2.7 Extended Bit Manipulation Instructions bset #xx:3,rnB bset #xx:3,@rn bset #xx:3,@dir bset #xx:3,dir bset #xx:3,*@dir bset #xx:3,*dir bset rnB,rnB bset rnB,@rn bset rnB,@dir bset rnB,dir bset rnB,*@dir bset rnB,*dir bclr #xx:3,rnB bclr #xx:3,@rn bclr #xx:3,@dir bclr #xx:3,dir bclr #xx:3,*@dir bclr #xx:3,*dir bclr rnB,rnB bclr rnB,@rn bclr rnB,@dir bclr rnB,dir bclr rnB,*@dir bclr rnB,*dir bnot #xx:3,rnB bnot #xx:3,@rn bnot #xx:3,@dir bnot #xx:3,dir bnot #xx:3,*@dir bnot #xx:3,*dir bnot rnB,rnB bnot rnB,@rn bnot rnB,@dir bnot rnB,dir bnot rnB,*@dir bnot rnB,*dir btst #xx:3,rnB btst #xx:3,@rn btst #xx:3,@dir btst #xx:3,dir btst #xx:3,*@dir btst #xx:3,*dir btst rnB,rnB btst rnB,@rn btst rnB,@dir btst rnB,dir btst rnB,*@dir btst rnB,*dir J.2.8 Condition Code Instructions andc #xx:8,ccr andc #xx:8 and #xx:8,ccr and.b #xx:8,ccr ldc #xx:8,ccr ldc #xx:8 ldc rnB,ccr ldc rnB orc #xx:8,ccr orc #xx:8 or #xx:8,ccr or.b #xx:8,ccr xorc #xx:8,ccr xorc #xx:8 xor #xx:8,ccr xor.b #xx:8,ccr stc ccr,rnB stc rnB ASH8 ASSEMBLER PAGE J-8 H8/3XX INSTRUCTION SET J.2.9 Other Instructions divxu rnB,rn divxu.b rnB,rn mulxu rnB,rn mulxu.b rnB,rn movfpe @label,rnB movfpe label,rnB movfpe.b @label,rnB movfpe.b label,rnB movtpe @label,rnB movtpe label,rnB movtpe.b @label,rnB movtpe.b label,rnB J.2.10 Jump and Jump to Subroutine Instructions jmp @rn jmp @@dir jmp @label jmp label jsr @rn jsr @@dir jsr @label jsr label APPENDIX K AS8051 ASSEMBLER K.1 ACKNOWLEDGMENT Thanks to John Hartman for his contribution of the AS8051 cross assembler. John L. Hartman jhartman@compuserve.com K.2 8051 REGISTER SET The following is a list of the 8051 registers used by AS8051: a,b - 8-bit accumulators r0,r1,r2,r3 - 8-bit registers r4,r5,r6,r7 dptr - data pointer sp - stack pointer pc - program counter psw - status word c - carry (bit in status word) AS8051 ASSEMBLER PAGE K-2 8051 REGISTER SET K.3 8051 INSTRUCTION SET The following tables list all 8051 mnemonics recognized by the AS8051 assembler. The following list specifies the format for each addressing mode supported by AS8051: #data immediate data byte or word data r,r1,r2 register r0,r1,r2,r3,r4,r5,r6, or r7 @r indirect on register r0 or r1 @dptr indirect on data pointer @a+dptr indirect on accumulator plus data pointer @a+pc indirect on accumulator plus program counter addr direct memory address bitaddr bit address label call or jump label The terms data, addr, bitaddr, and label may all be expressions. Note that not all addressing modes are valid with every in- struction. Refer to the 8051 technical data for valid modes. K.3.1 Inherent Instructions nop AS8051 ASSEMBLER PAGE K-3 8051 INSTRUCTION SET K.3.2 Move Instructions mov a,#data mov a,addr mov a,r mov a,@r mov r,#data mov r,addr mov r,a mov addr,a mov addr,#data mov addr,r mov addr,@r mov addr1,addr2 mov bitaddr,c mov @r,#data mov @r,addr mov @r,a mov c,bitaddr mov dptr,#data movc a,@a+dptr movc a,@a+pc movx a,@dptr movx a,@r movx @dptr,a movx @r,a K.3.3 Single Operand Instructions clr a clr c clr bitaddr cpl a cpl c cpl bitaddr setb c setb bitaddr da a rr a rrc a rl a rlc a swap a dec a dec r dec @r inc a inc r inc dptr inc @r div ab mul ab pop addr push addr AS8051 ASSEMBLER PAGE K-4 8051 INSTRUCTION SET K.3.4 Two Operand Instructions add a,#data add a,addr add a,r add a,@r addc a,#data addc a,addr addc a,r addc a,@r subb a,#data subb a,addr subb a,r subb a,@r orl a,#data orl a,addr orl a,r orl a,@r orl addr,a orl addr,#data orl c,bitaddr orl c,/bitaddr anl a,#data anl a,addr anl a,r anl a,@r anl addr,a anl addr,#data anl c,bitaddr anl c,/bitaddr xrl a,#data xrl a,addr xrl a,r xrl a,@r xrl addr,a xrl addr,#data xrl c,bitaddr xrl c,/bitaddr xch a,addr xch a,r xch a,@r xchd a,@r K.3.5 Call and Return Instructions acall label lcall label ret reti in data out data rst data K.3.6 Jump Instructions ajmp label cjne a,#data,label cjne a,addr,label cjne r,#data,label cjne @r,#data,label djnz r,label djnz addr,label jbc bitadr,label jb bitadr,label jnb bitadr,label jc label jnc label jz label jnz label jmp @a+dptr ljmp label sjmp label AS8051 ASSEMBLER PAGE K-5 8051 INSTRUCTION SET K.3.7 Predefined Symbols: SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- FC FF F8 FB F4 F7 F0 B F3 EC EF E8 EB E4 E7 E0 ACC E3 DC DF D8 DB D4 D7 D0 PSW D3 CC [ TL2 TH2 ] CF C8 [ T2CON RCAP2L RCAP2H ] CB C4 C7 C0 C3 BC BF B8 IP BB B4 B7 B0 P3 B3 AC AF A8 IE AB A4 A7 A0 P2 A3 9C 9F 98 SCON SBUF 9B 94 97 90 P1 93 8C TH0 TH1 8F 88 TCON TMOD TL0 TL1 8B 84 PCON 87 80 P0 SP DPL DPH 83 [...] Indicates Resident in 8052, not 8051 AS8051 ASSEMBLER PAGE K-6 8051 INSTRUCTION SET K.3.8 Predefined Symbols: SFR Bit Addresses ---------- 4 BITS ---------- ---- ---- ---- ---- FC FF F8 FB F4 B.4 B.5 B.6 B.7 F7 F0 B.0 B.1 B.2 B.3 F3 EC EF E8 EB E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 DC DF D8 DB D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 CC [ T2CON.4 T2CON.5 T2CON.6 T2CON.7 ] CF C8 [ T2CON.0 T2CON.1 T2CON.2 T2CON.3 ] CB C4 C7 C0 C3 BC IP.4 IP.5 IP.6 IP.7 BF B8 IP.0 IP.1 IP.2 IP.3 BB B4 P3.4 P3.5 P3.6 P3.7 B7 B0 P3.0 P3.1 P3.2 P3.3 B3 AC IE.4 IE.5 EI.6 IE.7 AF A8 IE.0 IE.1 IE.2 IE.3 AB A4 P2.4 P2.5 P2.6 P2.7 A7 A0 P2.0 P2.1 P2.2 P2.3 A3 9C SCON.4 SCON.5 SCON.6 SCON.7 9F 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 94 P1.4 P1.5 P1.6 P1.7 97 90 P1.0 P1.1 P1.2 P1.3 93 8C TCON.4 TCON.5 TCON.6 TCON.7 8F 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 84 P0.4 P0.5 P0.6 P0.7 87 80 P0.0 P0.1 P0.2 P0.3 83 [...] Indicates Resident in 8052, not 8051 AS8051 ASSEMBLER PAGE K-7 8051 INSTRUCTION SET K.3.9 Predefined Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- FC FF F8 FB F4 F7 F0 F3 EC EF E8 EB E4 E7 E0 E3 DC DF D8 DB D4 RS1 F0 AC CY D7 D0 P OV RS0 D3 CC [ TLCK RCLK EXF2 TF2 ] CF C8 [ CPRL2 CT2 TR2 EXEN2 ] CB C4 C7 C0 C3 BC PS PT2 BF B8 PX0 PT0 PX1 PT1 BB B4 B7 B0 RXD TXD INT0 INT1 B3 AC ES ET2 EA AF A8 EX0 ET0 EX1 ET1 AB A4 A7 A0 A3 9C REN SM2 SM1 SM0 9F 98 RI TI RB8 TB8 9B 94 97 90 93 8C TR0 TF0 TR1 TF1 8F 88 IT0 IE0 IT1 IE1 8B 84 87 80 83 [...] Indicates Resident in 8052, not 8051 APPENDIX L AS8085 ASSEMBLER L.1 8085 REGISTER SET The following is a list of the 8080/8085 registers used by AS8085: a,b,c,d,e,h,l - 8-bit accumulators m - memory through (hl) sp - stack pointer psw - status word L.2 8085 INSTRUCTION SET The following tables list all 8080/8085 mnemonics recognized by the AS8085 assembler. The following list specifies the format for each addressing mode supported by AS8085: #data immediate data byte or word data r,r1,r2 register or register pair psw,a,b,c,d,e,h,l bc,de,hl,sp,pc m memory address using (hl) addr direct memory addressing label call or jump label The terms data, m, addr, and label may be expressions. Note that not all addressing modes are valid with every in- struction, refer to the 8080/8085 technical data for valid modes. AS8085 ASSEMBLER PAGE L-2 8085 INSTRUCTION SET L.2.1 Inherent Instructions cma cmc daa di ei hlt nop pchl ral rar ret rim rrc rlc sim sphl stc xchg xthl L.2.2 Register/Memory/Immediate Instructions adc r adc m aci #data add r add m adi #data ana r ana m ani #data cmp r cmp m cpi #data ora r ora m ori #data sbb r sbb m sbi #data sub r sub m sui #data xra r xra m xri #data L.2.3 Call and Return Instructions cc label rc cm label rm cnc label rnc cnz label rnz cp label rp cpe label rpe cpo label rpo cz label rz call label L.2.4 Jump Instructions jc label jm label jnc label jnz label jp label jpe label jpo label jz label jmp label AS8085 ASSEMBLER PAGE L-3 8085 INSTRUCTION SET L.2.5 Input/Output/Reset Instructions in data out data rst data L.2.6 Move Instructions mov r1,r2 mov r,m mov m,r mvi r,#data mvi m,#data L.2.7 Other Instructions dcr r dcr m inr r inr m dad r dcx r inx r ldax r pop r push r stax r lda addr lhld addr shld addr sta addr lxi r,#data APPENDIX M AS8XCXXX ASSEMBLER M.1 ACKNOWLEDGMENTS Thanks to Bill McKinnon for his contributions to the AS8XCXXX cross assembler. Bill McKinnon w_mckinnon@conknet.com This assembler was derived from the AS8051 cross assembler contributed by John Hartman. John L. Hartman jhartman@compuserve.com M.2 DS8XCXXX ASSEMBLER DIRECTIVES The AS8XCXXX assembler contains directives to specify the particular SFR (Special Function Registers) to be enabled during the assembly process. The following directives are supported: .DS8XCXXX ;80C32 core .DS80C310 ;Dallas Semiconductor .DS80C320 ;Microprocessors .DS80C323 .DS80C390 .DS83C520 .DS83C530 .DS83C550 .DS87C520 .DS87C530 .DS87C550 If the microprocessor selector directive is followed by a AS8XCXXX ASSEMBLER PAGE M-2 DS8XCXXX ASSEMBLER DIRECTIVES non-zero argument then the SFR register bit values will also be defined. If a microprocessor selector directive is not specified then no SFR or SFR register bit values will be defined. This mode allows the SFR to be defined by an external assembly source file. The file DS8XCXXX.SFR contains the SFR and SFR register bit values for all the microprocessor selector directives. This file may be modified to create a new SFR for other microproces- sor types. Also, if a microprocessor selector directive is not specified then the following address length assembler directives are accepted: .16bit ;16-Bit Addressing .24bit ;24-Bit Addressing .32bit ;32-Bit Addressing These directives specify the assembler addressing space and ef- fect the output format for the .lst, .sym, and .rel files. The default addressing space for defined microprocessors is 16-Bit except for the DS80C390 microprocessor which is 24-Bit. M.2.1 DS80C390 Addressing Mode Directive The DS80C390 microprocessor supports 16-Bit and 24-Bit ad- dressing modes. The .amode assembler directive provides a method to select the addressing mode used by the ajmp, acall, ljmp, and lcall instructions. These four instructions support 16 and 24 bit addressing modes selected by bits AM0 and AM1 in the ACON register. The assembler is 'informed' about the ad- dressing mode selected by using the .amode directive: .amode 2 ;mode 2 is 24-bit addressing If a second argument is specified and its value is non-zero, then a three instruction sequence is inserted at the .amode lo- cation loading the mode bits into the ACON register: .amode 2,1 ;mode 2 is 24-bit addressing, load ACON ;mov ta,#0xAA ;mov ta,#0x55 ;mov acon,#amode AS8XCXXX ASSEMBLER PAGE M-3 DS8XCXXX ASSEMBLER DIRECTIVES M.3 DS8XCXXX REGISTER SET The AS8XCXXX cross assembler supports the Dallas Semiconductor DS8XCXXX series of 8051-compatible devices. These microproces- sors retain instruction set and object code compatability with the 8051 microprocessor. The DS8XCXXX family is updated with several new peripherals while providing all the standard features of the 80C32 microprocessor. The following is a list of the registers used by AS8XCXXX: a,b - 8-bit accumulators r0,r1,r2,r3 - 8-bit registers r4,r5,r6,r7 dptr - data pointer sp - stack pointer pc - program counter psw - status word c - carry (bit in status word) M.4 DS8XCXXX INSTRUCTION SET The following tables list all DS8XCXXX mnemonics recognized by the AS8XCXXX assembler. The following list specifies the format for each addressing mode supported by AS8XCXXX: #data immediate data byte or word data r,r1,r2 register r0,r1,r2,r3,r4,r5,r6, or r7 @r indirect on register r0 or r1 @dptr indirect on data pointer @a+dptr indirect on accumulator plus data pointer @a+pc indirect on accumulator plus program counter addr direct memory address bitaddr bit address label call or jump label The terms data, addr, bitaddr, and label may all be expressions. Note that not all addressing modes are valid with every in- struction. Refer to the DS8XCXXX technical data for valid modes. AS8XCXXX ASSEMBLER PAGE M-4 DS8XCXXX INSTRUCTION SET M.4.1 Inherent Instructions nop M.4.2 Move Instructions mov a,#data mov a,addr mov a,r mov a,@r mov r,#data mov r,addr mov r,a mov addr,a mov addr,#data mov addr,r mov addr,@r mov addr1,addr2 mov bitaddr,c mov @r,#data mov @r,addr mov @r,a mov c,bitaddr mov dptr,#data movc a,@a+dptr movc a,@a+pc movx a,@dptr movx a,@r movx @dptr,a movx @r,a M.4.3 Single Operand Instructions clr a clr c clr bitaddr cpl a cpl c cpl bitaddr setb c setb bitaddr da a rr a rrc a rl a rlc a swap a dec a dec r dec @r inc a inc r inc dptr inc @r div ab mul ab pop addr push addr AS8XCXXX ASSEMBLER PAGE M-5 DS8XCXXX INSTRUCTION SET M.4.4 Two Operand Instructions add a,#data add a,addr add a,r add a,@r addc a,#data addc a,addr addc a,r addc a,@r subb a,#data subb a,addr subb a,r subb a,@r orl a,#data orl a,addr orl a,r orl a,@r orl addr,a orl addr,#data orl c,bitaddr orl c,/bitaddr anl a,#data anl a,addr anl a,r anl a,@r anl addr,a anl addr,#data anl c,bitaddr anl c,/bitaddr xrl a,#data xrl a,addr xrl a,r xrl a,@r xrl addr,a xrl addr,#data xrl c,bitaddr xrl c,/bitaddr xch a,addr xch a,r xch a,@r xchd a,@r M.4.5 Call and Return Instructions acall label lcall label ret reti in data out data rst data M.4.6 Jump Instructions ajmp label cjne a,#data,label cjne a,addr,label cjne r,#data,label cjne @r,#data,label djnz r,label djnz addr,label jbc bitadr,label jb bitadr,label jnb bitadr,label jc label jnc label jz label jnz label jmp @a+dptr ljmp label sjmp label AS8XCXXX ASSEMBLER PAGE M-6 DS8XCXXX INSTRUCTION SET M.5 DS8XCXXX SPECIAL FUNCTION REGISTERS The 80C32 core Special Function Registers are selected using the .DS8xCxxx assembler directive. M.5.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 SP DPL DPH 83 84 PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 8F 90 P1 93 94 97 98 SCON SBUF 9B 9C 9F A0 P2 A3 A4 A7 A8 IE SADDR0 AB AC AF B0 P3 B3 B4 B7 B8 IP SADEN0 BB BC BF C0 C3 C4 STATUS C7 C8 T2CON T2MOD RCAP2L RCAP2H CB CC TL2 TH2 CF D0 PSW D3 D4 D7 D8 DB DC DF E0 ACC E3 E4 E7 E8 EB EC EF F0 B F3 F4 F7 F8 FB FC FF AS8XCXXX ASSEMBLER PAGE M-7 DS8XCXXX SPECIAL FUNCTION REGISTERS M.5.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F P1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F P2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF P3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF C0 C3 C4 C7 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 D8 DB DC DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 E8 EB EC EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 F8 FB FC FF AS8XCXXX ASSEMBLER PAGE M-8 DS8XCXXX SPECIAL FUNCTION REGISTERS M.5.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F 90 93 94 97 SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 EA AF B0 B3 B4 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PT2 BF C0 C3 C4 C7 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB CC TCLK RCLK EXF2 TF2 CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 D8 DB DC DF E0 E3 E4 E7 E8 EB EC EF F0 F3 F4 F7 F8 FB FC FF Alternates: SCON 98 9B 9C FE 9F T2CON C8 CP_RL2 C_T2 CB CC CF AS8XCXXX ASSEMBLER PAGE M-9 DS8XCXXX SPECIAL FUNCTION REGISTERS M.5.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- PCON 0x80 SMOD SMOD0 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 STATUS 0x80 HIP LIP 0x10 0x08 0x01 T2MOD 0x80 0x10 0x08 T2OE DCEN 0x01 AS8XCXXX ASSEMBLER PAGE M-10 DS8XCXXX SPECIAL FUNCTION REGISTERS M.6 DS80C310 SPECIAL FUNCTION REGISTERS The DS80C310 Special Function Registers are selected using the .DS80C310 assembler directive. M.6.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 SP DPL DPH 83 84 DPL1 DPH1 DPS PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 CKCON 8F 90 P1 EXIF 93 94 97 98 SCON SBUF 9B 9C 9F A0 P2 A3 A4 A7 A8 IE SADDR0 AB AC AF B0 P3 B3 B4 B7 B8 IP SADEN0 BB BC BF C0 C3 C4 STATUS C7 C8 T2CON T2MOD RCAP2L RCAP2H CB CC TL2 TH2 CF D0 PSW D3 D4 D7 D8 WDCON DB DC DF E0 ACC E3 E4 E7 E8 EIE EB EC EF F0 B F3 F4 F7 F8 EIP FB FC FF AS8XCXXX ASSEMBLER PAGE M-11 DS80C310 SPECIAL FUNCTION REGISTERS M.6.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F P1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F P2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF P3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF C0 C3 C4 C7 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB EC EIE.4 EIE.5 EIE.6 EIE.7 EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB FC EIP.4 EIP.5 EIP.6 EIP.7 FF AS8XCXXX ASSEMBLER PAGE M-12 DS80C310 SPECIAL FUNCTION REGISTERS M.6.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F 90 93 94 97 SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 EA AF B0 B3 B4 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PT2 BF C0 C3 C4 C7 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB CC TCLK RCLK EXF2 TF2 CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 WDCON D8 DB DC POR DF E0 E3 E4 E7 EIE E8 EX2 EX3 EX4 EX5 EB EC EF F0 F3 F4 F7 EIP F8 PX2 PX3 PX4 PX5 FB FC FF Alternates: SCON 98 9B 9C FE 9F T2CON C8 CP_RL2 C_T2 CB CC CF AS8XCXXX ASSEMBLER PAGE M-13 DS80C310 SPECIAL FUNCTION REGISTERS M.6.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- DPS 0x80 0x10 0x08 SEL 0x01 PCON 0x80 SMOD SMOD0 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 CKCON 0x80 T2M T1M 0x10 0x08 T0M MD2 MD1 MD0 0x01 EXIF 0x80 IE5 IE4 IE3 IE2 0x10 0x08 0x01 STATUS 0x80 HIP LIP 0x10 0x08 0x01 T2MOD 0x80 0x10 0x08 T2OE DCEN 0x01 Alternates: PCON 0x80 SMOD_0 0x10 0x08 0x01 AS8XCXXX ASSEMBLER PAGE M-14 DS80C310 SPECIAL FUNCTION REGISTERS M.7 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS The DS80C320/DS80C323 Special Function Registers are selected using the .DS80C320 or DS80C323 assembler directives. M.7.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 SP DPL DPH 83 84 DPL1 DPH1 DPS PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 CKCON 8F 90 P1 EXIF 93 94 97 98 SCON0 SBUF0 9B 9C 9F A0 P2 A3 A4 A7 A8 IE SADDR0 AB AC AF B0 P3 B3 B4 B7 B8 IP SADEN0 BB BC BF C0 SCON1 SBUF1 C3 C4 STATUS TA C7 C8 T2CON T2MOD RCAP2L RCAP2H CB CC TL2 TH2 CF D0 PSW D3 D4 D7 D8 WDCON DB DC DF E0 ACC E3 E4 E7 E8 EIE EB EC EF F0 B F3 F4 F7 F8 EIP FB FC FF Alternates: 98 SCON SBUF 9B AS8XCXXX ASSEMBLER PAGE M-15 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS M.7.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F P1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F P2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF P3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB EC EIE.4 EIE.5 EIE.6 EIE.7 EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB FC EIP.4 EIP.5 EIP.6 EIP.7 FF Alternates: SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F AS8XCXXX ASSEMBLER PAGE M-16 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS M.7.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F 90 93 94 97 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B 9C REN_0 SM2_0 SM1_0 SMO_0 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 EA AF B0 B3 B4 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PT2 BF SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3 C4 REN_1 SM2_1 SM1_1 SMO_1 C7 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB CC TCLK RCLK EXF2 TF2 CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 WDCON D8 RWT EWT WTRF WDIF DB DC PFI EPFI POR SMOD_1 DF E0 E3 E4 E7 EIE E8 EX2 EX3 EX4 EX5 EB EC EWDI EF F0 F3 F4 F7 EIP F8 PX2 PX3 PX4 PX5 FB FC PWDI FF Alternates: SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F SCON 98 9B 9C FE 9F SCON0 98 9B 9C FE_0 9F SCON1 C0 C3 C4 FE_1 C7 T2CON C8 CP_RL2 C_T2 CB CC CF AS8XCXXX ASSEMBLER PAGE M-17 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS M.7.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- DPS 0x80 0x10 0x08 SEL 0x01 PCON 0x80 SMOD_0 SMOD0 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 CKCON 0x80 WD1 WD0 T2M T1M 0x10 0x08 T0M MD2 MD1 MD0 0x01 EXIF 0x80 IE5 IE4 IE3 IE2 0x10 0x08 RGMD RGSL BGS 0x01 STATUS 0x80 PIP HIP LIP 0x10 0x08 0x01 T2MOD 0x80 0x10 0x08 T2OE DCEN 0x01 Alternates: PCON 0x80 SMOD 0x10 0x08 0x01 AS8XCXXX ASSEMBLER PAGE M-18 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS M.8 DS80C390 SPECIAL FUNCTION REGISTERS The DS80C390 Special Function Registers are selected using the .DS80C390 assembler directive. M.8.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 P4 SP DPL DPH 83 84 DPL1 DPH1 DPS PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 CKCON 8F 90 P1 EXIF P4CNT DPX 93 94 DPX1 C0RMS0 C0RMS1 97 98 SCON0 SBUF0 ESP 9B 9C AP ACON C0TMA0 C0TMA1 9F A0 P2 P5 P5CNT C0C A3 A4 C0S C0IR C0TE C0RE A7 A8 IE SADDR0 SADDR1 C0M1C AB AC C0M2C C0M3C C0M4C C0M5C AF B0 P3 C0M6C B3 B4 C0M7C C0M8C C0M9C C0M10C B7 B8 IP SADEN0 SADEN1 C0M11C BB BC C0M12C C0M13C C0M14C C0M15C BF C0 SCON1 SBUF1 C3 C4 PMR STATUS MCON TA C7 C8 T2CON T2MOD RCAP2L RCAP2H CB CC TL2 TH2 COR CF D0 PSW MCNT0 MCNT1 MA D3 D4 MB MC C1RMS0 C1RMS1 D7 D8 WDCON DB DC C1TMA0 C1TMA1 DF E0 ACC C1C E3 E4 C1S C1IR C1TE C1RE E7 E8 EIE MXAX C1M1C EB EC C1M2C C1M3C C1M4C C1M5C EF F0 B C1M6C F3 F4 C1M7C C1M8C C1M9C C1M10C F7 F8 EIP C1M11C FB FC C1M12C C1M13C C1M14C C1M15C FF Alternates: 98 SCON SBUF 9B AS8XCXXX ASSEMBLER PAGE M-19 DS80C390 SPECIAL FUNCTION REGISTERS M.8.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- P4 80 P4.0 P4.1 P4.2 P4.3 83 84 P4.4 P4.5 P4.6 P4.7 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F P1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F P2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF P3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB EC EIE.4 EIE.5 EIE.6 EIE.7 EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB FC EIP.4 EIP.5 EIP.6 EIP.7 FF Alternates: SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F AS8XCXXX ASSEMBLER PAGE M-20 DS80C390 SPECIAL FUNCTION REGISTERS M.8.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F P1 90 T2 T2EX RXD1 TXD1 93 94 INT2 INT3 INT4 INT5 97 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B 9C REN_0 SM2_0 SM1_0 SMO_0 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 ES1 EA AF P3 B0 RXD0 TXD0 INT0 INT1 B3 B4 T0 T1 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PT2 PS1 BF SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3 C4 REN_1 SM2_1 SM1_1 SMO_1 C7 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB CC TCLK RCLK EXF2 TF2 CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 WDCON D8 RWT EWT WTRF WDIF DB DC PFI EPFI POR SMOD_1 DF E0 E3 E4 E7 EIE E8 EX2 EX3 EX4 EX5 EB EC EWDI C1IE C0IE CANBIE EF F0 F3 F4 F7 EIP F8 PX2 PX3 PX4 PX5 FB FC PWDI C1IP C0IP CANBIP FF Alternates: SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F SCON 98 9B 9C FE 9F SCON0 98 9B 9C FE_0 9F SCON1 C0 C3 C4 FE_1 C7 T2CON C8 CP_RL2 C_T2 CB CC CF AS8XCXXX ASSEMBLER PAGE M-21 DS80C390 SPECIAL FUNCTION REGISTERS M.8.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- DPS 0x80 ID1 ID0 TSL 0x10 0x08 SEL 0x01 PCON 0x80 SMOD_0 SMOD0 OFDF OFDE 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 CKCON 0x80 WD1 WD0 T2M T1M 0x10 0x08 T0M MD2 MD1 MD0 0x01 EXIF 0x80 IE5 IE4 IE3 IE2 0x10 0x08 CKRY RGMD RGSL BGS 0x01 P4CNT 0x80 SBCAN 0x10 0x08 0x01 ESP 0x80 0x10 0x08 ESP.1 ESP.0 0x01 ACON 0x80 0x10 0x08 SA AM1 AM0 0x01 P5 0x80 P5.7 P5.6 P5.5 P5.4 0x10 0x08 P5.3 P5.2 P5.1 P5.0 0x01 P5CNT 0x80 CAN1BA CAN0BA SP1EC C1_IO 0x10 0x08 C0_IO P5CNT.2 P5CNT.1 P5CNT.0 0x01 CxC 0x80 ERIE STIE PDE SIESTA 0x10 0x08 CRST AUTOB ERCS SWINT 0x01 CxS 0x80 BSS EC96_128 WKS RXS 0x10 0x08 TXS ER2 ER1 ER0 0x01 CxIR 0x80 INTIN7 INTIN6 INTIN5 INTIN4 0x10 0x08 INTIN3 INTIN2 INTIN1 INTIN0 0x01 CxCxxC 0x80 MSRDY ET1 ER1 INTRQ 0x10 0x08 EXTRQ MTRQ ROW_TIH DTUP 0x01 PMR 0x80 CD1 CD0 SWB CTM 0x10 0x08 4X_2X ALEOFF 0x01 STATUS 0x80 PIP HIP LIP 0x10 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01 MCON 0x80 IDM1 IDM0 CMA 0x10 0x08 PDCE3 PDCE2 PDCE1 PDCE0 0x01 T2MOD 0x80 D13T1 0x10 0x08 D13T2 T2OE DCEN 0x01 COR 0x80 IRDACK C1BPR7 C1BPR6 C0BPR7 0x10 0x08 C0BPR6 COD1 COD0 CLKOE 0x01 MCNT0 0x80 _LSHIFT CSE SCB MAS4 0x10 0x08 MAS3 MAS2 MAS1 MAS0 0x01 MCNT1 0x80 MST MOF CLM 0x10 0x08 0x01 Alternates: AS8XCXXX ASSEMBLER PAGE M-22 DS80C390 SPECIAL FUNCTION REGISTERS PCON 0x80 SMOD 0x10 0x08 0x01 AS8XCXXX ASSEMBLER PAGE M-23 DS80C390 SPECIAL FUNCTION REGISTERS M.9 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS The DS83C520/DS87C520 Special Function Registers are selected using the .DS83C520 or DS87C520 assembler directives. M.9.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 P0 SP DPL DPH 83 84 DPL1 DPH1 DPS PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 CKCON 8F 90 PORT1 EXIF 93 94 97 98 SCON0 SBUF0 9B 9C 9F A0 P2 A3 A4 A7 A8 IE SADDR0 SADDR1 AB AC AF B0 P3 B3 B4 B7 B8 IP SADEN0 SADEN1 BB BC BF C0 SCON1 SBUF1 ROMSIZE C3 C4 PMR STATUS TA C7 C8 T2CON T2MOD RCAP2L RCAP2H CB CC TL2 TH2 CF D0 PSW D3 D4 D7 D8 WDCON DB DC DF E0 ACC E3 E4 E7 E8 EIE EB EC EF F0 B F3 F4 F7 F8 EIP FB FC FF Alternates: 98 SCON SBUF 9B AS8XCXXX ASSEMBLER PAGE M-24 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS M.9.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- P0 80 P0.7 P0.6 P0.5 P0.4 83 84 P0.3 P0.2 P0.1 P0.0 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F PORT1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F P2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF P3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB EC EIE.4 EIE.5 EIE.6 EIE.7 EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB FC EIP.4 EIP.5 EIP.6 EIP.7 FF Alternates: PORT1 90 PORT1.0 PORT1.1 PORT1.2 PORT1.3 93 94 PORT1.4 PORT1.5 PORT1.6 PORT1.7 97 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F AS8XCXXX ASSEMBLER PAGE M-25 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS M.9.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F 90 93 94 97 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B 9C REN_0 SM2_0 SM1_0 SMO_0 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 ES1 EA AF B0 B3 B4 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PT2 PS1 BF SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3 C4 REN_1 SM2_1 SM1_1 SMO_1 C7 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB CC TCLK RCLK EXF2 TF2 CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 WDCON D8 RWT EWT WTRF WDIF DB DC PFI EPFI POR SMOD_1 DF E0 E3 E4 E7 EIE E8 EX2 EX3 EX4 EX5 EB EC EWDI EF F0 F3 F4 F7 EIP F8 PX2 PX3 PX4 PX5 FB FC PWDI FF Alternates: SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F SCON 98 9B 9C FE 9F SCON0 98 9B 9C FE_0 9F SCON1 C0 C3 C4 FE_1 C7 T2CON C8 CP_RL2 C_T2 CB CC CF AS8XCXXX ASSEMBLER PAGE M-26 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS M.9.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- DPS 0x80 0x10 0x08 SEL 0x01 PCON 0x80 SMOD_0 SMOD0 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 CKCON 0x80 WD1 WD0 T2M T1M 0x10 0x08 T0M MD2 MD1 MD0 0x01 EXIF 0x80 IE5 IE4 IE3 IE 0x10 0x08 XT_RG RGMD RGSL BGS 0x01 SBUF1 0x80 SB7 SB6 SB5 SB4 0x10 0x08 SB3 SB2 SB1 SB0 0x01 ROMSIZE 0x80 0x10 0x08 RMS2 RMS1 RMS0 0x01 PMR 0x80 CD1 CD0 SWB 0x10 0x08 XTOFF ALEOFF DME1 DME0 0x01 STATUS 0x80 PIP HIP LIP XTUP 0x10 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01 T2MOD 0x80 0x10 0x08 T2OE DCEN 0x01 Alternates: PCON 0x80 SMOD 0x10 0x08 0x01 AS8XCXXX ASSEMBLER PAGE M-27 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS M.10 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS The DS83C530/DS87C530 Special Function Registers are selected using the .DS83C530 or DS87C530 assembler directives. M.10.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 P0 SP DPL DPH 83 84 DPL1 DPH1 DPS PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 CKCON 8F 90 P1 EXIF 93 94 TRIM 97 98 SCON0 SBUF0 9B 9C 9F A0 P2 A3 A4 A7 A8 IE SADDR0 SADDR1 AB AC AF B0 P3 B3 B4 B7 B8 IP SADEN0 SADEN1 BB BC BF C0 SCON1 SBUF1 ROMSIZE C3 C4 PMR STATUS TA C7 C8 T2CON T2MOD RCAP2L RCAP2H CB CC TL2 TH2 CF D0 PSW D3 D4 D7 D8 WDCON DB DC DF E0 ACC E3 E4 E7 E8 EIE EB EC EF F0 B RTASS RTAS F3 F4 RTAM RTAH F7 F8 EIP RTCC RTCSS RTCS FB FC RTCM RTCH RTCD0 RTCD1 FF Alternates: 98 SCON SBUF 9B AS8XCXXX ASSEMBLER PAGE M-28 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS M.10.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- P0 80 P0.7 P0.6 P0.5 P0.4 83 84 P0.3 P0.2 P0.1 P0.0 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F P1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F P2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF P3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB EC EIE.4 EIE.5 EIE.6 EIE.7 EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB FC EIP.4 EIP.5 EIP.6 EIP.7 FF Alternates: SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F AS8XCXXX ASSEMBLER PAGE M-29 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS M.10.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F 90 93 94 97 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B 9C REN_0 SM2_0 SM1_0 SMO_0 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 ES1 EA AF B0 B3 B4 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PT2 PS1 BF SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3 C4 REN_1 SM2_1 SM1_1 SMO_1 C7 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB CC TCLK RCLK EXF2 TF2 CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 WDCON D8 RWT EWT WTRF WDIF DB DC PFI EPFI POR SMOD_1 DF E0 E3 E4 E7 EIE E8 EX2 EX3 EX4 EX5 EB EC EWDI ERTCI EF F0 F3 F4 F7 EIP F8 PX2 PX3 PX4 PX5 FB FC PWDI PRTCI FF Alternates: SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F SCON 98 9B 9C FE 9F SCON0 98 9B 9C FE_0 9F SCON1 C0 C3 C4 FE_1 C7 T2CON C8 CP_RL2 C_T2 CB CC CF AS8XCXXX ASSEMBLER PAGE M-30 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS M.10.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- DPS 0x80 0x10 0x08 SEL 0x01 PCON 0x80 SMOD_0 SMOD0 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 CKCON 0x80 WD1 WD0 T2M T1M 0x10 0x08 T0M MD2 MD1 MD0 0x01 EXIF 0x80 IE5 IE4 IE3 IE 0x10 0x08 XT_RG RGMD RGSL BGS 0x01 TRIM 0x80 E4K X12_6 TRM2 _TRM2 0x10 0x08 TRM1 _TRM1 TRM0 _TRM0 0x01 SBUF1 0x80 SB7 SB6 SB5 SB4 0x10 0x08 SB3 SB2 SB1 SB0 0x01 ROMSIZE 0x80 0x10 0x08 RMS2 RMS1 RMS0 0x01 PMR 0x80 CD1 CD0 SWB 0x10 0x08 XTOFF ALEOFF DME1 DME0 0x01 STATUS 0x80 PIP HIP LIP XTUP 0x10 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01 T2MOD 0x80 0x10 0x08 T2OE DCEN 0x01 RTCC 0x80 SSCE SCE MCE HCE 0x10 0x08 RTCRE RTCWE RTCIF RTCE 0x01 Alternates: PCON 0x80 SMOD 0x10 0x08 0x01 AS8XCXXX ASSEMBLER PAGE M-31 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS M.11 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS The DS83C550/DS87C550 Special Function Registers are selected using the .DS83C550 or DS87C550 assembler directives. M.11.1 SFR Map --------- 4 Bytes ---------- ---- ---- ---- ---- 80 PORT0 SP DPL DPH 83 84 DPL1 DPH1 DPS PCON 87 88 TCON TMOD TL0 TL1 8B 8C TH0 TH1 CKCON 8F 90 PORT1 RCON 93 94 97 98 SCON0 SBUF0 9B 9C PMR 9F A0 PORT2 SADDR0 SADDR1 A3 A4 A7 A8 IE CMPL0 CMPL1 CMPL2 AB AC CPTL0 CPTL1 CPTL2 CPTL3 AF B0 PORT3 ADCON1 ADCON2 B3 B4 ADMSB ADLSD WINHI WINLO B7 B8 IP SADEN0 SADEN1 BB BC T2CON T2MOD BF C0 PORT4 ROMSIZE C3 C4 PORT5 STATUS TA C7 C8 T2IR CMPH0 CMPH1 CMPH2 CB CC CPTH0 CPTH1 CPTH2 CPTH3 CF D0 PSW PW0FG PW1FG D3 D4 PW2FG PW3FG PWMADR D7 D8 SCON1 SBUF1 DB DC PWM0 PWM1 PWM2 PWM3 DF E0 ACC PW01CS PW23CS PW01CON E3 E4 PW23CON RLOADL RLOADH E7 E8 EIE T2SEL CTCON EB EC TL2 TH2 SETR RSTR EF F0 B PORT6 F3 F4 F7 F8 EIP FB FC WDCON FF Alternates: 80 P0 83 90 P1 93 98 SCON SBUF 9B A0 P2 A3 B0 P3 B3 C0 P4 C3 AS8XCXXX ASSEMBLER PAGE M-32 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS C4 P5 C7 F0 PORT6 F3 AS8XCXXX ASSEMBLER PAGE M-33 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS M.11.2 Bit Addressable Registers: Generic ---------- 4 BITS ---------- ---- ---- ---- ---- PORT0 80 P0.7 P0.6 P0.5 P0.4 83 84 P0.3 P0.2 P0.1 P0.0 87 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B 8C TCON.4 TCON.5 TCON.6 TCON.7 8F PORT1 90 P1.0 P1.1 P1.2 P1.3 93 94 P1.4 P1.5 P1.6 P1.7 97 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F PORT2 A0 P2.0 P2.1 P2.2 P2.3 A3 A4 P2.4 P2.5 P2.6 P2.7 A7 IE A8 IE.0 IE.1 IE.2 IE.3 AB AC IE.4 IE.5 EI.6 IE.7 AF PORT3 B0 P3.0 P3.1 P3.2 P3.3 B3 B4 P3.4 P3.5 P3.6 P3.7 B7 IP B8 IP.0 IP.1 IP.2 IP.3 BB BC IP.4 IP.5 IP.6 IP.7 BF PORT4 C0 P4.0 P4.1 P4.2 P4.3 C3 C4 P4.4 P4.5 P4.6 P4.7 C7 T2IR C8 T2IR.0 T2IR.1 T2IR.2 T2IR.3 CB CC T2IR.4 T2IR.5 T2IR.6 T2IR.7 CF PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7 SCON1 D8 SCON1.0 SCON1.1 SCON1.2 SCON1.3 DB DC SCON1.4 SCON1.5 SCON1.6 SCON1.7 DF ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB EC EIE.4 EIE.5 EIE.6 EIE.7 EF B F0 B.0 B.1 B.2 B.3 F3 F4 B.4 B.5 B.6 B.7 F7 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB FC EIP.4 EIP.5 EIP.6 EIP.7 FF Alternates: PORT0 80 PORT0.7 PORT0.6 PORT0.5 PORT0.4 83 84 PORT0.3 PORT0.2 PORT0.1 PORT0.0 87 PORT1 90 PORT1.0 PORT1.1 PORT1.2 PORT1.3 93 94 PORT1.4 PORT1.5 PORT1.6 PORT1.7 97 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B 9C SCON.4 SCON.5 SCON.6 SCON.7 9F PORT2 A0 PORT2.0 PORT2.1 PORT2.2 PORT2.3 A3 A4 PORT2.4 PORT2.5 PORT2.6 PORT2.7 A7 PORT3 B0 PORT3.0 PORT3.1 PORT3.2 PORT3.3 B3 B4 PORT3.4 PORT3.5 PORT3.6 PORT3.7 B7 PORT4 C0 PORT4.0 PORT4.1 PORT4.2 PORT4.3 C3 C4 PORT4.4 PORT4.5 PORT4.6 PORT4.7 C7 AS8XCXXX ASSEMBLER PAGE M-34 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS M.11.3 Bit Addressable Registers: Specific ---------- 4 BITS ---------- ---- ---- ---- ---- 80 83 84 87 TCON 88 IT0 IE0 IT1 IE1 8B 8C TR0 TF0 TR1 TF1 8F 90 93 94 97 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B 9C REN_0 SM2_0 SM1_0 SMO_0 9F A0 A3 A4 A7 IE A8 EX0 ET0 EX1 ET1 AB AC ES0 ET2 ES1 EA AF B0 B3 B4 B7 IP B8 PX0 PT0 PX1 PT1 BB BC PS0 PS1 PAD BF PORT4 C0 CMSR0 CMSR1 CMSR2 CMSR3 C3 C4 CMSR4 CMSR5 CMT0 CMT1 C7 T2IR C8 CF0 CF1 CF2 CF3 CB CC CM0F CM1F CM2F CF PSW D0 P FL OV RS0 D3 D4 RS1 F0 AC CY D7 SCON1 D8 RI_1 TI_1 RB8_1 TB8_1 DB DC REN_1 SM2_1 SM1_1 SMO_1 DF E0 E3 E4 E7 EIE E8 EX2 EX3 EX4 EX5 EB EC ECM0 ECM1 ECM2 ET2 EF F0 F3 F4 F7 EIP F8 PX2 PX3 PX4 PX5 FB FC PCM0 PCM1 PCM2 PT2 FF Alternates: SCON 98 RI TI RB8 TB8 9B 9C REN SM2 SM1 SMO 9F SCON 98 9B 9C FE 9F SCON0 98 9B 9C FE_0 9F T2IR C8 IE2 IE3 IE4 IE5 CB CC CF SCON1 D8 DB DC FE_1 DF EIE E8 EC0 EC1 EC2 EC3 EB EC EF EIP F8 PC0 PC1 PC2 PC3 FB AS8XCXXX ASSEMBLER PAGE M-35 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS FC FF AS8XCXXX ASSEMBLER PAGE M-36 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS M.11.4 Optional Symbols: Control Bits ---------- 4 BITS ---------- ---- ---- ---- ---- 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x10 ---- ---- ---- ---- DPS 0x80 ID1 ID0 TSL 0x10 0x08 SEL 0x01 PCON 0x80 SMOD_0 SMOD0 0x10 0x08 GF1 GF0 STOP IDLE 0x01 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10 0x08 T0GATE T0C_T T0M1 T0M0 0x01 CKCON 0x80 WD1 WD0 T2M T1M 0x10 0x08 T0M MD2 MD1 MD0 0x01 RCON 0x80 0x10 0x08 CKRDY RGMD RGSL BGS 0x01 PMR 0x80 CD1 CD0 SWB CTM 0x10 0x08 4X_2X ALEOFF DEM1 DEM0 0x01 ADCON1 0x80 STRT_BSY EOC CONT_SS ADEX 0x10 0x08 WCQ WCM ADON WCIO 0x01 ADCON2 0x80 OUTCF MUX2 MUX1 MUX0 0x10 0x08 APS3 APS2 APS1 APS0 0x01 T2CON 0x80 TF2 EXF2 RCLK TCLK 0x10 0x08 EXEN2 TR2 CT2 CPRL2 0x01 T2MOD 0x80 0x10 0x08 T2OE DCEN 0x01 PORT5 0x80 ADC7 ADC6 ADC5 ADC4 0x10 0x08 ADC3 ADC2 ADC1 ADC0 0x01 ROMSIZE 0x80 0x10 0x08 RMS2 RMS1 RMS0 0x01 STATUS 0x80 PIP HIP LIP XTUP 0x10 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01 PWMADR 0x80 ADRS 0x10 0x08 PWE1 PWE0 0x01 PW01CS 0x80 PW0S2 PW0S1 PW0S0 PW0EN 0x10 0x08 PW1S2 PW1S1 PW1S0 PW1EN 0x01 PW23CS 0x80 PW2S2 PW2S1 PW2S0 PW2EN 0x10 0x08 PW3S2 PW3S1 PW3S0 PW3EN 0x01 PW01CON 0x80 PW0F PW0DC PW0OE PW0T_C 0x10 0x08 PW1F PW1DC PW1OE PW1T_C 0x01 PW23CON 0x80 PW2F PW2DC PW2OE PW2T_C 0x10 0x08 PW3F PW3DC PW3OE PW3T_C 0x01 T2SEL 0x80 TF2S TF2BS TF2B 0x10 0x08 T2P1 T2P0 0x01 CTCON 0x80 _CT3 CT3 _CT2 CT2 0x10 0x08 _CT1 CT1 _CT0 CT0 0x01 SETR 0x80 TGFF1 TGFF0 CMS5 CMS4 0x10 0x08 CMS3 CMS2 CMS1 CMS0 0x01 RSTR 0x80 CMTE1 CMTE0 CMR5 CMR4 0x10 0x08 CMR3 CMR2 CMR1 CMR0 0x01 PORT6 0x80 STADC PWMC1 PWMC0 0x10 AS8XCXXX ASSEMBLER PAGE M-37 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS 0x08 PWMO3 PWMO2 PWMO1 PWMO0 0x01 WDCON 0x80 SMOD_1 POR EPF1 PF1 0x10 0x08 WDIF WTRF EWT RWT 0x01 Alternates: PCON 0x80 SMOD 0x10 0x08 0x01 T2CON 0x80 0x10 0x08 C_T2 _RL2 0x01 APPENDIX N ASZ80 ASSEMBLER N.1 .hd64 DIRECTIVE Format: .hd64 The .hd64 directive enables processing of the HD64180 specific mnemonics not included in the Z80 instruction set. HD64180 mnemonics encountered without the .hd64 directive will be flagged with an 'o' error. N.2 Z80 REGISTER SET AND CONDITIONS The following is a complete list of register designations and condition mnemonics: byte registers - a,b,c,d,e,h,l,i,r register pairs - af,af',bc,de,hl word registers - pc,sp,ix,iy C - carry bit set M - sign bit set NC - carry bit clear NZ - zero bit clear P - sign bit clear PE - parity even PO - parity odd Z - zero bit set ASZ80 ASSEMBLER PAGE N-2 Z80 INSTRUCTION SET N.3 Z80 INSTRUCTION SET The following tables list all Z80/HD64180 mnemonics recog- nized by the ASZ80 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by ASZ80: #data immediate data byte or word data n byte value rg a byte register a,b,c,d,e,h,l rp a register pair bc,de,hl (hl) implied addressing or register indirect addressing (label) direct addressing offset(ix) indexed addressing with an offset label call/jmp/jr label The terms data, dir, offset, and ext may all be expressions. The terms dir and offset are not allowed to be external refer- ences. Note that not all addressing modes are valid with every in- struction, refer to the Z80/HD64180 technical data for valid modes. ASZ80 ASSEMBLER PAGE N-3 Z80 INSTRUCTION SET N.3.1 Inherent Instructions ccf cpd cpdr cpi cpir cpl daa di ei exx halt neg nop reti retn rla rlca rld rra rrca rrd scf N.3.2 Implicit Operand Instructions adc a,[] adc [] add a,[] add [] and a,[] and [] cp a,[] cp [] dec a,[] dec [] inc a,[] inc [] or a,[] or [] rl a,[] rl [] rlc a,[] rlc [] rr a,[] rr [] rrc a,[] rrc [] sbc a,[] sbc [] sla a,[] sla [] sra a,[] sra [] srl a,[] srl [] sub a,[] sub [] xor a,[] xor [] ASZ80 ASSEMBLER PAGE N-4 Z80 INSTRUCTION SET N.3.3 Load Instruction ld rg,[] ld [],rg ld (bc),a ld a,(bc) ld (de),a ld a,(de) ld (label),a ld a,(label) ld (label),rp ld rp,(label) ld i,a ld r,a ld a,i ld a,r ld sp,hl ld sp,ix ld sp,iy ld rp,#data ldd lddr ldi ldir N.3.4 Call/Return Instructions call C,label ret C call M,label ret M call NC,label ret NC call NZ,label ret NZ call P,label ret P call PE,label ret PE call PO,label ret PO call Z,label ret Z call label ret N.3.5 Jump and Jump to Subroutine Instructions jp C,label jp M,label jp NC,label jp NZ,label jp P,label jp PE,label jp PO,label jp Z,label jp (hl) jp (ix) jp (iy) jp label djnz label jr C,label jr NC,label jr NZ,label jr Z,label jr label ASZ80 ASSEMBLER PAGE N-5 Z80 INSTRUCTION SET N.3.6 Bit Manipulation Instructions bit n,[] res n,[] set n,[] N.3.7 Interrupt Mode and Reset Instructions im n im n im n rst n N.3.8 Input and Output Instructions in a,(n) in rg,(c) ind indr ini inir out (n),a out (c),rg outd otdr outi otir N.3.9 Register Pair Instructions add hl,rp add ix,rp add iy,rp adc hl,rp sbc hl,rp ex (sp),hl ex (sp),ix ex (sp),iy ex de,hl ex af,af' push rp pop rp ASZ80 ASSEMBLER PAGE N-6 Z80 INSTRUCTION SET N.3.10 HD64180 Specific Instructions in0 rg,(n) out0 (n),rg otdm otdmr otim otimr mlt bc mlt de mlt hl mlt sp slp tst a tstio #data APPENDIX O ASGB ASSEMBLER O.1 ACKNOWLEDGEMENT Thanks to Roger Ivie for his contribution of the ASGB cross assembler. Roger Ivie ivie@cc.usu.edu O.2 INTRODUCTION The Gameboy uses an 8-bit processor which is closely related to the 8080. It is usually described as a modified Z80, but may be more closely understood as an enhanced 8080; it has the 8080 register set and many, but not all, enhanced Z80 instructions. However, even this is not accurate, for the Gameboy also lacks some basic 8080 instructions (most annoyingly SHLD and LHLD). ASGB is based on ASZ80 and therefore uses the Z80 mnemonic set. O.3 GAMEBOY REGISTER SET AND CONDITIONS The following is a complete list of register designations and condition mnemonics: byte registers - a,b,c,d,e,h,l register pairs - af, bc, de, hl word registers - pc, sp C - carry bit set NC - carry bit clear NZ - zero bit clear Z - zero bit set ASGB ASSEMBLER PAGE O-2 GAMEBOY INSTRUCTION SET O.4 GAMEBOY INSTRUCTION SET The following tables list all Gameboy mnemnoics recognized by the ASGB assembler. The designation [] refers to a required ad- dressing mode argument. The following list specifies the format for each addressing mode supported by ASGB: #data immediate data byte or word data n byte value rg a byte register a,b,c,d,e,h,l rp a register pair or 16-bit register bc,de,hl (hl) implied addressing or register indirect addressing (label) direct addressing label call/jmp/jr label The terms data, dir, and ext may all be expression. The term dir is not allowed to be an external reference. Note that not all addressing modes are valid with every in- struction. Although official information is not, as far as I know, publically available for the Gameboy processor, many unof- ficial sources are available on the internet. O.4.1 .tile Directive Format: .tile /string/ where: string is a string of ascii characters taken from the set ' ', '.', '+', '*', '0', '1', '2', and '3'. The string must be a multiple of eight characters long. / / represent the delimiting characters. These delimiters may be any paired printing characters, as long as the characters are not contained within the string itself. If the delimiting characters do not match, the .tile directive will give the (q) error. ASGB ASSEMBLER PAGE O-3 GAMEBOY INSTRUCTION SET The Gameboy displays information on the screen using a pro- grammable character set (referred to as "tiles" among Gameboy developers). The ASGB cross assembler has a processor-specific assembler directive to aid in the creation of the game's character set. Each character is created from an 8x8 grid of pixels, each pixel of which is composed of two bits. The .tile directive ac- cepts a single string argument which is processed to create the byte values corresponding to the lines of pixels in the character. The string argument must be some multiple of 8 characters long, and be one of these characters: ' ' or '0' - for the pixel value 00 '.' or '1' - for the pixel value 01 '+' or '2' - for the pixel value 10 '*' or '3' - for the pixel value 11 The .tile directive processes each 8-character group of its string argument to create the two-byte value corresponding to that line of pixels. The example in the popular extant litera- ture could be done using ASGB like this: 0000 7C 7C 1 .tile " ***** " 0002 00 C6 2 .tile "++ ++ " 0004 C6 00 3 .tile ".. .. " 0006 00 FE 4 .tile "+++++++ " 0008 C6 C6 5 .tile "** ** " 000A 00 C6 6 .tile "++ ++ " 000C C6 00 7 .tile ".. .. " 000E 00 00 8 .tile " " Or, using the synonym character set, as: 0010 7C 7C 10 .tile "03333300" 0012 00 C6 11 .tile "22000220" 0014 C6 00 12 .tile "11000110" 0016 00 FE 13 .tile "22222220" 0018 C6 C6 14 .tile "33000330" 001A 00 C6 15 .tile "22000220" 001C C6 00 16 .tile "11000110" 001E 00 00 17 .tile "00000000" Since .tile is perfectly willing to assemble multiple lines of a character at once (as long as it is given complete rows of pixels), it could even be done as: .tile " ***** ++ ++ .. .. +++++++ " .tile "** ** ++ ++ .. .. " ASGB ASSEMBLER PAGE O-4 GAMEBOY INSTRUCTION SET O.4.2 Potentially Controversial Mnemonic Selection Although the Gameboy processor is based on the Z80, it does include some features which are not present in the Z80. The Z80 mnemonic set is not sufficient to describe these additional operations; mnemonics must be created for the new operations. The mnemonics ASGB uses are not the same as those used by other publically-available Gameboy assemblers. O.4.2.1 Auto-Indexing Loads - The Gameboy provides instructions to load or store the ac- cumulator indirectly via HL and then subsequently increment or decrement HL. ASGB uses the mnemonic 'ldd' for the instructions which decrement HL and 'ldi' for the instructions which incre- ment HL. Because the Gameboy lacks the Z80's block moves, the mnemonics are not otherwise needed by ASGB. ldd a,(hl) ldd (hl),a ldi a,(hl) ldi (hl),a O.4.2.2 Input and Output Operations - The Gameboy replaces the Z80's separate address space for I/O with a mechanism similar to the zero page addressing of pro- cessors such as the 6800 or 6502. All I/O registers in the Gameboy reside in the address range between 0xff00 and 0xffff. The Gameboy adds special instructions to load and store the ac- cumulator from and into this page of memory. The instructions are analogous to the Z80's in and out instructions and ASGB re- tains the 'in' and 'out' mnemonics for them. in a,(n) out (n),a in a,(c) out (c),a From ASGB's perspective, the RAM available from 0xff80 through 0xffff is composed of unused I/O locations rather than direct-page RAM. ASGB ASSEMBLER PAGE O-5 GAMEBOY INSTRUCTION SET O.4.2.3 The 'stop' Instruction - The publically-available documentation for the Gameboy lists the 'stop' instruction as the two-byte instruction 10 00, and the other freely-available Gameboy assemblers assemble it in that manner. As far as I can tell, the only rationale for this is that the corresponding Z80 instruction ('djnz label') is a two-byte instruction. ASGB assembles 'stop' as the one-byte in- struction 10. O.4.3 Inherent Instructions ccf cpl daa di ei nop halt rla rlca rra rrca scf reti stop swap O.4.4 Implicit Operand Instructions adc a,[] adc [] add a,[] add [] and a,[] and [] cp a,[] cp [] dec a,[] dec [] inc a,[] inc [] or a,[] or [] rl a,[] rl [] rlc a,[] rlc [] rr a,[] rr [] rrc a,[] rrc [] sbc a,[] sbc [] sla a,[] sla [] sra a,[] sra [] srl a,[] srl [] sub a,[] sub [] xor a,[] xor [] ASGB ASSEMBLER PAGE O-6 GAMEBOY INSTRUCTION SET O.4.5 Load Instructions ld rg,[] ld [],rg ld (bc),a ld a,(bc) ld (de),a ld a,(de) ld (label),a ld a,(label) ld (label),sp ld rp,#data ld sp,hl ld hl,sp ldd a,(hl) ldd (hl),a ldi a,(hl) ldi (hl),a O.4.6 Call/Return Instructions call C,label ret C call NC,label ret NC call Z,label ret Z call NZ,label ret NZ call label ret rst n O.4.7 Jump Instructions jp C,label jp NC,label jp Z,label jp NZ,label jp (hl) jp label jr C,label jr NC,label jr Z,label jr NZ,label jr label O.4.8 Bit Manipulation Instructions bit n,[] res n,[] set n,[] ASGB ASSEMBLER PAGE O-7 GAMEBOY INSTRUCTION SET O.4.9 Input and Output Instructions in a,(n) in a,(c) out (n),a out (c),a O.4.10 Register Pair Instructions add hl,rp add hl,sp add sp,#data push rp pop rp APPENDIX P AS6500 ASSEMBLER P.1 ACKNOWLEDGMENT Thanks to Marko Makela for his contribution of the AS6500 cross assembler. Marko Makela Sillitie 10 A 01480 Vantaa Finland Internet: Marko.Makela@Helsinki.Fi EARN/BitNet: msmakela@finuh Several additions and modifications were made to his code to support the following families of 6500 processors: (1) 650X and 651X processor family (2) 65F11 and 65F12 processor family (3) 65C00/21 and 65C29 processor family (4) 65C02, 65C102, and 65C112 processor family The instruction syntax of this cross assembler contains two peculiarities: (1) the addressing indirection is denoted by the square brackets [] and (2) the `bbrx' and `bbsx' instructions are written `bbr0 memory,label'. AS6500 ASSEMBLER PAGE P-2 6500 REGISTER SET P.2 6500 REGISTER SET The following is a list of the 6500 registers used by AS6500: a - 8-bit accumulator x,y - index registers P.3 6500 INSTRUCTION SET The following tables list all 6500 family mnemonics recog- nized by the AS6500 assembler. The designation [] refers to a required addressing mode argument. The following list specifies the format for each addressing mode supported by AS6500: #data immediate data byte or word data *dir direct page addressing (see .setdp directive) 0 <= dir <= 255 offset,x indexed addressing offset,y indexed addressing address = (offset + (x or y)) [offset,x] pre-indexed indirect addressing 0 <= offset <= 255 address = contents of location (offset + (x or y)) mod 256 [offset],y post-indexed indirect addressing address = contents of location at offset plus the value of the y register [address] indirect addressing ext extended addressing label branch label address,label direct page memory location branch label bbrx and bbsx instruction addressing The terms data, dir, offset, address, ext, and label may all be expressions. Note that not all addressing modes are valid with every in- struction, refer to the 65xx technical data for valid modes. AS6500 ASSEMBLER PAGE P-3 6500 INSTRUCTION SET P.3.1 Processor Specific Directives The AS6500 cross assembler has four (4) processor specific assembler directives which define the target 65xx processor family: .r6500 Core 650X and 651X family (default) .r65f11 Core plus 65F11 and 65F12 .r65c00 Core plus 65C00/21 and 65C29 .r65c02 Core plus 65C02, 65C102, and 65C112 P.3.2 65xx Core Inherent Instructions brk clc cld cli clv dex dey inx iny nop pha php pla plp rti rts sec sed sei tax tay tsx txa txs tya P.3.3 65xx Core Branch Instructions bcc label bhs label bcs label blo label beq label bmi label bne label bpl label bvc label bvs label P.3.4 65xx Core Single Operand Instructions asl [] dec [] inc [] lsr [] rol [] ror [] AS6500 ASSEMBLER PAGE P-4 6500 INSTRUCTION SET P.3.5 65xx Core Double Operand Instructions adc [] and [] bit [] cmp [] eor [] lda [] ora [] sbc [] sta [] P.3.6 65xx Core Jump and Jump to Subroutine Instructions jmp [] jsr [] P.3.7 65xx Core Miscellaneous X and Y Register Instructions cpx [] cpy [] ldx [] stx [] ldy [] sty [] AS6500 ASSEMBLER PAGE P-5 6500 INSTRUCTION SET P.3.8 65F11 and 65F12 Specific Instructions bbr0 [],label bbr1 [],label bbr2 [],label bbr3 [],label bbr4 [],label bbr5 [],label bbr6 [],label bbr7 [],label bbs0 [],label bbs1 [],label bbs2 [],label bbs3 [],label bbs4 [],label bbs5 [],label bbs6 [],label bbs7 [],label rmb0 [] rmb1 [] rmb2 [] rmb3 [] rmb4 [] rmb5 [] rmb6 [] rmb7 [] smb0 [] smb1 [] smb2 [] smb3 [] smb4 [] smb5 [] smb6 [] smb7 [] P.3.9 65C00/21 and 65C29 Specific Instructions bbr0 [],label bbr1 [],label bbr2 [],label bbr3 [],label bbr4 [],label bbr5 [],label bbr6 [],label bbr7 [],label bbs0 [],label bbs1 [],label bbs2 [],label bbs3 [],label bbs4 [],label bbs5 [],label bbs6 [],label bbs7 [],label bra label phx phy plx ply rmb0 [] rmb1 [] rmb2 [] rmb3 [] rmb4 [] rmb5 [] rmb6 [] rmb7 [] smb0 [] smb1 [] smb2 [] smb3 [] smb4 [] smb5 [] smb6 [] smb7 [] AS6500 ASSEMBLER PAGE P-6 6500 INSTRUCTION SET P.3.10 65C02, 65C102, and 65C112 Specific Instructions bbr0 [],label bbr1 [],label bbr2 [],label bbr3 [],label bbr4 [],label bbr5 [],label bbr6 [],label bbr7 [],label bbs0 [],label bbs1 [],label bbs2 [],label bbs3 [],label bbs4 [],label bbs5 [],label bbs6 [],label bbs7 [],label bra label phx phy plx ply rmb0 [] rmb1 [] rmb2 [] rmb3 [] rmb4 [] rmb5 [] rmb6 [] rmb7 [] smb0 [] smb1 [] smb2 [] smb3 [] smb4 [] smb5 [] smb6 [] smb7 [] stz [] trb [] tsb [] Additional addressing modes for the following core instruc- tions are also available with the 65C02, 65C102, and 65C112 pro- cessors. adc [] and [] cmp [] eor [] lda [] ora [] sbc [] sta [] bit [] jmp [] dec inc