ciforth manual

A close-to-ISO/common intel/computer intelligence/CH+ forth.

This is a standard-ISO Forth (mostly, see the section portability) for the configuration called
wina:

e version 4.0.3

e 32 -bits protected mode

e running under DPMI (“Windows”)

e contains security words

e kernel contains the full ISO CORE set
e headers with source fields

Albert van der Horst
Dutch Forth Workshop

Copyright (© 2000 Dutch Forth Workshop
Permission is granted to copy with attribution. Program is protected by the GNU Public License.

Chapter 1: Overview 1

1 Overview

Forth is an interactive programming system. ciforth is a family of Forth’s that can be
generated in many different version for many different operation systems. It is sufficiently close
to the ISO standard to run most programs intended to be portable. It deviates where less used
features where objectionable to implement. See Chapter 4 [Manual], page 7, Section Portability.

This file documents what you as a user needs to know for using this particular version of
ciforth called “wina” once it is installed on your system.
ciforth consists of three files:
e “(wina.com) : the program
e ‘ciforth.ps’ ‘ciforth.html’ : the documentation
e ‘forth.lab’ : source library for auxiliary programs

These files are generated together by a generic system from the file ‘fig86.gnr’ . The
documentation applies to the ciforth with which it goes.

If your Forth doesn’t fit the description below get a new version. The information below
allows an expert to reconstruct how to generate a corresponding version. Not all of it may make
sense to you. Tell him whether you want to fit the Forth to the description or vice versa (see
Chapter 3 [Rationale & legalese], page 5).

These are the features:

All ciforth’s are case sensitive . This is version 4.0.3 . It is running in protected mode. It
is running under DPMI (OS/2 or MS-Windows). Blocks are allocated in files. It uses DOS
for I/O, and uses no obsolete MSDOS features. A number has a precision of 32 bits. It has
compiler security, sacrificing some bizarre ISO compatibity. It doesn’t use >IN exactly in the
way prescribed by ISO. It contains the full ISO CORE in the kernel, more than is needed to
make it self contained. It contains a field in the header to point to source. It is indirect threaded.

If you are new to Forth you may want to read the Gentle Introduction, otherwise you better
skip it. The third chapter most users will not be interested in.

ciforth manual

Chapter 2: Gentle introduction 3

2 Gentle introduction

A Forth system is a database of small programs. The database is called the dictionary. The
programs are called word ’s, or definitions. The explanation of words from the dictionary is
called a glossary.

First of all, a Forth system is an environment that you enter by running it:
‘wina’
Like in a Disk Operating System a word is executed by typing its name, but unlike in a DOS
several programs can be specified on the same line, interspersed with numbers. Also names can
be anything, as long as they don’t contain spaces.

A program may leave one or more results, and the next program can use it. The latest result
is used up first, hence the name lifo buffer. (last in, first out).

For example:

-

[After clicking on the wina icon]
80386 ciforth beta $RCSfile: ci86.gnr,v $ $Revision: 3.275 $

12+ 7 %
0K

21 OK

1 2 and 7 are numbers and are just remembered as they are typed in. ‘OK’ and ‘21 0K’ are
the answer of the computer. + is a small program with an appropriate name. It adds the two
numbers that were entered the latest, in this case 1 and 2. The result 3 remains, but 1 and 2
are consumed. Note that a name can be anything, as long as it doesn’t contain spaces. The
program * multiplies the 3 and the 7 and the result is 21. The program . prints this results. It
could have been put on the same line equally easily.

Programs can be added to the database by special programs: the so called defining word ’s.
A defining word generally gets the name of the new word from the input line.

For example: a constant is just a program that leaves always the same value. A constant is
created in this way, by the defining word CONSTANT :

127 CONSTANT MONKEY 12 .
12 0K

You may get ¢ constant 7 ciforth ERROR # 12 : NOT RECOGNIZED ’. That is because you
didn’t type in what I said. wina is case sensitive. If you want to change that consult the section
"Common problems". (see Chapter 7 [Errors|, page 35).

This must not be read like:
a number, two programs and again a number etc.... ,
but as:
a number, a program and a name that is consumed,
and after that life goes on. The ‘12 .’ we put there for demonstration purposes, to show that
CONSTANT reads ahead only one word. On this single line we do two things, defining ‘MONKEY’
and printing the number 12. We see that CONSTANT like any other program consumes some data,
in this case the 127 that serves as an initial value for the constant called ‘MONKEY’ .

A very important defining word is : , with its closure ; .

4 ciforth manual

: TEST 1 2 + 7 * 12 .
12 0K

In this case not only the name ‘TEST’ is consumed, but none of the remaining numbers and
programs are executed, up till the semicolon ; . Instead they form a specification of what ‘TEST’
must do. This state, where Forth is building up a definition, is called compilation mode . After
the semicolon life continues as usual. Note that ; is a program in itself too. But it doesn’t
become part of TEST . Instead it is executed immediately. It does little more than turning off
compilation mode.

TEST TEST + .

42 (0K

: TEST+1 TEST 1 + . ; TEST+1
22 0K

We see that ‘TEST’ behaves as a shorthand for the line up till the semi colon, and that in its
turn it can be used as a building block.

The colon allows the Forth programmer to add new programs easily and test them easily, by
typing them at the keyboard. It is considered bad style if a program is longer than a couple
of lines. Indeed the inventor of Forth Chuck Moore has written splendid applications with an
average program length of about one line. Cathedrals were built by laying stone upon stone,
never carved out of one rock.

The implementation of the language Forth you look at is old fashioned, but simple. You as a
user have to deal with only three parts/files : this documentation, the executable program, and
the library file, a heap of small programs in source form. There may be several documentation
files, but they contain the same information in a different format.

There is an ISO standard for Forth and this Forth doesn’t fully comply to it. Still by
restricting yourself to the definitions marked as ISO in the glossary, it is quite possible to write
an application that will run on any ISO-compliant system.

Because of the way Forth remembers numbers you can always interrupt your work and
continue. For example

: TEST-AGAIN
12+ [34x%.]
12 OK

T *

0K
—

What happened here is that some one asked you to calculate “3 times 4” while you were
busy with our test example. No sweat! You switch from compilation mode to normal (interpret)
mode by [, and back by] . In the meantime, as long as you don’t leave numbers behind, you
can do anything. (This doesn’t apply to adding definitions, as you are in the process of adding
one already.)

Chapter 3: Rationale & legalese 5

3 Rationale & legalese

3.1 Legalese

This application currently is copyright by Albert van der Horst. This Forth is called ciforth
and is made available by the D.F.W.. All publications of the D.F.W. are available under GPL,
the GNU public license. The file ‘COPYING’ containing the legal expression of these lines must
accompagny it.

Because Forth is “programming by extending the language” the GPL could be construed to
mean that systems based on ciforth always are legally obliged to make the source available. But
we consider this “fair use in the Forth sense” as expressed by the following statement.

In addition to the GPL Albert van der Horst grants the following rights in writing:

The GPL is interpreted in the sense that a system based on ciforth and intended to serve
a particular purpose, that purpose not being a “general purpose Forth system”, is fair use of
the system, even if it could accomplish everything ciforth could, under the condition that the
ciforth it is based on is available in accordance to the GPL rules, and this is made known to the
user of the derived system.

3.2 Rationale

This Forth is meant to be simple. What you find here is a Forth for the Intel 86. You need
just the executable to work. You choose the format you prefer for the documentation. They all
have the same content. You can use the example file with blocks, you have the assembler source
for your Forth, but you can ignore both.

3.3 Source

In practice the GPL means (: this is an explanation and has no legal value!)
They may be further reproduced and distributed subject to the following conditions:

The three files comprising it must be kept together and in particular the reference section
with the World Wide Web sites.

The latest version of wina is found at
‘http://home.hccnet.nl/a.w.m.van.der .horst/ciforth.html’.

Via that link you can also download ciforth’s for other OS’s and the generic system, if you
want to make important modifications. Also you can see how you can contact the author. Oth-
erwise in case of questions about this ciforth, contact the person or organisation that generated
it for you.

This Forth builds on fig-Forth. It is based on the work of Charlie Krajewski and Thomas
Newman, Hayward, Ca. still available via taygeta. The acknowledgements for systems that
serves as a base, in particular the original fig-Forth, are found in the generic documentation,
including detailed information how these systems can be obtained.

Important:
If you just want to use a Forth, you most certainly do not want the generic system. Great
effort is expended in making sure that this manual contains all that you need, and nothing that
might confuse you. The generic system on the contrary contains lots that you don’t need, and
is confusing as hell.

If you are interested in subjects like history of Forth, the rationale behind the design and
such you might want to read the manual for the generic Forth.

6 ciforth manual

3.4 The Generic System this Forth is based on.

The source and executable of this ciforth was generated, out of at least dozen’s of possibilities,
by a generic system. You can configure the operating system, memory sizes, file names and minor
issues like security policy. You can select between a 16 and 32 bit word size. You may undertake
more fundamental changes by adapting one or more of the macro header files. An important
goal was to generate exactly fitting documentation, that contains only relevant information and
with some care your configuration will have that too. This generic system can be obtained via
‘http://home.hccnet.nl/a.w.m.van.der.horst/ciforth.html’.

Chapter 4: Manual 7

4 Manual

4.1 Getting started

4.1.1 Hello world!

Type ‘wina’ to get into your interactive Forth system. You will see a signon message. While
sitting in your interactive Forth doing a “hello world” is easy:

"Hello world!" TYPE
Hello world! OK

Making it into an interactively usable program is also easy:

: HELLO "Hello world!" TYPE CR ;
OK

HELLO

Hello world!

OK

This means you type the command ‘HELLO’ while you are in wina. As soon as you leave wina,
this command is gone.

In order to make a stand alone program to say hello you have to save the source to a file, such
as ‘hello.frt’. It just contains the definition we typed earlier:

E: HELLO "Hello world!" TYPE CR ;

Now build the program by
wina -c¢ hello.frt
(That is ¢ for compile.) The result is a file ‘HELLO.EXE’. For the compiler to run you must have
the library correctly installed.

If that failed, or anything else fails, you will get a message with at least ‘ ciforth ERROR
###’ and hopefully some more or less helpful text as well. The ‘###’ is an error number. See
Chapter 7 [Errors|, page 35, Section Explanations.

Note for the old hands. Indeed the quoted strings are not ISO. They surely are a Forth-like
extension. Read up on denotations, and the definition of " .

In wina you never have to worry about those quoted strings, they are allocated in the dic-
tionary and are permanent.

4.1.2 The library.

If you want to run a program written on some other Forth, it may use facilities that are not
available in wina’s kernel, but they may be available in the library . A library is a store with
facilities, available on demand. Forth as such doesn’t have a library mechanism, but wina does.

wina uses the blocks as a library by addition of the word REQUIRED and a convention. Starting
with ‘wina -r’ or most any option you have this facility available. If you are already in wina,

8 ciforth manual

you can type ‘1 LOAD’. The extension of ‘.1lab’ in ‘forth.lab’ means Library Addressable by
Block.

Now we will add DO-DEBUG using this library mechanism. It is used immediately. It is handy
during development, after every line it shows you what numbers Forth remembers for you. Also
from now on the header of each block that is LOAD -ed is shown.

Type (‘1 LOAD’ may not be necessary):

1 LOAD

"DO-DEBUG" REQUIRED
OK

DO-DEBUG

S[]1 0K 1

SL11] 0K
-

You can turn DO-DEBUG off with NO-DEBUG .

If you try to INCLUDE a program, you may get errors like ‘TUCK? ciforth ERROR # 12 : NOT
RECOGNIZED’. See Chapter 7 [Errors|, page 35, Section Explanations. Apparently, wina doesn’t
know about a forth word named TUCK , but after ‘"TUCK" REQUIRED’ maybe it does. You may
try again.

The convention about the way the library file must be organized for REQUIRED to find some-
thing is simple. It is divided into blocks of 16 lines. The first line is the header of the block. If
the word we are looking for is mentioned in the header, that block is compiled.

The library file contains examples for you to load using REQUIRE . Try

~ R
REQUIRE SIEVE

LIM # 4 ISN’T UNIQUE

0K

10 SIEVE

KEY FOR NEXT SCREEN

ERATOSTHENES SIEVE -- PRIMES LESS THAN 10 000
0 002 003 ...

(lots of prime numbers.)

4.1.3 Development.

If you want to try things out, or write a program — as opposed to just running a ready made
program — you best start up wina by ‘wina -e’. That is e for elective. That name means that
you can configure this screen 5 to suit your particular needs.

You will have available:

1. REQUIRED and REQUIRE . ‘REQUIRE xxx’ is equivalent to ‘"xxx" REQUIRED’ , but it is more
convenient.

2. DH. H. B. DUMP FARDUMP

For showing numbers in hex and parts of memory.

3. EDIT
The editor for editing blocks of the library file.
4. CRACK

To analyse words, showing the source code of compiled words.

Chapter 4: Manual 9

5. LOCATE
To show the block of the library file where a word is located.
6. 0S-IMPORT

To be able to type DOS-commands from within Forth as if you were in a terminal window.

Because this ciforth is “hosted”, meaning that it is started from an operating system, you
can develop in a convenient way. Start wina in a window, and use a separate window to start
your editor. Try out things in wina. If they work, paste the code into your editor. If a word
works, but its source has scrolled off the screen, you can recover the source using CRACK . If
you have constructed a part or all of your program, you can save it from your editor to a file.
Then by the command ‘INCLUDE <file-name> ’ load the program in wina and do some further
testing.

You are not obliged to work with separate windows. Suppose your favorite editor is called
‘edlin’. After

L“EDLIN“ 0S-IMPORT EDLIN }

you can start editing a file in the same way as from a DOS window or plain DOS . Of course
you now have to switch between editing a file and wina. But at least you need not set up your
Forth again, until your testing causes your Forth to crash.

4.1.4 Finding things out.

If you want to find things out you must start up wina again by ‘wina -e’. The sequence

REQUIRE TUCK
LOCATE TUCK

shows you the source for TUCK if it is in the library somewhere.

REQUIRE TUCK
CRACK TUCK

show you the source for TUCK if it is in the library or in the kernel, but without comment
or usage information.
4.2 Configuring

For configuring your wina, without enlarging the dictionary, you may use the following se-
quence

10 ciforth manual

- D
S" myforth.lab" BLOCK-FILE $! \ Or any config

1 LOAD

REQUIRE SAVE-SYSTEM

: DOIT

’CONTAINS ’FORTH FORGET-VOC

>CONTAINS >NFA DP !

"newforth" SAVE-SYSTEM BYE ;
DOIT

Here ‘DOIT’ trims the dictionary just before the saving your system into a new file. You can
use a similar sequence for expanding the system without building in the SAVE-SYSTEM command
as well.

FAR-DP allows have a disposable part of the dictionary. This may be occasionally useful, but
make sure to FORGET always the disposed off words.

4.3 Concepts

A forth user is well aware of how the memory of his computer is organised. He allocates it
for certain purposes, and frees it again at will.

The last-in first-out buffer that remembers data for us is called the data stack or sometimes
computation stack . There are other stacks around, but if there is no confusion it is often called
just the stack . Every stack is in fact a buffer and needs also a stack pointer to keep track of
how far it has been filled. It is just the address where the last data item has been stored in the
buffer.

The dictionary is the part of the memory where the word’s are (see Section 9.6 [DICTIO-
NARY], page 61). Each word owns a part of the dictionary, starting with its name and ending
where the name of the next word starts. This structure is called a dictionary entry . Its ad-
dress is called a dictionary entry address or DEA . In ciforth’s this address is used for external
reference in a consistent way. For example it is used as the execution token of a word in the
ISO sense. In building a word the boundary between the dictionary and the free space shifts
up. This process is called allocating , and the boundary is marked by a dictionary pointer
called DP . A word can be executed by typing its name. Each word in the dictionary belongs
to precisely one word list , or as we will say here vocabulary, with the exception of some fine
points regarding denotation’s. Apart from the name a word contains data and executable code,
(interpreted or not) and linking information (see Section 9.4.8 [VOCABULARY], page 58).

The concept word list is part of the ISO standard, but we will use vocabulary . A vocabulary
is much more convenient, being a word list with a name, created by VOCABULARY . ISO merely
knows word list identifier ’s, a kind of handle, abbreviated as WID . A new word list is created
by the use of VOCABULARY , and by executing the vocabulary word the associated word list is
pushed to the front of the search order. In fact in ciforth’s every DEA can serve as a WID. It
defines a wordlist consisting of itself and all earlier words in the same vocabulary. If needed you
can always derive the WID from the DEA of a vocabulary.

A word that is defined using : is often called a colon definition . Its code is called high level
code.

A high level word, one defined by : , is little more than a sequence of addresses of other
words. The inner interpreter takes care to execute these words in order. It acts by fetching the
address pointed by ‘HIP’ | storing this value in register ‘W’. It then jumps to the address pointed
to by the address pointed to by ‘W. ‘W points to the code field of a definition which contains
the address of the code which executes for that definition. This usage of indirect threaded code
is a major contributor to the power, portability, and extensibility of Forth.

If the inner interpreter must execute another high level word, while it is interpreting, it must
remember the old value of ‘HIP’, and this so called nesting could go several levels deep. Keeping
this on the data stack would interfere with the data the words are expecting, so they are kept
on a separate stack, the return stack . The usage of two stacks is another hall mark of Forth.

A word that generates a new entry in the dictionary is called a defining word (see Section 9.4
[DEFINING], page 56). The new word is created in the CURRENT word list .

Chapter 4: Manual 11

Each processor has a natural size for the information. (This is sometimes called a machine
word). For an Pentium processor this is 32 bit, for the older Intel 8086 it is 16 bit. The pendant
in Forth is called a cell and its size may deviate from the processor you are running on. For this
ciforth it is 32 , It applies to the data remembered in the data stack, the return addresses on
the return stack, memory accesses @ and ! , the size of VARIABLE ’ s and CONSTANT ’ s. In Forth
a cell has no hair. It is interpreted by you as a signed integer, a bit-map, a memory address or
an unsigned number. The operator + can be used to add numbers, to set a bit in a bitmap or
advance a pointer a couple of bytes. In accordance with this there are no errors such as overflow
given.

Sometimes we use data of two cells, a double . The high-order cell are most accessible on
the stack and if stored in memory, it is highest.

The code for a high level word can be typed in from the terminal, but it can also fed into
Forth by redirection from a file, INCLUDED from a file or you can load it from the file ‘forth.lab’,
because you can load a piece of this library at will once you know the block number. This file is
divided into blocks of 1 Kbyte. They may contain any data, but a most important application
is containing source code. A block contain source code is called a screen . It consists of 16 lines
of 64 characters. In ciforth the 64-th character is ~J such that they may be edited in a normal
way with some editors. To load such a screen has the same effect as typing its content from the
terminal. The extension lab stands for Library Addressable by Block ,

Traditionally Forthers have things called number ’s, words that are present in the source be it
interpreted or compiled, and are thought of not as being executed but rather being a description
of something to be put on the stack directly. In early implementations the word ‘NUMBER’ was a
catch-all for anything not found in the dictionary, and could be adapted to the application. For
such an extensible language as Forth, and in particular where strings and floating point numbers
play an increasing role, numbers must be generalised to the concept of denotation ’s. The need
for a way to catch those is as present as it was in those early days. Denotations put a constant
object on the stack without the need to define it first. Naturally they look, and in fact are, the
same in both modes. Here we adopt a practice of selecting a type of the denotations based on
the first letter. This is quite practical and familiar. Examples of this are (some from C, some
from assemblers, some from this Forth) :

Ve

10

7a)

~A

ODEAD
$8000403A
#3487
0177
"Arpeggio"
"JAMES BROWN IS DEAD"
n JK n

> DROP

These examples demonstrate that a denotation may contain spaces, and still are easy to scan.
And yes, I insist that ‘> DROP’ is a denotation.

Of course a sensible programmer will not define a word that looks like a denotation :

L: 7 CR "This must be my lucky day" TYPE ; (DON’T DO THIS)

12 ciforth manual

4.4 Portability

If you build your words from the words defined in the ISO standard, and are otherwise careful,
your programs may run on other systems that are ISO standard.

There are no gratuitous deviations from the standard. However a few things are not quite
conforming.

1. The error system uses CATCH and THROW in a conforming way. However the codes are not
assigned according to the table in the standard. Instead positive numbers are ciforth errors
and documented in this manual. ciforth’s errors identify a problem more precisely than
the standard allows. An error condition that is not detected has no number assigned to
it. Negative numbers are identical to the numbers used by the host operating system. No
attempt is made to do better than reproduce the messages belonging to the number stated
in Ralph Browns list, which is slightly better than the MSDOS programmers Manual.

2. It is not possible to catch the following words : ABORT" ABORT QUIT .

3. There is no REFILL . This is a matter of philosophy in the background. You may not notice
it.
Consequences are that BLK is not inspected for every word interpreted, but that blocks in
use are locked. Files are not read line by line, but read in full and evaluated.

4. Tt doesn’t use >IN exactly in the way prescribed by ISO. The >IN that is there is a fake,
that can only be read, not changed.

5. Vocabularies are wordlists with a name. However they push the wordlist to the search
order, instead of replacing the topmost one. In this sense FORTH and ASSEMBLER words are
not strictly conforming.

6. This is not strictly non-conforming, but worth mentioning here. Despite the fact that wina

contains only one state-smart word besides SLITERAL (that word is .") which is about
politically correct, as a consequence all denotations and some other words like [CHAR] and
[’]
(but not CHAR and ’>) turn out to be state smart as a design consequence. This is used
freely in the libraries of ciforth; it is the right of a system developer to do so. The library is
not a supposedly ISO-conforming program, so don’t complain about non-portability. The
libraries tend to rely on ciforth-specific and wina-specific — but hopefully documented —
behaviour anyway.

Here we will explain how you must read the glossary of wina, in relation to terminology in
the ISO standard.

Whenever the glossary specifies under which conditions a word may crash , then you will see
the euphemism ambiguous condition in the ISO standard.

For example:
Using HOLD other than between <# and #> leads to a crash.

Whenever we explicitly mention ciforth in a sentence that appears in a glossary entry, the
behaviour may not apply to other ISO standard systems. This is called ciforth specific behaviour
. If it mentions “this ciforth” or “wina”, you cannot even trust that behaviour to be the same
on other ciforth systems. Often this is called an “implementation defined” behaviour in the
standard. Indeed we are obliged to specify this behaviour in our glossary, or we don’t comply
to the standard. The behaviour of the other system may very well be a crash. In that case the
standard probably declares this an “ambiguous condition”.

For example:
On this ciforth 0UT is set to zero whenever CR is executed.

The bottom line is that you never want to write code where wina may crash. And that if
you want your code to run on some other system, you do not want to rely on ciforth specific
behaviour . If you couldn’t get around that, you must keep the specific code separate. That
part has to be checked carefully against the documentation of any other system, where you want
your code to run on.

By using CELL+ it is easy to keep your code 16/32 bit clean. This means that it runs on 16
and 32 bits systems.

Chapter 4: Manual 13

4.5 Saving a new system

We have said it before: “Programming Forth is extending the Forth language.”. A facility
to save your system after it has been extended is of the essential. It can be argued that if
you don’t have that, you ain’t have no Forth. It is used for two purposes, that are in fact the
same. Make a customised Forth, like you want to have it. Make a customised environment, like
a customer wants to have it. Such a “customised environment”, for example a game, is often
called a turnkey system in Forth parlance. It hides the normal working of the underlying Forth.

In fact this is what in other languages would be called “just compiling”, but compiling in
Forth means adding definitions to an interactive Forth. In ciforth “just compiling” is as easy as
in any language (see Chapter 4 [Manual], page 7, Hello world!). Of course, whether you have
a hosted system or a booted system , it is clear that some system-dependant information goes
into accomplishing this.

In the following we use the naming convention of ISO about cells. A cell is the fundamental
unit of storage for the Forth engine. Here it is 32 bits (4 bytes).

The change of the boot-up parameters at +ORIGIN , in combination with storing an image
on disk goes a long way to extending the system. This proceeds as follows:

1. All user variables are saved by copying them from ‘U0 @’ to ‘0 +ORIGIN’. The user variable
U0 points to the start of the user area. The length of the area is 40H cells. If in doubt check
out the variable ‘US’ in the assembler code.

2. If all user variables are to be initialised to what they are in this live system skip the next
step.

3. Adjust any variables to what you want them to be in the saved system in the +ORIGIN area.
The initialisation for user variable ‘Q’ can be found at ‘> Q >DFA @ +ORIGIN’.

4. Adjust version information (if needed)
5. Copy your wina to a new file using PUT-FILE . The difficult part is to get the system specific
header right. Add to the header the area from BM to HERE .

This has all been sorted out for you. Just use SAVE-SYSTEM .

4.6 Memory organization

A running ciforth has 3 distinct memory areas.
They occur sequentially from low memory to high.
e The dictionary
e Free memory, available for dictionary, from below, and stacks, from above

e Stacks, disk block buffers and terminal input buffer.

The lowest part of the free memory is used as a scratch area.

The program as residing on disk may contain startup code, but that is of no concern for the
usage.

The dictionary area is the only part that is initialised, the other parts are just allocated.
Logically the Forth system consists of these 7 parts.

e Boot-up parameters

e Machine code definitions

e Installation dependant code

e High level standard definitions
e High level user definitions

e System tools (optional)

e RAM memory workspace

14 ciforth manual

4.6.1 Boot-up Parameters

The boot-up area contains initial values for the registers needed for the Forth engine, like
stack pointers, the pointers to the special memory area’s, and the very important dictionary
pointer DP that determines the boundary between the dictionary and free space.

Instead they are copied to a separate area the user area , each time Forth is started. The
bootup area itself is not changed, but the variables in the user area are. By having several
user area’s, and switching between them, ciforth could support multitasking. When you have
made extensions to your system, like for instance you have loaded an editor, you can make these
permanent by updating the initial values in the boot-area and saving the result to disk as an
executable program. The boot-up parameters extends from ‘0 +ORIGIN’ and has initial value
for all of the user area. This is the image for the user area .

So in ciforth the bootup parameters are more or less the data field of the +ORIGIN word.
Executing ‘0 +ORIGIN’ leaves a pointer in this area.

4.6.2 Installation Dependent Code

KEY EMIT KEY? CR and R/W are indeed different for different I/O models. This is of little
concern to you as a user, because these are perfectly normal dictionary entries and the different
implementations serves to make them behave similarly. There will however be more differences
between the different configurations for ciforth for these words than habitually.

4.6.3 Machine Code Definitions

The machine executable code definitions play an important role because they convert your
computer into a standard Forth stack computer. It is clear that although you can define words
by other words, you will hit a lowest level. The code word ’s as these lowest level programs are
called, execute machine code directly, if you invoke them from the terminal or from some other
definition. The other definitions, called high level code, ultimately execute a sequence of the
machine executable code words. The Forth inner interpreter takes care that these code words
are executed in turn.

In the assembler source (if you care to look at it) you will see that they are interspersed with
the high level Forth definitions. In fact it is quite common to decide to rewrite a code definition
in high level Forth, or the other way around.

Again code words are perfectly normal dictionary entries.

4.6.4 High-level Standard Definitions

The high level standard definitions add all the colon-definitions, user variables, constants,
and variables that must be available in a "Forth stack computer" according to the ISO standard.
They comprise the bulk of the system, enabling you to execute and compile from the terminal,
execute and load code from disk to add definitions etc. Changes here will result in deviations
from the standard, so you probably want to leave this area alone. Again these words are perfectly
normal dictionary entries. The technique described for the next section, forget and recompile,
is not always possible here because of circular references. That is in fact no problem with an
assembler listing, but it is if you load Forth code.

Again standard definitions words are perfectly normal dictionary entries.

4.6.5 User definitions

The user definitions contain primarily definitions involving user interaction: compiling aids,
finding, forgetting, listing, and number formating. Some of these are fixed by the ISO standard
too. These definitions are placed above the standard definitions to facilitate modification. That
is you may FORGET part of the high-level and re-compile altered definitions from disc. This
applies even to the ISO standard words from the ‘TOOLS’ wordset like DUMP (show a memory
area as numbers and text) and .S (show the data stack).

Chapter 4: Manual 15

Again these words are perfectly normal dictionary entries. A number of entries that could
easily be made loadable are integrated in the assembler source of this ciforth version. You can
forget them, and load your own version from files or blocks.

Again user definitions words are perfectly normal dictionary entries.

4.6.6 System Tools

The boundary between categories are vague. A system tools is contrary to a user tool, a
larger set of cooperating words. A text editor and machine code assembler are the first tools
normally available. An assembler is not part of ciforth as delivered, but it is available after
‘REQUIRE ASSEMBLERi86’. It automatically loads the proper 32 -bits version. You can load
a more elaborate assembler. See Chapter 6 [Assembler|, page 23, Section Overview. They are
among the first candidates to be integrated into your system by SAVE-SYSTEM . We are including
a sample editor, that is quite handy See Chapter 4 [Manual], page 7, Section Getting Started.

386 and a 8086 Forth assemblers are available in ‘forth.lab’. They are loaded in accordance
with the system that is run.

It is essential that you regard wina as just a way to get started with Forth. Forth is an
extensible language, and you can set it to your hand. But that also means that you must not
hesitate to throw away parts of the system you don’t like, and rebuilt them even in conflict with
standards. Additions and changes must be planned and tested at the usual Forth high level.
Later you can rewrite them as code words.

Again words belonging to tools are perfectly normal dictionary entries.

4.6.7 RAM Workspace

The RAM workspace contains the compilation space for the dictionary, disc buffers, the
computation and return stacks, the user area, and the terminal input buffer, From the fig-Forth
user manual

For a single user system, at least 2k bytes must be available above the compiled
system (the dictionary). A 16k byte total system is most typical.

It is indeed possible to do useful work, like factoring numbers of a few hundred digits,
in a workspace of 2k bytes. More typical a workspace is several megabytes to over hundred
megabytes.

32 bits system are set at 64Mbyte but this is arbitrary and could be set much higher or lower
without consequences for system load or whatever. Before long we will put the dictionary space
on I86-Linux to 4G minus something and forget about this issue forver.

The boundary between this area and the previous one is pretty sharp, it is where DP points.
The other areas are not clearly separated at all. But even this boundary constantly changes as
you add and forget definitions.

4.7 Specific layouts

4.7.1 The layout of a dictionary entry

We will divide the dictionary in entries. A dictionary entry is a part of the dictionary that
belongs to a specific word. A dictionary entry address , abbreviated DEA is a pointer to the
header of a dictionary entry. In ciforth a header extends from the lowest address of the entry,
where the code field is to the past header address , just after the last field address. A dictionary
entry apart from the header owns a part of the dictionary space that can extend before the
header (mostly the name of the entry) or after it (mostly data and code).

A dictionary entry has fields, and the addresses of fields directly offset from the dictionary
entry address, are called field address . This is a bit strange terminology, but it makes a
distinction between those addresses and other addresses. For example, this allows to make the
distinction between a data field address , that is always present, and a data field in the ISO
sense that has only a (differing) meaning for CREATE DOES> definitions. Typically, a field address

16 ciforth manual

contains a pointer. A data field address contains a pointer to near the data field , whenever the
latter exists.

They go from lowest in memory to highest:

1. The code field. This is one cell. A pointer to such a field is called a code field address . It
contains the address of the code to be executed for this word.

2. The data field, of the DEA, not in the ISO sense. This is one cell. A pointer to such a field
is called a data field address . It contains a pointer to an area owned by this definition.

3. The flag field. This is one cell. A pointer to such a field is called a flag field address . For
the meaning of the bits of the flag field sea below.

4. The link field. This is one cell. A pointer to such a field is called a link field address . It
contains the dictionary entry address of the last word that was defined in the same word
list before this one.

5. The name field. This is one cell. This contains a pointer to a string. A pointer to such a field
is called a name field address . The name itself is stored outside of the dictionary header
in a regular string, i.e. a one cell count followed by as many characters. Unfortunately,
name field address is sometimes used, where a dictionary entry address would be more
correct, especially in older documentation. This came about because the name was lowest
in memory. That they happen to be the same is no reason to confuse two completely
different concepts. In this Forth the code field address and the dictionary address are the
same, but not accidentally so.

6. The source field. This is one cell. This can be used to hold a reference to the source, a
block number or a pointer to a string. It has not been filled in, in the kernel system.

7. Past the header . This is actually not a field, but the free roaming dictionary. However,
most of the time the part of the dictionary space owned by a dictionary entry starts here. A
pointer to such a field is called a past header address address . Mostly a data field address
contains a pointer to just this address.

Note that the entries are not only in alphabetic order, they are in order of essentiality. They
are accessed by >CFA >DFA >FFA >LFA >NFA >SFA .

Note data field has a specific meaning in the ISO standard. It is accessed through >BODY
from the execution token while a data field address is accessed through >DFA from the dictionary
entry address . It is in fact one cell behind where the data field address pointer points to.

The most important flag bits currently defined are:

e The INVISIBLE bit = 1 when smudge d, and will prevent a match by (FIND) .

e The IMMEDIATE bit = 1 for IMMEDIATE definitions; it is called the immediate bit .

e The DUMMY bit =1 for a dictionary header contained in the data of a vocabulary. This
indicates that it should not be executed.

e The DENOTATION bit =1 for a word from the DENOTATION word list. This means that

it is a short word used as a prefix that can parse all denotation ’s (numbers) that start with
that prefix, e.g. 7 or & . Usually it is a one letter word, but not necessarily.

(CREATE) takes care to generate this data structure; it is called by all defining words.

For all colon definition ’s the code field contains a pointer to the same code, the inner
interpreter , called ‘DOCOL’. For all words defined via ‘CREATE ... DOES>’ the code field contains
the same code, ‘DODOES’.

At the data field address we find a pointer to an area with a length and content that depends
on the type of the word.

e For a code word, it contains machine code. The code field of this word points to it too.

e For a word defined by VARIABLE , USER , or CONSTANT it has a width of one cell, and contains
data.

e For all colon definition ’s the data field address contains a pointer to an area with a variable
length. It contains the compiled high level code, a sequence of code field address address
es.

e For a word defined via ‘CREATE ... DOES>’ the first cell of this area contains a pointer to

the high level code defined by DOES> and the remainder is data. A pointer to the data is
passed to this DOES> code.

Chapter 4: Manual 17

A dictionary entry address can be turned into any of these fields by words that are in the
vocabulary ‘DICTIONARY’. See Section 9.6 [DICTIONARY], page 61,, for those field words. They
customarily start with >.

A dictionary falls apart into the
1. Headers, with their fields.
2. Names, pointed to by some name field address .

3. Data, pointed to by some data field address . This includes high level code, that is merely
data fed into the high level interpreter.

4. Code, pointed to by some code field address . This is directly executable machine code.

4.7.2 Details of memory layout

The disc buffers are mainly needed for source code that is fetched from disk were it resides
in a file.

The disc buffer area is at the upper bound of RAM memory, So it ends at EM .

It is comprised of an integral number of buffers, each B/BUF bytes plus two cells. B/BUF is the
number of bytes read from the disc in one go, originally thought of as one sector. In ciforth’s
B/BUF is always the size of one screen according to ISO : 1024 bytes. The constant FIRST has
the value of the address of the start of the first buffer. LIMIT has the value of the first address
beyond the top buffer. The distance between FIRST and LIMIT is a multiple of B/BUF CELL+
CELL+ bytes.

For this ciforth the number of disk buffers is configured at 8 . The minimum possible is
approximately 8 because nesting and locking requires that much blocks available at the same
time.

The user area is configured at 40H cells, most of it unused. There is no word to add user
variables. The user area is just under the disc buffers. So it ends at FIRST .

The terminal input buffer and the return stack share an area configured at a size of 10000H
bytes. The lower half is intended for the terminal input buffer, and the higher part is used for
the return stack, growing down from the end. The initial stack pointer is in variable RO . The
return stack grows downward from the user area toward the terminal buffer.

The computation stack grows downward from the terminal buffer toward the dictionary which
grows upward. The initial stack pointer is in variable SO .

During a cold start, the user variables are initialised from the bootup parameters to contain
the addresses of the above memory assignments.

They can be changed. See Section 9.12.1 [+ORIGIN], page 77, for the bootup area. But take
care. You probably need to study the source for how and when they take effect.

If you need multi-tasking you have to allocate a separate user area for each task, as well as
a separate return stack area and a separate data stack area. A task that asks for input, also
needs an extra terminal input buffer.

4.7.3 Terminal I/0O and vectoring.

It is useful to be able to change the behaviour of I/O words such that they put their output
to a different channel. For instance they must output to the printer instead of to the console. In
general this is called vectoring . Remember that in normal Forth system, all printing of numbers
is to the terminal, not to a file or even a buffer.

For this reason character output CR , EMIT and TYPE all go through a common word that
can be changed. . Because this is defined in high level code it can temporarily be replaced by
other code. This revectoring is possible for all high level words in ciforth, such that we need no
special measures to make vectoring possible. As an example we replace TYPE by MYTYPE .

‘> MYTYPE >DFA ’ TYPE >DFA !’

And back to default:

*> TYPE >PHA ’> TYPE >DFA !’

Be careful not to define MYTYPE in terms of TYPE , as a recursive tangle will result. This method
works in all versions of ciforth and is called revectoring .

A similar technique is not so useful on the input side, because keys entered during EXPECT
are subject to correction until <KRET> has been pressed.

18 ciforth manual

4.8 Libraries and options

In ciforth there is no notion of object (i.e. compiled) libraries, only of source libraries. A
Forth library is a block file adorned with one convention. This is that the words defined in a
screen are mentioned on the first line of that screen, the index line . This is of course quite
established as a habit. The word REQUIRED takes a string and loads the first screen where that
name occurs in the index line. For convenience also REQUIRE is there that looks ahead in the
input stream. These words are not in the kernel but are in screen 17, that corresponds to the
‘~r’ option.

Screen 0 and screen 1 to 31 are reserved.

When a Forth is started up with a first parameter that is a one-letter option, the correspond-
ing screen is to be executed. So ‘-a’ or ‘~A’ is equivalent to ‘1 LOAD’ and ‘-z’ or ‘-Z’ is equivalent
to ‘26 LOAD’. In fact all options are mapped onto screen 0..31 by a bitwise and.

4.8.1 Options

ciforth is a primitive system, and can interpret just one option on the command line. If the
first argument is not starting with - or / ciforth returns with error code 3. However the option
‘=1’ can bootstrap it into more sophisticated behaviour.

The following options can be passed to wina on the command line:

o ‘-a’

Make sure REQUIRED is available. This is a copy of the ‘-r’ command because it is easier to

remember ‘1 LOAD’ if the screen must be loaded manually. In addition the signon message
is suppressed.

e ‘-c name’
Compile the file ‘name’ to an executable binary. The name of the binary is ‘name’ without
the trailing ‘.frt’ or else ‘a.out’. Upon invocation of the binary the word defined latest

is executed, then Forth goes BYE . ‘name’ is a regular source file, not a block file. Also
REQUIRED is made available.

o ‘—¢’

Load the elective screen, screen 5. This contains preferences , the tools you want to have
available running an interactive Forth. The default library file contans system wide default
preferences. See the ‘=1’ option if the default preferences don’t suite you. In a elective
screen you just put commands you want to be executed after Forth starts up, such as °
"fortune -f /usr/lib/forthcookies" SYSTEM ’ or ‘ REQUIRE EDIT’

e ‘—f forthcode’

Execute the ‘forthcode’ in the order present. Beware of the special characters in the shell.
Also the shell will collapse multiple spaces into one.

° 4_h7
Print overview of options.

e ‘-1 name’
Use a library ‘name’. Restart Forth with as a block file ‘name’ and as options the remainder
of the line shifted, such that ‘-1 name’ disappears and the next option becomes the first. A
file specified via ‘-1’ is opened for reading and writing. Options ara again handled as as
described in the begining of this section. In this way options may be added or reconfigured
for personal use.
Note that the default file is opened for reading only.

o ‘-r’
Make sure REQUIRED is available.

e ‘-s script’
Load the file ‘script’ , but ignore its first line. This is intended to be used for scripts, i.e.
a piece of code to be interpreted rather than compiled.

In a script REQUIRED is available and you can use standard in and standard out.

Chapter 4: Manual 19

e ‘-t sourcefile’

Try to load the file ‘script’ automatically, by possibly unsafe means. Report facilities that
were required. This is a first step in a porting activity. Redefinition messages are issued on

the error channel that can be redirected to /dev/nul leaving the report.

o ‘—v’

Print version and copy right information.

The remaining screens are available for options to be added at a later time, or for user defined
options in a private library.

4.8.2 Private libraries

Working with source in files is quite comfortable using the default block library, especially if
sufficient tools have been added to it. In principle all ISO words should be made available via
REQUIRED .

In order to customize the forth library, you have to make a copy , preferably to a lib subdi-
rectory. Then you can start up using a ‘-1’ option, or make a customized wina. See Chapter 4
[Manual], page 7, Subsection Configuring.

You can make a pif file that start ‘wina’ with a library:
wina -1 ¢:/projects/database/forth.lab.

Note that the ‘-1’ option hides itself, such that such an alias can be used completely identical
to the original with respect to all options, including ‘-1’. Analysing arguments passed to wina
in your programs can remain the same.

4.8.3 Turnkey applications.

Turnkey application are made using the word TURNKEY . They take a word, that is to be
done, and a string with the file name. Mostly it is much easier to just use the ‘-c’ option. See
Chapter 4 [Manual], page 7, Getting Started Subsection Hello World! A turnkey application
should decide what to do with the library file that is default opened in COLD . Make sure to
CATCH errors from BLOCK-EXIT and ignore them.

20

ciforth manual

Chapter 5: Editor 21

5 Editor

The editor for editing screens is a very simple screen editor. For editing files from within
wina you just use Your Favorite Editor (see Chapter 4 [Manual|, page 7).

The editor becomes available after ‘REQUIRE EDITOR’ and is invoked by ‘<number> EDIT’ or
E-S for the current screen at SCR .

A screen is copied to the video screen. When you exit, what you see within the blue cadre,
is copied back into the screen.

This editor has Wordstar compatible commands. No function key works, only control keys.

“E °S "D ~X <Enter> <Tab> : Cursor up left right down. Next line. Tab.

~A "F : Cursor word left, right.

G ~T Y : Delete char, word, line.

~7Z ~U : Undelete word, line.

"W ~P : Undelete word and pop. Undelete line and pop.

~J 7O : Join lines, Open (split) line.

ESC Q / ESC q : quit (abondon edit and do not update.)

ESC x (or whatever, not q): exit editing, save and update.

Word and line deletes stack up at the bottom of the screen. “P and ~W pop this stack. In
all other case the last deleted item remains available for multiple undeletes.

Editing outside of the blue cadre allows useful tricks. Small sequences perform useful actions:
swap lines Y "E “P.
delete line without stacking <ret> “E ~J ~O

22

ciforth manual

Chapter 6: Assembler 23

6 Assembler

6.1 Introduction

Via ‘http://home.hccnet.nl/a.w.m.van.der.horst/ciforth.html’ you can find here a
couple of assemblers, to complement the generic ciforth system. The assemblers are not part
of the wina package, and must be fetched separately. They are based on the postit/fixup
principle. The assembler that is present in the blocks, is based on the same principle, but is less
sophisticated, especially regards error detection. If you use that one, you can still benefit from
this section by the background information it gives.

prototype : still present in the forth.lab ("blocks"), usable and cleaned up
‘ass.frt’ : the 80-line 8086 assembler (no error detection)

‘asgen.frt’ : generic part of postit/fixup assembler

‘as80.frt’ : 8080 assembler, requires ‘asgen.frt’

‘asi86.frt’ : 8086 assembler, requires ‘asgen.frt’

‘asib86.frt’ : 80386 assembler, requires ‘asgen.frt’

‘ps.frt’ : generate opcode sheets

‘p0.asib86.ps’ : first byte opcode for asib86 assembler

‘pOF .asib86.ps’ : two byte opcode for same that start with OF.
‘test.mak’ : makefile, i.e. with targets for opcode sheets.

De ‘asi586.frt’ (containing the full 80386 instruction set) is in many respects non-compliant
to Intel syntax. The instruction mnemonics are redesigned in behalf of reverse engineering.
There is a one to one correspondence between mnemonics and machine instructions. In princi-
ple this would require a monumental amount of documentation, comparable to parts of Intel’s
architecture manuals. Not to mention the amount of work to check this. I circumvent this.
Opcode sheets for this assembler are generated by tools automatically, and you can ask inter-
actively how a particular instructions can be completed. This is a viable alternative to using
manuals, if not more practical. (Of course someone has to write up the descriptions, I am happy
Intel has done that.).

So look at my opcode sheets. If you think an instruction would be what you want, type it
in and ask for completion. If you are at all a bit familiar, most of the time you can understand
what your options are. If not compare with an Intel opcode sheet, and look up the instruction
that sits on the same place. If you don’t understand them, you can still experiment in a Forth
to find out.

Now for the bad news. The assembler in the Library Addressable by Blocks (block file) hasn’t
any of those feature. It is intended for incidental use, to speed up a crucial word. Worse yet,
the opcodes are not always the same as used here, and the comma-ers are even mostly different.
You have to resort to that old game, reading the source.

6.2 Reliability

I skimped on write up. I didn’t skimp on testing, at least not for ‘asi586.frt’. It is tested
in this way:
1. All instructions are generated. (Because this uses the same mechanism as checking during
entry, it is most unlikely that you will get an instruction assembled that is not in this set.)
2. They are assembled.
3. They are disassembled again, must come out the same.

4. They are disassembled by a different tool (GNU’s objdump), and the output is compared
with 3. This has been done manually, just once. Bugs where revealed, yes... in the other
tool.

This leaves room for a defect of the following type: A valid instruction is rejected or has been
totally overlooked.

24 ciforth manual

But opcode maps reveal their Terra incognita relentlessly. So I am quite confident to promise
a bottle of good Irish whiskey to the first one to come up with a defect in this assembler.

The full set of instructions, with all operand combinations sit in a file for reference. This
is all barring the 256-way ‘SIB’ construction and prefixes, or combinations thereof. This would
explode this approach to beyond Terabytes. It is also not practical for the Alpha with 32K
register combinations per instruction.

6.3 Principle of operation

In making an assembler for the Pentium it turns out that the in-between-step of creation
defining words for each type of assembly gets in the way. There are just too many of them.

MASM heavily overloads the instruction, in particular ‘MOV’ . Once I used to criticise Intel
because they had an unpleasant to use instruction set with MOV’ ‘MVR’ and ‘MVI’ for move
instructions. In hindsight that was not too bad and I am returning to that. (I mean they are
really different instructions, it might have been better if they weren’t. But an assembler must
live up to the truth.) Where the Intel folks really go overboard is with the disambiguation of
essentially ambiguous constructs, by things as ‘OFFSET’ ‘BYTE POINTER’ ‘ASSUME’ . You can no
longer find out what the instruction means by itself.

The simplest example is

[INC [BX] }

Are we to increment the byte or the word at BX? (Intel’s solution : ‘INC BYTE POINTER BX’)
Contrarily here we adapt the rule : if an instruction doesn’t determine the operand size (some
do, like LEA,), then a size fixup is needed (‘X|’ or ‘B|’).

In this assembler this looks like

L INC, Bl DO [BX] J

This is completely unambiguous.
These are the phases in which this assembler handles an instruction:

e POSTIT phase: MOV, assembles a two byte instruction with holes.
e FIXUP phase: X| or B| fits in one of the holes left.
e COMMA phase: IX, or X, add addresses and immediate data.

Doesn’t that lay a burden on the programmer? Yes. He has to know exactly what he is
doing. But assembly programming is dancing on a rope. The Intel syntax tries to hide from you
were the rope is. A bad idea. There is no such thing as assembly programming for dummies.

An advantage is that you are more aware of what instructions are there. Because you see
the duplicates.

Now if you are serious, you have to study the ‘asgen.frt’ and ‘as80.frt’ sources. You better
get your feet wet with ‘as80.frt’ before you attack the Pentium. The way ‘SIB’ is handled is
so clever, that sometimes I don’t understand it myself.

Another invention in this assembler is the family of instructions . Assembler instructions are
grouped into families with identical fixups, and a increment for the opcodes. These are defined
as a group by a single execution of a defining word. For each group there is one opportunity to
get the opcode wrong; formerly that was for each opcode.

Chapter 6: Assembler 25

6.4 The 8080 assembler

The 8080 assembler doesn’t take less place than Cassady’s . (You bet that the postit-fixup
principle pays off for the Pentium, but not for the 8080.) But... The regularities are much more
apparent. It is much more difficult to make a mistake with the code for the ‘ADD’ and ‘ADI’
instructions. And there is information there to the point that it allows to make a disassembler
that is independant of the instruction information, one that will work for the 8086, look at the
pop family. First I had

(38 C1 02 4 1FAMILY, POP -- PUSH RST (B’)

(cause I started from an existing assembler.) But of course RST (the restart instruction) has
nothing to do with registers, so it gets a separated out. Then the exception, represented by
the hole ‘==’ disappears. The bottom line is : the assembler proper now takes 22 lines of code.
Furthermore the “call conditional” and “return conditional” instructions where missing. This
became apparent as soon as I printed the opcode sheets. For me this means turning “jump
conditional” into a family.

6.5 Opcode sheets

Using ‘test.mak’ (on a linux computer in lina) you can generate opcode sheets by "make
asib86.ps". For the opcode sheets featuring a n-byte prefix you must pass the ‘PREFIX’ to
make and a ‘MASK’ that covers the prefix and the byte opcode, e.g. ‘make asi586.ps MASK=FFFF
PREFIX=0F" The opcode sheets ‘p0.asib86.ps’” and ‘pOF.asib86.ps’ are already made and can
be printed on a PostScript printer or viewed with e.g. ‘gv’.

Compare the opcode sheets with Intel’s to get an overview of what I have done to the
instruction set. In essence I have re-engineered it to make it reverse assemblable, i.e. from a
disassembly you can regenerate the machine code. This is not true for Intel’s instruction set,
e.g. Intel has the same opcode for ‘MOV, X| T| AX’| R| BX| ’ and ‘MOV, X| F| BX’| R| AX|’
and, as of this writing, GNU’s objdump gives the same disassembly for both ‘IMUL’s despite the
difference between a 32*32 > 64 and a 32*32 > 32 operation: ‘IMUL|AD, X| R| BX|’ or ‘IMUL,
AX’ | R| BX|’

To get a reminder of what instructions there are type SHOW-0PCODES . If you are a bit familiar
with the opcodes you are almost there. For if you want to know what the precise instruction
format of e.g. IMUL|AD, just type ‘SHOW: IMUL|AD,’ You can also type SHOW-ALL, but that
takes a lot of time and is more intended for test purposes.

6.6 Details about the 80386 instructions

Read the introductory comment of ‘asgen.frt’ for how the assembler keeps track of the
state, using the BI BY BA tallies.

1. A word ending in , reserves place in the dictionary. It stand for one assembler instruction.
The start of the instruction is kept and there is a bitfield (the tally) for all bits that belong
to the instruction, if only mentally. These bits are put as comment in front of the instruction
and they are considered filled in. They also imply the instruction length.

2. A word ending in | is a fixup, it OR s in some bits in an already assembled instruction.
Again there is a mask in front of fixups and in using the fixup these bits are considered to
be filled in. A fixup cannot touch data before the start of the latest instruction.

3. Families can be constructed from instructions or fixups with the same tally bit field, provided
they differ by a fixed increment. If data or addresses following differ this is unwise.

4. The part before a possible | in an instruction — but excluding an optional trailing I — is the
opcode. Opcodes define indeed a same action.

5. The part after | in an instruction may be considered a built in fixup where irregularity
forbids to use a real fixup. A X stands for xell or natural data width. This is 16 bit for

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

1.

ciforth manual

a 16 bit assembler and 32 bit for a 32 bit assembler. These can be overruled with AS:,
applying to DX| and MEM| and with 0S:, applying to tdata required where there is an I
suffix.

Width fixups determine the data width : X|
(xell or natural data width 16/32) or B| (8 bit) unless implied.

Instruction ending in I have an immediate data field after all fixups. This can be either
X, (xell or natural data width) or B, W, L, (8 16 32 bit). If there are width fixups they
should correspond with the data.

Instructions ending in ‘| SEG’ builtin fixup (segments) require SEG, (which is always 16 bits).
If X, cannot be used caused by width overrules, the programmer should carefully insert W,
or L, whatever appropriate.

With r/m you can have offsets (for DB| and DX|) that must be assembled using B, or X,
but mind the previous point.

Instruction with r/m can have a register instead of memory indicated by the normal fixups
AX]| etc.

If instructions with r/m have another register, that one is indicated by a prime such as AX’ |
. Or if an instruction can handle two general registers, the one that cannot be replaced by
a memory reference gets a prime.

Unless T| F| (to/from) are present, a primed register is the modifiable one, else T| F| refer
to the primed register. The primed register is the one that cannot be replaced by a memory
reference.

At the start of an instruction the mask of the previous instruction plus fixup should add up
non-overlappingly to a full field. Offsets and immediate data should have been comma-ed
in in that order.

A fixup or instruction is mightier than an other one if its mask contains all the bits of that
other one. The second fixup or instruction shall then not be used.

Instructions ending in ‘ :, ’ are prefixes and are considered in their own right. They have
no fixups.

The Scaled Index Byte is handled in the following way: The fixup SIB| closes the previous
instruction (i.e. fill up its bit field), but possible immediate data and offsets are kept. Then
SIB, starts a new instruction.

The SET, instruction unfortunately requires a duplicate of the O| etc. fixups of the J, and
J|X, instructions.

Some single byte instructions require X’ | and B’ | instead of X| and B| that are used for
the ubiquitous instructions with r/m.

Hand disassembling can be done as follows.

Find the mightiest instruction that agrees with the data at the program counter. Tally the
bits. The instructions length follows from the instruction. As does the presence of address
offsets and immediate data. The dictionary may be organized such that the mightiest
instruction is always found first.

Find the mightiest fixup that agrees with untallied bits.
If not all bits have been tallied go to 2

Disassemble the address offsets and immediate data, in accordance with the instruction.
Length is determined from fixups and prefix bytes. The result must agree with the instruc-
tion in the first place.

6.7 Using 16 bits code in the 32 bit assembler

In general X refers to Xell. So in 16 bit mode or with a 16 bit prefix AX is to mean the Intel

AX instead of what is normal: EAX . It is thus possible to insert a patch of 16 bit code in 32
bit code all with the 32 bit assembler. This can be necessary in system programming. Just use
‘MOV, AX’| R| BX|’ and in 16 bit mode it refers to 16 bit registers.

If an address overwrite suffix applies, the indexing fixups ending in a prime must be used,

e.g. ‘[BX+SI]’’ instead of [AX] for code running in a default 32 bit environment. (Otherwise

Chapter 6: Assembler 27

use the 8086 assembler) But during system programming only the programmer knows what is
going on, so some error messages are suppressed.

While using 16 bits code, whenever you get error messages and you are sure you know better
than the assembler, put !TALLY before the word that gives the error messages, and they will be
suppressed.

6.8 This assembler is not yet integrated in the generic Forth

In the generic Forth automatically a 32 bit assembler is loaded if the Forth itself is 32 bits
and a 16 bit assembler for the 16 bit forths. Adding the extra complexity to run the 16 bit
assembler on a 32 bit system would be the drip that overflows the bucket. This is no restriction
for what code can be generated. The built in assembler has no error checking and may have
bugs the very extensively tested ‘asi586.frt’ has not. ;

6.9 A rant about redundancy

You could complain about redundancy in postit-fixup assemblers. But there is an advantage
to that, it helps detect invalid combinations of instructions parts. They look bad at first sight.
What about
‘MOV, Bl T| [BX+SI] R| AX|’

‘MOV,’ needs two operands but there is no primary operand in sight. [BX+SI] would not qualify.
and not even BX| because the primary operand should be marked with a prime.

‘MOV, X| T| BX| AX|’ looks bad because you know BX| and AX| work on the same bit fields, so
it easy to remember you need the prime. T| and F| refer to the primary operands, so gone is
the endless confusion about what is the destination of the move.

‘MOV, X| T| BX’| R| AL’| looks bad , because AL| could not possibly qualify as an X register.
‘MOV, X| T| BX’| AX|’ looks bad , because soon you will adopt the habit that one of the 8 main
register always must be preceeded with ‘T|’ F| or R| .

‘MOV, X| T| BX’| R| AX|’ looks right but you still can code ‘MOV, AX| BX’| R| T| X|’ if you
prefer your fixups in alphabetic order. (A nice rule for those Code Standard Police out there?).

And yes ‘ES: 0S: MOV, X| T| DI’| SIB|, DX| [BP +8x AX] FFFFF800 X,’ though being cor-
rect, and in a logical order, looks still bad, because it is bad in the sense that the Pentium
design got overboard in complication. (This example is from the built-in assembler, the one in
‘asib86.frt’ redefines [BP c.s. to get rid of the SIB|, instruction.)

First remark: lets assume this is 32 bit code,(because otherwise there would not be a SIB,
sure?)
There are 3 sizes involved :
e The size of the data transported this is always the ‘X’ as in X| . Then the first X| changes
its meaning to 16 bit, because of the 0S: prefix.

e The X in DX| and in X, must agree and are 32 bits because you are in a 32 bits segment
and this cannot be overridden.

e The offset (in ‘+AX]’) is counted in 64 bits, a strange array for fetching the ‘DI’ but anyway.

And .. by the way the data is placed in the extra segment. Add a bit of awareness of the
cost of the instructions in execution time and take care of the difference between the Pentium
processors MMX en IIT and what not and you will see that assembly program is not for the faint
of heart. The ‘ASSUME’ of the MASM assembler buys you nothing, but inconvenience. ;

6.10 Reference opcodes

Table one contains all the opcodes used in ‘asib86.frt’ in alphabetic order, with | sorted
before any letter. All opcodes on the first position are the same as Intel opcodes.

You can use it in two ways.

You want the opcode for some known Intel opcode.
Look it up in the first column. One of the opcodes on that line is what you want. To pick the
right one, consider the extension that are explained in table 2. Exception: ‘PUSHI’ is not on the
line with ‘PUSH’ . Some times you have to trim built in size designators, e.g. you look up ‘LODSW’

28 ciforth manual

but you are stuck at LODS , so that’s it. With ‘ SHOW: LODS, ’ you can see what the operands
look like.

You want to know what a POSIT/FIXUP code does. Look it up in the table, on the first word
on the line you should recognize an Intel opcode. For example you have CALLFAROI,

That is at the line with CALL, . So the combination of operands for CALLFAROI, are to be
found in the description for ‘CALL’ in the Intel manuals.

Note. Some things are ugly. LDS, should be L|DS, . I would replace MOV|FA, by STA, and
MOVITA, by LDA, . But that would make the cross referencing more problematic. Note. The
meaning of the operands for ‘JMP’ and ‘JMPFAR’ are totally different. So my suffices are different.

Table 1. Opcode cross reference.
AAA,
AAD,
AAM,
AAS,

ADC, ADCI, ADCI| A, ADCSI,
ADD, ADDI, ADDI| A, ADDSI,
AND, ANDI, ANDI| A,

ARPL,

AS:,
BOUND,
BSF,
BSR,
BT, BTI,

BTC, BTCI,

BTR, BTRI,

BTS, BTSI,

CALL, CALLFAR, CALLFAROI, CALLO,
CBW,

CLC,
CLD,
CLI
CLTS,
CMC,

CMP, CMPI, CMPI| A,
CMPS, CMPSI,
CPUID,

CS:,
CWD,
DAA,
DAS,

DEC, DEC| X,
DIV|AD,

DS:,
ENTER,
ES:,
FS:,

Chapter 6: Assembler

GS:,
HLT,
IDIV|AD,

IMUL, IMUL| AD, IMULI, IMULSI,
INC, INC| X,
INS,

INT, INT3, INTO,
INID, IN|P,
IRET,

J, JIX, (Intel Jcc)
JCXZ,

JMP, JMPFAR, JMPFAROI, JMPO, JMPS,
LAHF,

LAR,
LDS,
LEA,
LEAVE,
LES,
LFS,
LGDT,
LGS,
LIDT,
LLDT,
LMSW,
LOCK,
LODS,

LOOP, LOOPNZ, LOOPZ,
LSL,

LSS,
LTR,

MOV, MOV|CD, MOV|FA, MOV|SG, MOV TA,
MOVI, MOVI| BR, MOVI| XR,
MOVS,

MOVSX|B, MOVSX| W,
MOVZX|B, MOVZX|W,
MUL| AD,

NEG,
NOT,

OR, ORI, ORI|A,
0S:,

OUTS,

OUTI|D, OUT|P,

POP, POP| ALL, POP| DS, POP|ES, POP|FS, POP|GS, POP|SS, POP| X,
POPF,

30

ciforth manual

PUSH, PUSH|ALL, PUSH|CS, PUSH|DS, PUSH|ES, PUSH|FS, PUSH| GS, PUSH| SS,

PUSH| X,
PUSHF,

PUSHI| B, PUSHI| X,
RCL,

RCR,
REPNZ,
REPZ,

RET+, RET, RETFAR+, RETFAR,
ROL,

ROR,
SAHF,
SAR,

SBB, SBBI, SBBI| A, SBBSI,
SCAS,

SET, (Intel SETcc)
SGDT,

SHL,

SHLD| C, SHLDI,
SHR,

SHRD|C, SHRDI,
SIDT,

SLDT,
SMSW,
SS:,
STC,
STD,
STI,
STOS,
STR,

SUB, SUBI, SUBI| A, SUBSI,
TEST, TESTI, TESTI| A,
VERR,

VERW,
WAIT,
XCHG,

XCHG| AX,
XLAT,

XOR, XORI, XORI| A,
~SIB,

Table 2 Suffixes

I : Immediate operand

SI : Sign extended immediate operand
FAR : Far (sometimes combined with OI)
O : Operand

OI : Operand indirect

)

Chapter 6: Assembler 31

6.11 The dreaded SIB byte

If you ask for the operands of a memory instruction (one of the simple one is LGDT,) instead
of all the sib (scaled index byte) possibilities you see. ‘LGDT, DB| ~“SIB| 14 SIB,, 18, B,’ This
loads the general description table from an address described by a sib-byte of 14.

The ‘“SIB| 14 SIB,,’ may be replaced by any sib-specification of the kind ‘[AX +2* SI]’.
You can ask for a reminder of the 256 possibilities by ‘SHOW: ~SIB,’

For the curious:

Explanation of ‘LGDT, DB| ~“SIB| 10 SIB,, 14, B,’ This way of specifying a sib-byte would
be perfectly legal, had I not hidden those words. It shows what is going on: the instruction is
completed by “SIB| telling the assembler that a comma-er SIB,, is required.

Instead of the comma-er we use a “SIB, instruction. This specifies in fact a one byte opcode
with three fields examplified by ‘[AX +2* SI’] (and again you might say ‘+2* SI] [AX’ with the
same meaning.)

6.12 A last caveat

There is no way to communicate to the assembler whether the current instructions are sup-
posed to be executed in 16 or 32 bit mode. This means that if you use the address overwrite
prefix AS:, and/or primed fixups [BX]’ and/or run your code in 16 bit mode, you must be
very careful. As long as you stay away from the above, you can be sure that valid instructions
are correctly assembled and executed as you specified and invalid instructions are rejected.

6.13 An incomplete and irregular guide to the instruction
mnemonics.

The following is an attempted overview of the suffixes and fixup’s used. It may be of some
help for using the assembler because it gives some idea of some of the names. It is not checked
in a long time and was inaccurate and incomplete in the first place. You may also find names
that are only used in the block files and not explained in table 1. So beware!

Note that some of the instruction are Pentium and as yet not present in the ‘asi586.frt’
(which should still be called ‘asi386.frt’).

Never use an instruction that end in a ’ (such as [BP+IS]”’
except in case of address size overwrites and you know what you are doing.

Some instructions
SET : Byte Set on Condition
BT : Bit Test
BTR: Bit Test and Reset
BTS: Bit Test and Set
BTC: Bit Test and Complement
CPUID: CPU Identification
CLTS:
L : Load Full Pointer
LAR : Load Access Rights Byte
LLDT: Load Local Descriptor Table Register
LGDT: Load General Descriptor Table Register
LIDT: Load Interrupt Descriptor Table Register
LTR: Load Task Register
LMSW: Load Machine Status Word
MOV : Move
RSM:
RDTSC: Read from Time Stamp Counter
RDMSR: Read from Model Specific Register
SHLD: Double Precision Shift Left
SHRD: Double Precision Shift Right
SLDT: Store Local Descriptor Table Register

32

ciforth manual

SMSW: Store Machine Status Word
VERR: Verify a Segment for Reading or Writing
WRMSR: Write to Model Specific Register

Suffices of the opcode

|ALL : All

|CD : Control/Debug register

|F'S : Replaces FS| in irregular opcodes.
| GS : Replaces GS| in irregular opcodes.
|AD : Implicit A and Double result.

|C

: Implicit C (count)

Items in Fixups.

Yl
NI
Ol
Cl

: Yes, Use the condition straight
: No, Use the condition inverted
: Overflow

: Carry

VAR

Zero

CZ| : C || Z (unsigned <=)

Sl:

Pl
L|

Sign (<0)

: Parity (even)
: S1= 0 (signed <)

LE| : L || Z (signed <=)
<AH| : As a second register is a source, different in size from the destination. T| : To (primed
or special register)

Fl
Vi

: From (primed or special register)
: Variable number

OB : Obligatory byte
OW : Obligatory word (=16bits)

I

6.14 Assembler Errors

Errors are identified by a number. They are globally unique, so assembler error numbers do

not overlap with other ciforth error numbers, or errors returned from operating system calls. Of
course the error numbers are given in decimal, always.

file

The errors whose message starts with ‘AS:’ are used by the Postlt FixUp assembler in the
‘asgen.frt’. See Chapter 7 [Errors], page 35, for other errors.

‘ciforth ERROR # 26 : AS: PREVIQUS INSTRUCTION INCOMPLETE’

You left holes in the instruction before the current one, i.e. one or more fixups like X| are
missing. Or you forget to supply data required by the opcode like OW, . With SHOW: you
can see what completions of your opcode are legal.

‘ciforth ERROR # 27 : AS: INSTRUCTION PROHIBITED IRREGULARLY’

The instruction you try to assemble would have been legal, if Intel had not made an excep-
tion just for this combination. This situation is handled by special code, to issue just this
error.

‘ciforth ERROR # 28 : AS: UNEXPECTED FIXUP/COMMAER’

You try to complete an opcode by fixup’s (like X|) or comma-ers (like OW,) in a way that
conflicts with what you specified earlier. So the fixup/comma-er word at which this error
is detected conflicts with either the opcode, or one of the other fixups/comma-ers. For
example B| (byte size) with a LEA, opcode or with a DI| operand.

‘ciforth ERROR # 29 : AS: DUPLICATE FIXUP/UNEXPECTED COMMAER’

You try to complete an opcode by fixup’s (like X|) or comma-ers (like OW,) in a way that
conflicts with what you specified earlier. So the fixup/comma-er word at which this error is
detected conflicts with either the opcode, or one of other fixups/comma-ers. For example
B| (byte size) with a LEA, opcode or with a DI| operand.

Chapter 6: Assembler 33

‘ciforth ERROR # 30 : AS: COMMAERS IN WRONG ORDER’

The opcode requires more than one data item to be comma-ed in, such as immediate data
and an address. However you put them in the wrong order. Use SHOW: .

‘ciforth ERROR # 31 : AS: DESIGN ERROR, INCOMPATIBLE MASK’

This signals an internal inconsistency in the assembler itself. If you are using an assembler
supplied with ciforth, you can report this as a defect (“bug”). The remainder of this
explanation is intended for the writers of assemblers. The bits that are filled in by an
assembler word are outside of the area were it is supposed to fill bits in. The latter are
specified separately by a mask.

‘ciforth ERROR # 32 : AS: PREVIQUS OPCODE PLUS FIXUPS INCONSISTENT’

The total instruction with opcode, fixups and data is “bad”. Somewhere there are parts
that are conflicting. This may be another one of the irregularities of the Intel instruction set.
Or the BAD data was preset with bits to indicate that you want to prohibit this instruction
on this processor, because it is not implemented. Investigate BAD for two consecutive bits
that are up, and inspect the meaning of each of the two bits.

34

ciforth manual

Chapter 7: Errors 35

7 Errors

Errors are uniquely identified by a number. The error code is the same as the THROW code.
In other words the Forth exception system is used for errors. A ciforth always displays the
text “ciforth ERROR #” plus the error number, immediately and directly. Of course the error
numbers are given in decimal. irrespective of BASE . This allows you to look the error up in the
section “Error explanations”. More specific problems are addressed in the section “Common
Problems”.

7.1 Error philosophy

If you know the error number issued by ciforth, the situation you are in is identified, and you
can read an explanation in the next section. Preferably in addition to the number a mnemonic
message is displayed. It is fetched from the library file . But this is not always possible, such is
the nature of error situations. A mnemonic message has a size limited to 63 characters and is
therefore seldomly a sufficient explanation.

A good error system gives additional specific information about the error. In a plain ciforth
this is limited to the input line that generated the error. Via the library file you may install a
more sophisticated error reporting, if available.

Within ciforth itself all error situation have their unique identification. You may issue errors
yourself at your discretion using THROW or, preferably, 7ERROR and use an error number with an
applicable message. However, unless yours is a quick and dirty program, you are encouraged to
use some other unique error number.

7.2 Common problems

7.2.1 "DIR" SYSTEM doesn’t work

It is problematic for ciforth to find the command interpreter on a DOS or Windows sys-
tem. Instead of inspecting environment variables that may or may not be set correctly, ciforth
contains a string SHELL , that contains the name of the command interpreter, with as a de-
fault ‘/COMMAND.COM’. If this is not correct you may change it as appropriate by e.g. ‘S"
C:/WINDOWS/SYSTEM/COMMAND.COM" SHELL $! ’

7.2.2 Error 11 or 12 caused by lower case.

If you type a standard word like words in lower case, it will not be recognised, resulting in
error 11. Similarly > words results in error 12. This is because wina is case sensitive , i.e. the
difference between lower and upper case is significant and only words that match in this respect
too are found in the dictionary.

After ‘1 LOAD’ or if started up using ‘lina -r’ you have REQUIRED available. You may now
issue ¢ "CASE-INSENSITIVE" REQUIRED ’ and switch the system into case-insensitivity and back
by issuing the words CASE-INSENSITIVE and CASE-SENSITIVE .

Case insensitivity applies to the words looked up in the dictionary, not to hex digits.

7.2.3 Error 8 or only error numbers

If you get an error 8 as soon as you try to LOAD or LIST a screen or use an option, or if
errors show up only as numbers without the mnemonic message, this is because you cannot
access the library file. It may not be there, or it may not be at the expected place. ciforth
contains a string BLOCK-FILE , that contains the name of the library file interpreter, with as
a default ‘forth.lab’. If this is not correct you may change it as appropriate by e.g. ‘S"
C:/FORTH/forth.lab" BLOCK-FILE $!’

The library is accessible for read and write access and mnemonic message will be fetched
from it, after you install it with ‘2 BLOCK-INIT 1 WARNING !’ .

If you have run ciforth without this message before, the problem is most probably caused by a
crash of ciforth that has left the file open. You are the victim of file sharing under DOS/Windows.
The remedy is to restart Windows.

36 ciforth manual

7.2.4 Error 8 while editing a screen

If after editing a screen, you get error 8, the screen has not been written to disk, because you
have no write access for the library file. You must issue DEVELOP which reopens the library file
in READ_WRITE mode. Normally this should be part of loading the EDITOR .

You may always edit and use a private copy of the library file, by the ‘-1’ option. See
Chapter 4 [Manual], page 7, for how opttions work. The ‘-1’ option itself works only if at least
the official library file has been correctly installed.

7.3 Error explanations

This section shows the explanation of the errors in ascending order. In actual situations
sometimes you may not see the part after the semi colon. If in this section an explanation is
missing, this means that the error is given for reference only; the error cannot be generated
by your wina, but maybe by other version of ciforth or even a differently configured wina. For
example for a version without security you will never see error 1. If it says “not used”, this
means it is not used by any ciforth.

The errors whose message starts with ‘AS:’ are used by the Postlt FixUp assembler in the
file ‘asgen.frt’,(see Chapter 6 [Assembler], page 23).

Negative error numbers are those reported by MSDOS . If possible, mnemonic error messages
are shown. But no explanation of the error is available. MSDOS error numbers are displayed in
decimal, while in some documentation they are given as hex numbers. .

Here are the error explanations.
e ‘ciforth ERROR # 1 : EMPTY STACK’

The stack has underflowed. This is detected by ?STACK at several places, in particular in
INTERPRET after each word interpreted or compiled. There is ample slack, but malicious
intent can crash the system before this is detected.

e ‘ciforth ERROR # 2 : DICTIONARY FULL’
Not used.
e ‘ciforth ERROR # 3 : FIRST ARGUMENT MUST BE OPTION’

If you pass arguments to ciforth, your first argument must be an option (such as -a),
otherwise it doesn’t know what to do with it.

e ‘ciforth ERROR # 4 : ISN’T UNIQUE’

Not being unique is not so much an error as a warning. The word printed is the latest
defined. A word with the same name exists already in the current search order.

e ‘ciforth ERROR # 5 : EMPTY NAME FOR NEW DEFINITION’

An attempt is made to define a new word with an empty string for a name. This is detected
by (CREATE) . All defining word can return this message. It is typically caused by using
such a word at the end of a line.

e ‘ciforth ERROR # 6 : DISK RANGE 7’
Reading to the terminal input buffer failed. The message is probably inappropiate.

e ‘ciforth ERROR # 7 : FULL STACK’
The stack has run into the dictionary. This can be caused by pushing too many items, but
usually it must be interpreted as dictionary full. If you have enough room, you have passed

a wrong value to ALLOT . This is detected at several places, in particular in INTERPRET
after each word interpreted.

e ‘ciforth ERROR # 8 : DISC ERROR !’

An access to the Library Accessible by Block (screen aka block file) has failed. This is
detected by ?DISK-ERROR called from places where a disk access has occurred. It may be
that the library file has not been properly installed. Check the content of BLOCK-FILE .
You may not have the right to access it. Try to view the file. Normally the library file is
opened read-only. If you want to edit it make sure to do DEVELOP in order to reopen it in
read /write mode. If you forget, you get this message too.

Chapter 7: Errors 37

e ‘ciforth ERROR # 9 : UNRESOLVED FORWARD REFERENCE’
Not used.

e ‘ciforth ERROR # 10 : NOT A WORD, NOR A NUMBER OR OTHER DENOTATION’
The string printed was not found in the dictionary as such, but its first part matches a
denotation . The denotation word however rejected it as not properly formed. An example
of this is a number containing some non-digit character, or the character denotation &
followed by more than one character. It may also be a miss-spelled word that looks like
a number, e.g. ‘25WAP’ . Be aware that denotations may mask regular words. If the
DENOTATION vocabulary is on top of the search order, you get this message if you type
2SWAP . Note that hex digits must be typed in uppercase, even if "CASE-SENSITIVE" is in
effect. This error may be caused by using lower case where upper case is required for ISO
standard words. See the section "Common problems" in this chapter if you want to make
ciforth case insensitive.

e ‘ciforth ERROR # 11 : WORD IS NOT FOUND’

The string printed was not found in the dictionary. This error is detected by ’ (tick). This
may be caused by using lower case where upper case is required for ISO standard words. See
the section "Common problems" in this chapter if you want to make ciforth case insensitive.

e ‘ciforth ERROR # 12 : NOT RECOGNIZED’

The string printed was not found in the dictionary, nor does it match a number, or some
other denotation. This may be caused by using lower case where upper case is required for
ISO standard words or for hex digits. See the section "Common problems" in this chapter
if you want to make ciforth case insensitive.

e ‘ciforth ERROR # 13 : ERROR, NO FURTHER INFORMATION’

This error is used temporily, whenever there is need for an error message but there is not
yet one assigned.

e ‘ciforth ERROR # 14 : SAVE/RESTORE MUST RUN FROM FLOPPY’
e ‘ciforth ERROR # 15 : CANNOT FIND WORD TO BE POSTPONED’

The word following POSTPONE must be postponed, but it can’t be found in the search
order.

e ‘ciforth ERROR # 16 : CANNOT FIND WORD TO BE COMPILED’

The word following [COMPILE] must be postponed, but it can’t be found in the search
order.

e ‘ciforth ERROR # 17 : COMPILATION ONLY, USE IN DEFINITION’

This error is reported by ?COMP . You try to use a word that doesn’t work properly in
interpret mode. This mostly refers to control words like IF and DO . If you want control
words to work in interpret mode, require NEW-IF .

e ‘ciforth ERROR # 18 : EXECUTION ONLY’

This error is reported by 7EXEC. . You try to use a word that doesn’t work properly in
compile mode. You will not see this error, because all words in ciforth do.

e ‘ciforth ERROR # 19 : CONDITIONALS NOT PAIRED’

This error is reported by ?PAIRS . You try to improperly use control words that pair up
(like IF and THEN , or DO and LOOP)

e ‘ciforth ERROR # 20 : DEFINITION NOT FINISHED’

This error is reported by ?CSP . It detects stack unbalance between : and ; . This means
there is an error in the compiled code. It happens also if you try to use data that is put on
the stack before : during compilation. Instead of

‘generatedata> : name LITERAL ;’
use
‘<generatedata> : name [_ SWAP] LITERAL ; DROP’
to keep the stack at the same depth.
e ‘ciforth ERROR # 21 : IN PROTECTED DICTIONARY’
The word you are trying to FORGET is below the FENCE , such that forgetting is not allowed.

38 ciforth manual

e ‘ciforth ERROR # 22 : USE ONLY WHEN LOADING’

This error is reported by ?LOAD . You try to use a word that only works while loading from
the BLOCK-FILE , in casu —-=> .

e ‘ciforth ERROR # 23 : OFF CURRENT EDITING SCREEN’
e ‘ciforth ERROR # 24 : DECLARE VOCABULARY’
e ‘ciforth ERROR # 25 : LIST EXPECTS DECIMAL’
This message is used by a redefined LIST , to prevent getting the wrong screen.

See Section 9.28.2 [ASSEMBLER], page 113,, for errors generated by the assembler. These
have numbers that are all higher than the general errors.

Chapter 8: Documentation summary 39

8 Documentation summary

This is copied from the FIG documentation 1978. It is probably out of date now.
The following manuals are in print:

Caltech FORTH Manual, an advanced manual with internal details of Forth. Has Some
implementation peculiarities. Approx. $6.50 from the Caltech Book Store, Pasadena, CA.

Kitt Peak Forth Primer, $20.00 postpaid from the Forth Interest Group, P. O. Box 1105, San
Carlos, CA 94070.

microFORTH Primer, $15.00 Forth, Inc. 815 Manhattan Ave. Manhattan Beach, CA 90266

Forth Dimensions, newsletter of the Forth Interest Group, $5.00 for 6 issues including mem-
bership. F-I-G. P.O. Box 1105, San Carlos, CA. 94070

40

ciforth manual

Chapter 9: Glossary 41

9 Glossary

Wherever it says single precision number or cell 32 bits is meant. Wherever it says double
or “double precision number” a 64 bits number is meant.

The first line of each entry shows a symbolic description of the action of the proceedure on the
parameter stack. The symbols indicate the order in which input parameters have been placed
on the stack. The dashes “—” indicate the execution point; any parameters left on the stack
are listed. In this notation, the top of the stack is to the right. Any symbol may be followed by
a number to indicate different data items passed to or from a Forth word.

The symbols include:

‘addr’ memory address

‘v’ 8 bit byte (the remaining bits are zero)

‘c’ 7 bit ascii character (the remaining bits are zero)

‘&’ 64 bit signed double integer: most significant portion with sign on top of stack
‘dea’ An dictionary entry address , the basic address of a Forth word from which all its

fields can be found.
‘£’ logical flag : zero is interpreted as false, non-zero as true

‘faraddr’ a <selector:address> pair

ff° Forth flag , a well-formed logical flag, O=false, -1=true.

‘false’ a false Forth flag : 0

‘n’ 32 bit signed integer number; it is also used for a 32 -bit entity where it is irrelevant
what number it represents

‘sc’ a string constant , i.e. two cells, an address and a length; length characters are
present at the address (they must not be changed)

‘true’ a true Forth flag : -1.

‘u’ 32 -bit unsigned integer

‘ud’ 64 -bit unsigned double integer: most significant portion on top of stack

The capital letters on the right show definition characteristics:

‘B’ The word is available only after loading from background storage

‘c’ May only be used within a colon definition. A digit indicates number of memory
addresses used, if other than one.

‘E Intended for execution only.

‘FIG’ Belongs to the FIG model

‘r Has immediate bit set. Will execute even when compiling.

‘IS0’ Belongs to ISO standard

‘Lo’ Level Zero definition of FORTH-78

‘L’ Level One definition of FORTH-78

‘NISO’ Word belongs to ISO standard, but the implementation is not quite conforming.

‘v A user variable.

Where there is mention of a standard or a model, it means that the word actually complies
to the standard or the model, not that some word of that name is present. Words marked with
‘IS0,FIG,LO’ will behave identically over all but the whole spectra of Forth’s.

Unless otherwise noted, all references to numbers are for 32 -bit signed integers. For 64 -bit
signed numbers, the most significant part (with the sign) is on top.

All arithmetic is implicitly 32 -bit signed integer math, with error and under-flow indication
unspecified.

42 ciforth manual

A nil pointer is an address containing zero. This indicates an invalid address.

The Forth words are divided into wordset s, that contain words that logically belong together.
Each wordset has a separate section with a description. The following rules take precedence over
any wordset a word may logically belong to.

e A defining word — one that adds to the dictionary — is present in the wordset ‘DEFINING’.

e A denotation word — one that has the denotation bit set — is present in the wordset
‘DENOTATIONS’.

e An environmental query word — one that is understood by PENVIRONMENT — is present in
the wordset ‘ENVIRONMENTS’.

9.1 BLOCKS

The block mechanism connects to the Forth system a single background storage divided in
numbered blocks . The wordset ‘BLOCKS’ contains words to input and output to this mass
storage. In this ciforth blocks reside in a file, by default named ‘forth.lab’. . Most blocks are
used for the ‘SCREEN’ facility, where each block contains source code.

9.1.1 #BUFF

Name: #BUFF
Stackeffect: — n
Attributes:

Description: A constant that leaves the number of block buffers. Because a buffer that is being
interpreted is locked in memory, this is also a limit to the nesting depth of blocks loading other
blocks.

See also: ‘BLOCK’ ‘THRU’ ‘LOAD’ ‘LOCK’

9.1.2 ?DISK-ERROR

Name: ?DISK-ERROR
Stackeffect: n—
Attributes:

Description: Interpret ‘n
error condition.

See also: ‘BLOCK-FILE’ ‘BLOCK-HANDLE’ ‘BLOCK-INIT’ ‘BLOCK-EXIT’

" as the status of a disk i/o call and signal an error if it contains an

9.1.3 B/BUF

Name: B/BUF
Stackeffect: — n
Attributes:

Description: This constant leaves the number of bytes per disc buffer, the byte count read from
disc by BLOCK . The ISO standard fixes this to 1024.

See also: ‘(BUFFER)’

9.1.4 BLOCK-EXIT

Name: BLOCK-EXIT
Stackeffect: —
Attributes:

Description: A block file must have been opened by BLOCK-INIT . Close the currently open
block file BLOCK-HANDLE , i.e. the mass storage words no longer work, and will result in error
messages. If error messages were fetched from disk, they no longer are.

See also: ‘BLOCK’ ‘LIST’ ‘LOAD’ ‘DISK-ERROR’ ‘WARNING’

Chapter 9: Glossary 43

9.1.5 BLOCK-FILE

Name: BLOCK-FILE

Stackeffect: —addr

Attributes:

Description: Leave the address ‘addr’ of a counted string, the name of a library file

in which blocks are (to be) allocated. The name may contain a path and be at most 254
characters long. The default name is ‘forth.lab’ . This name may be changed and is used by
the BLOCK-INIT command.

See also: ‘BLOCK-HANDLE’ ‘BLOCK-INIT’ ‘BLOCK-EXIT’

9.1.6 BLOCK-HANDLE

Name: BLOCK-HANDLE
Stackeffect: —n
Attributes:

Description: Leave a file handle in ‘n’ . If it is negative there is no block file open, otherwise the
handle is used by the system to access blocks.

See also: ‘BLOCK-FILE’ ‘BLOCK-INIT’ ‘BLOCK-EXIT’

9.1.7 BLOCK-INIT

Name: BLOCK-INIT
Stackeffect: n —
Attributes:

Description: Map the blocks on the block file BLOCK-FILE , i.e. the mass storage words refer to
the blocks in this file. The handle ‘BLOCK-HANDLE’ can be used to access it, with access code ‘n’
(2 for read and write). This command fails silently. You must activate mnemonic error messages
explicitly by setting WARNING .

See also: ‘BLOCK’ ‘LIST’ ‘LOAD’ ‘BLOCK-EXIT’ ‘OPEN-FILE’

9.1.8 BLOCK

Name: BLOCK
Stackeffect: n — addr
Attributes: ISO FIG LO

Description: Leave ‘addr’, the disc buffer containing block ‘n’, which is the physical disk block
‘OFFSET+n’. The address left is the field within the buffer to be used for data storage. If the
block is not already in memory, it is transferred from disc to a new buffer allocated by (BUFFER)
. Blocks are generally used to contain source code to be interpreted by LOAD . They can be
equally useful to contain other data, e.g. for implementing a database.

See also: ‘(BUFFER)’ ‘R\W’ ‘OFFSET’ ‘UPDATE’ ‘FLUSH’ ‘LOAD’

9.1.9 DISK-ERROR

Name: DISK-ERROR
Stackeffect: — addr
Attributes:

Description: Leave the address ‘addr’ of a variable containing information about the latest disk
error in opening errors are thrown. .

See also: ‘BLOCK’

44 ciforth manual

9.1.10 EMPTY-BUFFERS

Name: EMPTY-BUFFERS
No stackeffect
Attributes: ISO FIG L0

Description: Mark all block-buffers as empty. Updated blocks are not written to the disc. This
is an initialization proceedure before first use of the disc. The usage as an “undo” is infeasible
in ciforth.

See also: ‘FLUSH’ ‘BLOCK’ ‘SCREEN’ ‘UPDATE’

9.1.11 REG-SET

Name: REG-SET
Stackeffect: — addr
Attributes:

Description: Leaves the start ‘addr’ of the register storage area for cross-mode interrupt
handling. This structure is defined by the DPMI specifications for use with interrupt 31H
function 0300H. The layout is as ‘DI SI BP BX DX CX AX Flags ES DS FS GS IP CS SP SS and
startup selectors : CS ES SS . ' For the general registers this agrees with the ‘PUSH_ALL’
instruction.

See also: ‘BIOSO’

9.1.12 R\W

Name: R\W
Stackeffect: addr blk n —
Attributes:

Description: The ciforth primitive for read-write of blocks. ‘addr’ specifies the source or desti-
nation block buffer, ‘b1k’ is the sequential number of the referenced physical block; and ‘n’ is
a control variable for ‘n’=0 write and ‘n’=l read. R\W determines the location on mass storage,
performs the read or write and throws an exception on errors.

See also: ‘BLOCK’ ‘DISK-ERROR’

9.1.13 UPDATE

Name: UPDATE
No stackeffect
Attributes: ISO,FIG,LO

Description: Marks the most recently referenced block (pointed to by PREV) as altered. The
block will subsequently be transferred automatically to disc should its buffer be required for
storage of a different block. In fact the block is transferred to disk immediately.

See also: ‘BLOCK’ ‘SCREEN’

9.1.14 (BUFFER)

Name: (BUFFER)
Stackeffect: n — addr
Attributes:

Description: Return the addres ‘addr’ of a buffer assigned to block ‘n’ . The buffer layout is
as follows: a cell with the block number, a cell with the status, and the content. The status is
negative for locked, zero for free and one for present and unlocked. The block is not read from
the disc. The buffer is either one that was already assigned, or else a free buffer. If there is none
free, the stalest buffer is freed. The contents of that buffer is written to the disc, if it was marked
as updated. In ciforth this is never needed, because updated blocks are written immediately. In

Chapter 9: Glossary 45

ciforth blocks can be locked, and locked buffers are never freed by (BUFFER) . An update flag
would somehow be multiplexed with the lock count, but it is not needed in ciforth. If all buffers
were locked, (BUFFER) freezes the system.

See also: ‘BLOCK’ ‘STALEST’ ‘PREV’ ‘#BUFF’ ‘LOCK’ ‘UNLOCK’

9.1.15 +BUF

Name: +BUF
Stackeffect: addrl — addr2 ff
Attributes: FIG

Description: Advance the disc buffer address ‘addr1’ to the address of the next buffer ‘addr2’ .
Boolean ‘ff’ is false when ‘addr2’ is the buffer presently pointed to by variable PREV .

See also: ‘BLOCK’

9.1.16 FIRST

Name: FIRST

Stackeffect: — n

Attributes:

Description: A constant that leaves the address of the first (lowest) block buffer.
See also: ‘BLOCK’ ‘LIMIT’

9.1.17 FLUSH

Name: FLUSH
No stackeffect
Attributes: ISO FIG L0

Description: Make sure that the content of all UPDATE d block buffers has been transferred to
disk. They are no longer associated with a block and their content is no longer available.

See also: ‘EMPTY-BUFFERS’ ‘BLOCK’ ‘SCREEN’

9.1.18 LIMIT

Name: LIMIT
Stackeffect: — n
Attributes:

Description: A constant leaving the address just above the highest memory available for a disc
buffer. Actually this is the highest system memory.

See also: ‘BLOCK’ ‘FIRST’

9.1.19 OFFSET

Name: OFFSET
Stackeffect: — addr
Attributes: U

Description: A user variable which contains a block offset to disc drives; in this way a part of it
is available for boot-code.

The contents of OFFSET is added to the stack number by BLOCK before calling ‘R\W’.
See also: ‘BLOCK’ ‘MESSAGE ’

46 ciforth manual

9.1.20 PREV

Name: PREV
Stackeffect: —- addr
Attributes:

Description: A variable containing the address of the disc buffer (not its content field!) most
recently referenced. The UPDATE command marks this buffer to be written to disc.

See also: ‘(BUFFER)’

9.1.21 RESTORE-INPUT

Name: RESTORE-INPUT
Stackeffect: nl n2 n3 3—f
Attributes: ISO

Description: Restore the input source stream from what was saved by SAVE-INPUT . ciforth is
always able to restore the input across different input sources, as long as the input to be restored
was not exhausted. This has the effect of chaining, and doesn’t affect the return from nested
calls be it interpreting, loading or evaluating. ciforth always returns a true into ‘f’. The input
source abandoned will never be closed properly, so use should be restricted to the same input
source.

See also: ‘RESTORE’ ‘SAVE-INPUT’

9.1.22 RESTORE

Name: RESTORE
Stackeffect: —
Attributes:

Description: This must follow a SAVE in the same definition. Restore the content of SRC from the
return stack thus restoring the current input source to what it was when the SAVE was executed.

See also: ‘RESTORE-INPUT’ ‘SAVE-INPUT’

9.1.23 SAVE-INPUT

Name: SAVE-INPUT
Stackeffect: — nl n2 n3 3
Attributes: ISO

Description: Get a complete specification of the input source stream. For ciforth this is the
content of SRC . ciforth needs 3 cells, and is always able to RESTORE an input saved like this. In
practice the use of SAVE-INPUT should be restricted to restoring input of the same stream.

See also: ‘RESTORE’ ‘RESTORE-INPUT’

9.1.24 SAVE

Name: SAVE
Stackeffect: —
Attributes:

Description: Save the content of SRC on the return stack prior to changing the current input
source . This must be balanced by a RESTORE in the same definition.

See also: ‘RESTORE’ ‘SAVE-INPUT’

Chapter 9: Glossary 47

9.1.25 SEEK

Name: SEEK
Stackeffect: n—
Attributes:

Description: A block file must have been opened by BLOCK-INIT . Position the file pointer at
block ‘n’ in behalf of subsequent reads and writes.

See also: ‘BLOCK’ ‘LIST’ ‘LOAD’

9.1.26 STALEST

Name: STALEST
Stackeffect: — addr
Attributes:

Description: A variable containing the address of the oldest block buffer, the first candidate to
be claimed if a new one is needed.

See also: ‘BLOCK’

9.2 COMPILING

The wordset ‘COMPILING’ contains words that compile See Section 9.6.13 IMMEDIATE],
page 63, words and numbers. You need special precautions because these words would execute
during compilation. Numbers are compiled in line , behind a word that fetches them.

9.2.1 DLITERAL

Name: DLITERAL
Stackeffect: d — d (executing) d — (compiling)
Attributes: 1

Description: If compiling, compile a stack double number into a literal. Later execution of the
definition containing the literal will push it to the stack. If executing in ciforth, the number will
just remain on the stack.

See also: ‘LITERAL’ ‘LIT’

9.2.2 LITERAL

Name: LITERAL
Stackeffect: n — n (executing) n — (compiling)
Attributes: ISO,I,C2,L0

Description: If compiling, then compile the stack value ‘n’ as a 32 bit literal. The intended use

is: ‘: xxx [calculate] LITERAL ;’ Compilation is suspended for the compile time calculation

of a value. Compilation is resumed and LITERAL compiles this value. Later execution of the
definition containing the literal will push it to the stack. If executing in ciforth, the number will
just remain on the stack.

See also: ‘LIT’ ‘LITERAL’

9.2.3 POSTPONE

Name: POSTPONE

No stackeffect

Attributes: ISO,I,C

Description: Used in a colon-definition in the form:

48 ciforth manual

(z xxx POSTPONE SOME-WORD }

POSTPONE will postpone the compilation behaviour of ‘SOME-WORD’ to the definition being
compiled. If ‘SOME-WORD’ is an immediate word this is similar to ‘[COMPILE] SOME-WORD’.

See also: ‘[COMPILE]’

9.2.4 [COMPILE]

Name: [COMPILE]
No stackeffect
Attributes: ISO,I,C

Description: Used in a colon-definition in form:

[: XXX [COMPILE] FORTH ;]

[COMPILE] will force the compilation of an immediate definitions, that would otherwise ex-
ecute during compilation. The above example will select the FORTH vocabulary when ‘xxx’
executes, rather than at compile time.

See also: ‘POSTPONE’

9.2.5 LIT

Name: LIT
Stackeffect: — n
Attributes: FIG,C2,1L0

Description: Within a colon-definition, LIT is compiled followed by a 32 bit literal number given
during compilation. Later execution of LIT causes the contents of this next dictionary cell to be
pushed to the stack.

See also: ‘LITERAL’

9.2.6 SDLITERAL

Name: SDLITERAL
Stackeffect: d — s/d (executing) d — (compiling)
Attributes: I

Description: If compiling, compile a stack double number into a literal or double literal, de-
pending on whether DPL contains a nil pointer or points into the input. Later execution of the
definition containing the literal will push it to the stack. If executing, the number will remain
on the stack.

See also: ‘SLITERAL’ ‘DLITERAL’

9.3 CONTROL

The wordset ‘CONTROL’ contains words that influence the control flow of a program, i.e. the
sequence in which commands are executed in compiled words. With control words you can have
actions performed repeatedly, or depending on conditions.

Chapter 9: Glossary 49

9.3.1 +LOOP

Name: +L0O0OP
Stackeffect: nl1 — (run) addr n2 — (compile)
Attributes: ISO,I,C2,1L0

Description: Used in a colon-definition in the form:

LDO ... nl +L00OP]

At run-time, +L0O0P selectively controls branching back to the corresponding DO based on ‘n1’
, the loop index and the loop limit. The signed increment ‘nl’ is added to the index and the
total compared to the limit. The branch back to DO occurs until the new index is equal to or
greater than the limit (‘n1>0"), or until the new index is equal to or less than the limit (‘n1<0’).
Upon exiting the loop, the parameters are discarded and execution continues ahead.

At compile time, +LO0OP compiles the run-time word (+L0O0P) and the branch offset computed
from HERE to the address left on the stack by DO . ‘n2’ is used for compile time error checking.

9.3.2 7DO

Name: 7DO0
Stackeffect: nl n2 — (execute) addr n — (compile)
Attributes: 1SO,I,C2,L0

Description: Occurs in a colon-definition in form:

E?DD ... LOOP }

It behaves like DO , with the exception that if n1 and n2 are equal the loop body is not
executed.

See also: ‘DO’ ‘I’ ‘LOOP’ ‘+4LO0OP’° ‘LEAVE’

9.3.3 AGAIN

Name: AGAIN
Stackeffect: addr n — (compiling)
Attributes: ISO,FIG,I,C2,L0

Description: Used in a colon-definition in the form:

ESEGIN ... AGAIN }

At run-time, AGAIN forces execution to return to the corresponding BEGIN . There is no
effect on the stack. Execution cannot leave this loop except for EXIT . At compile time, AGAIN
compiles BRANCH with an offset from HERE to addr. ‘n’ is used for compile-time error checking.

See also: ‘BEGIN’

50 ciforth manual

9.3.4 BEGIN

Name: BEGIN

Stackeffect: — addr n (compiling)

Attributes: ISO,FIG,I,L0

Description: Occurs in a colon-definition in one of the forms:

EEGIN ... UNTIL J
EEGIN ... AGAIN }

@EGIN ... WHILE ... REPEAT }

At run-time, BEGIN marks the start of a sequence that may be repetitively executed. It serves
as a return point from the corresponding UNTIL , AGAIN or REPEAT . When executing UNTIL
a return to BEGIN will occur if the top of the stack is false; for AGAIN and REPEAT a return to
BEGIN always occurs.

At compile time BEGIN leaves its return address and ‘n’ for compiler error checking.
See also: ‘(BACK’

9.3.5 CO

Name: CO
No stackeffect
Attributes:

Description: Return suspend interpretation of the current definition, such that when the caller
exits, this definition is resumed. The return stack must not be engaged, such as between >R and
R> , or DO and LOOP .

See also: ‘EXIT’

9.3.6 DO

Name: DO
Stackeffect: nl n2 — (execute) addr n — (compile)
Attributes: ISO,FIG,I,C2,L0

Description: Occurs in a colon-definition in form: ‘D0 ... LOOP’ At run time, DO begins a
sequence with repetitive execution controlled by a loop limit ‘nl’ and an index with initial
value ‘n2’ . DO removes these from the stack. Upon reaching LOOP the index is incremented by
one. Until the new index equals or exceeds the limit, execution loops back to just after DO ;
otherwise the loop parameters are discarded and execution continues ahead. Both ‘n1’ and ‘n2’
are determined at run-time and may be the result of other operations. Within a loop I will copy
the current value of the index to the stack.

When compiling within the colon definition, DO compiles (DO) and leaves the following address
‘addr’ and ‘n’ for later error checking.

See also: ‘I’ ‘LOOP’ ‘+4L0O0P’° ‘LEAVE’

Chapter 9: Glossary 51

9.3.7 ELSE

Name: ELSE
Stackeffect: addrl nl — addr2 n2 (compiling)
Attributes: ISO,FIG,I,C2,1.0

Description: Occurs within a colon-definition in the form:

LIF...ELSE...THEN }

At run-time, ELSE executes after the true part following IF . ELSE forces execution to skip
over the following false part and resumes execution after the THEN . It has no stack effect.

At compile-time ELSE emplaces BRANCH reserving a branch offset, leaves the address ‘addr2’
and ‘n2’ for error testing. ELSE also resolves the pending forward branch from IF by calculating
the offset from ‘addr1’ to HERE and storing at ‘addrl’ .

See also: ‘ (FORWARD’

9.3.8 EXIT

Name: EXIT
No stackeffect
Attributes: ISO

Description: Stop interpretation of the current definition. The return stack must not be engaged,
such as between >R and R> , or DO and LOOP . In ciforth it can also be used to terminate
interpretation from a string, block or file, or a line from the current input stream.

See also: “(;)’

9.3.9 IF

Name: IF
Stackeffect: f — (run-time) / — addr n (compile)
Attributes: ISO,FIG.,I,C2,1.0

Description: Occurs in a colon-definition in form:

(;F (tp) ... THEN }

or

L?F (tp) ... ELSE (fp) ... THEN }

At run-time, IF selects execution based on a boolean flag. If ‘£’ is true (non-zero), execution
continues ahead thru the true part. If ‘f’ is false (zero), execution skips till just after ELSE to
execute the false part. After either part, execution resumes after THEN . ELSE and its false part
are optional.; if missing, false execution skips to just after THEN .

At compile-time IF compiles OBRANCH and reserves space for an offset at ‘addr’ . ‘addr’ and
‘n’ are used later for resolution of the offset and error testing.

See also: ‘(FORWARD’

52 ciforth manual

9.3.10 1

Name: I

Stackeffect: — n

Attributes: ISO.FIG,C,L0

Description: Used within a do-loop to copy the loop index to the stack.
See also: ‘DO’ ‘LOOP’ ‘+L0OOP’

9.3.11 J

Name: J
Stackeffect: — n
Attributes: ISO,FIG,C,L0

Description: Used within a nested do-loop to copy the loop index of the outer do-loop to the
stack.

See also: ‘DO’ ‘LOOP’ ‘+L0OOP’

9.3.12 LEAVE

Name: LEAVE
No stackeffect
Attributes: ISO

Description: Termination a do-loop by branching to directly behind the end of a loop started
by ‘D0’ or ‘?DO’ , so after the corresponding LOOP or +L0OQOP .

9.3.13 LOOP

Name: LOOP
Stackeffect: — (run) addr n — (compiling)
Attributes: 1SO,I,C2,10

Description: Occurs in a colon-definition in form:

EDO ... LOOP

At run-time, LOOP selectively controls branching back to the corresponding DO based on the
loop index and limit. The loop index is incremented by one and compared to the limit. The
branch back to DO occurs until the index equals or exceeds the limit; at that time, the parameters
are discarded and execution continues ahead.

At compile-time, LOOP compiles (LOOP) and uses ‘addr’ to calculate an offset to ‘DO’ . ‘n2’ is
used for compile time error checking.

See also: ‘“+L0O0P’

9.3.14 RECURSE

Name: RECURSE

Stackeffect: (varies)

Attributes: ISO

Description: Do a recursive call of the definition being compiled.

]

See also:

Chapter 9: Glossary 53

9.3.15 REPEAT

Name: REPEAT
Stackeffect: addrl nl addr2 n2— (compiling)
Attributes: ISO,FIG,I,C2

Description: Used within a colon-definition in the form:

LFEGIN ... WHILE ... REPEAT

At run-time, REPEAT forces an unconditional branch back to just after the corresponding
BEGIN .

At compile-time, REPEAT compiles BRANCH and the offset from HERE to ‘addr2’ . Then it fills
in another branch offset at ‘addr1’ left there by WHILE . ‘nl n2’ is used for error testing.

See also: ‘WHILE’

9.3.16 SKIP

Name: SKIP
No stackeffect
Attributes: C2,L0

Description: Skip over an area in memory, where the length is given in the next cell. This length
doesn’t include the length cell, so it is compatible with $@ . Internal, used for nested compilation
and compiling strings.

See also: ‘BRANCH’

9.3.17 THEN

Name: THEN
Stackeffect: addr n — (compile)
Attributes: ISO.FIG.,I,CO,LO0

Description: Occurs in a colon-definition in form:

(;F ... THEN

(;F ... ELSE ... THEN

At run-time, THEN serves only as the destination of a forward branch from IF or ELSE . It
marks the conclusion of the conditional structure. At compile-time, THEN computes the forward
branch offset from ‘addr’ to HERE and stores it at ‘addr’ . ‘n’ is used for error tests.

See also: ‘FORWARD)’ ‘IF’ ‘ELSE’

54 ciforth manual

9.3.18 UNLOOP

Name: UNLOQOP
Stackeffect: — n
Attributes: 1SO,I,C,L0

Description: Discard the loop parameters. Must be used when the regular end of the loop is
by-passed. That means it is not ended via LOOP +LOOP or LEAVE .

See also: ‘DO’ ‘LOOP’ ‘+LO0OP’ ‘(BACK’ ‘(FORWARD’ ‘EXIT’

9.3.19 UNTIL

Name: UNTIL
Stackeffect: f — (run-time) addr n — (compile)
Attributes: ISO,FIG,I,C2,1.0

Description: Occurs within a colon-definition in the form:

ESEGIN ... UNTIL

|

At run-time, UNTIL controls the conditional branch back to the corresponding BEGIN If f is
false, execution returns to just after BEGIN , otherwise execution continues ahead.

At compile-time, UNTIL compiles OBRANCH and an offset from HERE to addr. ‘n’ is used for
error tests.

See also: ‘BEGIN’

9.3.20 WHILE

Name: WHILE
Stackeffect: f — (run-time) addrl nl — addr2 nl addrl n2(compile-time)
Attributes: ISO,FIG,I,C2

Description: Occurs in a colon-definition in the form: ‘BEGIN ... WHILE (tp) ... REPEAT At
run-time, WHILE selects conditional execution based on boolean flag ‘£’ . If ‘£’ is true (non-zero),
WHILE continues execution of the true part thru to REPEAT | which then branches back to BEGIN
. If ‘£’ is false (zero), execution skips to just after REPEAT , exiting the structure.

At compile time, WHILE compiles OBRANCH and tucks the target address ‘addr2’ under the
‘addrl’ left there by BEGIN . The stack values will be resolved by REPEAT . ‘n1’ and ‘n2’ provide
checks for compiler security.

See also: ‘(FORWARD’ ‘BEGIN’

9.3.21 (+LOOP)

Name: (+L0O0P)
Stackeffect: n —
Attributes: C2

Description: The run-time proceedure compiled by +LO0P , which increments the loop index by
n and tests for loop completion.

See also: ‘+L0O0OP’

Chapter 9: Glossary 55

9.3.22 (;)

Name: (;)
No stackeffect
Attributes:

Description: This is a synonym for EXIT . It is the run-time word compiled at the end of a
colon-definition which returns execution to the calling proceedure. Stop interpretation of the
current definition. The return stack must not be engaged.

See also: ‘EXIT’

9.3.23 (?DO)

Name: (?D0)
No stackeffect
Attributes: C

Description: The run-time proceedure compiled by ?D0 which prepares the return stack, where
the looping bookkeeping is kept.
See also: ‘?D0’

9.3.24 (BACK

Name: (BACK
Stackeffect: — addr
Attributes:

Description: Start a backward branch by leaving the target address HERE into ‘addr’. Usage is
‘(BACK .. POSTPONE BRANCH BACK) ’

See also: ‘BACK)’ ‘BEGIN’ ‘DO’

9.3.25 (DO)

Name: (D0)

No stackeffect

Attributes: C

Description: The run-time proceedure compiled by DO which prepares the return stack, where
the looping bookkeeping is kept.

See also: ‘DO’

9.3.26 (FORWARD

Name: (FORWARD
Stackeffect: — addr
Attributes:

Description: Start a forward branch by leaving the address that must be backpatched with an
offset into ‘addr’. Usage is ‘POSTPONE BRANCH (FORWARD .. FORWARD) ’

See also: ‘IF’

9.3.27 (LOOP)

Name: (LOOP)
No stackeffect
Attributes: C2

Description: The run-time proceedure compiled by LOOP which increments the loop index and
tests for loop completion.

See also: ‘LO0OP’

56 ciforth manual

9.3.28 0(BRANCH

Name: OBRANCH
Stackeffect: f —
Attributes: FIG,C2

Description: The run-time proceedure to conditionally branch. If ‘£’ is false (zero), the following
in-line parameter is added to the interpretive pointer to branch ahead or back. Compiled by IF
, UNTIL , and WHILE .

See also: ‘BRANCH’

9.3.29 BACK)

Name: BACK)
Stackeffect: addr —
Attributes:

Description: Complete a backward branch by compiling an offset from HERE to ‘addr’, left there
by (BACK . Usage is ‘(BACK .. POSTPONE BRANCH BACK) ’

See also: ‘LOOP’ ‘UNTIL’

9.3.30 BRANCH

Name: BRANCH
No stackeffect
Attributes: FIG,C2,1L0

Description: The run-time proceedure to unconditionally branch. An in-line offset is added to
the interpretive pointer IP to branch ahead or back. BRANCH is compiled by ELSE AGAIN REPEAT

See also: ‘OBRANCH’

9.3.31 FORWARD)

Name: FORWARD)
Stackeffect: addr —
Attributes:

Description: Complete a forward branch by backpatching an offset from HERE into ‘addr’, left
there by (FORWARD . Usage is ‘POSTPONE BRANCH (FORWARD .. FORWARD) ’

See also: ‘LOOP’ ‘UNTIL’

9.4 DEFINING

The wordset ‘DEFINING’ contains words that add new entries to the dictionary. A number
of such defining word ’s are predefined, but there is also the possibility to make new defining
words, using CREATE and DOES> .

9.4.1

Name: :
No stackeffect
Attributes: ISO,FIG,E,LO

Description: Used in the form called a colon-definition:

Chapter 9: Glossary 57

(z ccce ;

Creates a dictionary entry defining ‘cccc’ as equivalent to the following sequence of Forth
word definitions ’...” until the next ’;’ or ’;CODE’ . The word is added as the latest into the
CURRENT word list. The compiling process is done by the text interpreter as long as STATE is
non-zero. Words with the immediate bit set (I) are executed rather than being compiled.

9.4.2 ;

Name: ;
No stackeffect
Attributes: ISO,FIG,I,C,L0

Description: Terminate a colon-definition and stop further compilation. Compiles the run-time
EXIT .

¢,

See also:

9.4.3 CONSTANT

Name: CONSTANT
Stackeffect: n —
Attributes: ISO,FIG,LO

Description: A defining word used in the form: ‘n’ CONSTANT ‘cccc’ to create word ‘cccc’ , with
its data field containing ‘n’ . When ‘cccc’ is later executed, it will push the value of ‘n’ to the
stack.

See also: ‘VARIABLE’

9.4.4 CREATE

Name: CREATE
No stackeffect
Attributes:

Description: A defining word used in the form: ‘CREATE cccc’ Later execution of ‘cccc’ returns
its data field, i.e. the value of HERE immediately after executing CREATE .

It can be the base of a new defining word if used in the form:

: CREATOR CREATE aaaa DOES> bbbb ;
CREATOR cccc

The second line has the effect of creating a word ‘cccc’ . Its datastructure is build by the
code ‘aaaa’ and when executing ‘cccc’ , its data field is pushed on the stack, then the code
‘bbbb’ is executed.

Space in this data field has yet to be allocated and the execution action can be changed.
ciforth is byte aligned, so no extra measures are needed.

See also: ‘DOES>’ ¢;CODE’ ‘ALLOT’ *,” ‘C,’

58 ciforth manual

9.4.5 DOES>

Name: DOES>
No stackeffect
Attributes: ISO,FIG,LO

Description: A word which is normally use to specify the run-time action within a high-level
defining word. DOES> modifies the behaviour of the latest word as to execute the sequence
of compiled word addresses following DOES> . Used in combination with CREATE . When the
DOES> part executes it begins with the address of the data field of the word on the stack. This
allows interpretation using this area or its contents. Typical uses include the Forth assembler,
multidimensional arrays, and compiler generation.

9.4.6 USER

Name: USER
Stackeffect: n —
Attributes: ISO,L0

Description: A defining word used in the form: ‘n USER cccc’ which creates a user variable
‘ccec’ . The data field of ‘cccc’ contains ‘n’ as a fixed offset relative to the user pointer register
‘UP’ for this user variable. When ‘cccc’ is later executed, it places the sum of its offset and the
user area base address on the stack as the storage address of that particular variable. In ciforth
the ‘UP’ is fixed.

See also: ‘VARIABLE’ ‘+0ORIGIN’

9.4.7 VARIABLE

Name: VARIABLE
No stackeffect
Attributes: ISO,E,LU

Description: A defining word used in the form: ‘VARIABLE cccc’ When VARIABLE is executed,
it creates the definition ‘cccc’ with its data field pointing to a data location. When ‘cccc’ is
later executed, the content of its data field (containing ‘n’) is left on the stack, so that a fetch
or store may access this location.

See also: ‘USER’ ‘CONSTANT’

9.4.8 VOCABULARY

Name: VOCABULARY
No stackeffect
Attributes: FIG,E,L

Description: A defining word used in the form: VOCABULARY ‘cccc’ to create a vocabulary
definition ‘cccc’ . It will create a word Iist in the ISO sense. Subsequent use of ‘cccc’ will push
this word list (the word list associated with ‘cccc’) to the top of the search order in CONTEXT .
So it will searched first by INTERPRET .

A vocabulary ’s data content field contains at first the dovoc pointer (like for any DOES>
word) , then follows its body. The body contains the vocabulary link field address (VLFA).
The VLFA points to the VLFA of the next vocabulary or a nil pointer for the end. Then follows
a dummy dea that serves as word list identifier or WID in the sense of the ISO standard. It
has empty fields, except for the link field. The link field address contains the DEA of the latest
word of the vocabulary or a nil pointer if empty. Executing the vocabulary means pushing its
WID on top of the CONTEXT order. In ciforth when there can be at most 8 word list ’s in the
search order, the oldest one gets lost. The vocabularies generated are IMMEDIATE words.

See also: ‘VOC-LINK’ ‘DEFINITIONS’

Chapter 9: Glossary 59

9.4.9 (;CODE)

Name: (;CODE)
No stackeffect
Attributes: C

Description: The run-time proceedure, compiled by ;CODE , that rewrites the code field of the
most recently defined word to point to the following machine code sequence. It is used after
CREATE instead of DOES> if the code following is assembler code instead of high level code.

See also: ¢ (CREATE)’ ‘;CODE’

9.4.10 (CREATE)

Name: (CREATE)

Stackeffect: sc —

Attributes:

Description: This is the basis for all defining words. It lays down the string ‘sc’ in the dictionary,
then creates a dictionary entries with that string as the namefield. It is linked into the CURRENT
word list. The code field and data field both point to the area owned by this header, i.e.

immediately following the completed header as appropriate for a low level (assembler) definition.
The flag field is empty , so not HIDDEN .

See also: ‘CREATE’

9.4.11 ;CODE

Name: ;CODE
No stackeffect
Attributes: B,ISO,FIG,I,C,L0

Description: Used in the form: ‘: cccc CREATE ;CODE assembly mnemonics ’ Stop compi-
lation and terminate a new defining word ‘cccc’ by compiling (;CODE) . Set ASSEMBLER to the
top of the search order order. Start assembling to machine code the following mnemonics.

When ‘cccc’ later executes in the form: ‘cccc nnnn’ the word ‘nnnn’ will be created with
its execution proceedure given by the machine code following ‘cccc’ . That is, when ‘nnnn’ is
executed, it does so by jumping to the code after ‘nnnn’ . Because of intimate relation to the
assembler, it is present in loadable form in the screens file ‘forth.lab’ .

See also: ‘(;CODE)’ ‘LOAD’ ‘:’

9.5 DENOTATIONS

The wordset ‘DENOTATIONS’ contains prefixes (mostly one letter words) that introduce a
denotation , i.e. a generalisation of NUMBER . Any word starting with the prefix is considered
found in the dictionary and the prefix word executed. These words parse input and leave a
constant (number, char or string) on the stack, or compile such constant. They reside in a
special vocabulary, called DENOTATION . To make a distinction with the same words in other
wordlists, the names of denotations are prepended with “Prefix_” in the documentation. Actual
names in the dictionary do not contain the prefix. Apart from Prefix_0 , the vocabulary
contains entries for all hex digits 1...9 and A...F. Like NUMBER always did, all denotations behave
identical in interpret and compile mode and they cannot be postponed.

9.5.1 Prefix_"

Name: Prefix_"

Stackeffect: — sc

Attributes: CI

Description: Leave a " delimited string. A " can be embedded in a string by doubling it.

60 ciforth manual

9.5.2 Prefix_ &

Name: Prefix_&

Stackeffect: — ¢

Attributes: CI

Description: Leave ‘c’ the non blank char that follows. Skip another blank character.

9.5.3 Prefix_+

Name: Prefix_+

Stackeffect: — s/d

Attributes: CI

Description: Implements NUMBER for numbers that start with + .

9.5.4 Prefix_-

Name: Prefix_-

Stackeffect: — s/d

Attributes: CI

Description: Implements NUMBER for numbers that start with - .

9.5.5 Prefix_0

Name: Prefix_0
Stackeffect: — s/d
Attributes: CI

Description: Implements NUMBER for numbers that start with 0 . Similar words are present for
all decimal and hex digits. ISO compatibility would demand that denotators for all capitals are
present, but one can always use a leading zero.

9.5.6 Prefix_~

Name: Prefix_~
Stackeffect: — b
Attributes: CI

Description: Leave ‘b’ the control character value of the char that follows i.e.
and so on. Skip another blank character.

9.5.7 Prefix__TICK

Name: Prefix__TICK
Stackeffect: — addr
Attributes: ISO,FIG,I,L0
Description: Used in the form:

(~

A’ results in 1

(’ nnnn

In interpret mode it leaves the execution token (equivalent to the dictionary entry address) of
dictionary word ‘nnnn’. If the word is not found after a search of the search order an appropriate
error message is given. In ciforth it can be used in compilation mode too, it then compiles the
address as a literal. It is recommended that one never compiles or postpones it. (Use a combi-
nation of WORD and FIND or any form of explicit parsing and searching instead.) Furthermore it
is recommended that for non-portable code ’ is used in its denotation form without the space.
Note that if you separate by a space, the ISO-conforming version of ’ is found.

See also: ‘CONTEXT’ ‘[’]’ ‘PRESENT’ ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’ ‘>SFA’

Chapter 9: Glossary 61

9.6 DICTIONARY

The wordset ‘DICTIONARY’ contains words that at a lower level than the wordset ‘DEFINING’
concern the memory area that is allocated to the dictionary. They may add data to the dictionary
at the expense of the free space, one cell or one byte at a time, or allocate a buffer at once. The
dictionary space may also be shrunk, and the words that were there are lost. The dictionary
entry address or DEA represents a word. It is the lowest address of a record with fields. Words
to access those fields also belong to this wordset.

9.6.1 ’ (This addition because texinfo won’t accept a single quote)

Name: °

Stackeffect: — addr
Attributes: ISO,FIG,I,L.0O
Description: Used in the form:

{’ nnnn

It leaves the execution token (equivalent to the dictionary entry address) of dictionary word
‘nnnn’. If the word is not found after a search of the search order an appropriate error message is
given. If compiled the searching is done while the word being compiled is executed. Because this
is so confusing, it is recommended that one never compiles or postpones ’ . (Use a combination
of WORD and FIND or any form of explicit parsing and searching instead.) Furthermore it is
recommended that for non-portable code ’ is used in its denotation form without the space.

See also: ‘[’]’ ‘FOUND’ ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’ ‘>SFA’ ‘EXECUTE’

9.6.2 ,

Name: ,
Stackeffect: n —
Attributes: ISO,FIG,LO

il

Description: Store ‘n’ into the next available dictionary memory cell, advancing the dictionary

pointer .
See also: ‘DP’ ‘C,’

9.6.3 > BODY

Name: >B0ODY
Stackeffect: dea — addr
Attributes: ISO

Description: Given the dictionary entry address ‘dea’ of a definition created with a CREATE /
DOES> construct, return its data field (in the ISO sense) ‘addr’.

See also: ‘?7 *>CFA’ ‘>DFA’ ‘>PHA’ ‘BODY>’

9.6.4 ALLOT

Name: ALLOT
Stackeffect: n —
Attributes: ISO,FIG,LO

Description: Add the signed number to the dictionary pointer DP . May be used to reserve
dictionary space or re-origin memory. As the Pentium is a byte-addressable machine ‘n’ counts
bytes.

See also: ‘CELL+’

62 ciforth manual

9.6.5 BODY>

Name: BODY>
Stackeffect: addr — dea
Attributes:

Description: Convert the data field ‘addr’ of a definition created with a CREATE / DOES> construct
to its ‘dea’. Where >BODY keeps working after revectoring , BODY> does not. There is some logic
to this, because the DEA to which the body belongs is no longer unique.

See also: “?7 >B0ODY’

9.6.6 C,

Name: C,
Stackeffect: b —
Attributes: ISO,FIG

Description: Store 8 bits of ‘b’ into the next available dictionary byte, advancing the dictionary
pointer .

See also: ‘DP’ *,’

9.6.7 DP

Name: DP
Stackeffect: —- addr
Attributes: FIG,U,L

Description: A user variable, the dictionary pointer , which contains the address of the next
free memory above the dictionary. The value may be read by HERE and altered by ALLOT .

9.6.8 FIND

Name: FIND
Stackeffect: addr —xt 1/xt -1/addr 0
Attributes: ISO

Description: For the old fashioned string (stored with a preceding character count) at ‘addr’
find a Forth word in the current search order. Return its execution token ‘xt’. If the word is
immediate, also return 1, otherwise also return -1. If it is not found, leave the original ‘addr’
and a zero.

See also: ‘CONTEXT’ ‘PRESENT’ ‘(FIND)’

9.6.9 FORGET

Name: FORGET
No stackeffect
Attributes: ISO,FIG,E,LO

Description: Executed in the form: FORGET ‘cccc’ Deletes definition named ‘cccc’ from the
dictionary with all entries physically following it. Recover the space that was in use.

See also: ‘FENCE’ ‘FORGET-V0OC’

Chapter 9: Glossary 63

9.6.10 FOUND

Name: FOUND
Stackeffect: sc — dea
Attributes:

Description: Look up the string ‘sc’ in the dictionary observing the current search order. If
found, leave the dictionary entry address ‘dea’ of the first entry found, else leave a nil pointer. If
the first part of the string matches a denotation word, that word is found, whether the denotation
is correct or not.

See also: ‘PRESENT’ ‘CONTEXT’ ‘FIND’ ‘(FIND)’ ‘VOCABULARY’

9.6.11 HERE

Name: HERE

Stackeffect: — addr

Attributes: ISO,FIG,LO0

Description: Leave the address ‘addr’ of the next available dictionary location.
See also: ‘DP’

9.6.12 ID.

Name: ID.
Stackeffect: dea —
Attributes:

Description: Print a definition’s name from its dictionary entry address. For dummy entries
print nothing.

See also: ‘77 >FFA’ ‘>NFA’

9.6.13 IMMEDIATE

Name: IMMEDIATE
No stackeffect
Attributes:

Description: Mark the most recently made definition so that when encountered at compile time,
it will be executed rather than being compiled, i.e. the immediate bit in its header is set.
This method allows definitions to handle unusual compiling situations, rather than build them
into the fundamental compiler. The user may force compilation of an immediate definition by
preceding it with POSTPONE .

9.6.14 PAD

Name: PAD
Stackeffect: — addr
Attributes: ISO,FIG,LO

Description: Leave the address of the text output buffer, which is a fixed offset above HERE .
The area growing downword from PAD is used for numeric conversion.

9.6.15 PRESENT

Name: PRESENT
Stackeffect: sc — dea
Attributes:

Description: If the string ‘sc’ is present as a word name in the current search order, return its
‘dea’, else leave a nil pointer . For a a denotation word, the name must match ‘sc’ exactly.

See also: ‘FOUND’ ‘CONTEXT’ ‘FIND’ ‘(FIND)’ ‘VOCABULARY’

64 ciforth manual

9.6.16 WORDS

Name: WORDS

No stackeffect

Attributes: ISO

Description: List the names of the definitions in the topmost word list of the search order.
See also: ‘CONTEXT’

9.6.17 [’]

Name: [’]

Stackeffect: — addr
Attributes: ISO,I

Description: Used in the form:

[[’] nnnn

In compilation mode it leaves the execution token (equivalent to the dictionary entry address)
of dictionary word ‘nnnn’. So as a compiler directive it compiles the address as a literal. If the
word is not found after a search of the search order an appropriate error message is given. In
ciforth this word is just an alias for ’ , so it can be used in interpret mode too. It is recommended
that for non-portable code the denotation * is used instead, and that it is never postponed. (Use
a combination of WORD and FIND instead.).

See also: ‘FOUND’ ¢°’ ‘EXECUTE’

9.6.18 (FIND)

Name: (FIND)
Stackeffect: sc wid — sc dea
Attributes:

Description: Search down from the WID ‘wid’ for a word with name ‘sc’. A WID is mostly a
dummy DEA found in the data field of a vocabulary, fetched from CURRENT or an other wid in
the search order . Leave the dictionary entry address ‘dea’ of the first entry found, else leave a
zero. Do not consume the string ‘sc’, as this is a repetitive action.

See also: ‘FIND’ ‘PRESENT’ ‘>WID’

9.6.19 (MATCH)

Name: (MATCH)
Stackeffect: sc dea — sc dea ff
Attributes:

Description: Intended to cooperate with FOR-WORDS . Compares the string constant ‘sc’ with the
dea ‘dea’. Returns into ‘ff’ a flag indicating that it is a match taking into account denotations.

See also: ‘FIND’

9.6.20 >CFA

Name: >CFA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres ‘dea’ return its code field address ‘addr’. By
jumping indirectly via this address the definition ‘dea’ is executed. This is the address that is

Chapter 9: Glossary 65

compiled within high level definitions, so it serves as an execution token. In ciforth it has offset
0, so it is actually the same as the DEA .

See also: “?’ ‘CFA>’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’ ‘>SFA’ ‘>PHA’
9.6.21 >DFA

Name: >DFA

Stackeffect: dea — addr

Attributes:

Description: Given a dictionary entry addres return its data field address ‘addr’ . This points to
the code for a code word, to the high level code for a colon-definition, and to the DOES> pointer
for a word build using CREATE . Normally this is the area behind the header, found via >PHA .

See also: “?7 “>BODY’ ‘>CFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’ ‘>SFA’ ‘>PHA’
9.6.22 >FFA

Name: >FFA

Stackeffect: dea — addr

Attributes:

Description: Given a dictionary entry addres return its flag field address ‘addr’ .
See also: >’ ‘>CFA’ ‘>DFA’ ‘>LFA’ ‘>NFA’

9.6.23 >LFA

Name: >LFA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return its link field address ‘addr’. It contains the
DEA of the previous word.

See also: “?7 ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>NFA’ ‘>PHA’ ‘>SFA’
9.6.24 >NFA

Name: >NFA

Stackeffect: dea — nfa

Attributes:

Description: Given a dictionary entry addres return the name field address .
See also: “>7 ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>SFA’

9.6.25 >PHA

Name: >PHA
Stackeffect: dea — addr
Attributes:

Description: Given a dictionary entry addres return the past header address . Here starts the
area that no longer belongs to the header of a dictionary entry, but most often it is owned by it.

See also: ‘?7 *>CFA’ ‘>BODY’

9.6.26 >SFA

Name: >SFA

Stackeffect: dea — addr

Attributes:

Description: Given a dictionary entry addres return the source field address ‘addr’ .
See also: ©?7 ‘>CFA’ ‘>DFA’ ‘>FFA’ ‘>LFA’ ‘>NFA’

66 ciforth manual

9.6.27 >VFA

Name: >VFA
Stackeffect: dea — cfa
Attributes:

Description: Given the dictionary entry addres of a vocabulary return the address of the link to
the next vocabulary.

See also: ‘VOCABULARY’ ‘>CFA’ ‘>WID’

9.6.28 >WID

Name: >WID
Stackeffect: dea — wid
Attributes:

Description: Given the dictionary entry addres ‘dea’ of a vocabulary return its WID ‘wid’, a
dummy DEA that serves as the start of a dictionary search.

See also: ‘VOCABULARY’ ‘>CFA’ ‘(FIND)’

9.6.29 CFA>

Name: CFA>

Stackeffect: cfa — dea

Attributes:

Description: Convert the code field address of a definition to its dictionary entry address ‘dea’.
See also: >’ ‘>CFA’

9.6.30 FENCE

Name: FENCE
Stackeffect: — addr
Attributes: FIG,U

Description: A user variable containing an address below which FORGET ting is trapped. To
forget below this point the user must alter the contents of FENCE .

9.6.31 FOR-VOCS

Name: FOR-VOCS
Stackeffect: x1..xn xt — x1...xn

Attributes:
Description: For all vocabularies execute ‘xt’ with as data the DEA of those words. ‘xt’ must
have the stack diagram ‘x1..xn dea --- x1..xn’

See also: ‘FOR-WORDS’ ‘EXECUTE’

9.6.32 FOR-WORDS

Name: FOR-WORDS

Stackeffect: x1...xn xt wid —x1...xn

Attributes:

Description: For all words from a word list identified by ‘wid’ execute ‘xt’ with as data ‘x1..xn’
plus the DEA of those words. ‘xt’ must have the stack diagram ‘x1..xn dea --- x1..xn’. Note

that you can use the DEA of any word as a WID and the remainder of the word list will be
searched.

See also: ‘FOR-VOCS’ ‘EXECUTE’

Chapter 9: Glossary 67

9.6.33 FORGET-VOC

Name: FORGET-VOC
Stackeffect: addr wid — addr
Attributes:

Description: Remove all words whose DEA is greater (later defined) than ‘addr’ from a wordlist
given by ‘wid’ . Leave ‘addr’ (as FORGET-VOC is intended to be used with FOR-VOCS) . If any
whole vocabulary is removed, the search order is reset to ‘ONLY FORTH’. The space freed is not
recovered.

See also: ‘FORGET’

9.6.34 HIDDEN

Name: HIDDEN
Stackeffect: dea —
Attributes:

Description: Make the word with dictionary entry address ‘dea’ unfindable, by toggling the
"smudge bit" in a definitions’ flag field. If however it was the ‘dea’ of an unfindable word, it
is made findable again. Used during the definition of a colon word to prevents an uncompleted
definition from being found during dictionary searches, until compiling is completed without
error. It also prevents that a word can be used recursively.

See also: ‘IMMEDIATE’ ‘RECURSE’

9.7 DOUBLE

The wordset ‘DOUBLE’ contains words that manipulate double ’s. In this 32 Forth you would
hardly need doubles if it weren’t for the NUMBER formatting wordset that uses them exclusively.

9.7.1 D+

Name: D+

Stackeffect: d1 d2 — dsum

Attributes: ISO,FIG

Description: Leave the double number ‘dsum’: the sum of two double numbers ‘d1’ and ‘d2’ .
See also: ‘DNEGATE’ ‘+’

9.7.2 DABS

Name: DABS

Stackeffect: d — ud

Attributes: ISO,FIG

Description: Leave the absolute value ‘ud’ of a double number ‘d’ .
See also: ‘DNEGATE’ ‘ABS’

9.7.3 DNEGATE

Name: DNEGATE

Stackeffect: d1 — d2

Attributes: ISO

Description: ‘d2’ is the negation of ‘d1’.

See also: ‘D+’

68 ciforth manual

9.7.4 S>D

Name: S>D

Stackeffect: n — d

Attributes: ISO

Description: Sign extend a single number to form a double number.

9.8 ENVIRONMENTS

The wordset ‘ENVIRONMENTS’ contains all words of the ENVIRONMENT vocabulary and those
words needed to recognize them as Forth environment queries. Note that these are not environ-
ment variables in the sense that are passed from an operating system to a program.

9.8.1 CORE

Name: CORE

Stackeffect: — ff

Attributes: ISO

Description: An environment query whether the CORE wordset is present.
See also: ‘ENVIRONMENT?’

9.8.2 CPU

Name: CPU

Stackeffect: — d

Attributes: CI

Description: An environment query returning the cpu-type to be printed as a base-36 number.
See also: ‘ENVIRONMENT?’

9.8.3 ENVIRONMENT?

Name: ENVIRONMENT?
Stackeffect: sc — i*x true/false
Attributes: ISO

Description: If the string ‘sc’ is a known environment attribute, leave into ‘i*x’ the information
about that attribute and a true flag, else leave a false flag. In fact the flag indicates whether
the words is present in the ENVIRONMENT vocabulary and ‘i*x’ is what is left by the word if
executed.

See also: ‘VOCABULARY’

9.8.4 NAME

Name: NAME

Stackeffect: — sc

Attributes: CI

Description: An environment query giving the name of this Forth as a string constant.
See also: ‘ENVIRONMENT?’

9.8.5 SUPPLIER

Name: SUPPLIER

Stackeffect: — sc

Attributes: CI

Description: An environment query giving the SUPPLIER of this Forth as a string constant.
See also: ‘ENVIRONMENT?’

Chapter 9: Glossary 69

9.8.6 VERSION

Name: VERSION

Stackeffect: — sc

Attributes: CI

Description: An environment query giving the version of this Forth as a string constant.
See also: ‘ENVIRONMENT?’

9.9 ERRORS

The wordset ‘ERRORS’ contains words to handle errors and exceptions.

9.9.1 7TERROR

Name: 7ERROR
Stackeffect: fn —
Attributes:
Description:

If the boolean flag is true, signal an error with number ‘n’. This means that an exception is
thrown, and it is remembered that this is the original place where the exception originated. If
the exception is never caught, an error message is displayed using ERROR . All errors signalled
by the kernel go through this word, allowing to catch e.g. errors in accessing the block file.

See also: ‘ERROR’ ‘?ERRUR’

9.9.2 7TERRUR

Name: ?ERRUR
Stackeffect: n —
Attributes:

Description: Handle the possible error ‘n’ in Unix fashion. If it is zero or positive, this means
okay. If it is negative, its value identifies an error condition. This error is handled in the same
way as by ?ERROR .

See also: ‘ERROR’ ‘?ERROR’

9.9.3 ABORT™

Name: ABORT"
Stackeffect: f—
Attributes: ISO,I

Description: Usage is ‘: <SOME> ... ABORT" <message>" ... ;’. If ABORT" finds a non-zero
‘f’ on the stack, the ‘<message>’ is displayed and an ABORT is executed. Otherwise proceed with
the words after ‘<message>’. This word can only be used in compile mode.

See also: ‘?ERROR’

9.9.4 CATCH

Name: CATCH
Stackeffect: ... xt — ... tc

Attributes: ISO

Description: Execute ‘xt’. If it executes successfully, i.e. no THROW is executed by ‘xt’, leave a
zero into ‘tc’ in addition to any stack effect ‘xt’ itself might have. Otherwise in ‘tc’ the non-zero
throw code is left, and the stack depth is restored. The values of the parameters for ‘xt’ could
have been modified. In general, there is nothing useful that can be done with those stack items.
Since the stack depth is known, the application may DROP those items.

See also: ‘THROW’ ‘QUIT’ ‘HANDLER’

70 ciforth manual

9.9.5 ERROR

Name: ERROR
Stackeffect: n —
Attributes:

Description: Notify the user that an uncaught exception or error with number ‘n’ has occurred.
The word that caused it is found using WHERE and displayed . Also ‘n’ is passed to MESSAGE in
order to give a description of the error. This word is executed by THROW before restarting the
interpreter and can be revectored to give more elaborate diagnostics.

See also: ‘?ERROR’ ‘WARNING’

9.9.6 ERRSCR

Name: ERRSCR
Stackeffect: — addr
Attributes:

Description: A variable containing the address of the number of the screen from which messages
are offset. Messages correspond with lines and the offset may be positive or negative. ‘0 MESSAGE’
prints the first line of this screen. Traditionally this was screen 4, but the negative Unix error
numbers makes this unfeasible.

See also: ‘C/L’ ‘MESSAGE’

9.9.7 MESSAGE

Name: MESSAGE
Stackeffect: n —
Attributes:

Description: MESSAGE is generally used to print error and warning messages. Print on the output
device the text of line ‘n’ relative to screen ERRSCR . ‘n’ may be positive or negative and beyond
just screen ERRSCR . The messages with negative offset contain the strings belonging to the
return values for BDOS calls. ‘0 MESSAGE’ will print version information about the library file,
the messages sit in. If WARNING is zero (disc unavailable), the message will simply be ignored.

See also: ‘ERROR’

9.9.8 THROW

Name: THROW
Stackeffect: ... tc — ... / ... tc
Attributes: ISO

Description: If ‘tc’ is zero, it is merely discarded. If we are executing under control of a CATCH
, see CATCH for the effect of a non-zero ‘tc’. If we are executing not under control of a CATCH ,
a non-zero ‘tc’ gives a message to the effect that this exception has occurred and starts Forth
anew.

See also: ‘CATCH’ ‘QUIT’ ‘HANDLER’ ‘?ERROR’ ‘ERROR’

9.9.9 WARNING

Name: WARNING
Stackeffect: — addr
Attributes: FIG,U

Description: A user variable containing a value controlling messages. If it is 1, a library file is
open, and messages are fetched from it. If it is 0, messages will be presented by number only.
Don’t set WARNING to 1 if there is no block system available, because the error system will call
itself recursively. This may lead to a crash.

See also: ‘MESSAGE’ ‘ERROR’ ‘ERRSCR’

Chapter 9: Glossary 71

9.9.10 WHERE

Name: WHERE
Stackeffect: — addr
Attributes: U

Description: A user variable pair which contains the start of the source and the character
position of the last error that was thrown by ?ERROR ,so not of exceptions thrown. The contents
of WHERE is interpreted by ERROR if the corresponding exception was never caught.

See also: ‘THROW ‘CATCH’

9.9.11 (ABORT")

Name: (ABORT")

Stackeffect: f —

Attributes:

Description: The run time action of ABORT" .

9.9.12 HANDLER

Name: HANDLER
Stackeffect: — addr
Attributes:

Description: A user variable address containing a pointer to the last exception intercepting frame
activated by CATCH . It points into the return stack. If there is a THROW , the return stack is
restored from HANDLER effecting a multiple level return. It is called a frame because more things
are restored, such as the position of the data stack top, and the previous value of HANDLER .

See also: ‘CATCH’ ‘THROW’

9.10 FILES

The wordset ‘FILES’ contains words to input and output to files, or load words from files.
They are underlying the ‘BLOCKS’ facilities.

9.10.1 CLOSE-FILE

Name: CLOSE-FILE
Stackeffect: fileid — ior
Attributes: ISO

Description: Close the file with file handle in ‘fileid’. Return a result code into ‘ior’. The
latter is the MSDOS error code negated, to be inspected using MESSAGE .

See also: ‘OPEN-FILE’ ‘READ-FILE’ ‘WRITE-FILE’ ‘CREATE-FILE’ ‘DELETE-FILE’

9.10.2 CREATE-FILE

Name: CREATE-FILE
Stackeffect: sc u — fileid ior
Attributes: NISO

Description: Create a file with name ‘sc’ and properties ‘u’ If the file already exists, it is
truncated to zero length. Return a file handle into ‘fileid’ and a result code into ‘ior’.
The latter is the MSDOS negated, to be inspected using MESSAGE . The handle is open for
READ_WRITE.

See also: ‘OPEN-FILE’ ‘READ-FILE’ ‘WRITE-FILE’ ‘CREATE-FILE’ ‘DELETE-FILE’

72 ciforth manual

9.10.3 DELETE-FILE

Name: DELETE-FILE
Stackeffect: sc — ior
Attributes: ISO

Description: Delete the file with name ‘sc’. Return a result code into ‘ior’. The latter is the
MSDOS negated, to be inspected using MESSAGE .

See also: ‘OPEN-FILE’ ‘READ-FILE’ ‘WRITE-FILE’ ‘CREATE-FILE’ ‘DELETE-FILE’

9.10.4 GET-FILE

Name: GET-FILE
Stackeffect: sc1 — sc2
Attributes:

Description: Get the content of the file with name ‘sc1’; leave it as a string ‘sc2’. Any errors
are thrown.

See also: ‘PUT-FILE’ ‘OPEN-FILE’ ‘THROW’

9.10.5 INCLUDED

Name: INCLUDED
Stackeffect: scl — i*x
Attributes: ISO

Description: Interpret the content of the file with name ‘sc1’ as if it was typed from the console,
leaving result ‘i*x’.
See also: ‘LOAD’

9.10.6 OPEN-FILE

Name: OPEN-FILE
Stackeffect: sc fam — fileid ior
Attributes: ISO

Description: Open the file with name ‘sc’ and file access method ‘fam’. Return a file handle into
‘fileid’ and a result code into ‘ior’. The latter is the MSDOS error code negated, to be in-
spected using MESSAGE . ‘fam’ is one of 0=READ_ONLY, I=WRITE_ONLY, 2=READ_WRITE.

See also: ‘OPEN-FILE’ ‘READ-FILE’ ‘WRITE-FILE’ ‘CREATE-FILE’ ‘DELETE-FILE’

9.10.7 PUT-FILE

Name: PUT-FILE

Stackeffect: scl sc2 —

Attributes:

Description: Save the string constant ‘sc2’ to a file with the name ‘sc1’. Any errors are thrown.
See also: ‘GET-FILE’ ‘OPEN-FILE’ ‘THROW’

9.10.8 READ-FILE

Name: READ-FILE
Stackeffect: addr nl fd — n2 ior
Attributes: ISO

Description: Read ‘n’ characters to ‘addr’ from current position of the file that is open at ‘fd’
. ‘n2’ is the number of characters successfully read, this may be zero. ‘ior’ is 0 for success, or
otherwise the MSDOS error code negated, to be inspected using MESSAGE .

See also: ‘OPEN-FILE’ ‘WRITE-FILE’ ‘REPOSITION-FILE’ ‘R\W’

Chapter 9: Glossary 73

9.10.9 READ

Name: READ

Stackeffect: addr nl fd — n2 ior

Attributes: ISO

Description: As READ-FILE , but can handle only 32K.
See also: ‘READ-FILE’

9.10.10 REPOSITION-FILE

Name: REPOSITION-FILE
Stackeffect: ud fd — ior
Attributes: ISO

Description: Position the file that is open at ‘fd’ at position ‘ud’. ‘ior’ is 0 for success, or
otherwise the MSDOS error code negated . Information about error codes can be found by
MESSAGE .

See also: ‘OPEN-FILE’ ‘READ-FILE’ ‘WRITE-FILE’

9.10.11 WRITE-FILE

Name: WRITE-FILE
Stackeffect: addr n fd — ul
Attributes: ISO

Description: Write ‘n’ characters from ‘addr’ to the file that is open at ‘fd’ , starting at its
current position. ‘ul’ is 0 for success, or otherwise the MSDOS error code negated, to be
inspected using MESSAGE .

See also: ‘OPEN-FILE’ ‘READ-FILE’ ‘REPOSITION-FILE’ ‘R\W’

9.10.12 WRITE

Name: WRITE

Stackeffect: addr n fd — ul

Attributes: ISO

Description: As WRITE-FILE , but can handle only 32K.
See also: ‘RW-BUFFER’

9.10.13 RW-BUFFER

Name: RW-BUFFER
Stackeffect: — addr
Attributes:

Description: A constant that leaves the address of a disk buffer used by file i/o words. It is
aliased with a "real" segment, to pass data from protected mode to the the DPMI-interface.
Therefore it must be 16-bits addressable. It occupies 32K from 8000H onwards.

See also: ‘READ-FILE’ ‘OPEN-FILE’

74 ciforth manual

9.11 FORMATTING

The wordset ‘FORMATTING’ generates formatted output for numbers, i.e. printing the digits
in a field with a certain width, possibly with sign etc. This is possible in any number base
. (Normally base 10 is used, which means that digits are found as a remainder by dividing by
10). Formatting in Forth is always based on double numbers. Single numbers are handled by

converting them to double first. This requires some double precision operators to be present in
the Forth core. See Section 9.7 [DOUBLE], page 67, wordset. See Section 9.18 [MULTIPLYING],
page 91, wordset.

9.11.1 #>

Name: #>

Stackeffect: d — sc

Attributes: ISO,FIG,LO0

Description: Terminates numeric output conversion by dropping ‘d’, leaving the formatted string

‘sc’ .

See also: ‘<#’

9.11.2 #S

Name: #S
Stackeffect: d1 — d2
Attributes: ISO,FIG,LO0

Description: Generates ASCII text in the text output buffer, by the use of # , until a zero double
number ‘d2’ results. Used between <# and #> .

9.11.3 #

Name: #
Stackeffect: d1 — d2
Attributes: ISO,FIG,LO0

Description: Generate from a double number ‘d1’, the next ASCII character which is placed
in an output string. Result ‘d2’ is the quotient after division by BASE , and is maintained for
further processing. Used between <# and #> .

See also: ‘#S’

9.11.4 <#

Name: <#
No stackeffect
Attributes: ISO,FIG,LO0
Description: Setup for pictured numeric output formatting using the words: <# # #S
SIGN #> The conversion is done on a double number producing text growing down from PAD

See also: ‘DPL’ ‘HLD’ ‘HOLD’ ‘FLD’

9.11.5 >NUMBER

Name: >NUMBER

Stackeffect: udl addrl ul — ud2 addr2 u2
Attributes: ISO

Description:

Chapter 9: Glossary 75

‘ud2’ is the result of converting the characters within the character string specified by ‘addr1
ul’ into digits, using the number in BASE , and adding each into ud1 after multiplying ‘ud1’ by the
number in BASE . Conversion continues until a character that is not convertible is encountered or
the string is entirely converted. ‘addr2’ is the location of the first unconverted character or the
first character past the end of the string if the string was entirely converted. ‘u2’ is the number
of unconverted characters in the string. If ‘ud2’ overflows, in ciforth ‘ud2’ will be incorrect, but
no crash will result. Both - and + are considered unconvertible character’s by ‘>NUMBER’ .

See also: ‘NUMBER’ ‘DIGIT’

9.11.6 BASE

Name: BASE
Stackeffect: — addr
Attributes: ISO,FIG,U,L0

Description: A user variable containing the current number base used for input and output
conversion.

See also: ‘DECIMAL’ ‘HEX’ ‘<#’

9.11.7 DECIMAL

Name: DECIMAL

No stackeffect

Attributes: ISO,FIG,LO

Description: Set the numeric conversion BASE for decimal input-output.
See also: ‘HEX’

9.11.8 HEX

Name: HEX

No stackeffect

Attributes: ISO,FIG,LO

Description: Set the numeric conversion BASE for hexadecimal (base 16) input-output.
See also: ‘DECIMAL’

9.11.9 HOLD

Name: HOLD
Stackeffect: ¢ —
Attributes: ISO,FIG

Description: Add the character ‘c’ to the beginning of the output string. It must be executed
for numeric formatting inside a <# and #> construct .

See also: ‘#’ ‘DIGIT’

9.11.10 SIGN

Name: SIGN
Stackeffect: n —
Attributes: ISO,FIG

Description: Stores an ASCII minus-sign - just before a converted numeric output string in the
text output buffer when ‘n’ is negative. Must be used between <# and #> .

See also: ‘HOLD’

76 ciforth manual

9.11.11 (NUMBER)

Name: (NUMBER)
Stackeffect: — d1
Attributes:

Description: Convert the ASCII text at the current input source with regard to BASE . The new
value is accumulated into double number ‘d1’ , being left. A decimal point, anywhere, signifies
that the input is to be considered as a double. ISO requires it to be at the end of the number.
ciforth allows any number of decimal points with the same meaning. ciforth also allows any
number of comma’s that are just ignored, to improve readability. If the first unconvertible digit
is not a blank, this is an error.

See also: ‘NUMBER’ ‘?BLANK’

9.11.12 DIGIT

Name: DIGIT
Stackeffect: ¢ n1 — n2 true (ok) ¢ nl — x false (bad)
Attributes:

Description: Converts the ASCII character ‘c’ (using base ‘nl1’) to its binary equivalent ‘n2’ |
accompanied by a true flag. If the conversion is invalid, leaves only a don’t care value and a
false flag.

9.11.13 DPL

Name: DPL
Stackeffect: —- addr
Attributes: FIG,U,LO

Description: A user variable containing the address of the decimal point on double integer input,
or a nil pointer. It may also be used to hold the output column location of a decimal point, in
user generated formating.

See also: ‘<#’ ‘FLD’ ‘HLD’

9.11.14 FLD

Name: FLD
Stackeffect: — addr
Attributes: FIG,U

Description: A user variable for control of number output field width. Unused in the kernel of
ciforth.

9.11.15 HLD

Name: HLD
Stackeffect: — addr
Attributes: FIG,LO

Description: A user variable that holds the address of the latest character of text during numeric
output conversion.

See also: ‘<#’ ‘DPL’ ‘FLD’

Chapter 9: Glossary 7

9.11.16 NUMBER

Name: NUMBER
Stackeffect: — s/d
Attributes:
Description:

This word is intended to be called from single character denotation words, hence the parse
pointer is decremented, to include this first character. Convert characters from the current input
source into a number, and compile or execute this number. If the string contains a decimal point
it is a double else a single integer number. If numeric conversion is not possible, an error message
will be given.

See also: ‘BASE’ ‘(NUMBER)’

9.12 INIT

The wordset ‘INIT’ contains words to initialise, reinitialise or configure Forth.

9.12.1 +ORIGIN

Name: +0RIGIN
Stackeffect: n — addr
Attributes:

Description: Leave the memory address relative by ‘n’ bytes to the area from which the user
variables are initialised, so one can access or modify the boot-up parameters. During run time
user variables are fetched from the current user area, via a pointer at ‘0 +ORIGIN ’ . This can be
swapped to get a fresh set of user variables, for multi-asking. One can access or modify the boot-
up parameters, prior to saving a customised boot image. It will also change the initialisation by
COLD .

See also: ‘USER’

9.12.2 ABORT

Name: ABORT
No stackeffect
Attributes: ISO,FIG,LO

Description: Restart the system. In addition and before the actions of QUIT , clear also the data
stack and reset the search order, reset the exception mechanism and set the numeric base to
default. As required by ISO it is silent. This may be confusing at times, because you can’t tell
the difference between a word that is still busy or that has aborted.

See also: ‘WARM’

9.12.3 COLD

Name: COLD
No stackeffect
Attributes: FIG

Description: Reinitialise the system. Clear all block buffers. Reinitialise all user variables to
their boot up values values, i.a. the stacks and the dictionary pointer . Opens the file that
contains the blocks. Restart via ABORT . May be called from the terminal to remove application
programs and restart, as long as there are no new vocabularies with definitions. But it is better
to say BYE to Forth and start again.

See also: ‘WARM’ ‘BLOCK’ ‘LIST’

78 ciforth manual

9.124 OK

Name: 0K
No stackeffect
Attributes: ISO,FIG

Description: Takes care of printing the okay-message, after interpreting a line. Default it prints
“OK” only for an interactive session in interpret STATE .

See also: ‘QUIT’ ‘COLD’

9.12.5 OPTIONS

Name: OPTIONS
Stackeffect: f1 — {2
Attributes: FIG LO

Description: Handle command line options, i.e. execute the screen corresponding to the option
letter. Accept and return a flag ‘£’ whether the signon message must be displayed. By redefining
this as a ‘NOOP’, the handling of options during cold boot is suppressed, useful for turnkey
applications. By redefining as ‘DROP 0’, execution and signon are suppressed.

See also: ‘COLD’

9.12.6 QUIT

Name: QUIT
No stackeffect
Attributes: ISO,FIG

Description: Restart the interpreter. Clear the return stack, stop compilation, and return control
to the operators terminal, or to the redirected input stream. This means ACCEPT user input to
TIB , and then INTERPRET with TIB as a SOURCE . No message is given.

See also: ‘ABORT’

9.12.7 WARM

Name: WARM
No stackeffect
Attributes: FIG LO

Description: Perform a so called "warm" start. In addition and before the actions of ABORT ,
discard blocks; they may not be written back to mass storage. Display the sign on message.

See also: ‘ABORT’

9.13 INPUT

The wordset ‘INPUT’ contains words to get input from the terminal and such. See Section 9.10
[FILES], page 71, for disk I/O. See Section 9.1 [BLOCKS], page 42, for access of blocks.

9.13.1 (ACCEPT)

Name: (ACCEPT)

Stackeffect: — sc

Attributes:

Description: Accept characters from the terminal, until a RET is received and return the result
as a constant string ‘sc’. It doesn’t contain a trailing LF. But possibly a trailing RET (0DH).
The editing functions are the same as with ACCEPT . This is lighter on the system and sometimes
easier to use than ACCEPT . Text is probably present in the buffer address contained in TIB @ ,
but not necessarily at the beginning.

See also: ‘KEY’ ‘KEY?’ ‘ACCEPT’

Chapter 9: Glossary 79

9.13.2 >IN

Name: >IN
Stackeffect: — addr
Attributes: ISO

Description: Return a variable that contains the offset from the start within the current input
text buffer (terminal or disc) from which the next text will be accepted. All parsing words use
and move the value of IN . The variable >IN is not actually used and its content must be fetched
immediately.

See also: ‘(>IN)’ ‘IN’

9.13.3 ACCEPT

Name: ACCEPT
Stackeffect: addr count — n
Attributes: ISO

Description: Transfer at most ‘count’ characters from the terminal to address, until a RET is
received. The backspace key on the standard PC keyboard layout is used to delete characters,
without involvement of Forth, so changing RUBOUT has no effect. Other editing keys such as F3
and cursor keys probably work as usual with a console application. Note that excess characters
after ‘count’ are ignored. The number of characters not including the RET is returned into ‘n’.

See also: ‘(ACCEPT)’ ‘KEY’ ‘KEY?’ ‘(ACCEPT)’

9.13.4 IN

Name: IN
Stackeffect: — addr
Attributes:

Description: A user variable containing a pointer within the current input text buffer (terminal
or disc) from which the next text will be accepted. All parsing words use and move the value of
IN .

See also: ‘>IN’ ‘WORD’ ‘(WORD)’ ‘NUMBER’ ‘(PARSE)’ ‘IN[]’

9.13.5 KEY?

Name: KEY?
Stackeffect: — f
Attributes: ISO

Description: Perform a test of the terminal keyboard for a break request. Any key pressed is
interpreted as such and the key is not consumed. A non-zero flag indicates actuation.

See also: ‘KEY’ ‘ACCEPT’

9.13.6 KEY

Name: KEY

Stackeffect: — ¢

Attributes: ISO,FIG,LO0

Description: Leave the ASCII value of the next terminal key struck.
See also: ‘ACCEPT’ ‘KEY?’

80 ciforth manual

9.13.7 RUBOUT

Name: RUBOUT
Stackeffect: — ¢
Attributes:

Description: A user variable, leaving the key code that must delete the last character from the
input buffer. In this ciforth it is not used, as the terminal input editing is left to the host
operating system.

See also: ‘USER’

9.13.8 TIB

Name: TIB

Stackeffect: — addr

Attributes: ISO,FIG,U

Description: A user variable containing the address of the terminal input buffer.
See also: ‘QUIT’

9.13.9 (>IN)

Name: (>IN)
Stackeffect: — addr
Attributes:

Description: If the standard word >IN is used, this variable contains the offset from the start
within the current input text buffer (terminal or disc) from which the next text will be accepted.
All parsing words use and move the value of IN .

See also: ‘>IN’ ‘IN’

9.13.10 REFILL-TIB

Name: REFILL-TIB
Stackeffect: —
Attributes:

Description: Accept characters from the terminal input stream such as to fill up TIB . Normally
this means until a RET. It is now consumable by ACCEPT or after SET-SRC

by Forth parsing words like WORD . The editing functions are those described by ACCEPT .
Immediately, after REFILL-TIB ‘REMAINDER 2@’ defines the characters ready in the input buffer.
All characters are retained including the RET.

If the input is redirected (such that reading after RET cannot be prevented) ‘REMAINDER 2@’
contains the part of TIB that is not yet consumed by (ACCEPT) , and outside the reach of SRC .

See also: ‘ACCEPT’ ‘ (ACCEPT)’

9.13.11 REMAINDER

Name: REMAINDER
Stackeffect: — addr
Attributes:

Description: A pointer to a constant string that contains the balance of characters fetched into
the input buffer, but not yet consumed. Used as in ‘REMAINDER 2@’ .

See also: ‘REFILL-TIB’

Chapter 9: Glossary 81

9.14 JUGGLING

The wordset ‘JUGGLING’ contains words that change order of data on the data stack . The
necessity for this arise, because the data you want to feed to a Forth word is not directly
accessible, i.e. on top of the stack. It is also possible that you need the same data twice, because
you have to feed it to two different words’s. Design your word such that you need them as little
as possible, because they are confusing.

9.14.1 2DROP

Name: 2DROP

Stackeffect: nl n2 —

Attributes: ISO

Description: Drop the topmost two numbers (or one double number) from the stack.
See also: ‘DROP’ ‘2DUP’

9.14.2 2DUP

Name: 2DUP

Stackeffect: d — d d

Attributes: ISO

Description: Duplicate the double number on the stack.
See also: ‘OVER’

9.14.3 20VER

Name: 20VER

Stackeffect: d1 d2 — d1 d2 d1

Attributes: ISO

Description: Copy the second stack double, placing it as the new top.
See also: ‘2DUP’

9.14.4 2SWAP

Name: 2SWAP

Stackeffect: d1 d2 — d2 d1

Attributes: ISO

Description: Exchange the top doubles on the stack.
See also: ‘ROT’

9.14.5 ?’DUP

Name: 7DUP
Stackeffect: n1 — nl (if zero) / n1 — nl nl (non-zero)
Attributes: ISO,FIG,LO0

Description: Reproduce ‘nl’ only if it is non-zero. This is usually used to copy a value just
before IF , to eliminate the need for an ELSE part to drop it.

See also: ‘DUP’ “_’

9.14.6 DROP

Name: DROP

Stackeffect: n —

Attributes: ISO,FIG,LO

Description: Drop the number from the stack.
See also: ‘DUP’

82 ciforth manual

9.14.7 DUP

Name: DUP

Stackeffect: n — n n

Attributes: ISO,FIG,LO0

Description: Duplicate the value on the stack.
See also: ‘OVER’

9.14.8 OVER

Name: OVER

Stackeffect: nl n2 — nl n2 nl

Attributes: ISO,FIG,LO0

Description: Copy the second stack value, placing it as the new top.
See also: ‘DUP’

9.14.9 ROT

Name: ROT

Stackeffect: nl n2 n3 — n2 n3 nl

Attributes: ISO,FIG,LO0

Description: Rotate the top three values on the stack, bringing the third to the top.
See also: ‘SWAP’

9.14.10 SWAP

Name: SWAP

Stackeffect: nl n2 — n2 nl

Attributes: ISO,FIG,LO0

Description: Exchange the top two values on the stack.
See also: ‘ROT’

9.15 LOGIC

The wordset ‘LOGIC’ contains logic operators and comparison operators. A comparison op-
erator (such as =) delivers a Forth flag , -1 for true, 0 for false, representing a condition (such
as equality of two numbers). The number -1 has all bits set to one. The logical operators (AND
etc.) work on all 32 bits, one by one. In this way they are useful for mask operations, as well as
for combining conditions represented as flag’s. But beware that IF only cares whether the top
of the stack is non-zero, such that - can mean non-equal to IF . Such conditions (often named
just flag ’s) cannot be directly combined using logical operators, but ‘0= 0=" can help.

9.15.1 0O<

Name: 0<
Stackeffect: n —
Attributes: ISO,FIG,LO

Description: Leave a true flag if the number is less than zero (negative), otherwise leave a false
flag.

See also: ‘<’

Chapter 9: Glossary 83

9.15.2 0=

Name: 0=

Stackeffect: n — ff

Attributes: ISO,FIG,LO

Description: Leave a true flag ‘f£’ is the number ‘n’ is equal to zero, otherwise leave a false flag.

(=0

See also:

9.15.3 <>

Name: <>
Stackeffect: nl1 n2 — ff
Attributes: 1SO,LO0

Description: Leave a true flag if ‘n1’ is not equal than ‘n2’ ; otherwise leave a false flag.

See also: >’ ‘=7 ‘0<’
9.15.4 <
Name: <

Stackeffect: n1 n2 — ff
Attributes: L0,ISO
Description: Leave a true flag if ‘n1’ is less than ‘n2’ ;otherwise leave a false flag.

See also: ‘=7 >” ‘0<’

9.15.5 =

Name: =

Stackeffect: nl n2 — ff

Attributes: ISO,FIG,LO0

Description: Leave a true flag if ‘n1=n2’ ; otherwise leave a false flag.

See also: ‘<’ >’ ‘0=" ‘=’

9.15.6 >

Name: >

Stackeffect: nl n2 — ff

Attributes: 1SO,L0

Description: Leave a true flag if ‘n1’ is greater than ‘n2’ ; otherwise leave a false flag.

See also: ‘<’ ‘=" ‘0<’

9.15.7 AND

Name: AND

Stackeffect: nl n2 — n3

Attributes: ISO,FIG,LO

Description: Leave the bitwise logical and of ‘n1’ and ‘n2’ as ‘n3’ .
See also: ‘XOR’ ‘OR’

84 ciforth manual

9.15.8 INVERT

Name: INVERT
Stackeffect: n1 — n2
Attributes: ISO,L1

Description: Invert all bits of ‘n1’ leaving ‘n2’ . For pure flags (0 or -1) this is the logical not
operator.

See also: ‘AND’ ‘OR’

9.15.9 OR

Name: OR

Stackeffect: nl n2 — n3

Attributes: ISO,FIG,LO

Description: Leave the bit-wise logical or of two 32 -bit values.
See also: ‘AND’ ‘XOR’

9.15.10 U<

Name: U<
Stackeffect: ul u2 — ff

Attributes: ISO,L0

Description: Leave a true flag if ‘ul’ is less than ‘u2’ ; otherwise leave a false flag.(Interpreted
as unsigned numbers).

See also: ‘<’

9.15.11 XOR

Name: XOR

Stackeffect: nl n2 — n3

Attributes: L1

Description: Leave the bitwise logical exclusive or of two 32 -bit values.
See also: ‘AND’ ‘OR’

9.16 MEMORY

The wordset ‘MEMORY’ contains words to fetch and store numbers from double s, cell s or
bytes in memory. There are also words to copy blocks of memory or fill them, and words that
fetch a cell , operate on it and store it back.

9.16.1 !

Name: !

Stackeffect: n addr —

Attributes: ISO,FIG,LO0

Description: Store all 32 bits of n at ‘addr’ .
See also: ‘@ ‘C!’ ‘217 ‘L1” ‘PV’ ‘PCV’

9.16.2 +!

Name: +!

Stackeffect: n addr —

Attributes: ISO,FIG,LO0

Description: Add ‘n’ to the value ‘addr’.
See also: ‘TOGGLE’ ‘!’

Chapter 9: Glossary 85

9.16.3 2!

Name: 2!
Stackeffect: addr— x1 x2
Attributes: ISO

Description: Store a pair of 32 bits values ‘x1’ ‘x2’ to consecutive cells at ‘addr’ . ‘x2’ is stored
at the lowest address.

See also: ‘2@ ‘17 ‘CV’

9.16.4 20

Name: 20
Stackeffect: addr— x1 x2
Attributes: ISO

Description: Leave a pair of 32 bits values ‘x1’ ‘x2’ from consequitive cells at ‘addr’ . ‘x2’ is
fetched from the lowest address.

See also: ‘217 ‘@ ‘C@’

9.16.5 ©

Name: @

Stackeffect: addr — n

Attributes: ISO,FIG,LO0

Description: Leave the 32 bit contents ‘n’ of ‘addr’ .
See also: ‘!’ ‘C@ ‘2@’ ‘P@’ ‘PCQ@’ ‘L€’

9.16.6 ALIGNED

Name: ALIGNED
Stackeffect: addrl — addr2
Attributes: ISO

Description: Make sure that ‘addrl’ is aligned by advancing it if necessary to ‘addr2’. In this
ciforth this is a NOOP.

See also: ‘ALIGN’

9.16.7 ALIGN

Name: ALIGN
Stackeffect: —
Attributes: ISO

Description: Make sure that HERE is aligned by advancing it if necessary. This means that data
of any size can be fetched from that address efficiently. In this ciforth this is a NOOP.

See also: ‘ALIGNED’

9.16.8 BLANK

Name: BLANK

Stackeffect: addr count —

Attributes: ISO

Description: This is shorthand for “BL FILL ”.

86 ciforth manual

9.16.9 BM

Name: BM

Stackeffect: — addr

Attributes:

Description: A constant leaving the address of the lowest memory in use by Forth.
See also: ‘DP’ ‘EM’

9.16.10 C!

Name: C!
Stackeffect: b addr —
Attributes: ISO

Description: Store 8 bits of ‘b’ at ‘addr’ . In ciforth , running on the Intel architectures there
are no restrictions regarding byte addressing.

See also: ‘C@” ‘1’

9.16.11 Co

Name: C@
Stackeffect: addr — b
Attributes: ISO

Description: Leave the 8 bit contents of memory address. In ciforth , running on the Intel
architectures there are no restrictions regarding byte addressing.

See also: ‘C!” ‘@ ‘2@’

9.16.12 CELL+

Name: CELL+
Stackeffect: n1 — n2
Attributes: ISO

Description: Advance the memory pointer ‘n1’ by one (in this case 32 bits) cell to ‘n2’. This is
invaluable for writing portable code. Much of the library code of ciforth runs on both 16 and
32 bits systems, thanks to this.

9.16.13 CELLS

Name: CELLS
Stackeffect: nl — n2
Attributes: ISO

Description: Return the equivalent of ‘n1’ cells in bytes: ‘n2’. This is invaluable for writing
portable code. Much of the library code of ciforth runs on both 16 and 32 bits systems, thanks
to this.

See also: ‘CELL+’

9.16.14 CHAR+

Name: CHAR+
Stackeffect: n1 — n2
Attributes: ISO

Description: Advance the memory pointer ‘n1’ by one character to ‘n2’. In ciforth this means
one byte. Bytes are the address units ISO is talking about. Unfortunately the ISO standard
has no way to address bytes.

See also: ‘CELL+’

Chapter 9: Glossary 87

9.16.15 CHARS

Name: CHARS
Stackeffect: n1 — n2
Attributes: ISO

Description: Return the equivalent of ‘n1’ chars in bytes: ‘n2’. In ciforth this is a NOOP.
Unfortunately the ISO standard has no way to address bytes.

See also: ‘CELLS’

9.16.16 CMOVE

Name: CMOVE
Stackeffect: from to count —
Attributes:

Description: Move the specified quantity of characters beginning at address ‘from’ to address
‘to’ . The contents of address from is moved first proceeding toward high memory, such that
memory propagation occurs. As the Intel 86-family is byte-addressing there are no restrictions
in ciforth.

9.16.17 CORA

Name: CORA
Stackeffect: addrl addr2 len — n
Attributes: CIF

Description: Compare the memory areas at ‘addrl’ and ‘addr2’ over a length ‘len’ . For the
first bytes that differ, return -1 if the byte from ‘addril’ is less (unsigned) than the one from
‘addr2’, and 1 if it is greater. If all ‘len’ bytes are equal, return zero. This is an abbreviation
of COMPARE-AREA . It would have been named ‘COMPARE’ | if that were not taken by ISO.

9.16.18 EM

Name: EM

Stackeffect: — addr

Attributes:

Description: A constant leaving the address just above the highest memory in use by Forth.
See also: ‘DP’ ‘BM’

9.16.19 ERASE

Name: ERASE

Stackeffect: addr n —

Attributes: ISO

Description: This is shorthand for ‘0 FILL .
See also: ‘BLANK’ ‘FILL’

9.16.20 FARMOVE

Name: FARMOVE

Stackeffect: faraddrl faraddr2 count —

Attributes:

Description: Move ‘count’ bytes beginning at ‘faraddrl’ to ‘faraddr2’. Segments that are zero
are replaced by defaults: data segment selector for source, extra segment selector for destination.
Copying is done from low to high offset, so there may be memory propagating. This is not easily
seen from the selector ’s, particularly not so in protected mode. As the Intel 86-family is byte-
addressing there are no restrictions.

See also: ‘MOVE’ ‘CMOVE’

88 ciforth manual

9.16.21 FILL

Name: FILL
Stackeffect: addr ub —
Attributes: ISO,FIG,LO0

Description: If ‘u’ is not zero, store ‘b’ in each of ‘u’ consecutive bytes of memory beginning at
‘addr’ .

See also: ‘BLANK’ ‘ERASE’

9.16.22 L!

Name: L!

Stackeffect: n faraddr —

Attributes:

Description: Store 32 bits of ‘n’ at segment address pair ‘faraddr’.
See also: ‘L@ ‘!’ ‘C!’ 21’

9.16.23 L@

Name: L@

Stackeffect: faraddr — n

Attributes:

Description: Leave the 32 bit contents of segment address pair ‘faraddr’.
See also: ‘L!” ‘@ ‘CQ@’ ‘2@’

9.16.24 LOW-DP

Name: LOW-DP
Stackeffect: —- addr
Attributes:

Description: A user variable leaving the lowest address that is free in the lowest 1 Mbyte of
physical memory. This variable can be swapped with DP to compile into this area. Great care
must be taken to skip those areas below 1M that are used, for GDT, real time stack and such.

See also: ‘LOW-EM’

9.16.25 LOW-EM

Name: LOW-EM
Stackeffect: —- addr
Attributes:

Description: A user variable leaving the address just above the highest memory usable in the
lowest 1 Mbyte of physical memory. This area can be used to compile buffers into that must be
accessed from real mode.

See also: ‘DP’ ‘EM’

9.16.26 MOVE

Name: MOVE
Stackeffect: from to count —
Attributes:

Description: Move the ‘count’ bytes beginning at address ‘from’ to address ‘to’, such that the
destination area contains what the source area contained, regardless of overlaps. As the Intel
86-family is byte-addressing there are no restrictions.

Chapter 9: Glossary 89

9.16.27 P!

Name: P!
Stackeffect: n port —
Attributes:

Description: Store the 32 bit data ‘n’ to the port address ‘port’. In practice on a IBM PC
architecture a port address is 10 bits.

See also: ‘P@’ ‘PC!’ ‘PCQ@" ‘!’

9.16.28 Pa

Name: P@
Stackeffect: port — n
Attributes:

Description: Fetch the 32 bit contents ‘n’ from the port address ‘port’. A port address is always
16 bits. In practice on a IBM PC architecture a port address is 10 bits.

See also: ‘P!’ ‘PC@’ ‘PC!’ ‘@’

9.16.29 PC!

Name: PC!
Stackeffect: b port —
Attributes:

Description: Store a byte ‘b’ to the port address ‘port’. A port address is always 16 bits. In
practice on a IBM PC architecture a port address is 10 bits.

See also: ‘PC@’ ‘P!’ ‘P@’ ‘!’

9.16.30 PCe

Name: PC@
Stackeffect: port — b
Attributes:

Description: Fetch a byte ‘b’ from the port address ‘port’. A port address is always 16 bits. In
practice on a IBM PC architecture a port address is 10 bits.

See also: ‘PC!’ ‘P@’ ‘P!’ ‘@’

9.16.31 TOGGLE

Name: TOGGLE

Stackeffect: addr b —

Attributes:

Description: Complement the contents of ‘addr’ by the bit pattern ‘b’ .
See also: ‘XOR’ ‘+! ’

9.16.32 WITHIN

Name: WITHIN

Stackeffect: n1 n2 n3 — ff

Attributes: ISO

Description: Return a flag indicating that ‘nl’ is in the range ‘n2’ (inclusive) to ‘n3’ (non-
inclusive). This works for signed as well as unsigned numbers. This is shorthand for: ‘OVER -
>R - R U<

See also: ‘<’ ‘U<

90 ciforth manual

9.17 MISC

The wordset ‘MISC’ contains words that defy categorisation.

9.17.1 .SIGNON

Name: .SIGNON
Stackeffect: —
Attributes:

Description: Print a message identifying the version of this Forth. The name of the processor
known from the environment query CPU is printed using the bizarre convention of a base-36
number. This is a tribute to those FIG-pioneers.

See also: ‘ABORT’ ‘COLD’

9.17.2 EXECUTE

Name: EXECUTE
Stackeffect: xt —
Attributes: ISO,FIG,LO0

Description: Execute the definition whose execution token is given by ‘xt’ . The code field
address serves as an execution token. (It even has offset 0, but one should not assume that a
DEA is an execution token in portable code.)

See also: ‘?’ ‘>CFA’

9.17.3 NOOP

Name: NOOP

No stackeffect

Attributes:

Description: Do nothing. Primarily useful as a placeholder.

9.17.4 TASK

Name: TASK
No stackeffect
Attributes:

Description: A no-operation word which marks the boundary between the forth system and
applications.

See also: ‘COLD’

9.17.5 UO

Name: U0
Stackeffect: — addr
Attributes:

Description: A user variable, leaving the start address of the user area. This is for reference
only. What is taken into account by user variables is the initialisation variable at ‘O +ORIGIN’ .
This might be used for task switching.

See also: ‘USER’ ‘“+0RIGIN’

9.17.6 _

Name: _

Stackeffect: — x

Attributes:

Description: Leave an undefined value ‘x’. Presumably it is to be dropped at some time, or it

is a place holder.

Chapter 9: Glossary 91

9.18 MULTIPLYING

The original 16 bits Forth’s have problems with overflow (see Section 9.20 [OPERATOR],
page 95). Operators with intermediate results of double precision, mostly scaling operators,
solve this and are present in the ‘MULTIPLYING’ wordset. In this 32-bit Forth you will have less
need . Formatting is done with double ’s exclusively, and relies on this wordset. Operators with
mixed precision and unsigned operators allow to build arbitrary precision operators from them
in high level code.

9.18.1 */MOD

Name: */M0OD
Stackeffect: n1 n2 n3 — n4 nb
Attributes: ISO,FIG,LO

Description: Leave the quotient ‘n5’ and remainder ‘n4’ of the operation ‘n1*n2/n3’ (using
symmetric division). A double precision intermediate product is used giving correct results,
unless ‘nd’ or ‘n5’ overflows. ‘nl n2 * n3 /’ gives an incorrect answer as soon as ‘nl n2 *’
overflows.

See also: ‘x/’ ‘/MOD’

9.18.2 */

Name: */
Stackeffect: n1 n2 n3 — n4
Attributes: ISO,FIG,LO0

Description: Leave the ratio ‘n4 = n1*n2/n3’" where all are signed numbers(using symmetric
division). A double precision intermediate product is used giving correct results, unless ‘n4’
overflows.

See also: ‘*/M0OD’ ‘/MOD’

9.18.3 FM/MOD

Name: FM/MOD
Stackeffect: d n1 — n2 n3
Attributes: ISO

Description: A mixed magnitude math operator which leaves the signed remainder ‘n2’ and
signed quotient ‘n3’ from a double number dividend ‘d” and divisor ‘n1’. This is floored division,
i.e. the remainder takes its sign from the divisor.

See also: ‘SM/REM’ ‘M/MOD’ ¢/’ ‘M%’

9.18.4 M*

Name: Mx*
Stackeffect: n1 n2 — d
Attributes: ISO,FIG,LO0

Description: A mixed magnitude math operation which leaves the double number ‘d’ : the
signed product of two signed number ‘n1’ and ‘n2’ .

See also: ‘M/MOD’ ‘SM/REM’ ‘x’

9.18.5 M/MOD

Name: M/MOD
Stackeffect: udl u2 — u3 ud4
Attributes: CIF,FIG

Description: An unsigned mixed magnitude math operation which leaves a double quotient ‘ud4’
and remainder ‘u3’ , from a double dividend ‘ud1’ and single divisor ‘u2’.

See also: ‘UM/MOD’ ‘SM/REM’ ‘Mx’

92 ciforth manual

9.18.6 SM/REM

Name: SM/REM
Stackeffect: d n1 — n2 n3
Attributes: ISO

Description: A mixed magnitude math operator which leaves the signed remainder ‘n2’ and
signed quotient ‘n3’ from a double number dividend ‘d’ and divisor ‘n1’. This is a symmetric
division, i.e. the remainder takes its sign from the dividend.

See also: ‘M/MOD’ ¢/’ ‘M*’

9.18.7 UM*

Name: UMx*
Stackeffect: ul u2 — ud
Attributes: ISO

Description: A mixed magnitude math operation which leaves the double number ‘ud’ : the
unsigned product of two unsigned numbers ‘ul’ and ‘u2’ .

See also: ‘UM/MOD’ ‘Mx*’ “x’

9.18.8 UM/MOD

Name: UM/MQOD
Stackeffect: ud ul — u2 u3
Attributes: ISO

Description: Leave the unsigned remainder ‘u2’ and unsigned quotient ‘u3’ from the unsigned
double dividend ‘ud’ and unsigned divisor ‘ul’ .

See also: ‘UMx’ ‘SM/REM’ ‘/’

9.19 OPERATINGSYSTEM

The wordset ‘OPERATINGSYSTEM’ contains words that call the underlying operating system or
functions available in the BIOS-rom.

9.19.1 ARGS

Name: ARGS
Stackeffect: — addr
Attributes:

Description: Return the addr of ARGS a user variable that contains a system dependant pointer
to any arguments that are passed from the operating system to ciforth during startup.

In this ciforth it contains the real segment descriptor of the “environment-block” ,which is
real hard to come by in protected mode . The arguments passed to the program, “command
tail” is available as a brain damaged string at address 80H.

See also: ‘SYSTEM’

9.19.2 BDOSN

Name: BDOSN
Stackeffect: dcba —ar fl
Attributes:

Description: Do a call of “BDOS” interrupt (21H) with ‘d ¢ b a ’ in registers ‘DX CX BX AX .
Return as a result the content of register ‘AX’ into ‘ar’. ‘f1’ contains the flag register. If the
carry flag is set, it is presumably a failed operation. For other conventions you have to resort to
BIOSO . So 0 indicates no error, 1 indicates an error, probably with more information present

Chapter 9: Glossary 93

in ‘ar ’. This draws upon all facilities made available by MSDOS. This is intended to replace
the obsolescent BDOSO , that has the parameters backwards, and returns too many useless
parameters.

See also: ‘BIOSN’ ‘BDOSO’

9.19.3 BDOSO

Name: BD0OSO
Stackeffect: abcdi—ar brerdr fl
Attributes:

Description: Do a call of “BDOS” interrupt (21H) with ‘ab c d’ in registers ‘AX BX CX DX'.
Upon return those registers contains ‘ar br cr dr’ and ‘f1’ is the content of the processors flag
register. This draws upon all facilities made available by MSDOS. This is obsolescent, use BDOSN

See also: ‘BIOSO’ ‘BDOSN’

9.19.4 BIOS31

Name: BI0S31
Stackeffect: a b ¢ d di—ar br cr dr fl
Attributes:

Description: Do a call of “BIOS” interrupt 31H, directly from protected mode with ‘a b ¢ d di’
in registers ‘AX BX CX DX DI’. Upon return those registers contains ‘ar br cr dr’ and ‘f1’ is the
content of the processors flag register. ‘1 AND’ leaves a zero if the call was successful. The word
BIOS simulates a real mode interrupt; that is what you usually want.

See also: ‘BI0OS’ ‘BDOS’

9.19.5 BIOSN

Name: BIOSN

Stackeffect: d ¢ b a i—ar fl

Attributes:

Description: Do a call of “BIOS” interrupt ‘i’ with ‘a b ¢ d’ in registers ‘AX BX CX DX’. Return
as a result the content of register ‘AX’ into ‘ar’. ‘f1’ contains the flag register. If the carry flag
is set, it is presumably a failed operation. For other conventions you have to resort to BIOSO .
In general ‘ar’ then contains some error code. This word performs calls only as related to a real
mode interface. Under DPMI we have to do this via a special call to the unadorned interrupt,
which is in this case protected mode, interrupt 31H function 0300H. In behalf of this registers
are saved and restored in REG-SET . BI0S31 is the only direct interrupt call available. If you
want selectors ‘DS’ or ‘ES’ different from the Forth segment, or any register different from the
default, you must fill that in in the REG-SET structure. If your BIOS call destroys registers, in
particular ‘DS’ or ‘ES’ you must take care to restore them to REG-SET .

See also: ‘BDOSN’

9.19.6 BIOSO

Name: BI0OSO
Stackeffect: abcdi—ar brerdr fl
Attributes:

Description: Do a call of “BIOS” interrupt ‘i’ with ‘a b ¢ d’ in registers ‘AX BX CX DX’. Upon
return those registers contain ‘ar br cr dr’ and ‘f1’ is the content of the processors flag regis-
ter.This word performs calls only as related to a real mode interface. Under DPMI we have to do
this via a special call to the unadorned interrupt ‘1 AND’ leaves a zero if the call was successful.

See also: ‘BD0OSO’

94 ciforth manual

9.19.7 BYE

Name: BYE

Stackeffect: —

Attributes: ISO FIG

Description: Switch back to real mode. Return to the host environment MSDOS.
See also: ‘COLD’ ‘EXIT-CODE’

9.19.8 EXIT-CODE

Name: EXIT-CODE
Stackeffect: addr —
Attributes:

Description: Return ‘addr’ the address of a variable with the exit code. Its content is passed
to the host environment while going BYE . It is custom to return zero if there are no errors.
MSDOS allows only single byte return codes.

See also: ‘BYE’

9.19.9 SHELL

Name: SHELL
Stackeffect: —addr
Attributes:

Description: Leave the address ‘addr’ of a counted string, the name of a file that contains the
command interpreter, or shell. This name may be changed an is used by the SYSTEM command.
The name may contain a path and be at most 254 characters long.

The default name is ‘C: \COMMAND.COM’ .
See also: ‘SYSTEM’

9.19.10 SYSTEM

Name: SYSTEM
Stackeffect: sc —
Attributes: ISO

Description: Have the operating system execute the command contained in the string ‘sc’. The
environment is passed to the command, but not the changes made after ciforth started.

See also: ‘BLOCK’ ‘?ERROR’ ‘?ERRUR’

9.19.11 ZEN

Name: ZEN
Stackeffect: sc — addr
Attributes:

Description: Leaves an address that contains a zero-ended (c-type) equivalent of ‘sc’. The same
buffer is reused, such that this word is not reentrant. Use the word immediately, e.g. its intended
used is passing parameters to the operating system. In fact this is RW-BUFFER . The result is
present in the "real" segment, such that this address only is useful to be passed to DPMI.

See also: ‘OPEN-FILE’ ‘BIOSN’ ‘BDOSN’

Chapter 9: Glossary 95

9.20 OPERATOR

The wordset ‘OPERATOR’ contains the familiar operators for addition, multiplication etc. The
result of the operation is always an integer number, so division can’t be precise. On ciforth all
division operations are compatible with symmetric division .

The ISO standard require a Forth to choose between floored or symmetric division for its
standard operations. Divisions involving negative numbers have an interpretation problem. In
any case we want the combination of / and MOD (remainder) to be such that you can get the
original ‘n’ back from the two values left by ‘n m MOD” and ‘n m /’ by performing ‘m * +’ . This is
true for all Forth’s. On ciforth the / is a symmetric division , i.e. ‘-nm /’ give the same result
as ‘nm /’, but negated. The foregoing rule now has the consequence that ‘m MOD’ has ‘2|m|-1’
possible outcomes instead of ‘|m|’ . This is very worrysome for mathematicians, who stick to the
rule that ‘m MOD’ has ‘|m|’ outcomes: ‘0 ... |m|-1", or ‘~|m|+1 ... 0’ for negative numbers.
(floored division).

9.20.1 *

Name: *

Stackeffect: n1 n2 — n3

Attributes: ISO,FIG,LO0

Description: Leave the signed product ‘n3’ of two signed numbers ‘n1’ and ‘n2’ .
See also: ‘+’ ‘=7 ¢/ ‘MOD’

9.20.2 +

Name: +

Stackeffect: nl n2 — sum

Attributes: ISO,FIG,LO0

Description: Leave the sum of ‘n1’ and ‘n2’ .
See also: ‘=7 ‘x’ ¢/7 ‘MOD’

9.20.3 -

Name: -

Stackeffect: nl n2 — diff

Attributes: ISO,FIG,LO

Description: Leave the difference of ‘n1’” and ‘n2’ .
See also: ‘NEGATE’ ‘+’ ‘x’ ¢/’ ‘MOD’

9.20.4 /MOD

Name: /M0OD
Stackeffect: nl n2 — rem quot
Attributes: ISO,FIG,LO

Description: Leave the remainder and signed quotient of ‘n1’ and ‘n2’ . The remainder has the
sign of the dividend (i.e. symmetric division).

See also: ‘x/MOD’ ‘x/’ ‘SM/REM’

9.20.5 /

Name: /

Stackeffect: nl n2 — quot

Attributes: ISO,FIG,LO

Description: Leave the signed quotient of ‘n1’ and ‘n2’ . (using symmetric division).
See also: ‘+’ ‘=7 ‘x’ ‘MOD’ ‘*x/MQOD’

96

9.20.6 ABS

Name: ABS

Stackeffect: n — u

Attributes: ISO,FIG,LO0

Description: Leave the absolute value of ‘n” as ‘u’ .
See also: ‘DABS’

9.20.7 LSHIFT

Name: LSHIFT
Stackeffect: ul n — u2
Attributes: ISO

ciforth manual

Description: Perform a ‘logical shift ’ of the bits of ‘ul’ to the left by ‘n’ places. Put zero

into the places uncovered by the shift.
See also: ‘RSHIFT’ ‘2%’

9.20.8 MAX

Name: MAX

Stackeffect: nl n2 — max

Attributes: ISO,FIG,LO0

Description: Leave the greater of two numbers.
See also: ‘MIN’

9.20.9 MIN

Name: MIN

Stackeffect: nl n2 — min

Attributes: ISO,FIG,LO0

Description: Leave the smaller of two numbers.
See also: ‘MAX’

9.20.10 MOD

Name: MOD
Stackeffect: n1 n2 — mod
Attributes: ISO,FIG,LO0

Description: Leave the remainder of ‘n1’ divided by ‘n2’ , with the same sign as ‘n1’ (i.e.

symmetric division).
See also: ‘+’ ‘=7 ‘¥’ ¢/’ ‘MOD’ ‘*/MOD’

9.20.11 NEGATE

Name: NEGATE
Stackeffect: nl — n2
Attributes: ISO,FIG,LO

Description: Leave the two’s complement of a number, i.e. ‘n2’ is ‘-n1’

(o

See also:

Chapter 9: Glossary 97

9.20.12 RSHIFT

Name: RSHIFT
Stackeffect: ul n — u2
Attributes: ISO

Description: Perform a ‘logical shift ’ of the bits of ‘ul’ to the right by ‘n’ places. Put zero
into the places uncovered by the shift.

See also: ‘LSHIFT’ ‘2/’

9.21 OUTPUT

The wordset ‘OUTPUT’ contains words to output to the terminal and such. See Section 9.10
[FILES], page 71, for disk I/O. See Section 9.1 [BLOCKS], page 42, for blocks.

9.21.1 (D.R)

Name: (D.R)
Stackeffect: d n —sc
Attributes: ISO,FIG

Description: Format a signed double number ‘d’ right aligned in a field ‘n’ characters wide to the
string ‘sc’. Enlarge the field, if needed. So a field length of 0 results effectively in free format.

See also: ‘OUT’ ‘D.” ‘D.R’

9.21.2 ."

Name: ."
No stackeffect
Attributes: ISO,FIG,I,LO

Description: Used in the form: ‘." cccc"’ In a definition it compiles an in-line string ‘cccc’
(as if the denotation "cccc" was used) followed by TYPE . In ciforth ." behaves the same way
in interpret mode. In ciforth the number of characters has no limit. In ciforth ." always has
an effect on HERE during interpretation. In ISO programs you may only use this word during
compilation. We recommend that ‘." cccc"’ is replaced by ‘"cccc" TYPE'.)

See also: ‘OUT’

9.21.3 .(

Name: . (
No stackeffect
Attributes: I,LO

Description: In ciforth this is an alias for ." | except that the string is closed with) instead
of parsed as per " . In ISO programs you may only use this word while interpreting. We
recommend that ‘. (cccc)’ is replaced by ‘"cccc" TYPE'.

See also: ‘OUT’ “."’

9.21.4 .R

Name: .R
Stackeffect: nl n2 —
Attributes:

Description: Print a signed number ‘n1’ right aligned in a field ‘n2’ characters wide. Enlarge
the field, if needed. So a field length of 0 results effectively in free format.

See also: ‘OUT’ “.” ‘(D.R)’

98 ciforth manual

9.21.5 .

Name: .

Stackeffect: n —

Attributes: ISO,FIG,LO0

Description: Print the number ‘n1’ observing the current BASE |, followed by a blank.
See also: ‘OUT’ ‘U.” *.R’ ‘D.R’ ‘D.” ‘(D.R)’

9.21.6 ?

Name: ?
Stackeffect: addr —
Attributes: ISO,FIG,LO

Description: Print the value contained at the address ‘addr’ observing the current BASE , followed

by a blank.
See also: ‘OUT” ‘.’

9.21.7 CR

Name: CR
No stackeffect
Attributes: ISO,FIG,LO

Description: Transmit character(s) to the terminal, that result in a "carriage return" and a
"line feed". This means that the cursor is positioned at the start of the next line, if needed the
display is scrolled.

See also: ‘OUT’

9.21.8 D.R

Name: D.R
Stackeffect: d n —
Attributes: ISO,FIG

Description: Print a signed double number ‘d’ right aligned in a field ‘n’ characters wide. Enlarge
the field, if needed. So a field length of 0 results effectively in free format.

See also: ‘OUT’ ‘D.” ‘(D.R)’

9.21.9 D.

Name: D.
Stackeffect: d —
Attributes: ISO,FIG,L1

Description: Print the signed double number ‘d’, observing the current BASE , followed by a
blank.

See also: ‘OUT’ “*.” ‘D.R’ ‘(D.R)’

9.21.10 EMIT

Name: EMIT
Stackeffect: ¢ —
Attributes: ISO FIG LO

Description: Transmit ASCII character ‘c’ to the output device. OUT is incremented for each
character output and reset by a LF. .

See also: ‘OUT’

Chapter 9: Glossary 99

9.21.11 ETYPE

Name: ETYPE
Stackeffect: addr count —
Attributes:

Description: This behaves identical to TYPE . However it is used for all error message, so via
this word error output can be redirected, by revectoring it.

9.21.12 OUT

Name: 0UT
Stackeffect: — addr
Attributes: U

Description: A user variable that reflects the position at the current line of the output device
where the next character transmitted will appear. The first position is zero. Only an explicit
CR will reset OUT , not an LF embedded in a string that is TYPE d.

See also: ‘EMIT’ ‘TYPE’ ‘CR’

9.21.13 SPACES

Name: SPACES

Stackeffect: n —

Attributes: ISO,FIG,LO0

Description: If ‘n’ is greater or equal to zero, display as much spaces.
See also: ‘SPACE’ ‘OUT’

9.21.14 SPACE

Name: SPACE

No stackeffect

Attributes: ISO,FIG,LO0

Description: Transmit an ASCII blank to the output device.
See also: ‘EMIT’ ‘OUT’

9.21.15 TYPE

Name: TYPE
Stackeffect: addr count —
Attributes: ISO FIG LO

Description: Transmit count characters from ‘addr’ to the output device. All terminal I/O goes
through this word, so terminal I/O can be redirected, by revectoring it. In this ciforth the string
must not contain embedded LF’s. OUT is incremented for each character output.

See also: ‘EMIT’ ‘OUT’

9.21.16 U.

Name: U.

Stackeffect: u —

Attributes: ISO

Description: Print the unsigned number ‘u’ observing the current BASE , followed by a blank.
See also: ‘OUT” *.” *.R’ ‘D.R’ ‘D.” *(D.R)’

100 ciforth manual

9.22 PARSING

The outer interpreter is responsible for parsing, i.e. it gets a word from the current input
source and interprets or compiles it, advancing the IN pointer. The wordset ‘PARSING’ contains
the words used by this interpreter and other words that consume characters from the input
source. In this way the outer interpreter need not be very smart, because its capabilities can be
extended by new words based on those building blocks.

9.22.1 (PARSE)

Name: (PARSE)
Stackeffect: ¢ — sc
Attributes:

Description: Scan the current input source for the character ‘c’ . Return ‘sc’: a string from the
current position in the input stream, ending before the first such character, or at the end of the
current input source if it isn’t there. The character is consumed. As it goes with string constants,
you may not alter its content, nor assume anything is appended. So no leading delimiters are
skipped. The difference with an ISO ‘PARSE’ is that ISO considers control characters a match
for a blank.

See also: ‘WORD’ ‘(WORD)’

9.22.2 (WORD)

Name: (WORD)
Stackeffect: — sc
Attributes: CI LO

Description: Parse the current input source for a word, i.e. blank-delimited as per ?BLANK .
Skip leading delimiters then advance the input pointer to past the next delimiter or past the
end of the input source. Leave the word found as a string constant ‘sc’. As it goes with string
constants, you may not alter its content, nor assume anything is appended. Note that this is
more deserving of the name “WORD” than what is in the ISO standard, that can be used to
parse lines.

See also: ‘BLK’ ‘WORD’ ‘IN’

9.22.3 (

Name: (
No stackeffect
Attributes: ISO,FIG,I,L0

Description: Used in the form: ‘(cccc)’. Ignore a comment that will be delimited by a right
parenthesis that must be in the same input source, i.e. on the same line for terminal input,
or in the same string, block or file, when that is the input. It is an immediate word, so colon
definitions can be commented too. A blank after the word (is required.

See also: ‘\’

9.22.4 7TBLANK

Name: ?BLANK
Stackeffect: ¢ — {f
Attributes:

Description: For the character ‘c’ return whether this is considered to be white space into the
flag ‘£’ . At least the space, ASCII null, the tab and the carriage return and line feed characters
are white space.

See also: ‘BL’ ‘SPACE’

Chapter 9: Glossary 101

9.22.5 CHAR

Name: CHAR
Stackeffect: — ¢
Attributes: 1SO,I

Description: Parse a word and leave ‘c’ the first non blank char of that word in the input source.
If compiled the searching is done while the word being compiled is executed. Because this is so
confusing, it is recommended that one never compiles or postpones CHAR .

See also: ‘Prefix_& ‘[CHAR]’ ‘”’

9.22.6 EVALUATE

Name: EVALUATE

Stackeffect: sc — 77

Attributes: ISO

Description: Interpret the content of ‘sc’. Afterwards return to the current input source .
See also: ‘LOAD’ ‘INCLUDE’ ‘SET-SRC’

9.22.7 INTERPRET

Name: INTERPRET
Stackeffect: 77 — 77
Attributes:

Description: Repeatedly fetch the next text word from the ‘current input source’ and execute
it (STATE is not 1) or compile it (STATE is 1). A word is blank-delimited and looked up in the
vocabularies of search-order . Note that the denotations at the end of the FORTH wordlist match
numbers. If it is not found at all, it is an ERROR . A denotation is a number, a double number,
a character or a string etc. Denotations are handled respectively by the words 0 ... F & " and
any other word of the DENOTATION wordlist, depending on the first character.

A number is converted according to the current base. If a decimal point is found as part of
a number, the number value that is left is a double number, otherwise it is a single number.
Comma’s are ignored in ciforth.)

See also: ‘WORD’ ‘NUMBER’ ‘BLK’ ‘DPL’

9.22.8 IN]]

Name: IN[]
Stackeffect: —addr ¢
Attributes: CI LO

Description: Parse the current input source leaving the next character ‘c’ and its address ‘addr’
. If at the end of the input source, leave a pointer past the end and a zero. Advance the input
pointer to the next character.

See also: ‘BLK’ ‘WORD’ ‘IN’

9.22.9 SET-SRC

Name: SET-SRC
Stackeffect: sc —
Attributes:

Description: Make the string constant ‘sc’ the current input source . This input is chained, i.e.
exhausting it has the same effect as exhausting the input that called SET-SRC . In practice this
word is almost always followed by a call to INTERPRET .

See also: ‘EVALUATE’ ‘INTERPRET’

102 ciforth manual

9.22.10 SOURCE

Name: SOURCE

Stackeffect: — addr nl

Attributes: ISO

Description: Return the address and length of the current input source .
See also: ‘SRC’ ‘SOURCE-ID’

9.22.11 SRC

Name: SRC
Stackeffect: addr —
Attributes:

Description: Return the address ‘addr’ of the current input source specification, allocated in
the user area. It consists of three cells: the lowest and non-inclusive highest address of the parse
area the non-inclusive highest address of the parse area and a pointer to the next character to be
parsed. Changing ‘SRC’ takes immediate effect, and must be atomic, by using ‘RESTORE-INPUT’,
or changing only the third cell. The third cell has the alias ‘IN’ .

Words like ‘>IN BLK SOURCE SOURCE-ID’ are secondary, and return their output by “second-
guessing” ‘SRC’ .

See also: ‘BLK’ ‘SOURCE-ID’

9.22.12 STATE

Name: STATE
Stackeffect: — addr
Attributes: ISO,L0,U

Description: A user variable containing the compilation state. A non-zero value indicates com-
pilation.

9.22.13 WORD

Name: WORD
Stackeffect: ¢ —addr
Attributes: ISO,FIG,LO

Description: Parse the ‘current input source’ using ‘c’ for a delimiter. Skip leading delimiters
then advance the input pointer to past the next delimiter or past the end of the input source.
Leave at ‘addr’ a copy of the string, that was surrounded by ‘c’ in the input source. This is an
oldfashioned string to be fetched by COUNT , not $@ . In ciforth the character string is positioned
at the dictionary buffer HERE . WORD leaves the character count in the first byte, the characters,
and ends with two or more blanks.

See also: ‘(WORD)’ ‘(PARSE)’ ‘BLK ’ ‘IN’

9.22.14 [CHAR]

Name: [CHAR]
Stackeffect: — ¢
Attributes: ISO 1

Description: A compiling word. Parse a word. Add the run time behaviour: leave ‘c’, the first
non blank char of that word in the input source. In ciforth this word works also in interpret
mode.

See also: ‘Prefix_& ‘CHAR’

Chapter 9: Glossary 103

9.22.15 |

Name: [
No stackeffect
Attributes: ISO,FIG,I,L.1

Description: Used in a colon-definition in form:

L: XXX [words 1] more ;

Suspend compilation. The words after [are executed, not compiled. This allows calculation
or compilation exceptions before resuming compilation with]

See also: ‘LITERAL ’ ‘]’

9.22.16 \

Name: \
No stackeffect
Attributes: ISO,I,L0

Description: Used in the form: ‘\ cccc’ Ignore a comment that will be delimited by the end of
the current line. May occur during execution or in a colon-definition. A blank after the word \
is required.

See also: ‘(C

9.22.17]

Name:]

No stackeffect

Attributes: ISO,FIG,L1

Description: Resume compilation, to the completion of a colon-definition.

See also: ‘[’

9.23 SCREEN

Most of the blocks mass storage is used for screen ’s that have 16 lines of 64 characters. They
are used for source code and documentation. Each screen is one BLOCK as required by ISO. The
‘SCREEN’ wordset contains facilities to view screens, and load them, that is compiling them and
thus extending the base system. A system is customized by loading source screens, possibly one
of these extension is a text editor for screens.

9.23.1 (LINE)

Name: (LINE)
Stackeffect: nl n2 — sc
Attributes:

Description: Convert the line number ‘n1’ and the screen ‘n2’ to a string ‘sc’ the content of the
line (without the trailing new line).

See also: ‘LINE’

104 ciforth manual

9.23.2 —>

Name: -->
No stackeffect
Attributes: I,LO

Description: Continue interpretation with the next disc screen. If the current input source is
not from a block, a crash will ensue. If this new screen is left by throw of an exception, the
screen may remain locked until a QUIT , or any uncaught exception.

See also: ‘LOCK’ ‘CATCH’ ‘LOAD’

9.23.3 C/L

Name: C/L
Stackeffect: — ¢
Attributes:

Description: A constant that leaves the number of characters on a line of a standard screen: 64.
The last character of each line is a LF.

See also: ‘LIST’ ‘LINE’

9.23.4 INDEX

Name: INDEX
Stackeffect: from to —
Attributes:

Description: Print the first line of each screen over the inclusive range ‘from’ , ‘to’ . This is
used to view the comment lines of an area of text on disc screens.

See also: ‘LIST’

9.23.5 LIST

Name: LIST
Stackeffect: n —
Attributes: ISO,FIG,LO0

Description: Display the ASCII text of screen ‘n’. The number of the screen is always printed
in decimal. SCR contains the screen number during and after this process.

See also: ‘BLOCK’

9.23.6 LOAD

Name: LOAD
Stackeffect: n — 77
Attributes: ISO,FIG,LO

Description: Interrupt the current input source in order to interpret screen ‘n’ . The stack
changes in according with the words executed. At the end of the screen, barring errors or forced
changes, it continues with the interrupted input source.

See also: ‘BLOCK’ ‘#BUFF’ ‘THRU’ ‘QUIT’ ‘EXIT’ ‘-->’ ‘LIST’

9.23.7 LOCK

Name: LOCK
Stackeffect: n —
Attributes: CI

Description: Lock the block ‘n’. Multiple locks are possible, and require multiple unlocks.
Probably, because it is to become the current input source . The result is that its buffer will
not be reclaimed until an UNLOCK occurs.

See also: ‘BLOCK’ ‘UNLOCK’ ‘#BUFF’

Chapter 9: Glossary 105

9.23.8 R#

Name: R#
Stackeffect: — addr
Attributes: U

Description: A user variable which may contain the location of an editing cursor, or other file
related function. Unused in the kernel of ciforth.

9.23.9 SCR

Name: SCR

Stackeffect: — addr

Attributes: U

Description: A user variable containing the screen number most recently reference by LIST .
See also: ‘BLOCK’

9.23.10 THRU

Name: THRU
Stackeffect: nl n2 — 77
Attributes: ISO,FIG,LO0

Description: Interrupt the current input source in order to interpret screen ‘nl’ through ‘n2’
(inclusive). The stack changes in according with the words executed. At the end of the screens,
barring errors or forced changes, it continues with the interrupted input source.

See also: ‘#BUFF’ ‘BLOCK’ ‘LOAD’ ‘QUIT’ ‘EXIT’ ‘-->’

9.23.11 TRIAD

Name: TRIAD
Stackeffect: scr —
Attributes:

Description: Display on the selected output device the three screens which include that numbered
‘scr’ , beginning with a screen evenly divisible by three. Output is suitable for source text
records, and includes a reference line at the bottom taken from line 0 of the first error screen.

See also: ‘MESSAGE’ ‘ERRSCR ’

9.23.12 UNLOCK

Name: UNLOCK
Stackeffect: n —
Attributes: CI

Description: Unlock the block ‘n’. Probably, because it is no longer the current input source
. The result is that its buffer can again be reclaimed. Unlocking without a previous lock may
lead to a crash.

See also: ‘LOCK’ ‘#BUFF’

9.23.13 (BLK)

Name: (BLK)
Stackeffect: — addr
Attributes: U

Description: When the standard word BLK is used, this user variable reflects the state of the
‘current input source’. It indicates the block number being interpreted, or zero, if input is
being taken from the terminal input buffer. Changing BLK has no effect, and its content must
be fetched before the current input source has changed.

See also: ‘BLOCK’ ‘TIB’

106 ciforth manual

9.23.14 BLK

Name: BLK
Stackeffect: — addr
Attributes: ISO

Description: When the standard word BLK is used, the content of the user variable ‘(BLK)’ is
refreshed to reflect the state of the current input source and its address is returned in ‘addr’ . It
indicates the block number being interpreted, or zero, if input is being taken from the terminal
input buffer. In ciforth changing the content at ‘addr’ has no effect, and its content must be
fetched before the current input source has changed.

See also: ‘BLOCK’ ‘TIB’

9.24 SECURITY

The wordset ‘SECURITY’ contains words that are used by control words to abort with an error
message if the control structure is not correct. Some say that this is not Forth-like. You only
need to know them if you want to extend the ‘CONTROL’ wordset.

9.24.1 !CSP

Name: !CSP

No stackeffect

Attributes:

Description: Save the stack position in CSP . Used as part of the compiler security.

9.24.2 7COMP

Name: 7COMP

No stackeffect

Attributes:

Description: Issue error message if not compiling.
See also: ‘?ERROR’

9.24.3 ?7CSP

Name: ?CSP

No stackeffect

Attributes:

Description: Issue error message if stack position differs from value saved in ‘CSP’ .

9.24.4 7DELIM

Name: ?DELIM

No stackeffect

Attributes:

Description: Parse a character and issue error message if it is not a blank delimiter.

9.24.5 ?TEXEC

Name: 7EXEC

No stackeffect

Attributes:

Description: Issue an error message if not executing.
See also: ‘?ERROR’

Chapter 9: Glossary 107

9.24.6 "LOADING

Name: ?LOADING

No stackeffect

Attributes:

Description: Issue an error message if not loading
See also: ‘?ERROR’

9.24.7 7PAIRS

Name: ?PAIRS
Stackeffect: nl n2 —
Attributes:

Description: Issue an error message if ‘n1’ does not equal ‘n2’ . The message indicates that
compiled conditionals do not match.

See also: ‘?ERROR’

9.24.8 7STACK

Name: ?STACK

No stackeffect

Attributes:

Description: Issue an error message if the stack is out of bounds.
See also: ‘?ERROR’

9.24.9 CSP

Name: CSP
Stackeffect: —- addr
Attributes: U

Description: A user variable temporarily storing the stack pointer position, for compilation error
checking.

9.25 STACKS

The wordset ‘STACKS’ contains words related to the data stack and return stack . Words can
be moved between both stacks. Stacks can be reinitialised and the value used to initialise the
stack pointer ’s can be altered.

9.25.1 .S

Name: .S

Stackeffect: from to —

Attributes:

Description: Print the stack, in the current base.
See also: ‘LIST’

9.25.2 >R

Name: >R
Stackeffect: n —
Attributes: ISO.FIG,C,L0

Description: Remove a number from the data stack and place as the most accessable on the
return stack . Use should be balanced with R> in the same definition.

See also: ‘R@’

108 ciforth manual

9.25.3 DEPTH

Name: DEPTH

Stackeffect: — nl

Attributes: ISO

Description: Leave into ‘nl’ the number of items on the data stack, before ‘n1’ was pushed.
See also: ‘DSP@’

9.25.4 DSP!

Name: DSP!

Stackeffect: addr —

Attributes:

Description: Initialize the data stack pointer with ‘addr’ .
See also: ‘DSP@’

9.25.5 DSPa

Name: DSP@
Stackeffect: — addr
Attributes:

Description: Return the address ‘addr’ of the data stack position, as it was before DSP@ was
executed.

See also: ‘SO’ ‘DSP!’

9.25.6 RO

Name: RO

Stackeffect: — addr

Attributes: U

Description: A user variable containing the initial location of the return stack.
See also: ‘RSP!’

9.25.7 R>

Name: R>

Stackeffect: — n

Attributes: ISO,FIG,LO

Description: Remove the top value from the return stack and leave it on the data stack .
See also: ‘>R’ ‘R@’

9.25.8 RG

Name: R@

Stackeffect: — n

Attributes: ISO

Description: Copy the top of the return stack to the data stack.
See also: ‘>R’ ‘<R’

Chapter 9: Glossary 109

9.25.9 RDROP

Name: RDROP

Stackeffect: —

Attributes:

Description: Remove the top value from the return stack.
See also: ‘>R’ ‘R@" ‘R>’

9.25.10 RSP!

Name: RSP!

Stackeffect: addr —

Attributes:

Description: Initialize the return stack pointer with ‘addr’.
See also: ‘RSP@’

9.25.11 RSPa@

Name: RSP@
Stackeffect: — addr
Attributes:

Description: Return the address ‘addr’ of the current return stack position, i.e. pointing the
current topmost value.

See also: ‘RO’ ‘RSP!’

9.25.12 SO

Name: SO

Stackeffect: — addr

Attributes: U

Description: A user variable that contains the initial value for the data stack pointer.
See also: ‘DSP!’

9.26 STRING

The wordset ‘STRING’ contains words that manipulate strings of characters. In ciforth strings
have been given their civil rights. So they are entitled to a denotation (the word ") and have
a proper fetch and store. An (address length) pair is considered a string constant . It may be
trimmed, but the data referring to via the address must not be changed. It can be stored in a
buffer, a string variable , that contains in its first cell the count. Formerly this was in the first
byte, and these are called old fashioned string ’s (or less flatteringly: brain-damaged).

9.26.1 $!-BD

Name: $!-BD
Stackeffect: sc addr —
Attributes:

Description: Store a string constant ‘sc’ in the old fashioned string variable at address ‘addr’,
i.e. it can be fetched with COUNT . (Where would that BD come from?)

See also: ‘COUNT’ ‘$!’

110 ciforth manual

9.26.2 $!

Name: $!

Stackeffect: sc addr —

Attributes:

Description: Store a string constant ‘sc’ in the string variable at address ‘addr’.
See also: ‘$@" ‘$+!7 ‘$C+’

9.26.3 $+!

Name: $+!

Stackeffect: sc addr —

Attributes:

Description: Append a string constant ‘sc’ to the string variable at address ‘addr’.
See also: ‘@ ‘$!’ ‘$C+’

9.26.4 $,

Name: $,
Stackeffect: sc — addr
Attributes:

Description: Allocate and store a string constant ‘sc’ in the dictionary and leave its address
‘addr’.

See also: ‘$@” ‘$!’

9.26.5 $0

Name: $@

Stackeffect: addr — sc

Attributes:

Description: From address ‘addr’ fetch a string constant ‘sc’ .
See also: ‘$@" ‘§!”7 ‘$+!7 ‘$C+’

9.26.6 $C+

Name: $C+

Stackeffect: ¢ addr —

Attributes:

Description: Append a char ‘c’ to the string variable at address ‘addr’.
See also: ‘$@” ‘§!” ‘$+1”’

9.26.7 $I

Name: $I
Stackeffect: sc ¢ — addr
Attributes:

Description: Find the first ‘c’ in the string constant ‘sc’ and return its ‘addr’ if present. Oth-
erwise return a nil pointer.

See also: ‘$S’ ‘CORA’

Chapter 9: Glossary 111

9.26.8 $S

Name: $S
Stackeffect: sc ¢ — scl sc2
Attributes:

Description: Find the first ‘c’ in the string constant ‘sc’ and split it at that address. Return
the strings after and before ‘c’ into ‘sc1’ and ‘sc2’ respectively. If the character is not present
‘sc1’ is a null string (its address is zero) and ‘sc2’ is the original string. Both ‘sc1’ and ‘sc2’
may be empty strings (i.e. their count is zero), if ‘c’ is the last or first character in ‘sc’ .

See also: ‘$I’ ‘CORA’

9.26.9 -TRAILING

Name: -TRAILING
Stackeffect: scl — sc2
Attributes: ISO

Description: Trim the string constant ‘scl’ so as not to contain trailing blank space and leave
it as ‘sc2’ .

See also: ‘?BLANK’

9.26.10 BL

Name: BL

Stackeffect: — ¢

Attributes: ISO.FIG

Description: A constant that leaves the ASCII value for "blank".

9.26.11 COUNT

Name: COUNT
Stackeffect: addrl — addr2 n
Attributes: ISO,FIG,LO

Description: Leave the byte address ‘addr2’ and byte count ‘n’ of a message text beginning at
address ‘addr1’ . It is presumed that the first byte at ‘addril’ contains the text byte count and
the actual text starts with the second byte. Alternatively stated, fetch a string constant ‘addr
n’ from the brain damaged string variable at ‘addr1’ .

See also: ‘TYPE’

9.26.12 S"

Name: S"
Stackeffect: — addrl n
Attributes: ISO,L0

Description: Used in the form: ‘S" cccc"’ Leaves an in-line string ‘cccc’ (delimited by the
trailing ") as a constant string ‘addrl n’ . In ciforth the number of characters has no limit
and using ‘S"’ has always an effect on HERE , even during interpretation. In ciforth a " can be
embedded in a string by doubling it. In non-portable code denotations are recommended.

See also: ‘"’

112 ciforth manual

9.27 SUPERFLUOUS

The wordset ‘SUPERFLUQUS’ contains words that are superfluous, because they are equivalent
to small sequences of code. Traditionally one hoped to speed Forth up by coding these words
directly.

9.27.1 0

Name: 0

Stackeffect: — 0

Attributes:

Description: Leave the number 0.
See also: ‘CONSTANT’

9.27.2 1+

Name: 1+

Stackeffect: n1 — n2

Attributes: L1

Description: This is shorthand for “1’ + 7.

See also: ‘CELL+’ ‘1-’

9.27.3 1-

Name: 1-

Stackeffect: n1 — n2

Attributes: ISO

Description: This is shorthand for ‘1 -,

See also: ‘1+°’

9.27.4 2%

Name: 2%
Stackeffect: nl — n2
Attributes: ISO

Description: Perform an arithmetical left. The bit pattern of ‘n1’ is shifted to the left, with a
result identical to ‘1 LSHIFT'. This word should not be used.

See also: 2/’

9.27.5 2/

Name: 2/
Stackeffect: n1 — n2
Attributes: ISO

Description: Perform an arithmetical right. The bit pattern of ‘n1’ is shifted to the right, except
that the left most bit (“sign bit”) remains the same. This is the same as ‘S>D 2 FM/MOD SWAP
DROP’. It is not the same as ‘2 /7, nor is it the same as ‘1 RSHIFT’. This confusing word should
never be used.

See also: ‘2%’

Chapter 9: Glossary 113

9.27.6 Number_1

Name: Number_1

Stackeffect: — 1

Attributes:

Description: Leave the number 1.
See also: ‘CONSTANT’

9.27.7 Number_2

Name: Number_2

Stackeffect: — 2

Attributes:

Description: Leave the number 2.

See also: ‘CONSTANT’

9.28 WORDLISTS

The dictionary is subdivided in non-overlapping subsets: the word list s (see Section 9.6
[DICTIONARY], page 61). There is one exception: the DENOTATION wordlist is also part
of the FORTH word list. They are created by the defining word VOCABULARY and filled by
defining words while that vocabulary is CURRENT . They regulate how words are found; different
vocabularies can have words with the same names.

A word list in the ISO sense has no name, but a word list identifier or WID , which is
inconvenient. We use vocabulary words created by the defining word VOCABULARY . They are
used to manipulate the word list’s that are associated with them. So vocabularies are nearly
the wordlist ’s of the ISO standard, the primary difference is that they have a name.

9.28.1 ALSO

Name: ALSO
No stackeffect
Attributes: ISO

Description: Duplicate the topmost WID in the search order stack. If there were already 8 WID
s, ciforth looses the last one. This is not counting the ONLY search order.

See also: ‘CONTEXT’ ‘VOCABULARY’

9.28.2 ASSEMBLER

Name: ASSEMBLER
No stackeffect
Attributes: B,NISO,FIG,I,LL1

Description: The name of the vocabulary to make machine code definitions. In ciforth execution
it pushes the associated word list to the top of the CONTEXT stack. (For ISO-compliance it would
replace the top.) ASSEMBLER is immediate, so it will execute during the creation of a colon-
definition, to select this vocabulary at compile time. This word makes only sense in combination
with the words that belong to it. So it is present in loadable form in the screens file ‘forth.lab’

See also: ‘VOCABULARY’ ‘LOAD’

114 ciforth manual

9.28.3 CONTEXT

Name: CONTEXT
Stackeffect: — addr
Attributes: FIG,U,LO

Description: The context is the address where the WID is found of the wordlist that is searched
first. In ciforth ‘addr’ actually points to the search order , a row of WID ’s ending with
the minimum search order WID. The corresponding wordlists are searched in that order for
definitions during interpretation. This row of WID’s is allocated in the user variable space
allowing for compilation in threads. It may contain up to 8 WID ’s in this ciforth, while the
ISO Search-Order wordset requires a capacity of at least 8.

See also: ‘PRESENT’ ‘VOCABULARY’ ‘CURRENT’

9.28.4 CURRENT

Name: CURRENT
Stackeffect: — addr
Attributes: FIG,U,L0

Description: A user variable containing the WID of a vocabulary to which new words will be
added. It is the compilation word list in the sense of the ISO standard. The WID has the
structure of a dictionary entry . This allows to link in a new word between the link field of the
WID and the next definition.

See also: ‘VOCABULARY’ ‘CONTEXT’

9.28.5 DEFINITIONS

Name: DEFINITIONS
No stackeffect
Attributes: ISO

Description: Used in the form: ‘cccc DEFINITIONS' Make the top most search order word list,
(context), the compilation word list (current). In the example, executing vocabulary name ‘cccc’
add it to the top of the search order and executing DEFINITIONS will result in new definitions
added to ‘ccec’ .

See also: ‘CONTEXT’ ‘VOCABULARY’

9.28.6 DENOTATION

Name: DENOTATION
No stackeffect
Attributes: CI

Description: The name of the DENOTATION vocabulary. The associated word list contains prefix
words, called denotation definitions. In ciforth all words of DENOTATION belong to the minimum
search order . If found the parse pointer is moved back to immediately after the prefix, and
the corresponding denotation definition executed. This word list must be used with care as a
CONTEXT word list; and only as a CURRENT word list whenever you want to add a denotation.
The word FORTH is hidden by the word F . Use ‘ONLY FORTH’ to regain control.

See also: ‘VOCABULARY’

9.28.7 ENVIRONMENT

Name: ENVIRONMENT
No stackeffect
Attributes: CI

Description: The name of the ENVIRONMENT vocabulary. The associated word list contains envi-
ronment queries. The names of words present in ENVIRONMENT are recognized by ENVIRONMENT?

Chapter 9: Glossary 115

This word list is not intended to be used as a CONTEXT word list; and only as a CURRENT
whenever you want to add an environment query.

See also: ‘VOCABULARY’

9.28.8 FORTH

Name: FORTH

No stackeffect

Attributes: NISO,FIG,I,LL1

Description: The name of the primary vocabulary. Execution pushes the FORTH WID

to the top of the search order . (For ISO-compliance it would replace the top.) Until
additional user word list ’s are created, new user definitions become a part of FORTH . FORTH is
immediate, so it will execute during the creation of a colon-definition, to select this word list at
compile time.

See also: ‘CONTEXT’ ‘VOCABULARY’

9.28.9 LATEST

Name: LATEST
Stackeffect: — addr
Attributes: FIG

Description: Leave the dictionary entry address ‘addr’ of the topmost word in the CURRENT
word list.

See also: ‘VOCABULARY’

9.28.10 ONLY

Name: ONLY
No stackeffect
Attributes: NISO

Description: Make CONTEXT , the search order stack, empty, leaving the minimum search order
, which is approximately the DENOTATION word list plus the word FORTH . By using FORTH one
can regain control.

See also: ‘VOCABULARY’

9.28.11 PREVIOUS

Name: PREVIQUS
No stackeffect
Attributes: ISO

Description: Pop the topmost WID from the search order stack. If empty still the ONLY search
order is left.

See also: ‘CONTEXT’ ‘VOCABULARY’

9.28.12 VOC-LINK

Name: VOC-LINK
Stackeffect: — addr
Attributes: U

Description: A user variable containing the dictionary entry address address of the word most
recently created by VOCABULARY . All vocabulary names are linked by these fields to allow FORGET
to find all vocabularies.

See also: ‘VOCABULARY’

116 ciforth manual

Glossary Index 117

Glossary Index

This index finds the glossary description of each word.

! -

e 84 P 95

TCSP L 106 S P 104
STRAILING . ..ot 111

Pt 74 .
B> S 98
HBUFF ... 42 o 97
s 74 W 97
R 97
$ O T 107
CSIGNON . 90
B 110
B oBD . 109
B 1o/
O T0 95
i; '''''''''''''''''''''''''''' ﬂg JMOD oo 95
BT 110
S 111 :
... 56
9
L 61 ;
e e 57
(e8]) 59
oo 100
G) o 55 —
(GCODE) ..ot e 59 _
CODO) o oo 55 T 83
(G0 110 0] 2 54
IN) oo e 80 ?
(ABORT") & oottt e e e e e e 71
CACCEPT) .« oo oo, 78 PP 98
(BACK . . v oo oo 55 PBLANK 100
(BLK) . o oo oo 105 PCOMP . .o e 106
(BUFFER) . . o v oeoeo e 44 PCSP . e 106
(CREATE) . . v oo oo 59 PDELIM 106
(DLR) oo 97 PDISK-ERROR. 42
(DO) 55 7D0 ... 49
(FIND) 64 7DUP .. 81
(FORWARD .« .« oo 55 PERROR 69
(LINE) oo, 103 PERRUR 69
(€ 70]0) = T 55 ZEXEC ..o 106
(MATCH) . oot 64 TLOADING.....................l 107
(NUMBER) . . v v v oo oo 76 PPATRS . oo 107
(PARSE) . v v oo 100 PSTACK . . oot 107
(WORD) v ot e e e e 100
@
* LG 85
K 95
K 91
K/MOD .ot 91 [
R 103
0 64
? [CHAR] . ..o 102

118

T 103
e 90
+
o 95
2 84
FBUF .. 45
FLOOP ... 49
FORIGIN ..o e 77
>
D 83
SBODY .. 61
SCFA L 64
SDF A . 65
SEFA . 65
SIN e 79
SLEA o 65
SNE A 65
SNUMBER 74
SPHA . 65
SR 107
SSF A 65
SVFA o 66
SWID L 66
N 103
<
e e 83
£ 2 74
> 83
0
O et 112
A 83
0% 82
OBRANCH e 56
1
Lo 112
I 112
2
b2/ 85
2K 112
2 112
20 L 85
2DROP . .. 81
2DUP . 81
20VER . ..ot 81

BLOCK-HANDLE

ciforth manual

Glossary Index

D

Dt i 98
DR et 98
Dt 67
DABS . 67
DECIMAL . ..ot e e 75
DEFINITIONS.ot 114
DELETE-FILE.t 72
DENOTATION . ..ottt e e e 114
DEPTH e 108
DIGIT ..ttt 76
DISK-ERROR....... ... 43
DLITERAL . ..ot e 47
DNEGATE 67
DO . 50
DOES> . . e 58
D 62
DPL . 76
DROP . .ottt 81
DS Pl 108
DSPO . .ot 108
DUP ..ttt 82
E

ELSE . 51
EM e 87
EMIT . 98
EMPTY-BUFFERS. e 44
ENVIRONMENTo 114
ENVIRONMENT? . ..ot e 68
ERASE . . e 87
ERROR . .ottt ettt e e e e et e e 70
ERRSCR . . .o 70
ETYPE . . 99
EVALUATE e e 101
EXECUTE . ..o e e 90
EXIT . 51
EXIT=CODE.ttt 94
F

FARMOVE e 87
FENCE . ..o 66
FILL .ot e 88
FIND ..ot 62
FIRST .t 45
FLD .t 76
FLUSH . .o e e 45
FM/MOD .. oet ettt e e e e e e e et e 91
FOR-VOCS . .ottt e e e 66
FOR-WORDSo 66
FORGET . ..o e 62
FORGET-VOC. e 67
FORTH . ..o e 115
FORWARD) ..\ttt e et e e e e e e e 56
FOUND . ..o e 63
G

119
H
HANDLERo e 71
HERE 63
HEX . 75
HIDDEN . ..ot e e 67
HLD .. 76
HOLD . ..o e 75
I
L o 52
ID . et 63
IF 51
IMMEDIATE e 63
IN 79
INLT oo 101
INCLUDED . . .ottt et e e e e e ettt e 72
INDEX ..o e 104
INTERPRET e 101
INVERT . ..o e 84
J
T e 52
K
KEY . 79
KEY . e 79
L
L 88
L0 e 88
LATEST ... e 115
LEAVE . . 52
LIMIT ... e 45
LIST . 104
LI . 48
LITERAL e s 47
LOAD . .ottt 104
LOCK .. 104
LOOP ... e 52
LOW-DP ... e 88
LOW-EM 88
LSHIFT .. e 96
M
Mk 91
M/MOD ..t 91
MAK 96
MESSAGE . ..ottt 70
MIN . e 96
MOD ..t 96
MOVE 88
N
NAME . .. 68
NEGATE 96
NOOP . oottt e e e e 90
NUMBER e 77
Number_1........... .. e 113
Number_2. ... 113

120

O

OFFSET e 45
OK o 78
ONLY .ot 115
OPEN-FILE 72
OPTIONS ..ot e 78
0] 84
OUT .. e 99
OVER . .. 82
P

Pl 89
PO . 89
PAD . 63
PC ! 89
PCO .. 89
POSTPONE e 47
Prefix &o 60
Prefig = . 60
Prefix__TICK........ ..o, 60
Prefix " . . . 59
Prefix_+ e 60
Prefix_~ 60
Prefix_O. o 60
PRESENTt e e 63
PREV ... 46
PREVIOUS e 115
PUT-FILE....... .. e 72
Q

QUIT .. 78
R

RE 105
RO .. 108
R 108
B\W . 44
RO o 108
RDROP e 109
READ e 73
READ-FILE i 72
RECURSE e 52
REFILL-TIB.o 80
REG-SET e 44
REMAINDERt e 80
REPEAT . .. e 53
REPOSITION-FILE, 73
RESTORE e 46
RESTORE-INPUT.ttt 46
ROT .ot 82
RSHIFT .. e 97
RSP 109
RSPQ 109
RUBOUT e e e e 80
RW-BUFFER....... ... i 73
S

S 111
O D 68
S0 o 109
SAVE . . 46
SAVE-INPUT i 46

ciforth manual

SDLITERAL ...\ttt 48
SEEK . o vt 47
SET=SRC . . o o ettt 101
SHELL . .\ oottt e 94
SIGN .ottt 75
SKIP oot 53
SM/REM . . oottt e 92
1] 010703 2 102
SPACE . . ettt 99
SPACES . . o oottt 99
SRC .ot 102
STALEST . o oottt e 47
STATE . . oo et e e e e 102
SUPPLIER . ..ot 68
SWAP oo 82
SYSTEM . . o oee ettt e e e 94
T

TASK © oo e e 90
THEN © oottt 53
11370 70
1130 105
= 80
TOGGLE . . oottt e e e e e 89
TRIAD .« ..ottt et e e e e e 105
14 99
U
L0 99
U o 84
100 T 90
UMk e 92
UM/MOD .. oot e e e e e 92
UNLOCK . oo v e e e e e e e e e e 105
UNLOOP . oo e e e e e e e 54
UNTIL oot e e e e e e e e 54
UPDATE . . o v 44
USER . oot e e e e 58
\V

VARIABLE . ..ottt e e e e e e e 58
VERSION . o oo e e e e e 69
VOC-LINK . .ot 115
VOCABULARY . . .ottt 58
W

WARM . .o 78
WARNING . .o oo et e e e 70
WHERE . . oottt 71
WHILE ..o 54
WITHIN .« oot 89
WORD . o v e e e e e e e e e 102
WORDS .« . o oottt e e e e e e e 64
WRITE . oottt e e e e e e e e e 73
WRITE-FILE.o 73
X

() 84
Z

ZEN 94

Forth Word Index

Forth Word Index

121

This index contains all references to a word. Use the glossary index to find the glossary

description of each word.

!

b 11, 84
107 > B 106
VTALLY oot e e e e e 27
-
o 74
B> 74, 75
HBUFF .. 42
S 74
$

3 110
Bl oBD o 109
B 110
B . 53, 102, 110
o 110
BCH 110
3 110
B 111
&

2 37, 101
9

Y 12, 37, 60, 61, 64
D WOTAS .« it 35
L2 57
P3CODE? © ettt 57
oo 100
(G JE 55
(@ ¢]0]) 5 59
(PD0) ettt 55
(FLOOP) .« et 49, 54
OIN) ot 80
(ABORT") ottt e e e e e e 71
(ACCEPT) . .t 78, 80
(BACK . . oottt 55, 56
(BLK) oottt e e e e e 105
(BUFFER) . ..ottt 43, 44, 45
(CREATE) ..ot 16, 36, 59
(D.R) oot e 97
(€]) 1 50, 55
(FIND) .ottt ettt et 16, 64
(FORWARD\t 55, 56
(LINE) oottt e e e e e 103
(€ 70023 T 52, 55
(MATCH) .« . oot e e e e e 64
(NUMBER) . .\ votte e e e e e e e 76
(PARSE) ..ottt e e e e 100
Q7 [0]33) 1 100

*
K 3, 95
K 91
K/MOD . oot 91
9
A 61
PP 82, 95
S 38, 104
STRAILING . o ovvt oot e et e 111
... 3, 98
G 97
L 12, 97
R ot 97
B 14, 107
CSTGNON © v vt e e e e 90
L 95
JMOD o 95
.................................... 3, 10, 37, 56
’
P 3, 4,37, 57
F0]0]5) 2 59
T 82, 83
?
S P 98
PBLANK © .o oot e e 100
PCOMP . .\ v ettt e e 37, 106
PO .t 37, 106
PDELIM . . oottt ettt e 106
PDISK-ERROR ...ttt 36, 42
D0 . et 49, 55
10 81
PENVIRONMENTt eeie e e 42
PERROR .. ovveee e e e 35, 69, 71
PERRUR . . .t voet e ettt e e e 69
TEXEC . ottt e 106
TEXEC. ottt 37
PLOAD © .« vttt e e 38
PLOADING . . v v vee et ettt e 107

122

PSTACK . . oot e 36, 107
Q et 11, 85
Lo 4,103
IR 12, 64
[AX] o 26
1323 2 27
(123 2 S 31
[BX] 7 31
[BX4SIT oot 27
[CHAR] . .o oot 12, 102
[COMPILE] ..ottt e e e e 48
T o 4, 103
U 90
TSI, it 31
n

L 7,97, 101, 109
"CASE-SENSITIVE"\, 37
B CCCC 97
+

o 3,11, 95, 112
e 84
FBUF .« 45
FLO0P . oottt 49, 52, 54
FORIGIN ..ottt 13, 14, 77
>

> 83
SBODY & ooeee et 16, 61, 62
SCFA .o 16, 64
SDFA . oot 16, 65
SEFA o 16, 65
SIN oo e 1,12, 79, 80
SLEA o 16, 65
SNFA oo 16, 65
SNUMBER . . oo 74
SPHA © oottt 65
S 50, 51, 107
SSFA 16, 65
SUFA o 66
SWID © oottt e e 66

ciforth manual

<
D 83
KB 74,75
> 83
0
0 e 101, 112
S e 83
0} 82
OBRANCHo 51, 54, 56
1
I 112
T 112
2
2 85
2K 112
2 112
20 85
2DROP . ..ot 81
2DUP ..ot 81
20VER . ..ot 81
2SWAP . . 37, 81
A
ABORT ..o 12, 69, 77, 78
ABORT™ ..ottt 12, 69, 71
ABS o 96
ACCEPT ..ot 78, 79, 80
AGAIN ..ot 49, 50, 56
ALl 27
ALIGN ... 85
ALIGNEDttt 85
ALLOT © oo 36, 61, 62
ALSO ..o 113
AND .o 82, 83
ARGS ... 92
A, 26, 31
ASSEMBLERcooviiiiiioan.. 12, 59, 113
AX 26
AR | 26
AX D o 26, 27
B
B 26
2 26
B 8
B/BUF . oot 17, 42
B/BUF CELL#+ CELL+outtieninennnennn 17
Bl 24, 26, 32
BA 25
BACK) .« ittt 56
BAD .. 33
BASE ... 35, 74, 75, 76, 98, 99
BDOSN . . oot e 92, 93
BDOSO . ..o 93
BEGINttt 49, 50, 53, 54
Bl 25
BIOS ..o 93
BIOS31 ... 93

Forth Word Index

BIOSN ..ttt 93
BIOSO . .ttt 92, 93
BL ot 85, 111
BLANK . .o 85
BLK oottt 12, 105, 106
BLOCK . ..ottt 42, 43, 45, 103
BLOCK-EXITottt 19, 42
BLOCK-FILE.........coovvieinnennnnn.. 35, 36, 38, 43
BLOCK-HANDLE 42, 43
BLOCK-INITooieeeeeeaaeannn, 42,43, 47
BM .ot 13, 86
BODY > . 62
BRANCHooiiaaaiaan... 49, 51, 53, 56
BRIl o 27
BY 25
BYE .o 18, 77, 94
C

Gl 86
Gy e e 62
C/ L e 104
CO . 86
CALL, © ottt 28
CALLFAROT, . ..o e 28
CASE-INSENSITIVEttt 35
CASE-SENSITIVE 35
CATCH. 12, 19, 69, 70, 71
CELLA4 oottt 12, 86
CELL S .ttt 86
CF A 66
CHAR . ..ottt e e e 12, 101
CHARY . . 86
CHARS ..o 87
CLOSE-FILE. ...ttt et 71
CMOVE . ..ot e 87
CO ot 50
COLD . .ottt e e e e e 19, 77
COMPARE-AREA e 87
CONSTANT ... oovee e e e e 3, 11, 16, 57
CONTEXT . ..ot 58, 113, 114, 115
CORA .o 87
CORE . ..o 68
L0101 102, 109, 111
CPU .ttt 68, 90
CR ottt 14, 17, 98, 99
CRACK . .ot 8,9
CREATE 15, 56, 57, 58, 59, 61, 62, 65
CREATE-FILE. e 71
CSP e 106, 107
CURRENT 10, 57, 59, 64, 113, 114, 115
D

D 98
) 98
Dt o 67
DABS . 67
)= 3 26
DECIMAL . .ottt e e 75
DEFINITIONS.t 114
DELETE-FILE. 72
DENOTATION 37, 59, 101, 114, 115
DEPTHo e 108
DEVELOPot e e e 36

123
DIGIT oot 76
DISK-ERROR 43
DLITERALot 47
DNEGATEo e 67
DO . 37, 49, 50, 51, 52, 55
DO-DEBUG . . . eeeeee e 8
DOES> ..., 15, 16, 56, 58, 59, 61, 62, 65
DP .o 10, 14, 15, 61, 62
1 A 48, 76
110 69, 81
DSP! et 108
DSPQ . ..o 108
1001 8, 14
10 S 82
1) 26, 27
E
B e 21
17 S 26
130k 8
EDITOR - . evvvve e e e e e e e e 36
ELSE . .ot 51, 53, 56, 81
1 17, 87
12 14, 17, 98
EMPTY-BUFFERS 44
ENVIRONMENT eeeeeeeeeeeee 68, 114
ENVIRONMENT? oooeeeeeeeeeeeenn 68, 115
ERASE ..ot 87
12:):00): S 69, 70, 71, 101
ERRSCR . . . v v et 70
ETYPE . .. e 99
EVALUATEot 101
EXECUTEo oo e 90
1> ok DU 49, 51, 55, 57
EXIT-CODE . ..ot 94
EXPECT . ..o e et 17
F
F o 101, 114
1 26, 27
FAR-DP . ..o oo et 10
FARDUMPot 8
FARMOVEot e e e e e 87
FENCE . ..ot 37, 66
FILL .o e 85, 88
120 D 60, 61, 62, 64
FIRST ..o e e e e e e 17, 45
120 D 76
FLUSH . . oot 45
FM/MOD ..o e e e e e e 91
FOR-VOCS . . oo e e 66, 67
FORWORDS . .o eveee e e 64, 66
FORGET ... 10, 14, 37, 62, 66, 115
FORGET-VOC . .+ o eeveee e e e 67
FORTH ..o 12, 48, 101, 114, 115
FORWARD) ooeeee et 56
12010 B 63
G
GET-FILE @ o 72

124

H

He oo 8
HANDLER . . oo oo et e 71
HERE 13, 49, 51, 53, 54, 55, 56, 57, 62, 63, 85, 97,

102, 111

1120 75
HIDDEN . ..ot 59, 67
HLD . oot e 76
2 (0] 75
I

3 P 50, 52
I e 63
IF 37, 51, 53, 56, 81, 82
IMMEDIATE ..o ootttt e e e e 58, 63
IMULIAD, « oot 25
IN . 79, 80, 100
INDD o 101
1[04 10 8
INCLUDED. ...ttt e 11, 72
INDEX . oottt 104
INTERPRETooviiiaaennnn.. 36, 58, 78, 101
INVERT .« . oottt e e e e 84
I 56
T, o 24
J

A 52
Ty 26
I 26
K

KEY oo 14, 79
KEY 7 e e e 14, 79
L

0 88
26
L 88
LIDS, ettt 28
LATEST . o oottt e e e e e 115
LD, oo 28
DS, vttt 28
LEA, oo 24, 32
LEAVE . ..ottt 52, 54
LIMIT . .ttt e 17, 45
LIST .ottt 35, 38, 104, 105
LIT ot 48
LITERAL . oo e 47
LOAD . oottt 8, 35, 43, 104
LOCATE . o oo e e e e e e e 9
LOCK © vt e e e 104
LODS . e 28
0000 37, 50, 51, 52, 54
LOW-DP ..o 88
LOW-EM . ..ottt et e 88
LSHIFT . .ottt e e 96

ciforth manual

M

Mk 91
M/MOD . .ottt e e e e 91
MAX 96
MEM| oot 26
MESSAGEo 70, 71,72, 73
MIN 96
MOD . .ottt 95, 96
MOV, e 24
MOVIFA, « oo 28
MOVITA, . ot e e e 28
MOVE 88
MYTYPE . .. 17
N

NAME . ..o e 68
NEGATE 96
NEW=IF ... e 37
NO-DEBUGottt ettt e e ettt e 8
NOOP . .ttt e e e e e e 90
NUMBER . . .oote et et e et et 59, 60, 77
Number_1........... .. 113
Number_2 113
O

OFFSET e 45
OK ot 78
ONLY .ot 113, 115
OPEN-FILE. 72
OPTIONS ... e 78
DR et 25, 84
OS=IMPORTci ettt e e ettt 9
L0 27
DS, ot 26
OUT . e e e e 98, 99
OVER . .. 82
OW, o 32
P

Pl 89
PO . 89
PAD . . 63, 74
PO 89
PCO ..o 89
POSTPONE . . oo 47, 48, 63
Prefix_& 60
Prefix_— e 60
Prefix__TICK..........0iiiieannnn, 60
Prefix M . . . e 59
Prefix _+ ... 60
Prefix_~ 60
Prefix_O..... ... 59, 60
PRESENTt e e e 63
PREV ..o e 44, 45, 46
PREVIOUS 115
PUT-FILE.t 13, 72

Forth Word Index

R

RE o 105
1Y 14
1 108
Rl o 27
B> oo 50, 51, 107, 108
N 44
1 B 17, 108
RDROP . ..o 109
READ ...t 73
READ-FILE ... 72, 73
RECURSEo e 52
REFILL . oo et 12
REFILL-TIB@uneeeee e 80
REG=SET.ot 44, 93
REMAINDERo e e 80
REPEATo 50, 53, 54, 56
REPOSITION-FILE i, 73
REQUIRE.ot 8, 18
REQUIREDoovunneenennnnn... 7,8, 18, 19, 35
RESTOREot e 46
RESTORE-INPUTo 46
10 82
RSHIFT .. e 97
RSP oot 109
RSPQ . ..ot 109
13 25
110721010y 79, 80
RW-BUFFER 73, 94
S

S 111
S5D 68
S0 . et 17, 109
SAVE .ot 46
SAVE-INPUTt 46
SAVE-SYSTEM, 10, 13, 15
SCR ottt e 21, 104, 105
SDLITERALot 48
SEEK . o vv e e e e 47
SEG, et 26
SET, .« 26
SET-SRC. .ot 80, 101
SHELLo e e 35, 94
SHOW=ALL, . ..o ooeee e et 25
SHOW=0PCODES e e eeee e e 25
(0] 32, 33
SIB, oo et 26, 27
SIB,)« v 31
SIBI oo e 26
301 I 27
3 D 74, 75
SKIP oo et e 53
SLITERAL ...\ e 12
SM/REM . . oo e e e 92
SOURCE . . . oo e 78, 102
SPACE . ..ot 99
SPACES . . e oo 99
SRC vt 46, 80, 102
STA, .« 28
STALEST . .o e e e 47
STATE . ..ottt 57, 78, 101, 102

SUPPLIER i 68

125
SWAP 82
SYSTEM . ..o e 94
T
T o 26, 27
TASK .« oot 90
TEST ..o e 4
THEN ..o e e 37, 51, 53
THROW. . ..o 12, 35, 69, 70, 71
THRU . . 105
TIB .ttt 78, 80
TIB @. ... e 78
TOGGLE 89
TRIAD .. 105
TUCK . .o e 8
TURNKEY e 19
TYPE . oot 17, 97, 99
U
U oo 99
U< e 84
U0 oot 13, 90
UMk Lo 92
UM/MOD . .ot e e e e e 92
UNLOCK. . oot et e e e e e 104, 105
UNLOOP . ..o e 54
UNTIL ..ot e e 50, 54, 56
UPDATEo e e 44, 45, 46
USER . .\ttt et e e e 16, 58
V
VARIABLE ot 11, 16, 58
VERSIONottt e 69
VOC-LINK 115
VOCABULARY ..., 10, 58, 113, 115
W
Wy o e 26
WARM e 78
WARNING oo 43, 70
1131242 S 70, 71
WHILE ... e 53, 54, 56
WITHIN ... e e 89
WORD. ...ote e 60, 61, 64, 80, 102
WOXAS .+ ottt et e e e 35
WORDS . . e 64
WRITE ... e 73
WRITE-FILE........... . e, 73
X
X 27
X 26
X e 24, 26, 27
X o 24, 26, 27, 32
XOR .. 84
Z
ZEN . e 94

126 ciforth manual

Concept Index

Concept Index

127

Mostly the first reference is where the concept is explained. But sometimes in introductory
and tutorial sections an explanation sometimes was considered too distracting.

A

aligned 85
allocating............... 10
ambiguous condition 12
B

blocks. ... 7,11, 42, 43
brain damaged string....................... ... 92

case sensitive........ i 1, 35
cell ..o 11, 41, 84
ciforth specific behaviour 12
codefield......... 16
code field address 16, 17, 64, 90
code WOrd 14
colon definition..............., 10, 16
compilation mode 4
compilation word list.......................... 114
computation stack............ L 10
crash. 12
current input source.. 46, 76, 100, 101, 102, 104, 105,
106

D

data ... 61
datafield 15, 16
data field address 15, 16, 17, 65
datastack.............. 10, 81, 107, 108
DEA 10, 15, 61, 62, 64, 65, 66, 90
defining word 3, 10, 36, 56
denotation ... 11, 16, 37, 59, 60, 61, 63, 64, 101, 109,

114

dictionary 10
dictionary entry 10, 15, 114, 115
dictionary entry address.... 10, 15, 16, 17, 41, 61, 66
dictionary pointer 10, 61, 62
double 11, 41, 67, 74, 84, 91
E

execution token 10, 16, 60, 61, 64, 90
F

family of instructions..................., 24
field address 15
flag . ..o 41, 82
flag field address............. 16, 65
floored division 95
Forth flag........ 41, 82
H

high level.ccooeeeeeeeeeneo... 10, 14, 16, 91

I

immediate bit......... 16
mlne. ... 47
indexline.......... 18
inner interpreter................ 10, 14, 16
L

library ... 7,18
Library Addressable by Block 11
library file.............. .. 35, 43
link field address 16, 58, 65
load 11, 14, 103
logical not 84
M

MNEeMONIC MESSAZE .+« ..o v v e e e ieeen. 35
N

name field address....................... 16, 17, 65
nesting 10
nil pointer L 42, 58, 63
NUMDEr. ... 11
number base............ 74

@)

old fashioned string........................ 62, 109
outer interpreter 100
P

past header....... 16
past header address 15, 65
preferences 18

R

return stack L 10, 107, 108
revectoring. il 17, 62, 99

S

scaled index byte............., 31
16 1) 0 R 11, 103, 104
searchorder....................... 59, 64, 114, 115
search-order 101
signal an error................... 42, 69
SMUAEE . . .o oo e e 16
source field address........... o 65
Stack ... 10
stack pointer o oL 10, 107
string constant 41, 109
string variable 109
symmetric division 91, 95, 96

128 ciforth manual

T VLFA .o 58
BUETIKEY SYSEIL « + o+ v e veeneensenseeneeneansans 13 vocabulary 10
U '
WID ... 10, 58, 64, 66, 113, 115
USET AT .+ o v v et et et et ettt et e ettt 14 Word .+ 3
word list 10, 16, 58, 113, 114, 115
V word list associated with........................ 58
word list identifier...................... 10, 58, 113

vectoring 17 wordset 42

Short Contents

1 OVEIVIEW ot v v v v oo ovessoeessossssosssssosassoosss 1
2 Gentle INtroduction + v v v v v v oo veeeesooeeoeooooscessss 3
3 Rationale & legalese . v v v v v v oo oo e e e e s eeeeeeeoossssss 5
4 Manual....eeeeeeeeeeeoesoesesoesssossssocsssens 7
D BEditOr .. eeeeeeeeeeeeeseeoseooeoosossosssosssoases 21
6 ASSEIMDIEr v v v v vttt sttt 23
A 2 5) < 35
8 Documentation SUMMAIY « v v v v oo oo oo v v vvvooooossssess 39
T 6 10 41
Glossary Index v v v v v v oot ittt ittt ittt eseseennnnns 117
Forth Word Index « v v v e e v v vt e e v v eeeseeessocossocosses 121

Concept Index o o v v oottt ittt i i nnnnnnnnns 127

1

ciforth manual

Table of Contents

1 OVerVIEeW. ...ttt iinnnneneeeeeennnnns 1
2 Gentle introduction........................... 3
3 Rationale & legalese 5
3.1 Legaleseo 5

3.2 Rationale....... 5

3.3 SOUTCE . . ottt et e e e e e e 5

3.4 The Generic System this Forth is based on..................... 6

4 Manual0 it i e 7
4.1 Getting started 7

4.1.1 Helloworld!......... 7

4.1.2 Thelibrary. ... 7

4.1.3 Development. 8

4.1.4 Finding thingsout. 9

4.2 Configuring 9

4.3 CONCEPES v vttt et et e e e 10

4.4 Portability 12

4.5 Saving a new system......... ..o 13

4.6 Memory organizationt 13

4.6.1 Boot-up Parameters............ 14

4.6.2 Installation Dependent Code........................ 14

4.6.3 Machine Code Definitions 14

4.6.4 High-level Standard Definitions 14

4.6.5 User definitions............. 14

4.6.6 System Tools.......... ... 15

4.6.7 RAM Workspace.coooiiini .. 15

4.7 Specific layouts. ... 15

4.7.1 The layout of a dictionary entry 15

4.7.2 Details of memory layout........................... 17

4.7.3 Terminal I/O and vectoring. 17

4.8 Libraries and optionscoi i 18

4.8 1 OpPtiOnS . . oottt 18

4.8.2 Private libraries 19

4.8.3 Turnkey applications. 19

5 Editoroiiiiiiiiiii i i 21
6 Assembler............, 23
6.1 Introduction, 23

6.2 Reliability 23

6.3 Principle of operation............ 24

6.4 The 8080 assembler........ ... 25

6.5 Opcode sheets.o 25

6.6 Details about the 80386 instructions 25

6.7 Using 16 bits code in the 32 bit assembler.................... 26

6.8 This assembler is not yet integrated in the generic Forth....... 27

6.9 A rant about redundancy 27

6.10 Reference opcodes. 27

6.11 The dreaded SIB byte ... 31

6.12 Alast caveat...........oo o 31

iii

v

8

9

6.13 An incomplete and irregular guide to the instruction mnemonics.

... 31

6.14 Assembler Errors....... 32
Errorscoviiiii i 35
7.1 Error philosophy 35
7.2 Common problems 35
7.2.1 "DIR" SYSTEM doesn’t work 35

7.2.2 Error 11 or 12 caused by lower case.................. 35

7.2.3 Error 8 or only error numbers....................... 35

7.2.4 Error 8 while editing a screen....................... 36

7.3 Error explanations.................c. i 36
Documentation summary 39
Glossary . .covviiii i 41
9.1 BLOCKS . .. 42
9.1.1 #BUFFE 42

9.1.2 7DISK-ERROR........ ..., 42

9.1.3 B/BUF ..o 42

9.1.4 BLOCK-EXIT. ... 42

9.1.5 BLOCK-FILE 43

9.1.6 BLOCK-HANDLE...... 43

9.1.7 BLOCK-INIT 43

9.1.8° BLOCK 43

9.1.9 DISK-ERROR........ ..., 43

9.1.10 EMPTY-BUFFERS....... 44

9.1.11 REG-SET 44

9.1.12 R\W L 44

9.1.13 UPDATE ... e 44

9.1.14 (BUFFER) ..o 44

9.1.15 +BUF ... 45

9.1.16 FIRST ... 45

9.1.17 FLUSHo 45

9.1.18 LIMIT ... e 45

9.1.19 OFFSET 45

9.1.20 PREV ... 46

9.1.21 RESTORE-INPUT 46

9.1.22 RESTORE..... 46

9.1.23 SAVE-INPUT 46

9.1.24 SAVE 46

9.1.25 SEEK 47

9.1.26 STALEST ... 47

9.2 COMPILING ... 47
9.2.1 DLITERAL 47

9.2.2 LITERAL.o 47

9.2.3 POSTPONE 47

9.24 [COMPILE]o 48

0.2.5 LIl ... 48

9.2.6 SDLITERALo i 48

9.3 CONTROL 48
9.3.1 +LOOP ... o 49

0.3.2 DO .. 49

9.3.3 AGAIN 49

9.3.4 BEGIN 50

0.3.5 CO i 50

9.3.6 DO ... 50

9.3.7 ELSE 51

0.3.8 EXIT ... 51

0.3.9 IF . 51

ciforth manual

9.3.10 I .o 52

0.3.11 Jo 52
9312 LEAVE 52
9313 LOOP 52
9314 RECURSE.........., 52
93.15 REPEAT 53
9316 SKIP 53
9317 THEN 53
9.3.18 UNLOOP 54
9319 UNTIL ... 54
9320 WHILE 54
9.3.21 (+LOOP) .o 54
0.3.22 (5 et e 55
9.3.23 (TDO) o 55
9324 (BACK ... 55
9325 (DO) . 55
9.326 (FORWARD, 55
9.3.27 (LOOP) ..o 55
9.328 OBRANCH..... i i i 56
9329 BACK) ... 56
9330 BRANCH.......... 56
9.3.31 FORWARD), 56
9.4 DEFINING ... 56
0.4 1 o 56
0.4.2 5 57
943 CONSTANT ... 57
944 CREATE 57
945 DOES> 58
94.6 USER 58
947 VARIABLE 58
948 VOCABULARY ... 58
949 (GCODE) ... 59
9410 (CREATE)...... ... 59
9.4.11 CODE ... 59
9.5 DENOTATIONS ... 59
9.5.1 Prefix_" 59
9.5.2 Prefix &o 60
9.5.3 Prefix +.. 60
9.5.4 Prefix- ... 60
955 Prefix O........o 60
9.5.6 Prefix_~ 60
9.5.7 Prefix TICK........oo ., 60
9.6 DICTIONARY ... o 61
9.6.1 ’ (This addition because texinfo won’t accept a single
QUOBE) . o ettt 61
0.6.2 . 61
9.6.3 >BODY 61
9.6.4 ALLOT 61
9.6.5 BODY>.. 62
9.6.6 O, i 62
9.6.7 DP 62
9.6.8 FIND 62
9.6.9 FORGET 62
9.6.10 FOUND 63
9.6.11 HERE 63
9.6.12 ID. 63
9.6.13 IMMEDIATE 63
9.6.14 PAD.... ... 63
9.6.15 PRESENTo ... 63
9.6.16 WORDS 64
0.6.17 [oo 64

9.6.18 (FIND) ...t 64

ciforth manual

9.6.19 (MATCH)0ooei 64
9.6.20 SCFA ..o 64
9.6.21 SDFA . ..o 65
9.6.22 STFFA ...t 65
9.6.23 SLEFA ...t 65
9.6.24 SNFA ...\ 65
9.6.25 SPHA ..ot 65
9.6.26 SSFA ... 65
9.6.27 SVEA ...t 66
9.6.28 SWID 66
9.6.20 CFA> ...\ 66
9.6.30 FENCE\ @uue e 66
9.6.31 FOR-VOCS 66
9.6.32 FOR-WORDS\t 66
9.6.33 FORGET-VOC.........oooiuieiiiiii. 67
9.6.34 HIDDENooomeii e 67
9.7 DOUBLE. ...ttt 67
A B T 67
9.7.2 DABS .ot 67
9.7.3 DNEGATE......oooiei i 67
974 SOD o 68
9.8 ENVIRONMENTSottt 68
9.8.1 CORE ... 68
9.8.2 CPU ..\ 68
9.8.3 ENVIRONMENT?.....oooiiitiiiiieeee 68
9.84 NAME 0omm et 68
9.85 SUPPLIER.........ooiiiiiiiaeee e 68
9.8.6 VERSIONo 69
9.9 ERRORSttt 69
9.9.1 2ERROR. 69
9.9.2 PERRUR......coooiieii e 69
9.9.3 ABORT" ...t 69
9.9.4 CATCH.oo e 69
9.9.5 ERROR. ... oo 70
9.9.6 ERRSCR ...t 70
9.9.7 MESSAGE ...\ttt 70
9.9.8 THROW ... 70
9.9.9 WARNINGttt 70
9.9.10 WHEREoott e 71
9.9.11 (ABORT™) ... 71
9.9.12 HANDLERoooitiiiie . 71
9.10 FILES. ... 71
9.10.1 CLOSE-FILEooumiiiiieieeaaaane . 71
9.10.2 CREATE-FILE........ooooeeeiiiiiii, 71
9.10.3 DELETE-FILE........ccoouieeeiiiiin., 72
9.104 GET-FILEoouiiesseeei . 72
9.10.5 INCLUDED........ccoiuuieieiiiiiiaiie. 72
9.10.6 OPEN-FILEoouuuueeaaaaaaaannei .. 72
9.10.7 PUT-FILEoooiiiiiiiae e 72
9.10.8 READ-FILEot 72
9.10.9 READ ...t 73
9.10.10 REPOSITION-FILEcceeueeeeeeeenii... 73
9.10.11 WRITE-FILEoottiiiiieaeeeneann... 73
9.10.12 WRITE\t 73
9.10.13 RW-BUFFERooeeeeiiiee e 73
9.11 FORMATTINGt 74
DAL L #5> o 74
9012 S 74
0013 FE o 74
901 <F 74
9.11.5 SNUMBER ...ttt 74

9.11.6 BASE 75

9.11.7 DECIMAL 75
9.11.8 HEX. ... 75
9.11.9 HOLD ...t 75
91110 SIGN ... 75
9.11.11 (NUMBER)ooiiiiii i 76
91112 DIGIT ... 76
91113 DPL ...ttt 76
91114 FLD 76
91115 HLD . ..ot 76
9.11.16 NUMBERooiie e 7
912 INIT ... 77
9.12.1 +ORIGIN ...t 77
9.12.2 ABORT.......ooiiiii 77
9.12.3 COLDottt 7
9124 OK ..ot 78
9.12.5 OPTIONSottt 78
9.12.6 QUIT.......oii 78
9.12.7 WARMottt 78
913 INPUT ... 78
9.13.1 (ACCEPT)......ooiiiii i 78
9.13.2 SIN..... 79
9.13.3 ACCEPTcoiiiii i 79
9134 IN ... 79
9135 KEY?. ..o 79
9.13.6 KEY ..o 79
9.13.7 RUBOUTcooiiiiiiiisiiiiii . 80
9138 TIB ..o 80
9.13.9 (PIN) Lo 80
9.13.10 REFILL-TIB.........cciiiiiinasiiiiii.. 80
9.13.11 REMAINDER.............oiiiiiiiiiiiii ., 80
9.14 JUGGLINGt 81
9.14.1 2DROP ... 81
9.14.2 2DUP 81
9.14.3 20VERoooiit i 81
9.14.4 2SWAP ... 81
9.14.5 2DUP. ... 81
9.14.6 DROP ...t 81
9.14.7 DUP....oo 82
9.14.8 OVERoomoiis 82
9.14.9 ROT....oo 82
9.14.10 SWAP ... 82
915 LOGIC ... 82
9151 0% ..ottt 82
9.15.2 0= ..ot 83
0.15.3 <> e 83
9154 <o 83
9155 83
9.15.6 > o 83
9.15.7 AND ... 83
9.15.8 INVERToooeiiii i 84
9.15.9 OR.oo 84
91510 US oot 84
91511 XOR ..o 84
9.16 MEMORYo 84
9161 1o 84
9.06.2 41 o 84
9.16.3 21, . 85
9164 2Q ... 85
9165 Q... 85
9.16.6 ALIGNEDo, 85
9.16.7 ALIGN ... 85
9.16.8 BLANK........oooiiiii 85

vii

viii

9.16.9 BM ...\t 86
91610 Cl.o 86
91611 CQ...o 86
9.16.12 CELL# ... 86
9.16.13 CELLS ...t 86
9.16.14 CHAR*. ... 86
9.16.15 CHARS 87
9.16.16 CMOVEooiii 87
9.16.17 CORA ... 87
9.16.18 EM\t 87
9.16.19 ERASE...........oooiiiiiiii. 87
9.1620 FARMOVEoo oo 87
9.16.21 FILL ... 88
9.16.22 Ll.. ..o 88
9.16.23 L@ ... 88
9.16.24 LOW-DPt 88
9.16.25 LOW-EMooiiiiiiiiiiiiii... 88
9.16.26 MOVE.ooiiiii 88
9.16.27 Pl 89
9.16.28 PQ ... 89
91629 PCl... . 89
9.16.30 PCQ..........oooiiiii i 89
9.16.31 TOGGLEoooiiiiiiiiiiiii . 89
9.16.32 WITHIN i, 89
917 MISC ..o 90
9.17.1 SIGNON 90
9.17.2 EXECUTE..........0oiiiiiiiiiiiil 90
9.17.3 NOOP 90
9.17.4 TASK ... 90
9175 UD. .o 90
B A 90
9.18 MULTIPLYING\ttt 91
9181 */MOD ... 91
9.18.2 K/ 91
9.18.3 FM/MODoiii i 91
9184 M¥ ..o 91
9185 M/MODoooiiiiiii 91
9.18.6 SM/REMooiiie i 92
9.18.7 UM* ... 92
9.18.8 UM/MOD ..ottt 92
9.19 OPERATINGSYSTEMooiiiiieiiiii . 92
9.19.1 ARGS ...t 92
9.19.2 BDOSNoiiii 92
9.19.3 BDOSO\t 93
9.19.4 BIOS31o 93
9.19.5 BIOSN.ottt 93
9.19.6 BIOSO ..o 93
9.19.7 BYE. ...t 94
9.19.8 EXIT-CODEoiiiiiiiiiiiii. .. 94
9.19.9 SHELL ...t 94
9.19.10 SYSTEMoooooeie i 94
91911 ZEN 94
920 OPERATOR.........oooiiiiii 95
9.20.1 K 95
9.20.2 H 95
9.20.3 = 95
9.20.4 /MOD i 95
9.20.5 /e 95
9.20.6 ABS ... 96
9.20.7 LSHIFT ..., 96
9.20.8 MAX ..o 96
9.20.9 MIN ... 96

ciforth manual

9.20.10 MOD ...t 96
9.20.11 NEGATEooii i 96
9.20.12 RSHIFTooie e 97
9.21 OUTPUT ...\ttt e 97
9.21.1 (DR .o 97
9.21.2 N 97
9.21.3 (e 97
9214 Rt 97
0,215 o 98
9.21.6 7 L 98
9.21.7 CRoun e 98
9.21.8 DR .o 98
9.21.9 Dot 98
9.21.10 EMIT ..ot 98
9.21.11 ETYPE......ooiiet i 99
9.21.12 OUT ..ot 99
9.21.13 SPACESot 99
9.21.14 SPACE ... 99
9.21.15 TYPEottt 99
9.21.16 Ul .\t 99
9.22 PARSING ..ottt 100
9.22.1 (PARSE) ..o 100
9.22.2 (WORD).....oooi i 100
I S 100
9.22.4 ?BLANKoooii 100
9.22.5 CHAR.....ovviiee it 101
9.22.6 EVALUATEccoviiiiiiiiaaai. 101
9.22.7 INTERPRETcccccoiiiiiiiiiiii... 101
9.22.8 IN[|. ..ottt 101
9.22.9 SET-SRCooriee i 101
9.22.10 SOURCE0oooieii e, 102
9.22.11 SRC ... 102
9.22.12 STATE ... 102
9.22.13 WORD ... 102
9.22.14 [CHAR]. ... 102
9.22.15 [oo 103
9.22.16 \ oo 103
9.22.17 | oo 103
9.23 SCREEN ...t 103
9.23.1 (LINE) ...ttt 103
9.23.2 > . 104
9.23.3 C/L .o 104
9.23.4 INDEX0oori e 104
9.235 LIST ..o 104
9.23.6 LOADooiii i 104
9.23.7 LOCK ... 104
9.23.8 R . oo 105
9.23.9 SCR....onr e 105
9.23.10 THRUotvtitei e 105
9.23.11 TRIADooii e 105
9.23.12 UNLOCKcooiiiiiiaaaaiiiaa., 105
9.23.13 (BLK) ..\ttt 105
9.23.14 BLK......ooiii 106
9.24 SECURITYoott ettt 106
9.24.1 1CSP L. 106
9.24.2 2COMP.ooiii 106
9.24.3 2CSP ... 106
9.24.4 ?DELIM0oiiie i 106
9.24.5 TEXECoii 106
9.24.6 ?LOADING ...t 107
9.24.7 PPAIRSoo 107
9.24.8 2STACKt 107

ix

X ciforth manual

9.24.9 CSP ..o, 107

9.25 STACKS . .o 107
0.25. 1 S 107

0.25.2 SR . 107

9.25.3 DEPTH. 108

9.25.4 DSP! .. 108

9.25.5 DSPQ, 108

9.25.6 RO ..o 108

0.0, 7 R 108

9.25.8 RQ 108

9.25.9 RDROP 109
9.25.10 RSP ..o, 109
9.25.11 RSPQ, 109
9.25.12 SO ..o 109

9.26 STRING . ..ot 109
9.26.1 SI-BD ... 109

0.26.2 Bl 110

0.26.3 Sl 110

0.26.4 B 110

9.26.5 SQ ... 110

9.26.6 SC+ ..o 110

0.26.7 SL . 110

0.26.8 8BS . 111

9.26.9 -TRAILING i 111
9.26.10 BL ... 111
9.26.11 COUNT i, 111
0.26.12 S 111

9.27 SUPERFLUOUSo i 112
9271 O .o 112

.27, A 112

0.27.3 e 112

O S 112

0,270 2 112

9.27.6 Number_1...... 113

9.27.7 Number_2..... 113

9.28 WORDLISTSo 113
9.28.1 ALSO ..o 113

9.28.2 ASSEMBLER 113

9.28.3 CONTEXT ... s, 114

9.28.4 CURRENT 114

9.28.5 DEFINITIONS 114

9.28.6 DENOTATION 114

9.28.7 ENVIRONMENT. 0 ... 114

9.28.8 FORTH. ...t 115

9.28.9 LATEST 115
9.28.10 ONLY ..ot 115
9.28.11 PREVIOUS i 115
9.28.12 VOC-LINK 115
Glossary Index, 117
Forth Word Indexc i i, 121

Concept Index............oiiiiiiiiiiinnnn.. 127

	Overview
	Gentle introduction
	Rationale & legalese
	Legalese
	Rationale
	Source
	The Generic System this Forth is based on.

	Manual
	Getting started
	Hello world!
	The library.
	Development.
	Finding things out.

	Configuring
	Concepts
	Portability
	Saving a new system
	Memory organization
	Boot-up Parameters
	Installation Dependent Code
	Machine Code Definitions
	High-level Standard Definitions
	User definitions
	System Tools
	RAM Workspace

	Specific layouts
	The layout of a dictionary entry
	Details of memory layout
	Terminal I/O and vectoring.

	Libraries and options
	Options
	Private libraries
	Turnkey applications.

	Editor
	Assembler
	Introduction
	Reliability
	Principle of operation
	The 8080 assembler
	Opcode sheets
	Details about the 80386 instructions
	Using 16 bits code in the 32 bit assembler
	This assembler is not yet integrated in the generic Forth
	A rant about redundancy
	Reference opcodes
	The dreaded SIB byte
	A last caveat
	An incomplete and irregular guide to the instruction mnemonics.
	Assembler Errors

	Errors
	Error philosophy
	Common problems
	{@char 34}DIR{@char 34} SYSTEM doesn't work
	Error 11 or 12 caused by lower case.
	Error 8 or only error numbers
	Error 8 while editing a screen

	Error explanations

	Documentation summary
	Glossary
	BLOCKS
	#BUFF
	?DISK-ERROR
	B/BUF
	BLOCK-EXIT
	BLOCK-FILE
	BLOCK-HANDLE
	BLOCK-INIT
	BLOCK
	DISK-ERROR
	EMPTY-BUFFERS
	REG-SET
	R{@rawbackslashxx }W
	UPDATE
	(BUFFER)
	{@char 43}BUF
	FIRST
	FLUSH
	LIMIT
	OFFSET
	PREV
	RESTORE-INPUT
	RESTORE
	SAVE-INPUT
	SAVE
	SEEK
	STALEST

	COMPILING
	DLITERAL
	LITERAL
	POSTPONE
	[COMPILE]
	LIT
	SDLITERAL

	CONTROL
	{@char 43}LOOP
	?DO
	AGAIN
	BEGIN
	CO
	DO
	ELSE
	EXIT
	IF
	I
	J
	LEAVE
	LOOP
	RECURSE
	REPEAT
	SKIP
	THEN
	UNLOOP
	UNTIL
	WHILE
	({@char 43}LOOP)
	(;)
	(?DO)
	(BACK)
endobj
3298 0 obj
<< /S /GoTo /D (55) >>
endobj
3300 0 obj
((DO))
endobj
3301 0 obj
<< /S /GoTo /D (55) >>
endobj
3303 0 obj
((FORWARD)
endobj
3304 0 obj
<< /S /GoTo /D (55) >>
endobj
3306 0 obj
((LOOP))
endobj
3307 0 obj
<< /S /GoTo /D (56) >>
endobj
3309 0 obj
(0BRANCH)
endobj
3310 0 obj
<< /S /GoTo /D (56) >>
endobj
3312 0 obj
(BACK))
endobj
3313 0 obj
<< /S /GoTo /D (56) >>
endobj
3315 0 obj
(BRANCH)
endobj
3316 0 obj
<< /S /GoTo /D (56) >>
endobj
3318 0 obj
(FORWARD)
	(DO)
	(FORWARD)
endobj
3304 0 obj
<< /S /GoTo /D (55) >>
endobj
3306 0 obj
((LOOP))
endobj
3307 0 obj
<< /S /GoTo /D (56) >>
endobj
3309 0 obj
(0BRANCH)
endobj
3310 0 obj
<< /S /GoTo /D (56) >>
endobj
3312 0 obj
(BACK)
	(LOOP)
	0BRANCH
	BACK
	BRANCH
	FORWARD

	DEFINING
	:
	;
	CONSTANT
	CREATE
	DOES{@gtr }
	USER
	VARIABLE
	VOCABULARY
	(;CODE)
	(CREATE)
	;CODE

	DENOTATIONS
	Prefix_{@char 34}
	Prefix_&
	Prefix_{@char 43}
	Prefix_-
	Prefix_0
	Prefix_{@hat }
	Prefix__TICK

	DICTIONARY
	' (This addition because texinfo won't accept a single quote)
	,
	{@gtr }BODY
	ALLOT
	BODY{@gtr }
	C,
	DP
	FIND
	FORGET
	FOUND
	HERE
	ID.
	IMMEDIATE
	PAD
	PRESENT
	WORDS
	[']
	(FIND)
	(MATCH)
	{@gtr }CFA
	{@gtr }DFA
	{@gtr }FFA
	{@gtr }LFA
	{@gtr }NFA
	{@gtr }PHA
	{@gtr }SFA
	{@gtr }VFA
	{@gtr }WID
	CFA{@gtr }
	FENCE
	FOR-VOCS
	FOR-WORDS
	FORGET-VOC
	HIDDEN

	DOUBLE
	D{@char 43}
	DABS
	DNEGATE
	S{@gtr }D

	ENVIRONMENTS
	CORE
	CPU
	ENVIRONMENT?
	NAME
	SUPPLIER
	VERSION

	ERRORS
	?ERROR
	?ERRUR
	ABORT{@char 34}
	CATCH
	ERROR
	ERRSCR
	MESSAGE
	THROW
	WARNING
	WHERE
	(ABORT{@char 34})
	HANDLER

	FILES
	CLOSE-FILE
	CREATE-FILE
	DELETE-FILE
	GET-FILE
	INCLUDED
	OPEN-FILE
	PUT-FILE
	READ-FILE
	READ
	REPOSITION-FILE
	WRITE-FILE
	WRITE
	RW-BUFFER

	FORMATTING
	#{@gtr }
	#S
	#
	{@less }#
	{@gtr }NUMBER
	BASE
	DECIMAL
	HEX
	HOLD
	SIGN
	(NUMBER)
	DIGIT
	DPL
	FLD
	HLD
	NUMBER

	INIT
	{@char 43}ORIGIN
	ABORT
	COLD
	OK
	OPTIONS
	QUIT
	WARM

	INPUT
	(ACCEPT)
	{@gtr }IN
	ACCEPT
	IN
	KEY?
	KEY
	RUBOUT
	TIB
	({@gtr }IN)
	REFILL-TIB
	REMAINDER

	JUGGLING
	2DROP
	2DUP
	2OVER
	2SWAP
	?DUP
	DROP
	DUP
	OVER
	ROT
	SWAP

	LOGIC
	0{@less }
	0=
	{@less }{@gtr }
	{@less }
	=
	{@gtr }
	AND
	INVERT
	OR
	U{@less }
	XOR

	MEMORY
	!
	{@char 43}!
	2!
	2@
	@
	ALIGNED
	ALIGN
	BLANK
	BM
	C!
	C@
	CELL{@char 43}
	CELLS
	CHAR{@char 43}
	CHARS
	CMOVE
	CORA
	EM
	ERASE
	FARMOVE
	FILL
	L!
	L@
	LOW-DP
	LOW-EM
	MOVE
	P!
	P@
	PC!
	PC@
	TOGGLE
	WITHIN

	MISC
	.SIGNON
	EXECUTE
	NOOP
	TASK
	U0
	_

	MULTIPLYING
	*/MOD
	*/
	FM/MOD
	M*
	M/MOD
	SM/REM
	UM*
	UM/MOD

	OPERATINGSYSTEM
	ARGS
	BDOSN
	BDOSO
	BIOS31
	BIOSN
	BIOSO
	BYE
	EXIT-CODE
	SHELL
	SYSTEM
	ZEN

	OPERATOR
	*
	{@char 43}
	-
	/MOD
	/
	ABS
	LSHIFT
	MAX
	MIN
	MOD
	NEGATE
	RSHIFT

	OUTPUT
	(D.R)
	.{@char 34}
	.()
endobj
4015 0 obj
<< /S /GoTo /D (97) >>
endobj
4017 0 obj
(.R)
endobj
4018 0 obj
<< /S /GoTo /D (98) >>
endobj
4020 0 obj
(.)
endobj
4021 0 obj
<< /S /GoTo /D (98) >>
endobj
4023 0 obj
(?)
endobj
4024 0 obj
<< /S /GoTo /D (98) >>
endobj
4026 0 obj
(CR)
endobj
4027 0 obj
<< /S /GoTo /D (98) >>
endobj
4029 0 obj
(D.R)
endobj
4030 0 obj
<< /S /GoTo /D (98) >>
endobj
4032 0 obj
(D.)
endobj
4033 0 obj
<< /S /GoTo /D (98) >>
endobj
4035 0 obj
(EMIT)
endobj
4036 0 obj
<< /S /GoTo /D (99) >>
endobj
4038 0 obj
(ETYPE)
endobj
4039 0 obj
<< /S /GoTo /D (99) >>
endobj
4041 0 obj
(OUT)
endobj
4042 0 obj
<< /S /GoTo /D (99) >>
endobj
4044 0 obj
(SPACES)
endobj
4045 0 obj
<< /S /GoTo /D (99) >>
endobj
4047 0 obj
(SPACE)
endobj
4048 0 obj
<< /S /GoTo /D (99) >>
endobj
4050 0 obj
(TYPE)
endobj
4051 0 obj
<< /S /GoTo /D (99) >>
endobj
4053 0 obj
(U.)
endobj
4054 0 obj
<< /S /GoTo /D (100) >>
endobj
4056 0 obj
(PARSING)
endobj
4057 0 obj
<< /S /GoTo /D (100) >>
endobj
4059 0 obj
((PARSE))
endobj
4060 0 obj
<< /S /GoTo /D (100) >>
endobj
4062 0 obj
((WORD))
endobj
4063 0 obj
<< /S /GoTo /D (100) >>
endobj
4065 0 obj
(()
endobj
4066 0 obj
<< /S /GoTo /D (100) >>
endobj
4068 0 obj
(?BLANK)
endobj
4069 0 obj
<< /S /GoTo /D (101) >>
endobj
4071 0 obj
(CHAR)
endobj
4072 0 obj
<< /S /GoTo /D (101) >>
endobj
4074 0 obj
(EVALUATE)
endobj
4075 0 obj
<< /S /GoTo /D (101) >>
endobj
4077 0 obj
(INTERPRET)
endobj
4078 0 obj
<< /S /GoTo /D (101) >>
endobj
4080 0 obj
(IN[])
endobj
4081 0 obj
<< /S /GoTo /D (101) >>
endobj
4083 0 obj
(SET-SRC)
endobj
4084 0 obj
<< /S /GoTo /D (102) >>
endobj
4086 0 obj
(SOURCE)
endobj
4087 0 obj
<< /S /GoTo /D (102) >>
endobj
4089 0 obj
(SRC)
endobj
4090 0 obj
<< /S /GoTo /D (102) >>
endobj
4092 0 obj
(STATE)
endobj
4093 0 obj
<< /S /GoTo /D (102) >>
endobj
4095 0 obj
(WORD)
endobj
4096 0 obj
<< /S /GoTo /D (102) >>
endobj
4098 0 obj
([CHAR])
endobj
4099 0 obj
<< /S /GoTo /D (103) >>
endobj
4101 0 obj
([)
endobj
4102 0 obj
<< /S /GoTo /D (103) >>
endobj
4104 0 obj
({@rawbackslashxx })
endobj
4105 0 obj
<< /S /GoTo /D (103) >>
endobj
4107 0 obj
(])
endobj
4108 0 obj
<< /S /GoTo /D (103) >>
endobj
4110 0 obj
(SCREEN)
endobj
4111 0 obj
<< /S /GoTo /D (103) >>
endobj
4113 0 obj
((LINE))
endobj
4114 0 obj
<< /S /GoTo /D (104) >>
endobj
4116 0 obj
(--{@gtr })
endobj
4117 0 obj
<< /S /GoTo /D (104) >>
endobj
4119 0 obj
(C/L)
endobj
4120 0 obj
<< /S /GoTo /D (104) >>
endobj
4122 0 obj
(INDEX)
endobj
4123 0 obj
<< /S /GoTo /D (104) >>
endobj
4125 0 obj
(LIST)
endobj
4126 0 obj
<< /S /GoTo /D (104) >>
endobj
4128 0 obj
(LOAD)
endobj
4129 0 obj
<< /S /GoTo /D (104) >>
endobj
4131 0 obj
(LOCK)
endobj
4132 0 obj
<< /S /GoTo /D (105) >>
endobj
4134 0 obj
(R#)
endobj
4135 0 obj
<< /S /GoTo /D (105) >>
endobj
4137 0 obj
(SCR)
endobj
4138 0 obj
<< /S /GoTo /D (105) >>
endobj
4140 0 obj
(THRU)
endobj
4141 0 obj
<< /S /GoTo /D (105) >>
endobj
4143 0 obj
(TRIAD)
endobj
4144 0 obj
<< /S /GoTo /D (105) >>
endobj
4146 0 obj
(UNLOCK)
endobj
4147 0 obj
<< /S /GoTo /D (105) >>
endobj
4149 0 obj
((BLK))
endobj
4150 0 obj
<< /S /GoTo /D (106) >>
endobj
4152 0 obj
(BLK)
endobj
4153 0 obj
<< /S /GoTo /D (106) >>
endobj
4155 0 obj
(SECURITY)
endobj
4156 0 obj
<< /S /GoTo /D (106) >>
endobj
4158 0 obj
(!CSP)
endobj
4159 0 obj
<< /S /GoTo /D (106) >>
endobj
4161 0 obj
(?COMP)
endobj
4162 0 obj
<< /S /GoTo /D (106) >>
endobj
4164 0 obj
(?CSP)
endobj
4165 0 obj
<< /S /GoTo /D (106) >>
endobj
4167 0 obj
(?DELIM)
endobj
4168 0 obj
<< /S /GoTo /D (106) >>
endobj
4170 0 obj
(?EXEC)
endobj
4171 0 obj
<< /S /GoTo /D (107) >>
endobj
4173 0 obj
(?LOADING)
endobj
4174 0 obj
<< /S /GoTo /D (107) >>
endobj
4176 0 obj
(?PAIRS)
endobj
4177 0 obj
<< /S /GoTo /D (107) >>
endobj
4179 0 obj
(?STACK)
endobj
4180 0 obj
<< /S /GoTo /D (107) >>
endobj
4182 0 obj
(CSP)
endobj
4183 0 obj
<< /S /GoTo /D (107) >>
endobj
4185 0 obj
(STACKS)
endobj
4186 0 obj
<< /S /GoTo /D (107) >>
endobj
4188 0 obj
(.S)
endobj
4189 0 obj
<< /S /GoTo /D (107) >>
endobj
4191 0 obj
({@gtr }R)
endobj
4192 0 obj
<< /S /GoTo /D (108) >>
endobj
4194 0 obj
(DEPTH)
endobj
4195 0 obj
<< /S /GoTo /D (108) >>
endobj
4197 0 obj
(DSP!)
endobj
4198 0 obj
<< /S /GoTo /D (108) >>
endobj
4200 0 obj
(DSP@)
endobj
4201 0 obj
<< /S /GoTo /D (108) >>
endobj
4203 0 obj
(R0)
endobj
4204 0 obj
<< /S /GoTo /D (108) >>
endobj
4206 0 obj
(R{@gtr })
endobj
4207 0 obj
<< /S /GoTo /D (108) >>
endobj
4209 0 obj
(R@)
endobj
4210 0 obj
<< /S /GoTo /D (109) >>
endobj
4212 0 obj
(RDROP)
endobj
4213 0 obj
<< /S /GoTo /D (109) >>
endobj
4215 0 obj
(RSP!)
endobj
4216 0 obj
<< /S /GoTo /D (109) >>
endobj
4218 0 obj
(RSP@)
endobj
4219 0 obj
<< /S /GoTo /D (109) >>
endobj
4221 0 obj
(S0)
endobj
4222 0 obj
<< /S /GoTo /D (109) >>
endobj
4224 0 obj
(STRING)
endobj
4225 0 obj
<< /S /GoTo /D (109) >>
endobj
4227 0 obj
($!-BD)
endobj
4228 0 obj
<< /S /GoTo /D (110) >>
endobj
4230 0 obj
($!)
endobj
4231 0 obj
<< /S /GoTo /D (110) >>
endobj
4233 0 obj
(${@char 43}!)
endobj
4234 0 obj
<< /S /GoTo /D (110) >>
endobj
4236 0 obj
($,)
endobj
4237 0 obj
<< /S /GoTo /D (110) >>
endobj
4239 0 obj
($@)
endobj
4240 0 obj
<< /S /GoTo /D (110) >>
endobj
4242 0 obj
($C{@char 43})
endobj
4243 0 obj
<< /S /GoTo /D (110) >>
endobj
4245 0 obj
($I)
endobj
4246 0 obj
<< /S /GoTo /D (111) >>
endobj
4248 0 obj
($S)
endobj
4249 0 obj
<< /S /GoTo /D (111) >>
endobj
4251 0 obj
(-TRAILING)
endobj
4252 0 obj
<< /S /GoTo /D (111) >>
endobj
4254 0 obj
(BL)
endobj
4255 0 obj
<< /S /GoTo /D (111) >>
endobj
4257 0 obj
(COUNT)
endobj
4258 0 obj
<< /S /GoTo /D (111) >>
endobj
4260 0 obj
(S{@char 34})
endobj
4261 0 obj
<< /S /GoTo /D (112) >>
endobj
4263 0 obj
(SUPERFLUOUS)
endobj
4264 0 obj
<< /S /GoTo /D (112) >>
endobj
4266 0 obj
(0)
endobj
4267 0 obj
<< /S /GoTo /D (112) >>
endobj
4269 0 obj
(1{@char 43})
endobj
4270 0 obj
<< /S /GoTo /D (112) >>
endobj
4272 0 obj
(1-)
endobj
4273 0 obj
<< /S /GoTo /D (112) >>
endobj
4275 0 obj
(2*)
endobj
4276 0 obj
<< /S /GoTo /D (112) >>
endobj
4278 0 obj
(2/)
endobj
4279 0 obj
<< /S /GoTo /D (113) >>
endobj
4281 0 obj
(Number_1)
endobj
4282 0 obj
<< /S /GoTo /D (113) >>
endobj
4284 0 obj
(Number_2)
endobj
4285 0 obj
<< /S /GoTo /D (113) >>
endobj
4287 0 obj
(WORDLISTS)
endobj
4288 0 obj
<< /S /GoTo /D (113) >>
endobj
4290 0 obj
(ALSO)
endobj
4291 0 obj
<< /S /GoTo /D (113) >>
endobj
4293 0 obj
(ASSEMBLER)
endobj
4294 0 obj
<< /S /GoTo /D (114) >>
endobj
4296 0 obj
(CONTEXT)
endobj
4297 0 obj
<< /S /GoTo /D (114) >>
endobj
4299 0 obj
(CURRENT)
endobj
4300 0 obj
<< /S /GoTo /D (114) >>
endobj
4302 0 obj
(DEFINITIONS)
endobj
4303 0 obj
<< /S /GoTo /D (114) >>
endobj
4305 0 obj
(DENOTATION)
endobj
4306 0 obj
<< /S /GoTo /D (114) >>
endobj
4308 0 obj
(ENVIRONMENT)
endobj
4309 0 obj
<< /S /GoTo /D (115) >>
endobj
4311 0 obj
(FORTH)
endobj
4312 0 obj
<< /S /GoTo /D (115) >>
endobj
4314 0 obj
(LATEST)
endobj
4315 0 obj
<< /S /GoTo /D (115) >>
endobj
4317 0 obj
(ONLY)
endobj
4318 0 obj
<< /S /GoTo /D (115) >>
endobj
4320 0 obj
(PREVIOUS)
endobj
4321 0 obj
<< /S /GoTo /D (115) >>
endobj
4323 0 obj
(VOC-LINK)
endobj
4324 0 obj
<< /S /GoTo /D (117) >>
endobj
4326 0 obj
(Glossary Index)
endobj
4327 0 obj
<< /S /GoTo /D (121) >>
endobj
4329 0 obj
(Forth Word Index)
endobj
4330 0 obj
<< /S /GoTo /D (127) >>
endobj
4332 0 obj
(Concept Index)
endobj
2429 0 obj <<
/Length1 775
/Length2 987
/Length3 532
/Length 1543
/Filter /FlateDecode
>>
stream
xÚíR}LY˘^[JÓÊV˘��S‚Ì§Ž¦&+�ﬁIÙT$b÷vïŽº5soÝ¦‘‚´¿4>k%³i’ﬂ|�¿|U‹"_E˜Xł&ß—™h£Íf±·býŒ?wÿÚßžóÏyßó¼Ïûœç=¶ã|ýÙn˘ˇ�¥$¡bó9|	ððq_� ãó��ÃcØÚzP�Qá$1�QA	à;;ó†[L(à;�¾X"tﬂL¡AÀ…„TSxhŸ
Lô°ï�›†ł�R8−�À�Q–A%Í†"
àO¢8T©9ÀM¡�~½�ÑÀ�FC*�b˝���0˝U†�˘−��n¯&ˇ!'†¸?“ÅD~¸−–T4-
L¤EÚ�Z"F�
5À€œÁšCÒ½ �äß�õ)¹4F¡Ÿ…({éßûôˇ�Qâ
õ{�©„„QA
ø’˘¤‹O¡†°_ž;©ø¬‚L–(pÔ“�U@Àæ�9<a�˚‘Œâñ�óÅUh˘’#−hØŠ⁄�ö©�Ú½>��–�ÒŽs˛þˆlßµ/‡�ª�u$�¼‘ø¾Ÿÿ1¦m¢ðx°‹Çáñø4’Þ˜N‰?i7ﬁ@I�'B†@ä��−BÔ�ú�Ñ‚�$ð�N`0˚ÀxZ3ŠC’*º�ÐÎ$�9I1zç*t�ÜHz8$Öłg|þ�ww2>†-p�l†‹&�‹–@,�&þ˛8‘À£b€l��ñx<±¸ÿ%h�EABÕ÷–hł>Ärœv�Âx‹2ô
$ê™�¾©dåÞå3w.˘h˜m�ÛšRS®9¢sá´Ýv±¸FŁÖ�À1šæˆóp¼ðëÌöÙû¹Ÿ	×ªÄmÙ–��®¦ÑüÂà¡ö¹łý“�£mÁK¾¬Ê9_9DŽ½æ±~lsd©Ãó&V×šØò†EÞ�|qžUûZÃ½×˙Þ¼X˚‚T{Woı–±˚f2�çﬂyÿ�ç·ÜI¿ÔóÔﬁÜAêwV1…7wY¾Õ[UÞºˆqs°Îy]”Ï�³W(–-©àYñ—:s˙°quÞšûKÓ:³òpI¶�nx†é¸ØGí¬$¼Ñký³ÃaÈŁ�Ê¸Ü¡Á:Ü“û®ýšeÑSÁ¾8Ñ›º ØŁ›“ØÅ¹¤3�tØ¥ÚéiÐ’ß2ì‡,Œﬂ,·3íŸ¨iÞ²kÀ69¥£ØÑ(¯kØÝ³ß	¦Ÿ#�íQ'Ù¨Âœû¼s5ê«ö¶�ˆﬁÕ9�„ÏØÇäk;~�;Íg–àñÃˇ‚zjìIað“#É+;�Ýz¾†(CG7xƒûn�ÍßºÓv÷äšfÉ§/§:‹ÙÅÞA²�þ%�`R−´¥Ë&ÕN-��Õ“™¿8áﬁv&lBš;²Û@’2÷Ê*�ﬁ§”yˆ‰£t˙¢nÖ�Ý’[=‹ø
Ýè˙ˆö*&¡qôPkiÛŒ.ãgŁº’íÆ�−Å©ıÕ/ˆV¯¬µ3ºårõmÍsÔ&@Û:í›EÁk#s³•ýggx„dNÈ_+õÐ>¼mÔ&õ”Í{7À`DYó:qlŁ]˚<�⁄E%%q´S¿o+dé#�½Žëe=G]öÍ7ì¶“dz�ka÷†œî.¬0øeQøô�ü“ó�Ížõ^Œë¦îÒJØ˚¦å˚ú±IÌ�ë"¿×QHﬁ�0H¶ù¶äŽı}‚9þÔﬂ„ÊÌSöy7Ï˛/œ¶Ý5�Í »Jr/VRŸ��>¹¾§õIGES3³¥<„ÍJzÛÔi³Ï¤Zîk5<ø�×_Ö�ÈLÔîG3�M�÷àÒÛ>®]K–VZEí8³À⁄¹zëîAÎAî~›�±F"�łë£*�ÉÌ„Õ�«.

Û˜“Óiºy#A‹eX·§çﬁ�×¤çWwŒØ[˚}sÌ1pzN�3�`Ù¦3K−òãâë�ZPž(¹qoºÙËWM«²Û�”×.õò=½6¯=š<{ÓØe„"÷†fá/¥ø‘/÷FÄÝ¸·ÙÂiRýž¨Äû¼KHr§í ÍÑVÆÙIòY^	~‚È!Ö®+5Ôµ5�A‘ïJÓ+zt=Å5:]Ç*Iv¹ì†«ºyEÏuŒåšÍ	›ˇ˘™ŁÊªií˚YZƒž<tÐÔ5ž›þPôÇ°Y¶Õ'ë™y®�g−·ˇ˙:eyO¼ÂY9¯¬Âp…mÅü[�…[NÍ4łŠ¼‡½s[ù†��“$‰)˛|½ÝNj~ÌÐqèø1õ¼�¸˘ÿ�ü'�P�D(�©D¨�Æ�O�I�endstream
endobj
2430 0 obj <<
/Type /Font
/Subtype /Type1
/Encoding 4333 0 R
/FirstChar 46
/LastChar 46
/Widths 4334 0 R
/BaseFont /MZTFEQ+CMBXTI10
/FontDescriptor 2428 0 R
>> endobj
2428 0 obj <<
/Ascent 694
/CapHeight 686
/Descent -194
/FontName /MZTFEQ+CMBXTI10
/ItalicAngle -14
/StemV 107
/XHeight 444
/FontBBox [-29 -250 1274 754]
/Flags 4
/CharSet (/period
	.R
	.
	?
	CR
	D.R
	D.
	EMIT
	ETYPE
	OUT
	SPACES
	SPACE
	TYPE
	U.

	PARSING
	(PARSE)
	(WORD)
	()
endobj
4066 0 obj
<< /S /GoTo /D (100) >>
endobj
4068 0 obj
(?BLANK)
endobj
4069 0 obj
<< /S /GoTo /D (101) >>
endobj
4071 0 obj
(CHAR)
endobj
4072 0 obj
<< /S /GoTo /D (101) >>
endobj
4074 0 obj
(EVALUATE)
endobj
4075 0 obj
<< /S /GoTo /D (101) >>
endobj
4077 0 obj
(INTERPRET)
endobj
4078 0 obj
<< /S /GoTo /D (101) >>
endobj
4080 0 obj
(IN[])
endobj
4081 0 obj
<< /S /GoTo /D (101) >>
endobj
4083 0 obj
(SET-SRC)
endobj
4084 0 obj
<< /S /GoTo /D (102) >>
endobj
4086 0 obj
(SOURCE)
endobj
4087 0 obj
<< /S /GoTo /D (102) >>
endobj
4089 0 obj
(SRC)
endobj
4090 0 obj
<< /S /GoTo /D (102) >>
endobj
4092 0 obj
(STATE)
endobj
4093 0 obj
<< /S /GoTo /D (102) >>
endobj
4095 0 obj
(WORD)
endobj
4096 0 obj
<< /S /GoTo /D (102) >>
endobj
4098 0 obj
([CHAR])
endobj
4099 0 obj
<< /S /GoTo /D (103) >>
endobj
4101 0 obj
([)
endobj
4102 0 obj
<< /S /GoTo /D (103) >>
endobj
4104 0 obj
({@rawbackslashxx })
endobj
4105 0 obj
<< /S /GoTo /D (103) >>
endobj
4107 0 obj
(])
endobj
4108 0 obj
<< /S /GoTo /D (103) >>
endobj
4110 0 obj
(SCREEN)
endobj
4111 0 obj
<< /S /GoTo /D (103) >>
endobj
4113 0 obj
((LINE))
endobj
4114 0 obj
<< /S /GoTo /D (104) >>
endobj
4116 0 obj
(--{@gtr })
endobj
4117 0 obj
<< /S /GoTo /D (104) >>
endobj
4119 0 obj
(C/L)
endobj
4120 0 obj
<< /S /GoTo /D (104) >>
endobj
4122 0 obj
(INDEX)
endobj
4123 0 obj
<< /S /GoTo /D (104) >>
endobj
4125 0 obj
(LIST)
endobj
4126 0 obj
<< /S /GoTo /D (104) >>
endobj
4128 0 obj
(LOAD)
endobj
4129 0 obj
<< /S /GoTo /D (104) >>
endobj
4131 0 obj
(LOCK)
endobj
4132 0 obj
<< /S /GoTo /D (105) >>
endobj
4134 0 obj
(R#)
endobj
4135 0 obj
<< /S /GoTo /D (105) >>
endobj
4137 0 obj
(SCR)
endobj
4138 0 obj
<< /S /GoTo /D (105) >>
endobj
4140 0 obj
(THRU)
endobj
4141 0 obj
<< /S /GoTo /D (105) >>
endobj
4143 0 obj
(TRIAD)
endobj
4144 0 obj
<< /S /GoTo /D (105) >>
endobj
4146 0 obj
(UNLOCK)
endobj
4147 0 obj
<< /S /GoTo /D (105) >>
endobj
4149 0 obj
((BLK))
endobj
4150 0 obj
<< /S /GoTo /D (106) >>
endobj
4152 0 obj
(BLK)
endobj
4153 0 obj
<< /S /GoTo /D (106) >>
endobj
4155 0 obj
(SECURITY)
endobj
4156 0 obj
<< /S /GoTo /D (106) >>
endobj
4158 0 obj
(!CSP)
endobj
4159 0 obj
<< /S /GoTo /D (106) >>
endobj
4161 0 obj
(?COMP)
endobj
4162 0 obj
<< /S /GoTo /D (106) >>
endobj
4164 0 obj
(?CSP)
endobj
4165 0 obj
<< /S /GoTo /D (106) >>
endobj
4167 0 obj
(?DELIM)
endobj
4168 0 obj
<< /S /GoTo /D (106) >>
endobj
4170 0 obj
(?EXEC)
endobj
4171 0 obj
<< /S /GoTo /D (107) >>
endobj
4173 0 obj
(?LOADING)
endobj
4174 0 obj
<< /S /GoTo /D (107) >>
endobj
4176 0 obj
(?PAIRS)
endobj
4177 0 obj
<< /S /GoTo /D (107) >>
endobj
4179 0 obj
(?STACK)
endobj
4180 0 obj
<< /S /GoTo /D (107) >>
endobj
4182 0 obj
(CSP)
endobj
4183 0 obj
<< /S /GoTo /D (107) >>
endobj
4185 0 obj
(STACKS)
endobj
4186 0 obj
<< /S /GoTo /D (107) >>
endobj
4188 0 obj
(.S)
endobj
4189 0 obj
<< /S /GoTo /D (107) >>
endobj
4191 0 obj
({@gtr }R)
endobj
4192 0 obj
<< /S /GoTo /D (108) >>
endobj
4194 0 obj
(DEPTH)
endobj
4195 0 obj
<< /S /GoTo /D (108) >>
endobj
4197 0 obj
(DSP!)
endobj
4198 0 obj
<< /S /GoTo /D (108) >>
endobj
4200 0 obj
(DSP@)
endobj
4201 0 obj
<< /S /GoTo /D (108) >>
endobj
4203 0 obj
(R0)
endobj
4204 0 obj
<< /S /GoTo /D (108) >>
endobj
4206 0 obj
(R{@gtr })
endobj
4207 0 obj
<< /S /GoTo /D (108) >>
endobj
4209 0 obj
(R@)
endobj
4210 0 obj
<< /S /GoTo /D (109) >>
endobj
4212 0 obj
(RDROP)
endobj
4213 0 obj
<< /S /GoTo /D (109) >>
endobj
4215 0 obj
(RSP!)
endobj
4216 0 obj
<< /S /GoTo /D (109) >>
endobj
4218 0 obj
(RSP@)
endobj
4219 0 obj
<< /S /GoTo /D (109) >>
endobj
4221 0 obj
(S0)
endobj
4222 0 obj
<< /S /GoTo /D (109) >>
endobj
4224 0 obj
(STRING)
endobj
4225 0 obj
<< /S /GoTo /D (109) >>
endobj
4227 0 obj
($!-BD)
endobj
4228 0 obj
<< /S /GoTo /D (110) >>
endobj
4230 0 obj
($!)
endobj
4231 0 obj
<< /S /GoTo /D (110) >>
endobj
4233 0 obj
(${@char 43}!)
endobj
4234 0 obj
<< /S /GoTo /D (110) >>
endobj
4236 0 obj
($,)
endobj
4237 0 obj
<< /S /GoTo /D (110) >>
endobj
4239 0 obj
($@)
endobj
4240 0 obj
<< /S /GoTo /D (110) >>
endobj
4242 0 obj
($C{@char 43})
endobj
4243 0 obj
<< /S /GoTo /D (110) >>
endobj
4245 0 obj
($I)
endobj
4246 0 obj
<< /S /GoTo /D (111) >>
endobj
4248 0 obj
($S)
endobj
4249 0 obj
<< /S /GoTo /D (111) >>
endobj
4251 0 obj
(-TRAILING)
endobj
4252 0 obj
<< /S /GoTo /D (111) >>
endobj
4254 0 obj
(BL)
endobj
4255 0 obj
<< /S /GoTo /D (111) >>
endobj
4257 0 obj
(COUNT)
endobj
4258 0 obj
<< /S /GoTo /D (111) >>
endobj
4260 0 obj
(S{@char 34})
endobj
4261 0 obj
<< /S /GoTo /D (112) >>
endobj
4263 0 obj
(SUPERFLUOUS)
endobj
4264 0 obj
<< /S /GoTo /D (112) >>
endobj
4266 0 obj
(0)
endobj
4267 0 obj
<< /S /GoTo /D (112) >>
endobj
4269 0 obj
(1{@char 43})
endobj
4270 0 obj
<< /S /GoTo /D (112) >>
endobj
4272 0 obj
(1-)
endobj
4273 0 obj
<< /S /GoTo /D (112) >>
endobj
4275 0 obj
(2*)
endobj
4276 0 obj
<< /S /GoTo /D (112) >>
endobj
4278 0 obj
(2/)
endobj
4279 0 obj
<< /S /GoTo /D (113) >>
endobj
4281 0 obj
(Number_1)
endobj
4282 0 obj
<< /S /GoTo /D (113) >>
endobj
4284 0 obj
(Number_2)
endobj
4285 0 obj
<< /S /GoTo /D (113) >>
endobj
4287 0 obj
(WORDLISTS)
endobj
4288 0 obj
<< /S /GoTo /D (113) >>
endobj
4290 0 obj
(ALSO)
endobj
4291 0 obj
<< /S /GoTo /D (113) >>
endobj
4293 0 obj
(ASSEMBLER)
endobj
4294 0 obj
<< /S /GoTo /D (114) >>
endobj
4296 0 obj
(CONTEXT)
endobj
4297 0 obj
<< /S /GoTo /D (114) >>
endobj
4299 0 obj
(CURRENT)
endobj
4300 0 obj
<< /S /GoTo /D (114) >>
endobj
4302 0 obj
(DEFINITIONS)
endobj
4303 0 obj
<< /S /GoTo /D (114) >>
endobj
4305 0 obj
(DENOTATION)
endobj
4306 0 obj
<< /S /GoTo /D (114) >>
endobj
4308 0 obj
(ENVIRONMENT)
endobj
4309 0 obj
<< /S /GoTo /D (115) >>
endobj
4311 0 obj
(FORTH)
endobj
4312 0 obj
<< /S /GoTo /D (115) >>
endobj
4314 0 obj
(LATEST)
endobj
4315 0 obj
<< /S /GoTo /D (115) >>
endobj
4317 0 obj
(ONLY)
endobj
4318 0 obj
<< /S /GoTo /D (115) >>
endobj
4320 0 obj
(PREVIOUS)
endobj
4321 0 obj
<< /S /GoTo /D (115) >>
endobj
4323 0 obj
(VOC-LINK)
endobj
4324 0 obj
<< /S /GoTo /D (117) >>
endobj
4326 0 obj
(Glossary Index)
endobj
4327 0 obj
<< /S /GoTo /D (121) >>
endobj
4329 0 obj
(Forth Word Index)
endobj
4330 0 obj
<< /S /GoTo /D (127) >>
endobj
4332 0 obj
(Concept Index)
endobj
2429 0 obj <<
/Length1 775
/Length2 987
/Length3 532
/Length 1543
/Filter /FlateDecode
>>
stream
xÚíR}LY˘^[JÓÊV˘��S‚Ì§Ž¦&+�ﬁIÙT$b÷vïŽº5soÝ¦‘‚´¿4>k%³i’ﬂ|�¿|U‹"_E˜Xł&ß—™h£Íf±·býŒ?wÿÚßžóÏyßó¼Ïûœç=¶ã|ýÙn˘ˇ�¥$¡bó9|	ððq_� ãó��ÃcØÚzP�Qá$1�QA	à;;ó†[L(à;�¾X"tﬂL¡AÀ…„TSxhŸ
Lô°ï�›†ł�R8−�À�Q–A%Í†"
àO¢8T©9ÀM¡�~½�ÑÀ�FC*�b˝���0˝U†�˘−��n¯&ˇ!'†¸?“ÅD~¸−–T4-
L¤EÚ�Z"F�
5À€œÁšCÒ½ �äß�õ)¹4F¡Ÿ…({éßûôˇ�Qâ
õ{�©„„QA
ø’˘¤‹O¡†°_ž;©ø¬‚L–(pÔ“�U@Àæ�9<a�˚‘Œâñ�óÅUh˘’#−hØŠ⁄�ö©�Ú½>��–�ÒŽs˛þˆlßµ/‡�ª�u$�¼‘ø¾Ÿÿ1¦m¢ðx°‹Çáñø4’Þ˜N‰?i7ﬁ@I�'B†@ä��−BÔ�ú�Ñ‚�$ð�N`0˚ÀxZ3ŠC’*º�ÐÎ$�9I1zç*t�ÜHz8$Öłg|þ�ww2>†-p�l†‹&�‹–@,�&þ˛8‘À£b€l��ñx<±¸ÿ%h�EABÕ÷–hł>Ärœv�Âx‹2ô
$ê™�¾©dåÞå3w.˘h˜m�ÛšRS®9¢sá´Ýv±¸FŁÖ�À1šæˆóp¼ðëÌöÙû¹Ÿ	×ªÄmÙ–��®¦ÑüÂà¡ö¹łý“�£mÁK¾¬Ê9_9DŽ½æ±~lsd©Ãó&V×šØò†EÞ�|qžUûZÃ½×˙Þ¼X˚‚T{Woı–±˚f2�çﬂyÿ�ç·ÜI¿ÔóÔﬁÜAêwV1…7wY¾Õ[UÞºˆqs°Îy]”Ï�³W(–-©àYñ—:s˙°quÞšûKÓ:³òpI¶�nx†é¸ØGí¬$¼Ñký³ÃaÈŁ�Ê¸Ü¡Á:Ü“û®ýšeÑSÁ¾8Ñ›º ØŁ›“ØÅ¹¤3�tØ¥ÚéiÐ’ß2ì‡,Œﬂ,·3íŸ¨iÞ²kÀ69¥£ØÑ(¯kØÝ³ß	¦Ÿ#�íQ'Ù¨Âœû¼s5ê«ö¶�ˆﬁÕ9�„ÏØÇäk;~�;Íg–àñÃˇ‚zjìIað“#É+;�Ýz¾†(CG7xƒûn�ÍßºÓv÷äšfÉ§/§:‹ÙÅÞA²�þ%�`R−´¥Ë&ÕN-��Õ“™¿8áﬁv&lBš;²Û@’2÷Ê*�ﬁ§”yˆ‰£t˙¢nÖ�Ý’[=‹ø
Ýè˙ˆö*&¡qôPkiÛŒ.ãgŁº’íÆ�−Å©ıÕ/ˆV¯¬µ3ºårõmÍsÔ&@Û:í›EÁk#s³•ýggx„dNÈ_+õÐ>¼mÔ&õ”Í{7À`DYó:qlŁ]˚<�⁄E%%q´S¿o+dé#�½Žëe=G]öÍ7ì¶“dz�ka÷†œî.¬0øeQøô�ü“ó�Ížõ^Œë¦îÒJØ˚¦å˚ú±IÌ�ë"¿×QHﬁ�0H¶ù¶äŽı}‚9þÔﬂ„ÊÌSöy7Ï˛/œ¶Ý5�Í »Jr/VRŸ��>¹¾§õIGES3³¥<„ÍJzÛÔi³Ï¤Zîk5<ø�×_Ö�ÈLÔîG3�M�÷àÒÛ>®]K–VZEí8³À⁄¹zëîAÎAî~›�±F"�łë£*�ÉÌ„Õ�«.

Û˜“Óiºy#A‹eX·§çﬁ�×¤çWwŒØ[˚}sÌ1pzN�3�`Ù¦3K−òãâë�ZPž(¹qoºÙËWM«²Û�”×.õò=½6¯=š<{ÓØe„"÷†fá/¥ø‘/÷FÄÝ¸·ÙÂiRýž¨Äû¼KHr§í ÍÑVÆÙIòY^	~‚È!Ö®+5Ôµ5�A‘ïJÓ+zt=Å5:]Ç*Iv¹ì†«ºyEÏuŒåšÍ	›ˇ˘™ŁÊªií˚YZƒž<tÐÔ5ž›þPôÇ°Y¶Õ'ë™y®�g−·ˇ˙:eyO¼ÂY9¯¬Âp…mÅü[�…[NÍ4łŠ¼‡½s[ù†��“$‰)˛|½ÝNj~ÌÐqèø1õ¼�¸˘ÿ�ü'�P�D(�©D¨�Æ�O�I�endstream
endobj
2430 0 obj <<
/Type /Font
/Subtype /Type1
/Encoding 4333 0 R
/FirstChar 46
/LastChar 46
/Widths 4334 0 R
/BaseFont /MZTFEQ+CMBXTI10
/FontDescriptor 2428 0 R
>> endobj
2428 0 obj <<
/Ascent 694
/CapHeight 686
/Descent -194
/FontName /MZTFEQ+CMBXTI10
/ItalicAngle -14
/StemV 107
/XHeight 444
/FontBBox [-29 -250 1274 754]
/Flags 4
/CharSet (/period
	?BLANK
	CHAR
	EVALUATE
	INTERPRET
	IN[]
	SET-SRC
	SOURCE
	SRC
	STATE
	WORD
	[CHAR]
	[
	{@rawbackslashxx }
]

	SCREEN
	(LINE)
	--{@gtr }
	C/L
	INDEX
	LIST
	LOAD
	LOCK
	R#
	SCR
	THRU
	TRIAD
	UNLOCK
	(BLK)
	BLK

	SECURITY
	!CSP
	?COMP
	?CSP
	?DELIM
	?EXEC
	?LOADING
	?PAIRS
	?STACK
	CSP

	STACKS
	.S
	{@gtr }R
	DEPTH
	DSP!
	DSP@
	R0
	R{@gtr }
	R@
	RDROP
	RSP!
	RSP@
	S0

	STRING
	$!-BD
	$!
	${@char 43}!
	$,
	$@
	$C{@char 43}
	$I
	$S
	-TRAILING
	BL
	COUNT
	S{@char 34}

	SUPERFLUOUS
	0
	1{@char 43}
	1-
	2*
	2/
	Number_1
	Number_2

	WORDLISTS
	ALSO
	ASSEMBLER
	CONTEXT
	CURRENT
	DEFINITIONS
	DENOTATION
	ENVIRONMENT
	FORTH
	LATEST
	ONLY
	PREVIOUS
	VOC-LINK

	Glossary Index
	Forth Word Index
	Concept Index

