

TERNS A\C rO\D T O \ S OF SA-! A+D . CEZSE OF TAhDV COMP-TER EO, PNEhT A 4 0
SOF-;\AQF J.RCnASE3 F33V 7AC 0 SnACI(:3VPA\ ' -OhhED COVP-TER CEhTERS RETA

j - ? R E ? A \ ? >A0 S SrAC< F9A\Cn SEES ' IR 2EA-E;IS AT TnE R A-TnOR ZEC -0CAT OhS

LIMITED WARRANTY
CUSTOMER OBLIGATIONS
A CUSTOMER assumes full responsibility that this computer hardware purchased (the Equipment and any

copies of software included with the Equipment or licensed se arately (the Software) meets the specifications
capacity capabilities versatility and other requirements of CUETOMER

6 CUSTOMER assumes full responsibility lor the condAon and effectiveness of the operating environment in whlch
toe Equipment and Software are to function and lor its installation

LIMITED WARRANTIES AND CONDITIONS OF SALE
A For a period of ninety (901 calendar days l rom the date of the Radio Shack sales document received upon

purchase of the Equipment RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free f rom manufacturing defects This warranty is only applicable
lo purchases of Tandy Equipment by the original customer from Radlo Shack company-owned computer
cenlers retail stores, and Radlo Shack franchisees and dealers at their aulhorlzed locations The warrantv is

111.

6 9ADIO SPACK sha I not be liable for any damages caused by delay in delivering or furnishing Equipment and or
Softviare

IV.

V.

VI.

C No actio1 ar sin out of any claimed breach of this Warranty or transactions under this Warranty may be brought
rr'ore than two 92) years after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document for the Equlpment or Software whichever first occurs

D S o r e states do not a1 ow the imitat on or exclusion of incidental or coiseouential damages so the above
imitationis) or exclusionls) may l o t apply to CUSTOMER

SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non exclusive paid up license to use the TANDY Software on one computer
subject to the following provisions
A Except as otherwise provided in this Software License applicable copyright laws shall apply to the Software
B Title to the medium on Nhich the Software is recorded (cassette and or diskette) or stored IROMi is transferred to

CLSTOMER but not t'tle t o the Software
C CLSTOMER may use Software on a multiuser or network system only if eit'ler the Software is expressly labeled

to be for use on a multiuser or network system or one copy of th s software is purchased for each node or
te rw i i a l on wh ch Software s to be used simultaneously

D CUSTOMER shal, not use make manufacture or reproduce copies of Software except for use on one computer
and as is specifically provided in this Software License Customer is expressly prohibited f rom disassembling the
Software

E CUSTOKER s perwitted to make additional copies of the Software only for backup or archival purposes or If
additional copies are required in the operation of one computer with the Software but only to the extent the
Software allows a backup copy to be made However for TRSDOS Software CUSTOMER is permitted to make a
l im ted number of additionas copies for CUSTOMER S own use

F CLSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one soid or distributed The provisions of this Software License shall also be
applicable to third parties receving copies of the Software from CUSTOMER

C All copyright notices s+al' be retained on all copies of the Software
APPLICABILITY OF WARRANTY
A T9e t e r m and conditions of this Warranty are applicable as between RADIO SHACK and CLSTOMER to either a

sale of the Equipment and or Software License to CUSTOMER or to a transaction whereby Radio Slack sells or
conveys such Equipment to a third party lor lease to CUSTOMER

6 The imitations of liabil ty and Warra i ty provisions herein sha I nure to the benefit of RADIO SHACK the author
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack

STATE LAW RIGHTS
The warranties granted herein give the original CUSTOMER specific legal rlghts and 1% original CUSTOMER may

8 85 have other r i g l t s which vary f rom state to state

GW '"-BASIC Software: Copyright 1983, 1984 Microsoft Corpora-
tion. Licensed to Tandy Corporation. All Rights Reserved.

MS"'-DOS Software: Copyright 1981, 1982, 1983 Microsoft Cor-
poration. Licensed to Tandy Corporation. All Rights Reserved.

Tandym 1000 BIOS Software: Copyright 1984 Tandy Corporation
and Phoenix Compatibility Corporation. All Rights Reserved.

BASIC Reference Manual: Copyright 1985 Tandy Corporation. All
Rights Reserved.

MS and GW are trademarks of Microsoft Corporation.

Tandy is a registered trademark of Tandy Corporation.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in the preparation of
this manual to assure its accuracy, Tandy Corporation assumes
no liability resulting from any errors in or omissions from this
manual, or from the use of the information contained herein.

10 9 8 7 6 5 4 3 2

Contents

Introduction to BASIC 7
About this Manual 7
Notations 7
Terms 8

Chapter 1 / About BASIC for MS-DOS 11
Disk Files 11

Pathnames 12
Directory Paths 12
Names 13
Wildcards 13

Device Names 14

Chapter 2 / Loading MS-DOS and BASIC 17
Loading MS-DOS 17
Making Backups 17

One Drive System 18
Two Drive System 18

Loading BASIC 19
Loading BASIC via BASICA 19
Options for Loading BASIC 20
Redirection of Input and Output 23

Chapter 3 / Sample Session 27
Loading BASIC 27
Typing the Program 27
Saving the Program on Disk 28
Loading the Program into Memory 28

Chapter 4 / General Information 33

Sample Editing Session 34

The Key 38

Editing 33

Special Keys 36

The Key 39

3

Chapter 5 / Basic Concepts 43
Elements of a Program 43
Data 44
Constants 46
Variables 47
Declaring Numeric Constants and Variables 47

Numeric Constants 48
Numeric Variables 48

Numeric Precision Conversion 49
Manipulating Data 51

Arithmetic Operators 51
String Operator 52
Relational Operators 52
Logical Operators 54
Hierarchy of Operators 55
Functions 56

Chapter 6 / Arrays 59
Types of Arrays 62
Defining Arrays 63

Chapter 7 / Disk Files 67
Sequential Access Files 67

Creating a Sequential Access File 68
Updating a Sequential Access File 69

Direct Access Files 70
Creating a Direct Access File 71
Accessing a Direct Access File 73

Chapter 8 / Displaying Color and Graphics 77
Resolution 77

78
Video Pages 79
Selecting Screen Modes 80
Specifying Coordinates 82

Chapter 9 / Introduction to BASIC Keywords 85
Format for Chapter 10 85
Terms Used in Chapter 10 86
Statements 87

Chapter 10 / BASIC Keywords 97

Functions 92

4

Chapter 11 / Technical Information 351
Interfacing With Assembly-Language Routines 351

Memory Allocation Outside BASIC’s Work Area 351
Memory Allocation Inside BASIC’s Work Area 351
CALL Statement 353
CALLS Statement 355
USR Function 355

How Variables are Stored 357
Accessing String Variables 358
File Control Block 358
User Installed Devices 361
Information for Creating Child Processes 361

Messages 365

and Derived Functions 375

Charts 379
Keyboard ASCII/Scan Codes 379
ASCII Character Codes 383

Appendix C I Video Display Worksheet 389

Index 393

Chapter 12 / BASIC Error Codes and

Appendix A / BASIC Reserved Words

Appendix B / Keyboard and Character Code

Appendix D / Extended Codes 391

5

INTRODUCTION TO BASIC

About This Manual
This manual describes BASIC for MS-DOS. It is a reference
manual, not a tutorial. We assume you already know BASIC and
are using this manual to locate information quickly. If you do
not know BASIC, see your Radio Shack dealer for the following
book:

Learning BASZC for the Tandy 200011 000
by David Lien, Cat. No. 25-1500

Your local bookstore has many books about BASIC available that
are written in tutorial fashion.

Notations
The following notations are used throughout this manual:

CAPITALS Material that you must enter exactly as i t
appears.

italics Words, letters, characters, or values within
command lines you must supply from a set of
acceptable entries. Elsewhere, italics are used
for emphasis.

Items preceding the ellipsis may be repeated.

Items enclosed in brackets are optional.

nnnn is a hexadecimal number.

nnnnn is an octal number.

A key on your keyboard.

A blank character (ASCII code 32). For exam-
ple, in

two spaces are between BASIC and PROG.

. . . (ellipsis)

[I
&Hnnnn

&Onnnnn

[keynameJ
16

BASICMMPROG

7

Introduction to BASIC

Terms
The following terms are used in this manual:

buffer An area in memory that BASIC uses to create
and access a disk file. A buffer is represented
by a number in the range 1 to 15. Once you
use a buffer to create a file, you cannot use it
to create or access any other files; you must
first close the file. You may only access an
open file with the buffer used to open it.

Information you supply to specify how a com-
mand is to operate.

Expressions you supply for a function t o
evaluate.

A command with its parameterb), or a func-
tion with its argument(s). This shows the for-
m a t t o use for en ter ing a keyword i n a
program line.

parameters

arguments

syntax

8

Chapter 1

ABOUT BASIC FOR MS-DOS

BASIC for MS”’-DOS is an interpreter. This means that, when
you run a program, BASIC looks at one statement at a time and
executes it before going to the next statement.

BASIC also lets you take advantage of many MS-DOS features,
such as:

0 Multilevel directories
Faster running programs

0 Expanded graphics capabilities

Disk Files
BASIC uses the MS-DOS multilevel directory structure on disk.
A formatted disk has a main directory called the “root” direc-
tory which is represented by the backslash (\) . The root direc-
tory can contain both files and “second-level’’ directories.

This illustration demonstrates how a typical system for a sales
and service company might be set up. The root directory con-
tains two second-level directories: SALES and SERVICE. The
root directory also contains a file called letters.

11

Chapter 1 I About BASIC for MS-DOS

Pathnames
BASIC lets you specify pathnames t o access disk files just as MS-
DOS does. A pathname is enclosed in quotation marks and may be
a maximum of 63 characters. It contains the following information:

“ [d : I[pathlfilename[.extl”

The drive is specified by d: and may be either A, B, C, or D. If you
omit d : , BASIC uses the current drive.

Path gives the directory path for filename. The directory names are
separated by a backslash (\ 1. If you omit path, BASIC uses the
current directory.

Filename specifies the name of the file being accessed. Filenames
are 1 to 8 characters long. If a filename is more than 8 character,
BASIC truncates it t o 8 characters.

Ext is an optional extension to the filename. Use extensions to help
distinguish types of files. Extensions are always preceded by a pe-
riod (.I and are l to 3 characters long. If you omit the extension,
BASIC assumes .bas. Here are some common extensions:

.bas for BASIC programs

.txt for ASCII text

.dat for Data files

.obj for Object code

.re1 for Relocatable code

.src for Source code

Directory Paths
Some commands, such as CHDIR, MKDIR and RMDIR use a direc-
tory path (dirpath) instead of a pathname. The only difference be-
tween the two is that a dirpath does not include a filename:

“ [d :]path”

The drive identifier (d :) andpath are described above.

12

Chapter 1 I About BASIC for MS-DOS

Names
Directory names and filenames must conform to MS-DOS con-
ventions. They may contain any of the following characters:

0 uppercase letters (A-Z)
0 lowercase letters (a 4
0 decimal digits (0-9)

In addition, they may contain the following special characters:

$ & # 5% () - (6 { } - ' ! ' * -

An entire pathname (or directory path) may contain a maximum of
63 characters.

Some sample filenames are:

prog.bas report telephon. sls

Some sample directory names are:

MEMOS LETTERS EMPLOYEE

In this manual, directory names are in uppercase letters, and
filenames are in lowercase letters. This lets you easily distin-
guish a directory name from a filename.

Wildcards
BASIC follows MS-DOS usage of wildcard notations when search-
ing for directories or filenames. The wildcard notations are:

? indicates that any character can occupy that position.
* indicates that any character can occupy that position or the

remaining positions in the filename or extension.

For example, if you specify this filename:

data?tst.txt

BASIC might find these files:

dataltst.txt
data3tst.txt

If you specify this filename:

data*.txt

13

Chapter 1 I About BASIC for MS-DOS

BASIC finds those files and might also find these:

data.txt
datatst.txt
datal.txt

Device Names
BASIC uses device identifiers (dev:) to indicate a physical device to
be used for communication. These names, which must be enclosed
in quotation marks, are:

KYBD:
SCRN:
LPT1:
COMn:

You can open any of these devices just as you would a disk file.

keyboard. Use for input only.
screen. Use for output only.
printer. Use for output only.
RS232 communications channel 1 or 2. Use for input or
output.

14

Chapter 2

LOADING MS-DOS AND BASIC

The diskette that came with your computer contains MS-DOS
and the BASIC Interpreter. Before you begin using BASIC, make
backups of this diskette. First, load MS-DOS into the computer.

Loading MS-DOS
To start up MS-DOS, turn on your computer and insert the MS-
DOSIBASIC diskette into Drive A. See your computer’s introduc-
tion book for information on turning on your computer and Drive
A.

Shortly, MS-DOS prompts you to enter the date and time. We
suggest that you enter this information since some BASIC state-
ments use the system date and time. MS-DOS displays the
proper format.

Next, MS-DOS loads and displays its prompt:
A >

This means that you are a t the MS-DOS command level where
you can execute a program or command. You should now make
backups of your MS-DOSIBASIC diskette.

Making Backups
Just as you always keep a spare key for a car, you should keep
backup copies of all your diskettes. After you make the backup of
your MS-DOSIBASIC diskette, store the original in a cool, dust-
free place where it can’t get bent or warped. Also be sure it is
not near any magnetic source. If something should happen to
any of your backup MS-DOSIBASIC diskettes, be sure to make
another backup. Do not use the original diskette except to make
backups.

You can also use the following procedures to make backups of
diskettes you create.

17

Chapter 21 Loading MS-DOS and BASIC

One Drive System
1. At the MS-DOS system prompt (A>), type:

FORMAT [ENTER]

2. When prompted, remove the MS-DOSIBASIC diskette
and insert an unformatted diskette into Drive A. Press
[SPACEBAR] to begin formatting. MS-DOS displays a line of
dashes. The dashes change to dots as each track is
formatted.

3. When formatting is complete, MS-DOS prompts:
FORMAT a n o t h e r (Y / N) 7

Format as many disket tes a s you want. When you a r e
through, answer m.

4. Place the MS-DOSIBASIC diskette into Drive A. At the MS-
DOS prompt, type:

DISKCOPY [ENTER]

5. DISKCOPY prompts you to insert the “target” diskette into
Drive A. Remove the MS-DOSIBASIC diskette from Drive A
and insert the newly formatted diskette. Press (SPACEBAR] to be-
gin copying. Shortly, you are prompted to insert the “so~rce’~
diskette. The source diskette is the MS-DOSIBASIC diskette.
MS-DOS will prompt you to swap the diskettes several times.

6. When DISKCOPY is complete, it prompts:
C o p y c o m p l e t e . C o p y a n o t h e r (Y / N) 7

Make a few more backups. When through, type (iJ.

Two Drive System
1. At the MS-DOS system prompt (A>), type:

FORMAT E: [ENTER]

2. When prompted, insert an unformatted diskette into Drive B.
Press [SPACEBAR] to begin formatting. MS-DOS displays a line of
dashes. The dashes change to dots as each track is formatted.

3. When formatting is complete, MS-DOS prompts:
FORMAT a n o t h e r (Y / N) ?

18

Chapter 21 Loading MS-DOS and BASIC!

Format as many diskettes as you want. When you a r e
through, answer m.

4. At the MS-DOS prompt, type:
D I S K C O P Y A : E: [ENTER)

5 . DISKCOPY prompts you to insert the “source” diskette into
Drive A and the “target” diskette into Drive B. Insert the
newly formatted diskette into Drive B. Since the MS-DOS/
BASIC diskette is already in Drive A, press I.

6. When DISKCOPY is complete, it prompts:
C o p y c o m p l e t e . C o p y a n o t h e r (Y / N) 7

Make a few more backups. When through, type (iJ.

Loading BASIC
To load BASIC, first start up MS-DOS as described earlier.
When MS-DOS displays its system prompt, A>, you load BASIC
by typing 1 of 2 commands.

B A S I C [ENTER)

immediately loads BASIC into the computer’s memory.
B A S I C A [ENTER]

loads the small loader program BASICA.COM, which in turn
loads BASIC. This alternate method of loading BASIC is dis-
cussed in detail in the section “Loading BASIC via BASICA.”

Once you load BASIC, a paragraph of copyright information ap-
pears on your screen, followed by BASIC’s prompt: Ok.

At this point, you can begin using BASIC. The next chapter pro-
vides a sample session on loading BASIC and using some of its
capabilities. If you don’t want to use any of BASIC’s other op-
tions for loading, go ahead to the next chapter.

Loading BASIC via BASICA
Some computers require you to type BAS I C A [ENTER) to load
BASIC. To increase compatibility with such computers, your
computer also accepts the BASICA command. When you enter
the command, the computer executes the program BASICA.COM,
which in turn loads BASIC.

19

Chapter 21 Loading MS-DOS and BASIC

In addition to compatibility, other advantages of loading BASIC
via BASICA are as follows:

If your computer has more than 128K bytes of memory, BASIC
is loaded at a different memory location than it would be oth-
erwise. This feature lets you run a few BASIC programs that
make use of certain memory locations that BASIC would oth-
erwise have occupied.

You can gain space on your program or system diskette be-
cause you can store the BASIC.EXE file on a separate disk.

The only limitations imposed by BASICA are:

The /I option switch (discussed below) is always on.

The communications buffer size is limited to 40K bytes if the

After you type BASICA [ENTER), BASICA.COM searches the cur-
rent directory for the file BASIC.EXE. If it finds BASIC.EXE,
BASICA.COM loads it and passes control to it.

If BASICA.COM does not find BASIC.EXE, it asks you to replace
your program disk with a disk that contains the file. Place a
disk containing BASIC.EXE in any drive, and press m. The
program searches all drives, beginning with the current drive,
until it finds BASIC.EXE or until you press [CTRL] [TI.

After finding BASIC.EXE, the program asks you to re-insert
your program disk if you removed it. Put the disk back in the
drive, and press m. The program transfers control to BASIC.

system has 1 RS232 card or 20K bytes if it has 2 cards.

Options for Loading BASIC
When you load BASIC, you can also specify a set of options,
which includes:

BASIC [pathnamel[<input-file] [>[>loutput-fiZel [IF:# of files1
[/M:highest memory locatwn,maximum block sizel[/C:buffer size]
[/S:record lengthl[/Dl[/Il

If you load BASIC by typing B A S I C A [ENTER], the /I switch is al-
ways invoked. Other than that, you have the same options, re-
gardless of how you load BASIC.

Pathname specifies a program to run immediately after BASIC is
started.

20

Chapter 21 Loadim MS-DOS and BASIC

<Input-file tells BASIC to receive input from input-file instead
of the usual standard input (the keyboard). This option must fol-
low pathname and precede all other options in the command line.
Redirection of input and output is discussed later in th i s
chapter.

>[>lOutput-file redirects BASIC’s output to output-file instead
of the standard output (video display). If you specify 1 greater-
than sign, output file is overwritten. If you use 2 greater-than
signs, it is appended. This option must follow input file (if given)
and precede all other options in the command line. Redirection of
input and output is discussed later in this chapter.

IF: specifies the maximum number of data files that may be
open at any one time. If you specify the IF: option, you must also
specify the /I option. If you omit this option, the number of files
defaults to three. The number of open files that MS-DOS sup-
ports depends on the value given for the FILES= command in
the CONFIG.SYS file. We recommend that you set FILES = 10
for BASIC. BASIC automatically reserves 4 files for internal use.
This leaves 6 for BASIC file IIO; thus lF:6 is the maximum sup-
ported by MS-DOS when FILES= command is set to 10 in the
CONFIGSYS file.

Each file you specify may use a maximum 190 bytes of memory.
Sequential access files always use 190 bytes of memory. The
amount of memory a direct access file uses depends on the
record size set with the IS: option. Each direct access file uses 62
bytes of memory for the file control block, plus the record size.
For example, if you specify a record size of 50 with the IS:
switch, the file uses 112 bytes.

1s: specifies the maximum record size for direct access files. If
you use the IS: option, you also must specify the /I option. If you
omit the is: option, BASIC assumes 128 bytes.

IC: specifies the size of the receive buffer for each RS232 commu-
nications channel present in the system. The maximum amount
you can specify depends on the number of RS232 cards present
in the system and on the method used to load BASIC.

21

Chapter 21 Loading MS-DOS and BASIC

22

Loading Method
BASIC
BASIC
BASICA
BASICA

Number
of Ports Buffer Size

1 64K bytes
2 32K bytes
1 40K bytes
2 20K bytes

Chapter 21 Loading MS-DOS and BASIC

Examples
BASIC DEBITS

initializes BASIC to 3 data files with all memory available.
BASIC then loads and runs the program DEBITS.

BASIC PAYROLL / F : 5

initializes BASIC to 5 data files with all memory available.
BASIC then loads and runs the program PAYROLL.

BASIC / M : 2 1 0 0 0

initializes BASIC to 3 data files and sets the highest memory lo-
cation to be used by BASIC at 21000, the first 21000 bytes of
BASIC’s data segment.

BASIC BUDGET / D

initializes BASIC to 3 data files with all memory available.
BASIC loads and uses the Double Precision Transcendental math
package.

Redirection of Input and Output
BASIC lets you redirect input and output. The syntax to redirec-
tion is:

BASIC [pathname] [<input-file] [>[>loutput-file1

You can redirect standard input, normally from the keyboard, to
the file input-file.

Standard output, normally to the video display, can be redi-
rected to the file output-file. If output-file already exists, it is ov-
erwrit ten. You can, however, append the output-file t o the
existing file by using the append notation: >>output-file. If out-
put-file does not exist, it is created.

The following BASIC statements use standard input:

INPUT
INPUT$

LINE INPUT
INKEY$

The BASIC statements PRINT and WRITE access standard
output.

Error messages are sent both to the standard output and to the
redirected output.

23

Chapter 21 Loading MS-DOS and BASIC

Examples
BASIC DAILY >DAILY.OUT

initializes BASIC and runs the program DAILY. Redirects all
output, normally sent to the screen, to the file DAILY.OUT.

BASIC DAILY <DAILY.IN

initializes BASIC and executes the program DAILY. DAILY re-
ceives all input, normally entered through the keyboard, from
the file DAILYJN.

BASIC S A M P L E <TSTDATA.IN >TSTDATA.OUT

initializes BASIC and executes the program SAMPLE. SAMPLE
receives i n p u t from TSTDATA.IN and sends output t o
TSTDATA. OUT.

BASIC PAYROLL < W E E K 2 5 >>YTDTOTAL

initializes BASIC and executes the program PAYROLL. PAY-
ROLL receives input from the file WEEK25. The output is ap-
pended to the file YTDTOTAL.

Hints for redirection of input and output:

0 File input from t h e KYBD: device s t i l l reads from the

0 File output to the SCRN: device still outputs to the screen.

0 BASIC s t i l l t r a p s keys when you u s e t h e O N K E Y 0

[C s R L j m] tells BASIC to close all open files, then issue the
message “Break in line xxxx” to standard output. Control re-
turns to MS-DOS.

0 Redirected input continues until BASIC receives a [CTRLJ[T].
This condition can be tested by the EOFO function. If the in-
put file is not terminated by a [CTRL][T] or a BASIC file input
statement tries to read past the end-of-file, BASIC closes any
open files and issues the message “Read past end” to standard
output. Control returns to MS-DOS.

e The printer echo key combination ([CTRL][PRlNT)), which nor-
mally causes all output on the display to be echoed on LPTl:,
will not work if you redirect standard output.

keyboard.

statement .

24

Chapter 3

SAMPLE SESSION

The easiest way to learn how BASIC operates is to write and run
a program. This chapter provides sample statements and instruc-
tions to help familiarize you with the way BASIC works.

The main steps in running a program are:

1. Loading BASIC
2. Typing the program
3. Running the program
4. Saving the program
5. Loading the program into memory

Loading BASIC
For this sample, load BASIC by typing:

B A S I C [ENTER)

Typing the Program
Type in the sample program below. After typing each line, check
it for any mistakes. If there are no mistakes, press I. If you
make a mistake, use the [tl key to move the cursor to the mis-
take and retype the rest of the line to correct the mistake.

1 0 A $ = ” W I L L I A M SHAKESPEARE WROTE
1 5 B $ = ” T H E MERCHANT OF V E N I C E ” [*F
20 P R I N T A $; B$ [ENTERJ

Check your program again. If you find a mistake, enter the line
number and type the line again. The newly typed line replaces
the old line.

It does not matter if you enter Line 15 after Line 20; BASIC still
reads and executes Line 15 before “looking” at Line 20. BASIC
always reads program lines in numerical order.

Tell BASIC to execute this program by typing:
RUN [ENTER]

Your screen should display:
W I L L I A M SHAKESPEARE WROTE THE MERCHANT OF V E N I C E

27

Chapter 31 Sample Session

BASIC has powerful special keys that let you correct mistakes
without retyping the entire line. These commands are discussed
in Chapter 4, "General Information."

Saving the Program on Disk
You can save any BASIC program on disk by assigning it a path-
name. The pathname tells BASIC on which disk and directory
you want to save the file and the name of the file. The pathname
must be enclosed in quotation marks. Pathnames must conform
to the conventions discussed in Chapter 1, "About BASIC for

For example, to save the program we just wrote on Drive B, in
the directory BOOKS with the filename author.bas, use the fol-
lowing command:

MS-DOS. "

S A V E " E : \ B D O K S \ a u t h o r . b a s " [ENTER]

Notice that BOOKS is located in the root directory since it is
preceded by the root symbol (\).

You can also save the file with this command:
SCIVE " a u t h o r .wil"

which saves the program as author.wi1 in the current directory
on the MS-DOS current drive.

It takes a few seconds for the computer to find a place on the
disk to store a program and to copy the program from memory
to the disk. When the program is saved on the disk, BASIC dis-
plays its prompt (Ok).

Loading the Program Into Memory
If, after writing or running other programs, you want to use this
program again, you must load it back into memory from disk.

For example, to load the program author.bas from the directory
BOOKS, type:

LOAD " B : \ B O O K S \ a u t h o r .ba5" ,R

28

Chapter 31 Sample Session

The R option tells BASIC to run the program after loading it.
LOAD "author.wi1"

loads the file author.wi1 from the current directory on the cur-
rent drive.

Another way to load and run a program is to type:

RUN "pathname"

RUN automatically loads and runs the program specified by
pathname.

The SAVE, LOAD, and RUN commands are discussed in more
detail in Chapter 10.

29

ChaDter 4

GENERAL INFORMATION

When BASIC displays the Ok prompt, you can type in program
lines or commands. If you want BASIC to read what you type in,
you must press [ENTER] at the end of the line.

A single line can be a maximum of 255 visible characters. Visi-
ble characters are those that take up a space on the display.

Since 255 characters cannot fit on one line of the display, BASIC
moves the extra characters to the next line. This is called wrap-
around.

BASIC looks a t the first character of a line. If it is a digit,
BASIC stores the line in memory as a program line. For exam-
ple, if you type:

1 0 P R I N T "THE TINE I S " T I M E $ (ENTER]

BASIC takes this as a program line and stores it in memory. It
does not execute the line until you type RUN and press m.
If the first character is not a digit, BASIC tries to execute the
line as a command. For example, if you type:

M I L E S = 1 3 3 : G A L L O N = 1 1 : M P G = M I L E S / G ~ L L O N

BASIC immediately executes this line as a command. After it is
executed, the statement no longer exists in memory, but the val-
ues of the variables MILES, GALLON, and MPG are stored in
memory.

This BASIC capability lets you use the computer as a calculator
for quick computations that do not require an entire program.

Editing
BASIC lets you correct errors in program and command lines
quickly and efficiently without retyping entire lines.

You can use the special keys defined at the end of this chapter to
make corrections or changes a t any time. To correct a line, sim-
ply use the arrow keys to position the cursor on the line you
want to alter. After you make changes to the line, press (ENTER) t o
store the changes.

33

Chapter 41 General Information

When modifying program lines, you can edit specific lines by
typing:

EDIT line number [ENTER]

If the line number you specify does not exist, BASIC returns an
"Undefined line number" error.

You can also specify the current program line by using a period
(. I instead of a line number:

E D I T . [ENTER)

The current line is the last line entered, the last line altered, or
a line in which an error has occurred. Notice that you must type
a space before the period; otherwise, BASIC displays a "Syntax
error" message.

BASIC automatically enters EDIT when a syntax error occurs
when executing a program. It displays the line that contains the
error and waits for you to make corrections.

Sample Editing Session
This sample session shows how you can easily edit lines in
BASIC. Even though the sample is a BASIC program, you can
use the same procedure for command lines. All special keys used
in this session are described a t the end of this chapter.

To begin the sample session, type the following line and press m:
100 PRINT " T h i s 1 5 o u r e x a m p l e l i n e . "

Now use the m to position the cursor on Line 100.

Use the to move across the line to the T in This. Type lower-
case and then [ENTERJ. Remember, none of the changes you
make to a program line are recorded until you press m.
Type LIST 100 and press [ENTERJ to see that BASIC has stored
your change in memory. BASIC displays:

100 PRINT " t h i s 1 5 o u r example line."

Notice that you can make simple changes by typing over the old
material.

34

Chapter 41 General Information

Now, position the cursor over Line 100 again. Press (ENDJ and
then use to position the cursor on the second set of quotation
marks. Press [M] and type:

W e inserted the second 5entence. [ENTER]

Use the LIST command again to see the new statement that is
stored in memory.

Now use the EDIT command to edit Line 100. Type:
EDIT . [ENTER]

Remember, the period (.) tells BASIC to edit the current line.
Don’t forget to type a space before the period.

Using and W, position the cursor on the i in inserted. Hold
down [CTRL) and press [ENDI. BASIC deletes all the characters YOU
have inserted except We and the blank space.

Press [BACKSPACE) to delete the space.

Hold down [CTRL) and press to position the cursor on the pre-
ceding word. Press [DELETE) twice to delete We. Press and
then FJ to put the quotation mark at the end of the statement.

Press [ENTtRl to record the changes. You can use the LIST com-
mand to see the new line.

Use the EDIT command again, this time with the line number.
Type:

EDIT 1 0 0 (ENTER)

Using m, position the cursor on the P in PRINT. Press (SPACEBAR]
to change the P to a blank.

Press (CTRL] while pressing to position the cursor on the t in
this. Press

Instead of pressing [ENTER] after you make the changes, press
@. Use the LIST command. Notice that BASIC did not record
your changes because you pressed JESC) instead of m. The
IESCJ key tells BASIC to erase the line and not to make any
changes to the line.

Now you have used most of the special keys in the editor. If you
still do not feel comfortable with them, go through the sample
session again.

to change the lowercase t to a capital T .

35

Chapter 41 General Information

If you feel confident that you understand the editor, read on to
learn about some special keys that make it easier and faster to
change lines anywhere on the screen.

Special Keys
The following keys perform special functions in BASIC for enter-
ing and editing lines. To use some of these keys you must press
and hold down the [CTRLJ key while pressing the second key. For
example, when you use [CTRL][T] to backspace, hold down the
key and press iTJ at the same time.

Key
[CAPS]

(SPACEBAR]

[ESCI or [TK][T]

[DELETE]

Description

switches to all uppercase or uppercase1
lowercase mode.

changes the current character to a blank
and advances the cursor 1 position to the
right.

backspaces the cursor, erasing the first
character to the left. All characters t o
the right move left 1 position. Use this to
correct typing errors before you press

interrupts line entry and starts over with
a new line. Any changes previously made
to the line are not saved.

ends the current line. BASIC reads the
line.

erases the entire line from the screen,
but not from memory.

clears the screen and positions the cursor
at the first position in Row 1.

clears the screen from the current cursor
position to the end of the screen.

deletes the character at the cursor posi-
tion and moves all remaining characters
to the left 1 position.

m.

36

Chapter 41 General Information

[INSERT] or (CTRL][T]

(HOME] or [CTRL][F]

[TAB] or [CTRL][T]

@ or [CTRL][T]

or [CTRLJIT]

or
[CTRLJ[:]

turns the insert mode on if it is off; or off
if it is on. The insert mode lets you add
new characters to the line at the cursor
position.

moves the cursor to the first position in
Row 1.

moves the cursor to the end of the line.

deletes all characters from the current
cursor position to the end of the line.

advances the cursor to the next tab posi-
tion. Tab positions are set at every 8
characters .
moves the cursor 1 position to the left.

moves the cursor 1 position to the right.

moves the cursor up 1 row to the charac-
ter above the current cursor position.

moves the cursor down 1 row to the char-
acter below the current cursor position.

moves the cursor to its left and to the
first character in the preceding word,
which is the first character preceded by a
blank.

moves the cursor to its right and to the
first character in the next word, which is
the first character preceded by a blank.

rings the bell a t the terminal.

issues a linefeed. This moves the cursor
to the next line of the display without ex-
ecuting or storing the line.

37

Chapter 41 General Information

The following special keys act differently while BASIC is execut-
ing programs or commands:

IHOLD] pauses execution. Press [HOLD] again to
continue.

[rnJrnJ terminates execution and returns you to
BASIC’s prompt.

IENTER] or [CTRL][T] signifies the end of data entry. When a
BASIC program or command prompts you
to enter data, press [ENTERI t o end the
response.

The (ALT] Key
The [ALTI key provides a quick and easy way to type certain
BASIC keywords. These keywords are associated with alphabetic
characters (A-Z).

To enter these keywords, press and hold down the [ALTJ key while
pressing the desired letter. BASIC inserts the keyword at the
current cursor position. The keywords and their associated let-
ters are listed below.

A AUTO N NEXT
B BSAVE 0 OPEN
C COLOR P PRINT
D DELETE Q (none)
E ELSE R RUN
F FOR S SCREEN
G GOT0 T THEN
H HEX$ U USING
I INPUT V VAL
J (none) W WIDTH
K KEY X XOR
L LOCATE Y (none)
M MOTOR* Z (none)

*MOTOR is a reserved word, but is not recognized in this imple-
mentation of BASIC.

38

Chapter 41 General Information

The Kev
Pressing [sHlFT][PRlNT] dumps the current text content of the
screen to the line printer LPT1:.

[CTRL][PRlNTJ is the line printer echo key, which acts as a toggle
switch. If the echo is off, pressing [C T R L] [m] once causes all
characters sent to the screen to also be sent to the line printer
LPT1:. Pressing [C T R L] [m] a second time turns off this echo
feature.

39

Chapter 5

BASIC CONCEPTS

This chapter describes the different ways BASIC handles and
manipulates data. By understanding how BASIC does this, you
can build more efficient programs.

Elements of a Program
A program is a group of instructions that performs a certain
task. It is made up of 1 or more numbered lines.

Each line can contain a maximum of 255 visible characters. Of
the 255 characters, BASIC automatically reserves 1 space for
each digit in the line number and another space for the space fol-
lowing the line number. If you enter more than 255 visible char-
acters, BASIC truncates the line.

Here is a sample program line:
10 PRINT " o n e "

A line number is always the first element of a program line. In
BASIC line numbers must be in the range 0 to 65529. In the
sample program line, the line number is 10.

A BASIC statement follows the line number. A statement tells
BASIC to perform a specific operation. In the sample program
line, the statement is PRZNT "om". This statement tells BASIC
to print, or display, the word om on the screen.

You can have more than 1 statement on a program line by plac-
ing a colon between each statement. For example:

20 FOR X = 1 TO 5:PRINT " o n e " : N E X T X

This program line has 3 statements. They are:

1. F O R X = 1 T O 5
2. PRINT "one"
3. NEXTX

You can add explanations, or remarks, t o your program lines. A
remark is preceded by a single quotation mark to separate it
from the statements. Here is a program line with a remark:

20 FO R X = 1 TO 5:PRINT "one":NEXT X ' l o o p

43

Chapter 51 Basic Concepts

Data
Data is information on which BASIC performs its operations.
Data can be numbers, characters, or symbols. BASIC classifies
data into two groups: string and numeric.

String data is a sequence of ASCII characters, graphics or non-
ASCII symbols. A string can be a maximum of 255 characters.
If the string is entered on a program or command line, it must
be enclosed in quotation marks (see “Constants” later in this
section). If the string is entered in response to a prompt, it is not
enclosed in quotation marks. BASIC does not evaluate string
data; it simply stores it for the program to use or manipulate.

Hint: ASCII stands for American Standard Code for
Information Interchange. In ASCII, each character has
a unique number that represents it. This is necessary
since computers understand and process only numbers.

Here are some sample strings:

“ ~ 1 ~ 3 7 “MAIN STREET” “255 CENTRAL AVE”
“25 dollars” “$250” “2 + 4”
Notice that numbers can be in a string. Remember, BASIC does
not evaluate strings. Type the following line at BASIC’s prompt:

PRINT “ 2 + 4 ”

BASIC does not add 2 and 4. It obeys the command PRINT and
displays 2 + 4 on your screen.

Strings use 3 bytes of memory plus the number of characters in
the string. For example, the string “CATS” takes up 7 bytes of
memory: 4 for the string plus 3.

Numeric data consists of positive and negative numbers. BASIC
divides numeric data into 5 groups: integer, single precision,
double precision, hexadecimal, and octal.

Integers are whole numbers in the range -32768 to +32767 that
do not contain a decimal point. For example:

1 3200 -2 500 -12345

Integers use the least amount of memory (2 bytes). Because they
use less memory, BASIC can access them fastest.

44

Chapter 51 Basic Concepts

Single precision numbers can be a maximum of 7 digits and may
have a decimal point. Single precision numbers must be in the
range to Sample single precision numbers are:

10.001 -200034 123.4567

If a single precision number is more than 7 digits, BASIC dis-
plays the number in scientific notation, or exponential format, in
the E form. For example:

1.74E 6.9838 1043-7

BASIC stores a single precision number in 4 bytes of memory.

Double precision numbers can include a maximum of 16 digits
and may have a decimal point. Double precision numbers have
the same range as single precision numbers. Sample double pre-
cision numbers are:

1010234567 -8.7777651010

If a double precision number is more than 16 digits, BASIC dis-
plays the number in scientific notation, or exponential format, in
the D form. For example:

8.00100708D12 -6.7765499824D16

BASIC stores double precision numbers in 8 bytes of memory. Al-
though double precision numbers consume more memory, they
are the most exact.

Hexadecimal numbers are the hexadecimal representation of dec-
imal numbers. They contain 1 to 4 digits and are preceded by
&H. The hexadecimal numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, and F. Here are some hexadecimal numbers and
their decimal equivalents:

Hex Decimal

&H76 118
&H02FF 767
&HFF 255

BASIC stores hexadecimal numbers as integers.

45

Chapter 51 Basic Concepts

Octal numbers are the octal representation of decimal numbers.
They contain 1 to 6 digits and are preceded by &O or &. Al-
though only the & is required, we recommend that you use &O
for clarity in your programs. The octal numbers are 0, 1, 2, 3, 4,
5, 6, and 7. Here are some octal numbers and their decimal
equivalents:

Octal Decimal

&7 7
&0123 83
&0000456 302

BASIC stores octal numbers as integers.

Constants

Constants are values input to a program that are not subject to
change. Constants can be either string or numeric data (integer,
single or double precision, hexadecimal, or octal).

Numeric data that will not change can be represented as either
a string or numeric constant. If you use punctuation in the num-
ber, i t must be a string constant. For example:

PR I N T " $ 2 5 0 , 0 0 0 "

When BASIC encounters a data constant in a statement, BASIC
must determine how to store it:

If the value is enclosed in quotation marks, BASIC stores it
as a string.

If the value is not enclosed in quotation marks, BASIC
stores it as an integer or a single precision or a double pre-
cision number, according to the requirements described in
the previous section. The section, "Declaring Numeric Con-
stants and Variables," describes ways to override BASIC's
classification of constants.

BASIC evaluates numeric constants in program lines as soon as
you enter the line. It does not wait until you run the program. If
any numbers are out of range for their type, BASIC returns an
error message immediately.

Here are some examples of constants:
P R I N T - N A M E * ' , "ADDRE s s i ' , "c I T Y 9 1 , " S T A T E "

46

ChaDter 51 Basic ConceBts

This line contains 4 string constants: NAME, ADDRESS, CITY,
and STATE. These values will not change. Every time BASIC ex-
ecutes this statement, the same 4 words are printed.

P R I N T “1 0 0 0 P L U S ” ; 2 0 0 0 ; “ E Q U A L S ” ; 3 0 0 0

The 1000 is a string constant, the 2000 and the 3000 are nu-
meric constants.

Variables
Variables are symbolic names for a value in a BASIC program. A
variable name can be a maximum of 40 characters and must be-
gin with a letter (A-Z).

Note: You cannot use any of the reserved words listed
in Appendix A as variable names. However, reserved
words may be imbedded in a variable name.

The following are examples of variable names:

A A1 ADDRESS ADDRESS. OLD
L L2 LEN2 LENGTH

The 2 types of variables are string and numeric. BASIC initially
classifies all variables as single precision with a value of zero
(0). (The next section describes how to declare variables as
string, integer, or double precision variables.)

The following examples assign a value to a variable.
L E T A = 1 2 3 4 5
A = 6 0 1 . 4 3 2
BALANCE = 3 3 8 . 9 2

BASIC automatically stores all the above examples as single pre-
cision numbers. Chapter 10, “BASIC Keywords,” describes more
ways to assign values to variables.

Declaring Numeric Constants and Variables
BASIC lets you override its automatic classification of numeric
constants and variables.

47

Chapter 51 Basic Concepts

Numeric Constants
To change the way BASIC stores a numeric constant, add one of
the following symbols to the end of the number. If BASIC must
shorten a number to meet the new requirements, it rounds the
number.

! declares a single precision number. For example, BASIC
stores the number 12.345678901234! as a single precision
number: 12.34568.

declares the number a single precision exponential number.
For example, BASIC stores the number 1.2E5 as a single
precision number: 120000.

declares a double precision number. For example, BASIC
stores the number 1.5# as a double precision number: 1.5.
BASIC does not expand constants when declaring them dou-
ble precision.

declares the number a double precision exponential number.
For example, BASIC stores the number 1.2D2 as a double
precision number: 120.

See the next section on converting numbers for important infor-
mation on converting from numbers to another precision.

-

E

D

Numeric Variables
BASIC initially classifies all numeric variables as single preci-
sion. You can declare variables as other than single precision in
2 ways:

Append a symbol to the variable name:

% declares an integer variable. BASIC stores the value of
the variable as an integer. I%, FT%, and COUNTER%
are samples of integer-declared variables.

declares a single precision variable. BASIC stores the
value of the variable as a single precision number. F!,
NM!, and BALANCE! are samples of variables declared
as single precision.

!

48

Chapter 51 Basic Concepts

declares a double precision variable. BASIC stores the
value of the variable as a double precision number. S#,
AD#, and YTDTOTAL# are samples of variables de-
clared as double precision.

declares a string variable. The value of the variable must
be enclosed in double quotes. A$, WRD$, and CITY$ are
samples of variables declared as string variables.

Note: Any variable name can represent 4 different
variables. For example, A5%, A5!, AS#, and A5$ are
all valid and distinct variable names.

$

0 Use the following BASIC statements:

DEFINT
DEFSNG

Defines specified variableh) as integer.
Defines specified variable(s) as single precision.
(Since BASIC initially classifies all variables as
single precision, you need to use DEFSNG only if
one of the other DEF statements is used.)
Defines specified variableb) as double precision.
Defines specified variableb) as string.

DEFDBL
DEFSTR

Chapter 10 describes these BASIC statements fully.

Numeric Precision Conversion
Your program may ask BASIC to convert numeric data from one
precision to another. The following section describes th i s
procedure.

When converting singleldouble precision to integers, BASIC
rounds the fractional portion of the number, if any. For example:

A% = 32766.7
A% = -123.4567

BASIC stores as 32767
BASIC stores as -123

When converting integers to singleldouble precision, BASIC ap-
pends a decimal point and zeroes to the right of the original
value. For example:

A# = 32767
A! = -1234 BASIC stores as -1234.000

BASIC stores as 32767.00000000000

49

Chapter 51 Basic Concepts

When converting double to single precision, BASIC rounds the
number to 7 significant digits. For example:

A! = 1.2345678901234567 BASIC stores as 1.234568
A! = 1.3333333333333333 BASIC stores as 1.333333

When converting single to double precision, BASIC adds trailing
zeroes to the right of the original value. If the original value has
an exact binary representation in single precision format, the re-
sulting value is accurate. For example:

A# = 1.5 BASIC stores as 1.50000000000000

However, if a number does not have an exact binary representa-
tion, the conversion creates an erroneous value. For example:

A# = 1.3 BASIC stores as 1.299999952316284

You should not use such conversions in your program because
most fractional numbers do not have exact binary representa-
tions. You can avoid this by forcing the constant to be double pre-
cision, such as:

A# = 1.3# or A# = 1.3D

which BASIC stores as 1.3.

If you must convert from single to double precision, the following
programs show a special technique.

Type and run the following program:
1 0 A ! = 1 . 3
2 0 A # = A !
3 0 PRINT A #

BASIC prints 1.299999952316284

Now type and run this program:
1 0 A ! = 1 . 3
2 0 A # = V A L (S T R S (A !))
3 0 PRINT A #

BASIC prints 1.3. Converting the single precision number to a
string before converting it to a double precision value causes
BASIC to store the value accurately.

Note: BASIC cannot automatically convert numeric
data to string data or vice versa. This results in a
“Type mismatch” error. Use the VAL and STR$ func-
tions to accomplish this kind of conversion.

50

Chapter 51 Basic Concepts

Manipulating Data
BASIC uses expressions as a way to manipulate data. An expres-
sion is 2 or more pieces of data connected by operators.

An operator is a symbol or a word that signifies some action to
be performed on the specified data. Each data item is called an
operand.

An expression might look like this:

operand1 operator operand2
6 + 2

A few operators allow only one operand, for example

operator operand
- 5

Expressions must be used in a BASIC statement, such as:
A = 6 + 2
PRINT - 5

BASIC has four types of operators:

Arithmetic
String
Relational
Logical

used for numeric data only.
used for string data only.
used for both numeric and string data.
used for numeric data only.

Arithmetic Operators
Arithmetic operators perform operations on numeric data. Both
operands must be numeric. When BASIC evaluates the expres-
sion, all operands are converted to the same degree of precision,
that of the most precise operand. The result of the arithmetic op-
eration is also returned to this degree of precision.

The arithmetic operators are listed below. They are in order of
precedence, that is, the order in which BASIC executes them if 1
or more operators are in the same statement.

Exponentiation. Calculates the power of a
number. For example, 2^3 is 8 (2 to the power
of 3 is the same as 2*2*2).

Negation or Unary Minus. Makes a number
negative. For example, -10 is “negative ten.”

A

51

Chapter 51 Basic Concepts

*, I

\

MOD

+, -

Multiplication, Division. For example, 3*3 is 9,
and 1015 is 2.

Integer Division. BASIC rounds both operands
to integers and truncates the result to an in-
teger. Integer division is faster than standard
division. For example, 10\4 is 2.
Modulus Arithmetic. BASIC performs integer
division as described above and returns the
remainder as an integer value. For example, 10
MOD 3 results in 1.

Addition, Subtraction. For example, 2 + 9 is 11,
and 15-8 is 7.

String Operator
The string operator is the plus sign (+ 1. It appends one string to
another. All operands must be strings, and the resulting value is
1 string. For example:

P R I N T " A P R I L SHOWERS 'I + "BRING" + '' MAY
FLOWERS. "

prints APRIL SHOWERS BRING MAY FLOWERS.

Relational Operators
Relational operators compare 2 pieces of numeric data or 2 pieces
of string data. The result of the comparison is either true or
false. If the relationship is true, BASIC returns -1. If the rela-
tionship is false, BASIC returns 0 (zero).

The relational operators are, in order of precedence:

Equal. Both operands are equal.

Less Than. The first operand is less
than or precedes the second operand.

Greater Than. The first operand is
greater t han or follows the second
operand.

Inequal i ty . The operands a re not
equal.

- -

<

>

>< or <>

52

Chawter 51 Basic ConceDts

<= or =< Less Than or Equal To. The first oper-
and is less than (precedes) or is equal
to the second operand.

>= or => Greater Than or Equal To. The first
operand is greater than (follows) or is
equal to the second operand.

Relational operators are usually used within an IFiTHEN state-
ment. For example:

I F CI = 1 THEN P R I N T "CORRECT"

BASIC looks at the value in variable A. If the value is equal to
1, BASIC prints the word CORRECT.

If arithmetic and relational operators are combined in the same
expression, BASIC evaluates the arithmetic operations first. For
example :

I F X * Y / 2 < = 1 5 P R I N T " 4 V E R A G E SCORE"

BASIC performs the arithmetic operation X*Y/2 and then com-
pares the result with 15.

When relational operators are used with strings, BASIC
compares the strings character by character. When it finds 2
characters that do not match, it checks to see which character
has the lower value ASCII code. The character with the lower
ASCII code comes before the word with the higher ASCII value
in an alphabetical listing, just as one word comes before another
in a dictionary.

Consider these examples:
"fl" < llgll

BASIC compares the ASCII value of the 2 strings. The ASCII
value for A is 65, and the ASCII value for B is 66. Since 65 is
less than 66, BASIC returns a -1. BASIC displays the result if
you type PRINT and the expression. For example, PRINT
"A">"B".

"CODE" > " C 00 L "

This is false. The first 2 characters of the strings match. How-
ever, the third character does not. BASIC then compares the AS-
CII codes. The ASCII code for D is 68 and the code for 0 is 79.
Since 79 is not less than 68, BASIC returns a 0.

" T R A I L " < "TRA I LER"

53

Chapter 51 Basic Concepts

This is true. If BASIC reaches the end of one string before find-
ing 2 characters that don’t match, the shorter string is consid-
ered the less of the two strings (lower in precedence). Therefore,
TRAIL is the lesser of the two strings.

Also note that leading blanks are significant in string compari-
sons. Therefore, ‘‘ A” comes before “A” because the ASCII code
for blank is 32 and the ASCII code for A is 65.

Logical Operators
Logical operators, or Boolean operators, make logical compari-
sons of numeric values. The logical operators are NOT, AND,
OR, XOR, EQV, and IMP. They take a set of truelfalse values,
usually from relational expressions, and return a true or false
result.

The following table describes the result for
given the described truelfalse values.

Meaning of First
Operator Operation Operand

NOT The result is the oppo- 1
site of the operand. Q

AND When both values are 1
true, the result is 1
true. Otherwise, the 0
result is false. 0

OR When both values 1
are false, the 1
result is false. 0
Otherwise, the 0
result is true.

XOR When one of the 1
values is true, the 1
result is true. 0
Otherwise, the 0
result is false.

When both values 1
are true or both 1
values are false, 0
the result is true. 0

IMP The result is true 1
unless the first 1
value is true and 0
the second value is 0
false.

EQV

each logical operator

Second
Operand Result

0
1

1
0
Q
0

1
1
1
0

1 0
0 1
1 1
0 0

1 1
0 0
1 0
0 1

1 1
8 0
1 1
0 1

54

Chapter 51 Basic Concepts

Normally, logical operators are used in IFiTHEN statements. For
ex ample :

I F A = 1 O R C = 2 THEN P R I N T X

BASIC prints the variable X if 1 or both of the relational expres-
sions are true. If both are false, BASIC does not print the vari-
able x.

I F S $ = "TEXAS" CIND C $ = " A U S T I N " THEN P R I N T Z $

BASIC prints the value of Z$ if S$ contains the word TEXAS
and C$ contains the word AUSTIN.

You may also use logical operators to make bit comparisons of 2
numeric expressions. In this case, BASIC does a bit-by-bit com-
parison of the 2 values, according to predefined rules for the spe-
cific operator. Note that the operands are converted to integer
type, stored internally as 16-bit, two's complement numbers.
This information is important when doing bit comparisons.

Hierarchy of Operators
BASIC uses a predefined hierarchy when performing operations
on expressions with multiple operators. This list shows the oper-
ators in the order that BASIC would perform the operations in a
statement. Remember, BASIC evaluates statements from left to
right. Operators with the same level of hierarchy are shown on
the same line.

A

unary -
* /
\
MOD
+ -
< > = <= >= <>
NOT
AND
OR, XOR

IMP

Consider this expression:

X * X + 5^2.8

EQV

55

Chapter 51 Basic Concepts

BASIC evaluates 5 to the 2.8 power first, then multiplies X*X,
and finally adds the 2 values.

You can change the order of the hierarchy by adding parentheses
to an expression. BASIC always evaluates the expressions inside
the parentheses before evaluating the rest of the expression.
Look a t this expression:

X * (X + 5Y2.8

BASIC evaluates the expression (X + 5) first and raises that
value to the 2.8 power before performing the multiplication.

If an expression contains multiple parentheses, BASIC evaluates
the innermost parentheses first.

Functions
A function is a built-in sequence of operations that BASIC per-
forms on data. BASIC always performs functions first when eval-
uating a statement.

Numeric functions, such as ABS, SQR, and COS, perform prede-
fined operations on numeric data.

String functions, such as MID$, VAL$, and LEN$, perform oper-
ations on string data.

Functions are described in Chapter 10.

56

Chapter 6

Grocery
Expense

ARRAYS

Gas Clothes
Expense Expense

An array is a group of related data values stored consecutively
in memory. The entire group of data values is referred to by one
variable name. Each data value is called an element of the array.
A subscript is an integer used to refer to each element of the ar-
ray. For example, an array named A may contain 3 elements re-
ferred to as:

A(1) A(2) A(3)

Note: Normally array elements start with Element 0;
however, t o simplify this example, it starts with Ele-
ment 1. You can modify the initial array element base-
number with the OPTION BASE statement.

You can use each of these elements to store a separate data
value, such as:

A(1) = .10
A(2) = .20
A(3) = .30

You can imagine an array as a row of boxes, with the numbers
on them to identify them. Each box can hold a different value.
For example, Array A may hold your expenses.

This is a 1-dimensional array, because elements are arranged in
a single row and only one subscript is used to an element. For
example, A(1) holds your grocery expense.

59

Chapter 61 Arrays

This program creates a 1-dimensional array:
5 C L S : O P T I O N B A S E 1
1 0 DATA GROCERY,GAS,CLOTHES
2 0 D I M A (3)
3 0 FOR C = 1 TO 3
4 0 READ NAMES$
5 0 P R I N T "ENTER THE "NAMES$" EXPENSE I N DOLLARS"
6 0 I N P U T A (C)
7 0 N E X T C

The DIM statement in Line 10 reserves space in memory for an
array named A with 3 elements. As you enter the expenses, the
grocery expense is stored in A(l), the gas expense in A(2) and
the clothes expense in A(3).

Add these lines to the program to print the contents of Array A:
1 0 0 RESTORE
1 1 0 FOR C = 1 TO 3
1 2 0 READ NAMES$
1 3 0 P R 1 N T : P R I N T NAMES$ " = " A (C)
1 4 0 N E X T C

Use RUN to see the results of this program.

You can add more dimensions to the array such as storing the
expenses by weeks.

Col 1 Col 2 Col 3
Grocery Gas Clothes

Row 1
Week 1

Row 2
Week 2

Row 3
Week 3

Row 4
Week 4

A(3,2) =
Gas expense
for Week 3

60

Chmter 61 Arrays

This is a 2-dimensional array. Each element is referred to by 2
subscripts:

A(row,column)

For example, A(3,2) points to the third week's gas expense.

To make a 2-dimensional array from the earlier program, add
the following lines:

2 5 FOR R = 1 TO 4 : R E S T O R E
7 5 NEXT R
1 0 5 FOR R = 1 TO 4 :RESTORE
1 5 0 N E X T R

and change these lines:
2 0 D I M A (4 , 3) : W = 1
5 0 P R I N T "ENTER THE " ;NAMES$;" EXPENSES I N D O L -

6 0 I N P U T A (R , C)
7 0 NEXT C : W = W + 1
1 0 0 RESTORE: W = 1
1 3 0 P R 1 N T : P R I N T N A M E S $; " EXPENSE FOR WEEK

1 4 0 NEXT C : W = W + 1

L A R S FOR WEEK NO: "W

NO: " ; W ; " = " ;ACR,C)

Run this program and see how it works. We simply added an-
other subscript to the original array. Now instead of referring to
an element by a row number only, we refer to it by both a row
and column number.

You can add yet another dimension, or subscript, to the array by
adding these lines:

2 2 FOR P = 1 TO 2 : RESTORE
7 8 W = 1 : N E X T P
1 0 2 FOR P = 1 TO 2 : RESTORE
1 6 0 W = 1 : N E X T P

and changing these lines:
20 DIM A < 2 , 4 , 3) : W = 1 : M = 1
5 0 P R I N T "ENTER THE " ; N A M E S $; " EXPENSE I N D O L -

6 0 I N P U T A (P , R , C)
7 5 NEXT R : M = M + 1
1 0 0 RESTORE: W = 1 : M = 1
1 3 0 P R 1 N T : P R I N T N A M E S $; " EXPENSE FOR WEEK

1 5 0 N E X T R : M = M + 1

L A R S FOR WEEK NO: " ; W ; " OF MONTH NO: " ; M

NO: " ; W ; " OF MONTH N O : ";M;" = " ; A C P , R , C)

Run the program to see how it works.

61

Chapter 61 Arrays

Page 2
Month 2

Page 1
Month 1

Row 1
Week 1

Row 2
Week 2

Row 3
Week 3

Row 4
Week 4

Col 1 Col 2 Col 3
Grocery Gas Clothes

Imagine the third dimension as an entirely new page. Here, you
refer to an element in the array by using 3 subscripts:

A(page, row, column)

For example, in A(1,2,1), the first subscript (1) stands for the
month. The second subscript (2) stands for the week and the
third subscript (1) stands for the Grocery category. So A(1,2,1)
contains the Grocery expense for the second week of the first
month.

Types of Arrays

Arrays may be of any type: string, integer, single precision, or
double precision. You can have a maximum of 255 dimensions in
your array and a maximum of 32,767 elements in each dimen-
sion.

The amount of memory that an array occupies is equal to the
number of bytes it takes to store that type of variable times the
number of elements. For example, if you have a double precision
array of 30 elements, it occupies 240 bytes of memory. Remem-
ber, double precision numbers are stored in 8 bytes of memory.

62

Chawter 61 Arravs

Defining Arrays
You can define arrays in your BASIC program by placing a DIM
statement at the beginning of your program or by setting the
value of an element in the program. For example:

cIC5) = 300

automatically creates an array named A containing 6 elements
and assigns element A(5) the value 388. Use this method only if
your array contains fewer than 11 elements (8-10). If your array
contains more t h a n 11 elements, you must use the DIM
statement.

Use a DIM statement to reserve space in memory for each ele-
ment of the array. For example:

DIM C#(99)

creates Array C and reserves memory space for 100 double preci-
sion elements.

See the DIM statement in Chapter 10 for more information on
creating arrays.

63

ChaDter 7

DISK FILES

You may want to store data on disk for future use. To do this,
you need to store the data in a file. A file is an organized collec-
tion of related data. It may contain a mailing list, a personnel
record, or almost any kind of information.

You access this information in records. A record is a small por-
tion of data from the disk file such as a name and address in a
mailing list file. A record is the largest block of information that
you can address with a single command.

With BASIC you can create and access 2 types of files: sequen-
tial access or direct access.

Sequential Access Files
With sequential access files, you can access data only in the
same order as it was originally stored. To read from or write to a
particular section in the file, you must first read through all the
records in the file from the beginning until you get to the de-
sired record.

Data is stored in a sequential access file as ASCII characters.
Therefore, it is ideal for storing free-form data without wasting
space between data items. However, it is limited in flexibility
and speed.

The statements and functions used with sequential files are:

WRITE # LOC EOF OPEN
PRINT# INPUT# LOF CLOSE
PRINT USING # LINE INPUT#

These statements and functions are discussed in more detail in
Chapter 10.

67

Chapter 71 Disk Files

Creating a Sequential Access File
1. To create the file, open it in Output mode (with the letter 0)

and assign it a buffer number in the range 1 to 15. For
example:

OPEN "O", 1 , " l i 5 t . d a t "
OPEN " l i s t . d a t " FOR OUTPUT A S 1

Either form of the syntax for the OPEN statement opens a se-
quential output file named list.&t and gives Buffer 1 access
to this file.

2. To input data from the keyboard into 1 or more program vari-
ables, use either INPUT or LINE INPUT. For example:

L I N E I N P U T , "NAME? "; N $

inputs data from the keyboard and stores it in variable N$.

3. To write data to the file, use the WRITE# statement (you
also can use PRINT#, but be sure you delimit the data). For
example:

W R I T E # 1 , N $

writes variable N$ to the file, using Buffer 1 (the buffer used
to open the file). Remember that data must go through a
buffer before i t can be written to a file.

4. To ensure that all the data has been written to the file, use
the CLOSE statement. For example:

CLOSE 1

closes access to the file that uses Buffer 1 (the same buffer
used to open the file).

Sample Program
1 0 OPEN " O " , 1 , " 1 1 5 t . d a t "
2 0 L I N E I N P U T "ENTER A NAME O R 'DONE' TO END >

3 0 I F N $ = "DONE" THEN 6 0
4 0 W R I T E # 1 , N $
5 0 P R I N T : GOT0 2 0
6 0 CLOSE 1

" ; N $

68

Chapter 71 Disk Files

The file list.dat stores the data you input through the aid of
the program, not the program itself. To save the program
above, you must assign it a name. Use the SAVE command as
described in Chapter 3. For example, SAVE "payroll.bas".

Every time you modify a program, you must save it again
(you can use the same name); otherwise, the original pro-
gram remains on disk, without your latest corrections.

5. To access data in the file, reopen it, this time in the Input
mode with the letter I. For example:

OPEN "115t.dat" FOR I N P U T A S 1

opens the file named 1ist.dut for sequential input, using
Buffer 1.

6. To read data from the file and assign i t t o program variables,
use either INPUT# or LINE INPUT#. For example:

I N P U T # 1 , N $

reads a string item into N$, using Buffer 1 (the buffer used
when the file was opened).

L I N E I N P U T # 1 , N $

reads an entire line of data into N$, using Buffer 1.

Sample Program
1 0 OPEN "I", 1 , "1ist.dat"
2 0 I F E O F (1 1 , THEN 1 0 0
3 0 I N P U T # l , N $
4 0 P R I N T N $
5 0 GOT0 20
1 0 0 CLOSE 1

Updating a Sequential Access File
1. To add data to the file, open it in Append mode with the let-

ter A. For example:
OPEN " A " , 1 , "list .dat"

opens the file 1ist.dat so that it can be extended. The data you
enter is appended to the file 1ist.dat.

69

Chapter 71 Disk Files

2. To enter new data to the file, follow the same procedure as for
entering data in the Output mode.

The following program illustrates this technique. It builds
upon the file previously created.

Note: Read through the entire program first. If you
encounter BASIC keywords that are unfamiliar to you,
refer to Chapter 10 for their definitions.

Sample Program
1 0 OPEN " A " , 1 , "115t.dat"
2 0 L I N E I N P U T "TYPE A NEW NAME O R PRESS < N > ";

N $
3 0 I F N $ = "N" THEN 6 0
4 0 W R I T E # 1 , N $
5 0 GOTO 2 0
6 0 CLOSE 1

If you want the program to print on your display the informa-
tion stored in the updated file, add the following lines:

7 0 OPEN "li5t.dat" FOR I N P U T AS 1
8 0 I F E O F C I) THEN 2 0 0
9 0 I N P U T # 1 , N $
1 0 0 P R I N T N $
1 1 0 GOTO 8 0
2 0 0 CLOSE 1

After you have run this program, save it. For example, type
SAVE "payroll2.bas" to save the program under a different
name than the previous program.

Direct Access Files
With a direct access file, you can access data anywhere within
the file. It is not necessary to read through all the information,
as with a sequential access file, because in a direct access file
you can access each record of information individually by its
number.

More program steps are required to create and access direct ac-
cess files, but they are more flexible and easier to update than
sequential access files.

70

Chapter 71 Disk Files

BASIC allocates space for records in numeric order. That is, if
the first record you write to the file is number 200, BASIC allo-
cates space for records 0 through 199 before storing record 200
in the file.

The maximum number of logical records is 16,777,215. Each
record may contain a minimum of 1 and and a maximum of
3 2 7 68 bytes.

The statements and functions used with direct access files are:

OPEN FIELD LSETiRSET
CLOSE GET PUT
MKD$ MKI$ MKS$
CVD CVI cvs
LOC LOF

These statements and functions are discussed in more detail in
Chapter 10.

Creating a Direct Access File
1. To create the file, open it for random access in Random mode

(''R'). For example:
OPEN " R " , 1 , "listing.dat", 3 2

opens the file named listing.dat, gives Buffer 1 direct access
to the file, and sets the record length to 32 bytes. (If you omit
the record length, the default is 128 bytes.) Remember that
data is passed to and from the disk in records.

2. Use the FIELD statement to allocate space in the buffer for
the variables that will be written to the file. This is neces-
sary because you must place the entire record into the buffer
before putting it into the disk file. For example:

FIELD 1 , 20 A S N $, 4 A S A$,8 A S P$

allocates the first 20 positions in Buffer 1 to string variable
N$, the next 4 positions to A$, and the next 8 positions to P$.
The variables N$, A$, and P$ are now "field names."

71

Chapter 71 Disk Files

3. To move data into the buffer, use the LSET statement. Nu-
meric values must be converted to strings when placed in the
buffer. To do this, use the make functions: MKI$ to make an
integer value into a string, MKS$ for a single precision value,
and MKD$ for a double precision value. For example:

L S E T N S = X S
L S E T A $ = M K S S C A M T)

4. To write data from the buffer to a record (within a direct ac-
cess disk file), use the PUT statement. For example:

PUT 1 , CODE%

writes the data from Buffer 1 to a record with the number
CODE%. (The percentage sign a t the end of a variable speci-
fies that it is an integer variable.)

The following program writes information to a direct access
file:

1 0 OPEN "R" , 1 , " l i 5 t i n g . d a t " , 3 2
2 0 F I E L D 1 , 2 0 A S N S , 4 A S A S , 8 A S PS
30 I N P U T " 2 - D I G I T CODE, 0 TO END"; CODE%
4 0 I F CODE% = 0 THEN 1 3 0
5 0 I N P U T "NAME"; X S
60 I N P U T "AMOUNT"; AMT
7 0 I N P U T "PHONE"; T E L S
8 0 L S E T N S = X S
90 L S E T A S = M K S $ (A M T)
1 0 0 L S E T PS = T E L S
1 1 0 PUT 1 , CODE%
1 2 0 GOT0 3 0
1 3 0 CLOSE 1

The 2-digit code that you enter in Line 30 becomes a record
number. That record number stores the name(s1, amount(s1,
and phone number(s) you enter when Lines 50, 60, and 70 are
executed. The record is written to the file when BASIC exe-
cutes the PUT statement in Line 110.

72

Chapter 71 Disk Files

After typing this program, save it and run it. Then, enter the
following data:

2-DIGIT CODE, 0 TO END? 20 IENTER]

2-DIGIT CODE, 0 TO END? 0 [ENIER)

BASIC stores SMITH, 34.55, and 567-9000 in Record 20 of
file 1isting.bas.

Accessing a Direct Access File
1. Open the file in Random mode:

OPEN " R " , 1 ,"listing.dat",32

2. Use the FIELD statement to allocate space in the buffer for
the variables that will be read from the file. For example:

F I E L D 1 , 20 A S N $, 4 A S A $, 8 A S P $

3. Before you use the GET statement to read the record, you can
check to see if the record is in your file. Set a variable in
your program equal t o the record size you used in the OPEN
statement. LOF returns the length of the file in bytes. The to-
tal number of bytes in the file divided by the record size is
equal to the largest record number in the file. An attempt to
access a record number greater than the largest record num-
ber in the file results in an "Input past end" error.

For example:
RECSIZE = 32
IF CODE% > (L O F (1) / RECSIZE%) THEN 1000

4. Use the GET statement to read the desired record from a di-
rect disk file into a buffer. For example:
GET 1 , CODE%

gets the record numbered CODE% and reads it into Buffer 1.

73

Chapter 71 Disk Files

5. Convert string values back to numbers using the "convert"
functions: CVI for integers, CVS for single precision values,
and CVD for double precision values. For example:

PRINT N$
PRINT CVS(A$)

The program may now access the data in the buffer.

The following program accesses the direct access file list-
ing.dat (created with the previous program). When BASIC ex-
ecutes Line 30 , en ter any valid record number from
1isting.dat. This program prints the contents of that record.

10 OPEN "R", 1 , " l l 5 t l n g . d a t " , 32
20 FIELD 1,20 A S N$,4 A S A $, 8 A S P $
30 RECSIZE% = 32

50 IF CODE% =0 OR CODE% > (LOF(l)/RECSIZE%) THEN
1000

60 GET # I , CODE%
70 PRINT N$
80 PRINT USING ' I $ $ # . # # " ; CVSCA$)
90 PRINT P$: PRINT
100 GOT0 40
1000 CLOSE 1

40 INPUT "2-DIGIT CODE, 0 TO END"; CODE%

After typing this program, save it and run it. When BASIC
asks you to enter a 2-digit code, enter 20 (the record created
through the previous program). Your display should show:

2-DIGIT CODE, 0 TO END? 20
SM I TH
$34.55
567-9000

To update listing.dat, simply use LOAD to load the previous
program (the one that created listing.dat) and run it.

74

Chapter 8

DISPLAYING COLOR AND GRAPHICS

Interpreter BASIC includes many commands to display text and
graphic images in black and white and in color.

You first select a screen mode, which tells BASIC the size of the
screen in points (resolution) and how many colors are available.
It also tells BASIC whether you are displaying text only or
graphics.

Resolution
The number of points on the screen is called the resolution. The
greater the number of points, the sharper the image. The 3 reso-
lutions are:

Low resolution
Medium resolution
High resolution

160 x 200 points
320 x 200 points
640 x 200 points

The horizontal length (x axis) is given first followed by the verti-
cal length (y axis).

Notice that there are more horizontal points than vertical points.
This means that the horizontal points are closer together than
the vertical points. The comparison of the number of points per
inch vertically to horizontally is called the aspect ratio.

The aspect ratio is computed using the following formula:

number of number of
vertical points horizontal points

aspect ratio = -

viewing area
height

viewing area
width

The viewing area is the portion of your screen on which images
are displayed. It may be smaller than the screen itself.

77

Chapter 8 I Displaying Color and Graphics

The aspect ratio is important when drawing objects on the
screen. Keep in mind that the number of horizontal points per
inch is greater than the same number of vertical points per inch.
Therefore, for example, if you try to draw a square, the perime-
ter of the square must contain more horizontal points than verti-
cal points.

Also, because there is a difference in points per inch among the
different screen modes, images that specify the same coordinates
do not look the same in different modes.

Colors
Colors are selected by numbers that vary, depending on whether
you are in a screen mode that supports 2, 4, or 16 color sets. All
modes start with the background as black and the foreground as
white. Each color set has a defined list of colors called a palette.

The characteristics of each mode are:

2 Color Set is the black and white mode; the background is
black and the foreground is white. You cannot change these
colors.

4 Color Set has 1 palette of 4 colors available at all times in
Screen Modes 4 and 6. The colors are numbered 0-3. Color 0 is
the current background color. The other colors are:

Number Color

1
2
3

cyan
magenta
white

BASIC uses Color 3 as the foreground color if you do not specify
a color parameter with graphic statements. Background can be
any one of the 16 colors described in the 16 Color Set. See the
PALETTE statement for information on changing colors in the
palette.

78

Chapter 8 i Displaying Color and Graphics

Screen Mode 1 has 2 palettes of 4 colors. Only 1 palette is avail-
able a t a time. Color 0 is the current background color. The other
colors are:

Number Palette 0 Palette 1

1 green cyan
2 , red magenta
3 hrown white

16 Color Set has 1 palette of 16 colors available a t all times.
The colors are numbered 0-15. The colors available are:

Number Color

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

black
blue
green
cyan
red
magenta
brown
gray
dark gray
light blue
light green
light cyan
light red
light magenta
yellow
white

The foreground color is initially set to white and the background
to black. You can change these colors w i th t h e COLOR
statement.

Video Pages
BASIC sets aside memory to be used for the video display. The
amount of memory necessary depends on the screen mode you
choose. BASIC initially sets aside 16K for video memory. You
can set aside a different amount using the CLEAR statement.

79

Chapter 8 I Displaying Color and Graphics

If you set aside more video memory than is required for the se-
lected screen mode, BASIC divides the video memory into pages
like pages of a book. You can store information to one page while
displaying another. The page being displayed is called the dis-
play page and the page being written to is called the active page.
BASIC initially sets the display page and the active page to the
same page.

The amount of memory required for each mode is detailed under
“Selecting Screen Modes.”

Selecting Screen Modes
You select the screen mode with the SCREEN command. BAS-
IC’s graphic screen modes are numbered 1-6.

Screen Mode 0 (Text Mode)
Color Set: 16
Graphics Resolution: not available
Text Width: 40 or 80
Video Page Size: If WIDTH=40, 2048 bytes, 8 pages max.

If WIDTH = 80, 4096 bytes, 4 pages max.

You can select different background, foreground and border colors
using the COLORlText command. (Border is the last group of
pixels around the perimeter of the screen display.) Foreground
can be any of the 16 colors in either solid (Colors 8-15] or blink-
ing mode (Colors 16-31). Background can be any of Colors 0-7.
Border is initially set the same as the background, but can be
changed to any of the 16 colors. You can change the text width
with the WIDTH command.

Screen Mode 1
Color Set: 4 (2 palettes)
Graphics Resolution: medium resolution

Aspect Ratio: 516
Text Width: 40
Video Page Size: 16384 bytes
Max. No. of Pages: 8

320 x 200

80

Chapter 8 I Displaying Color and Graphics

Screen Mode 2
Color Set:
Graphics Resolution:

Aspect Ratio:
Text Width:
Video Page Size:
Max. No. of Pages:

Screen Mode 3
Color Set:
Graphics Resolution:

Aspect Ratio:
Text Width:
Video Page Size:
Max. No. of Pages:

Screen Mode 4
Color Set:
Graphics Resolution:

Aspect Ratio:
Text Width:
Video Page Size:
Max. No. of Pages:

Screen Mode 5
Color Set:
Graphics Resolution:

Aspect Ratio:
Text Width:
Video Page Size:
Max. No. of Pages:

2
high resolution
648 x 288
5112
88
16384 bytes
8

16
low resolution
168 x 208
513
28
16384 bytes
8

4
medium resolution
328 x 288
516
48
16384 bytes
8

16
medium resolution
328 x 288
516
48
32768 bytes
4

81

Chapter 8 I Displaying Color and Graphics

Screen Mode 6

Color Set: 4
Graphics Resolution: high resolution

Aspect Ratio: 5112
Text Width: 80
Video Page Size: 32768 bytes
Max. No. of Pages: 4

640 x 200

Specifying Coordinates
To draw your graphics images on the display, you must tell
BASIC where to put the image on the screen. To do this, you
must specify horizontal and vertical points.

The horizontal and vertical point numbers are known as the co-
ordinates. Coordinates are expressed as x-coordinate, y-coordi-
nate or simply x and y . (x is the horizontal point number, and y
is the vertical point number.)

When you specify specific points as coordinates, they are re-
ferred to as absolute coordinates.

You may also, in some commands, specify coordinates relative to
the current point on the screen. In this case, you specify the
number of points from the last graphics point referenced. For ex-
ample, if you use the CIRCLE statement to draw a circle, the
last point referenced is the center of the circle. If you then exe-
cute a LINE statement, using relative coordinates of (0,0) to
specify the beginning point, BASIC begins drawing the line at
the center of the circle.

You may specify positive or negative values as relative coordi-
nates. If you specify a negative value, BASIC subtracts it from
the coordinate of the last point referenced. If you specify positive
values, BASIC adds i t to the coordinate of the las t point
referenced.

82

Chapter 9

INTRODUCTION TO BASIC KEYWORDS

BASIC is made up of keywords. These keywords instruct the
computer to perform certain operations.

Chapter 10 describes all of BASIC’s keywords. This chapter ex-
plains the format used in Chapter 10. It also gives a quick sum-
mary of all of BASIC’s keywords.

Format for Chapter 10

Keyword
Statement
Function

Syntax

Brief definition of keyword.

Detailed definition of keyword and any parameters or argu-
ments for that keyword.

Example(s1

Sample ProgramW

This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords require certain parame-
ters or arguments and others do not.

Some keywords are followed by defining words that explain how
to use the command. The defining words are:

Communications used with RS-232 Communications
Graphics
Trap used for event trapping

must be in Screen Modes 1-6

There are more, but they should be self-explanatory.

85

Chapter 9 I Introduction to BASIC Keywords

Some keywords have sample programs that further explain their
use or illustrate useful applications that may not be readily ap-
parent.

Important Note: BASIC for MS-DOS requires that
keywords be delimited by spaces. This means that you
must leave a space between a keyword and any varia-
bles, constants, or other keywords. The only exceptions
to this rule are characters that are shown as part of
the syntax of the keyword.

For example, if you type:
DELETE.=

BASIC returns a “Syntax error.” You must leave a
blank space between the word DELETE and the
period.

Terms Used in Chapter 10
line

integer

string

number

A numeric expression that identifies a
BASIC program line. Each line has a
number in the range 0 to 65529.

Any integer expression. It may consist of
an integer or of several integers joined by
operators. Integers are whole numbers
and may be in the range -32768 to 32767
unless otherwise specified.

Any string expression. It may consist of a
string, several strings joined by opera-
tors, or a string variable. A string is a
sequence of characters that is to be taken
verbatim.

Any numeric expression. It may consist of
a number, several numbers joined by op-
erators, or a numeric variable.

dummy number
or dummy string

A number (or string) used in an expres-
sion to meet syntactic requirements, but
the value of which is insignificant.

86

Chaster 9 I Introduction to BASIC Keywords

Statements
A statement tells the computer to perform some operation. The
following is a brief description of all BASIC statements:

Statement Description

AUTO
BEEP

BLOAD
BSAVE
CALL
CALLS
CHAIN

CHDIR
CIRCLEiGraphics
CLEAR

CLOSE
CLS
COLORiGraphics

COLORiTex t

COMiTrap
COMMON
CONT
DATA

DEFDBL
DEF FN

DEFINT
DEF SEG
DEFSNG
DEFSTR
DEF USR

DELETE
DIM
DRAWiGraphics

automatically generates line numbers.
produces a sound from the computer
speaker.
loads a memory image file from disk.
saves a memory image file to disk.
calls an assembly-language subroutine.
calls an MS-FORTRAN subroutine.
loads another program and passes varia-
bles to that program.
changes the current directory.
draws an ellipse on the screen.
frees memory for data without erasing
the program in memory.
closes access to a disk file.
clears the screen.
selects background and either foreground
or palette depending on the screen mode.
selects foreground, background, and bor-
der display colors for Screen Mode 0.
enables communications event trapping.
passes variables to a chained program.
continues program execution.
stores data in your program so that you
can access it with a READ statement.
defines variables as double precision.
defines a function according to your
specifications.
defines variables as integers.
defines the current segment address.
defines variables as single precision.
defines variables as strings.
defines the offset of the entry point for
USR routines.
removes program lines from memory.
defines the dimensions of an array.
draws images on the screen.

87

Chapter 9 I Introduction to BASIC Keywords

Statement Description

EDIT
END
ENVIRON

ERASE
ERL

ERR
ERROR
FIELD
FILES

FOR/NEXT
GET

GET/Graphics

GOSUB

GOT0

IFITHENIELSE

INPUT
INPUT#

INPUT$

IOCTL
KEY

KEYiTrap
KILL
LCOPY

LET

LINEiGraphics
LINE INPUT
LINE INPUT#

edits program lines.
ends a program.
modifies BASIC’s Environment String
Table.
erases an array.
returns the number of the line in which
an error occurred.
returns an error code after an error.
simulates the specified error.
organizes a direct access buffer.
displays names of files and directories on
a disk.
establishes a program loop.
gets a record from a direct access file or
transfers a specific number of bytes from
a communications file.
transfers graphic images from the screen
to memory.
t r a n s f e r s program control t o a
subroutine.
transfers program control to the specified
line.
evaluates an expression and performs an
operation if conditions are met.
accepts data from the keyboard.
accepts data from a sequential access de-
vice or file.
accepts data from the keyboard or a se-
quential access file.
sends control data to a device driver.
assigns or displays the current function-
key soft values.
enables key-event trapping.
deletes a disk file.
copies all text data on the screen to the
printer.
assigns a value to a variable. (The key-
word LET may be omitted.)
draws a line on the display.
accepts an entire line from the keyboard.
accepts an entire line from a sequential
access file.

88

Chapter 9 I Introduction to BASIC Keywords

Statement Description

LIST
LLIST
LOAD
LOCATE
LPRINT
LPRINT USING

LSET

MERGE

MID$
MKDIR
NAME
NEW
NOISE

ON COM GOSUB

ONERRORGOTO
ON/GOSUB

ONiGOTO

ON KEY0 GOSUB

ON PEN GOSUB

ON PLAY0 GOSUB

ON STRIGO GOSUB

ON TIMER0 GOSUB

OPEN
OPEN “COM
OPTION BASE

OUT

lists a program to the display or printer.
prints a program on the printer.
loads a program from disk.
positions the cursor on the screen.
prints data at the printer.
prints data at the printer in a specified
format.
moves data (and left-justifies it) to a field
in a direct access file buffer.
merges a disk program with a resident
program.
replaces a portion of a string.
creates a directory.
renames a disk file.
erases a program from RAM.
generates noise through a TV monitor’s
speaker.
branches to a subroutine when activity
occurs on the communication channel.
sets up an error-trapping routine.
evaluates an expression and branches to
a subroutine.
evaluates an expression and branches to
another program line.
branches to a subroutine when a specific
key is pressed.
branches to a subroutine when the light
pen is activated.
branches t o a subroutine when music
buffer contains fewer than the specified
number of notes.
branches to a subroutine when a joystick
button is pressed.
branches t o a subroutine when timer
equals the specified number.
opens a disk file.
opens a communications file.
declares the minimum value for array
subscripts.
sends a byte to a machine output port.

89

Chapter 9 I Introduction to BASIC Keywords

Statement Description

PAINT/Graphics

PALETTEiGraphics

PALETTE USING/
Graphics

PCOPY
PEN/Trap
PLAY
PLAYiTrap

POKE
PRESET/Graphics

PRINT
PRINT USING

PRINT#
PRINT# USING

PSETiGraphics

PUT/Communications

PUTiGraphics

RANDOMIZE
READ

REM
RENUM
RESET
RESTORE
RESUME

RETURN

RMDIR
RSET

RUN

fills in an area of the screen with a se-
lected color.
changes the color associated with a color
number.
changes the colors associated with more
than one color.
copies one video page to another.
controls light pen event trapping
plays musical notes.
controls background music event
trapping.
writes a byte into a memory location.
draws a point in color at a specified posi-
tion on the screen.
lists data to the display.
l ists da ta t o the display in a specific
format.
writes data to a sequential access file.
writes data to a sequential access file us-
ing the specified format.
draws a point on the screen at a specified
position.
puts a record into a direct access file or
transfers a number of bytes to a commu-
nications file.
transfers graphic images from the mem-
ory to the screen.
reseeds the random number generator.
reads data stored in the DATA statement
and assigns it to a variable.
inserts a remark line in a program.
renumbers a program.
closes all open files on all drives.
restores the DATA pointer.
resumes program execution after an er-
ror-handling routine.
returns from a subroutine to the calling
program.
removes a directory.
moves data (and right-justifies it) t o a
field in a direct access file buffer.
executes a program.

90

Chapter 9 I Introduction to BASIC Keywords

Statement Description

SAVE
SCREEN

SHELL

SOUND

STOP
STRIG
STRIG/Trap
SWAP
SYSTEM
TIMER/Trap
TROFF
TRON
VIE WIGraphics
VIEW PRINT

WAIT

WHILE ... WEND

WIDTH

WINDOW

WRITE
WRITE#

saves a program on disk.
sets the screen attributes (text, medium-
or high-resolution) to be used by subse-
quent statements.
loads and executes another program as a
child process.
generates a specific tone for a specified
length of time.
stops program execution.
enables the STRIG function.
controls joystick event trapping.
exchanges the values of variables.
returns to MS-DOS.
controls timer event trapping. .
turns off the tracer.
turns on the tracer.
redefines the screen parameters.
creates a text viewport to redefine screen
parameters.
suspends program execution while moni-
toring the s ta tus of a machine input
port.
executes statements in a loop as long as
a given condition is true.
sets the number of characters per line for
the screen or printer.
changes the physicial coordinates of the
screen.
prints data on the display.
writes data to a sequential file.

91

Chawter 9 I Introduction to BASIC Keywords

Functions
A function is a built-in subroutine. You may only use it as part
of a statement. Most BASIC functions return numeric or string
data.

Function Description

ABS
ASC
ATN
CDBL
CHR$
CINT
cos
CSNG
CSRLIN

CVD

CVI

cvs
DATE$
ENVIRON$

EOF

ERDEV
ERDEV$

EXP

FIX
FRE

returns the absolute value of a number
returns the ASCII code of a character.
returns the arctangent of a number.
converts a number to double precision.
returns the character of an ASCII code.
converts a number to an integer.
returns the cosine of a number.
converts a number to single precision
returns the current row position of the
cursor.
restores data from a direct access disk
file to double precision.
restores data from a direct access disk
file to integer.
restores data from a direct access disk
file to single precision.
sets the date or returns the current date.
returns a string from BASIC’s Environ-
ment String Table.
checks for end-of-file or an empty commu-
nications input queue.
returns the value of a device error.
returns the name of a device for device
error.
r e t u r n s t h e n a t u r a l exponent of a
number.
truncates to a whole number.
returns the number of bytes in memory
not being used.

92

Chapter 9 I Introduction to BASIC Keywords

Function

HEX$

INKEY$
INP
INSTR
INT
IOCTL$
LEFT$
LEN
LOC

LOF

LOG

LPOS

MID$
MKD$

MKI$

MKS$

OCT$

Description
converts a decimal value to a hexadeci-
mal string.
returns the keyboard character.
returns the byte read from a port.
searches for a specified string.
returns the integer value of a number.
returns control data from a device driver.
returns the left portion of a string.
returns the length of the string.
returns the current disk file record num-
ber or the number of characters in a com-
munications input queue.
returns the total number of bytes in a
disk file or the amount of free space in a
communication file input queue.
r e t u r n s t h e n a t u r a l logar i thm of a
number.
returns the position of the print head in
the printer buffer.
returns the midportion of a string.
converts a double precision value t o a
string for writing it t o a direct access
file.
converts an integer value to a string for
writing it to a direct access disk file.
converts a single precision number to a
string for writing it to a direct access
file.
converts a decimal value t o a n octal
string.

93

Chapter 9 I Introduction to BASIC Keywords

Function

PEEK
PEN
PLAY

PMAP
POINT

POS

RIGHT$
RND
SCREEN

SGN
SIN
SPACE$
SPC
SQR
STICK
STR$
STRIG
STRING$
TAB

TAN
TIME$
TIMER

USR
VAL
VARPTR
VARPTR$

Description

returns a byte from a memory location.
returns the coordinates of the light pen.
returns the number of notes in the music
buffer.
returns the physical or world coordinates.
returns either the color of a point or cur-
rent coordinates.
returns the cursor column position on the
display.
returns the right portion of a string.
returns a random number.
returns the ASCII code for the character
s tored a t a specific posit ion on t h e
screen.
determines the sign of a number
returns the sine of a number.
returns a string of spaces.
prints spaces to the display.
returns the square root of a number.
returns the coordinates of the joysticks.
converts a number to a string.
returns the status of the joystick buttons.
returns a string of characters.
positions the video cursor or the print
head at a specified position.
returns the tangent of a number.
sets the time or returns the current time.
re turns the number of seconds since
midnight.
calls an assembly-language subroutine.
returns the numeric value of a string.
returns an offset for a variable or buffer.
returns character form of memory ad-
dress of a variable.

94

ChaDter 10

BASIC KEYWORDS

ABS Function

ABS (number)

Returns the absolute value of number.

The absolute value of a number is the value without regard to
its sign. Absolute values are always positive or zero.

Example
P R I N T ABS(-66)

prints the absolute value of -66 which is 66.
X = ABS(Y)

computes the absolute value of Y and assigns it t o X.

Sample Program

1 0 0 I N P U T "WHAT'S THE TEMPERATURE O U T S I D E 7
(DEGREES F) " ; T E M P
1 1 0 I F TEMP < 0 THEN P R I N T " T H A T ' S " A B S (T E M P 1
"BELOW ZERO! BRR!" : END
1 2 0 I F TEMP = 0 THEN P R I N T "ZERO DEGREES! M I T E
C O L D ! " : END
1 3 0 P R I N T TEMP "DEGREES ABOVE ZERO! BALMY!" : END

97

Chapter 10 I BASIC Keywords

ASC Function

ASC(strZng)

Returns the ASCII code for the first character of string.

ASC returns the value as a decimal number. If string is null, an
"Illegal function call" error occurs.

Example
P R I N T A S C (" A " 1

prints 65, the ASCII code for A.

Sample Program
You can use ASC to be sure a program is receiving proper input.
Suppose you want to write a program that requires the user to
input hexadecimal digits (0-9, A-F). To be sure that only those
characters are input, and all other characters are excluded, you
can insert the following routine.

1 0 0 I N P U T "ENTER A H E X A D E C I M A L V A L U E " ; N $
1 1 0 A = A S C C N $) ' g e t A S C I I c o d e
1 2 0 I F A > 4 7 AND A < 5 8 O R A > 6 4 AND A < 7 1 THEN P R I N T
" O K . " : GOTO 1 0 0
1 3 0 P R I N T "VALUE NOT O K . " : GOTO 1 0 0

98

Chawter 10 I BASIC Kevwords

ATN Function

ATN(number)

Returns the arctangent of number.

ATN returns the angle (in radians) whose tangent is number.
Number must be given in radians.

BASIC always returns the result as a single precision number
unless you specified the /D switch when starting up BASIC.

To convert this value to degrees, use ATN(number*PI), where PI
equals 3.141593.

Example
PRINT A T N (7)

prints the arctangent of 7 which is 1.428899
X = A T N (Y / 3) * 5 7 . 2 9 5 7 8

computes the arctangent of Y13 in degrees and assigns the value
to x.

99

Chapter 10 I BASIC Ke.ywords

AUTO Statement

AUTO [line] [, increment]

Automatically generates a line number when you are entering a
program. AUTO displays a new line number every time you
press m.
Line is the line number with which you want BASIC to start
numbering. To start numbering with the current line number,
specify a period (.I as line. If you omit line, BASIC starts with
Line 10.

Increment is the increment for BASIC to use when generating
line numbers. You must precede increment with a comma (,). If
you want BASIC to use the increment of the last AUTO state-
ment, type the comma but omit increment. If you omit increment
and the comma, BASIC uses 10. If you omit line but include in-
crement, BASIC begins numbering with Line 0.

If BASIC generates a line number that already exists in mem-
ory, it displays an asterisk after the number. To save the exist-
ing line, press = immediately after the asterisk and AUTO
generates the next line number.

To turn off AUTO, press [BREAK]. The current line is canceled and
BASIC returns to command level.

Examples
AUTO

generates line numbers beginning with Line 10 using incre-
ments of 10. For example, 10, 20, 30

AUTO 1 0 0 , 5 0

generates line numbers beginning with Line 100 using incre-
ments of 50. For example, 100, 150, 200

AUTO 7 0 0 ,

generates line numbers beginning with Line 700 using the in-
crement of the last AUTO statement, in this case 50. For exam-
ple, 700, 750, 800

100

Chapter 10 I BASIC Keywords

Statement

BEEP
BEEP ON
BEEP OFF

Produces a sound from the computer’s speaker.

BEEP sounds the speaker at 800 Hz for 114 second.

You can use BEEP with the SOUND statement to direct sound
to the computer’s internal speaker or an external speaker (such
as a television’s speaker) or both.

BEEP ON : SOUND ON d i r e c t s sound t o both
speakers .

BEEP OFF : SOUND OFF t u r n s off sound t o both
speakers.

BEEP ON : SOUND OFF directs sound to the internal
speaker only.

BEEP OFF : SOUND ON directs sound to the exter-
nal speaker only.

BASIC starts up with BEEP ON and SOUND OFF

The BEEP statement is the same as typing PRINT CHR$(7).

Example
I F X > 2 0 THEN BEEP

warns the operator with a beep if the variable X is out of range,
that is, greater than 20.

101

Chapter 10 I BASIC Keywords

BLOAD Statement

BLOAD pathname[,offsetl

Loads a memory image file into memory. See BSAVE

A memory image file is a byte-for-byte copy of what was origi-
nally in memory. See BSAVE for information about saving mem-
ory image files.

Pathname is a standard file specification as defined in Chapter
1.

Offset is an integer in the range 0 to 65535. Offset is the num-
ber of bytes into the current segment where BASIC loads the im-
age. If you omit offset, BASIC uses the offset specified when the
file was saved with BSAVE.

If you specify offset, BASIC assumes you want to BLOAD a t an
address other than the one given when the program was saved
and uses the current segment address as set by the last DEF
SEG statement. Unless you want to load the file into BASIC’s
data segment, you must execute the DEF SEG statement before
the BLOAD statement.

If you used the /M: switch when you loaded BASIC, specify that
address as the offset.

If you specify an offset without using a DEF SEG statement or
the /M: switch, BASIC loads the file a t that offset from BASIC’s
data segment, destroying BASIC’s workspace.

Note: BLOAD does not perform a n address range
check. It is possible to load a file anywhere in mem-
ory. Therefore, you must be careful not to load over
BASIC or over the operating system.

See the section “Interfacing With Assembly-Language Subrou-
tines” in Chapter 11 for more information on loading assembly-
language programs.

102

Chapter 10 i BASIC Keywords

You may specify any segment as the target or source for BLOAD
or BSAVE. This is a useful way to save and redisplay screen im-
ages by saving from or loading to the screen buffer.

Sample Programs
Program 1

1 0 ' S A V E A 5 0 byte image of memory
2 0 D E F SEG = b H l 0
3 0 FOR I = 2 5 6 to 3 0 6
4 0 V L U E = PEEK (1)
5 0 L P R I N T "AT ADDRESS " ; I ; "WE HAVE A VALUE

6 0 NEXT I
7 0 B S A V E "prog1",0,50
8 0 P R I N T " N o w R u n Program 2 to verify that the

OF " ; V L U E

content5 saved in the file PROGl match those
in the printout produced by this program."

Program 2
1 0 'Load a 5 0 byte file into memory and verify

i t
2 0 DEF SEG = & H 1 0
3 0 B L O A D "progl .bas", 0
4 0 F O R I = 2 5 6 to 3 0 6
5 0 V A L U E = P E E K C I)
6 0 L P R I N T "AT ADDRESS ";I; "the loaded value

i 5 " ; V A L U E
7 0 N E X T I

Program 1 saves a memory image file, and Program 2 reloads
that file and prints it.

103

Chapter 10 I BASIC Keywords

BSAVE Statement

%SAVE pathname,offset,length

Saves the contents of an area of memory as a disk file.

Pathname is a standard file specification as defined in Chapter
1.

Offset is an integer in the range 0 to 65535. Offset is the num-
ber of bytes into the current segment where BASIC starts sav-
ing.

Length is an integer in the range 1 to 65535. This is the length
in bytes of the memory image file to be saved.

You must specify pathname, offset, and length. If you omit any of
them, BASIC returns an error and terminates the save.

A memory image file is a byte-for-byte copy of what is in mem-
ory. The BSAVE statement lets you save data or programs as
memory image files on disk. BSAVE is often used for saving as-
sembly language programs, but you can also use it to save data,
programs written in other languages, or screen images.

When you load BASIC, the data segment (DS) register is set to
the address of BASIC’s workspace. You must execute a DEF SEG
statement before executing BSAVE, unless you used the /M:
switch when you loaded BASIC. Without the DEF SEG state-
ment or the /M: switch, BASIC’s workspace could be destroyed.

Sample Program
See BLOAD.

104

Chapter 10 I BASIC Keywords

CALL Statement

CALL variable [(parameter list)]

Transfers program control to an assembly-language subroutine
stored at variable.

Variable contains the offset into the current segment where the
subroutine starts in memory. Variable may not be an array vari-
able. The offset must be on a 16-byte boundary.

Parameter list contains the variables that are passed to the ex-
ternal subroutine. The number, type, and length of the parame-
ters being passed must match with the parameters expected by
the assembly-language subroutine.

If you omit parameter list, BASIC executes an 8086 CALL in-
struction. Your assembly-language subroutine should return with
a simple RET instruction.

When you execute a CALL statement, BASIC transfers control to
the subroutine through the address given in the last DEF SEG
statement and the segment offset specified by variable. See the
section “Interfacing With Assembly-Language Subroutines” in
Chapter 11 for more details.

Example
1 0 0 I = 4 5 : J = 1 0 0 : K = 5 5
1 1 8 MYROUT = A H 0 8 8 8
1 2 0 DEF SEG = A H 1 7 0 0
1 2 0 CALL M Y R O U T C I , J , K)

The subroutine, MYROUT, begins at offset 0 in the segment
that begins at 1700. The values of I, J, and K are passed to the
routine.

105

ChaDter 10 I BASIC Kevwords

CALLS Statement

CALLS variables [(parameter list)]

Transfers program control to a routine written in MS’” -FOR-
TRAN. CALLS works just like the CALL statement, except that
CALLS passes arguments as segmented addresses.

CALLS uses the address given in most recently executed DEF
SEG statement to locate the routine being called.

106

Chawter 10 I BASIC Kevwords

CDBL Function

CDBL(num ber)

Converts number to double precision.

This function may be useful if you want to force an operation to
be performed in double precision, even though the operands are
single precision or integers.

Sample Program
2 1 0 A = 4 5 4 . 6 7
2 2 0 PRINT A , CDBLCA)

When run, this program prints the following:
4 5 4 . 6 7 4 5 4 . 6 7 0 0 1 3 4 2 7 7 3 4 4

107

Chawter 10 I BASIC Kevwords

CHAIN Statement

CHAIN [MERGE] pathnume [,[,line] [,ALL]
[,DELETE line-line]]

Lets the current program load and execute another program
named pathname.

Pathname is a standard file specification as defined in Chapter
1. It specifies the program you want to chain. The program must
have been previously saved in ASCII format. See SAVE.

Line is the line number or variable containing a line number
where BASIC begins execution in the chained program. Line is
always preceded by a comma (J. If you plan to use the ALL or
DELETE options and do not specify a line number, you must
specify a comma for line. This keeps BASIC from evaluating
ALL and DELETE as variables. If you omit line, BASIC begins
execution a t the first program line of the chained program.

The ALL option tells BASIC to pass every variable in the cur-
rent program to the chained program. If you omit ALL, the cur-
rent program must contain a COMMON statement t o pass
variables to the chained program. If chained programs chain
subsequent programs and pass variables, each new program
must contain either the ALL option or the COMMON statement.

The MERGE option overlays the lines of the chained program
with the current program. See the MERGE statement to under-
stand how BASIC overlays (merges) program lines.

The DELETE option deletes lines in the overlay so that you can
merge in a new overlay.

Ex ample s
C H A I N " p r 0 9 2 "

loads prog2, chains it to the program currently in memory, and
begins executing it.

C H A I N " s u b p r o g . b a 5 " , ,ALL

loads, chains and executes subprog.bas. The values of all the
variables in the current program are passed to subprog.bas.

108

Chapter 10 I BASIC Keywords

Sample Program 1
1 0 REM T H I S PROGRAM DEMONSTRATES C H A I N I N G U S I N G

2 0 REM SAVE T H I S MODULE ON D I S K A S "PROGI .BAS"

30 D I M A S C 2) , B S (2)
4 0 COMMON A S 0 , B S O
50 A S < l) = " V A R I A B L E S I N COMMON MUST B E A S S I G N E D "
6 0 A $ (2) = " V A L U E S BEFORE C H A I N I N G "
7 0 BS (1 1 ="I ' : BS (2) ="I '

8 0 C H A I N " p r o g 2 . b a 5 "
9 0 P R I N T : P R I N T B S C I) : P R I N T : P R I N T B S (2) :

1 0 0 END

Save this program as progl.bas, using the A option (Enter:
SAVE "progl.bas", A). Enter NEW, and then enter the following
program.

COMMON TO P A S S V A R I A B L E S .

U S I N G THE A O P T I O N .

P R I N T

1 0 REM THE STATEMENT " D I M A S (2) , B S (2) " MAY ONLY

20 REM HENCE, I T DOES NOT APPEAR I N T H I S MODULE.
3 0 REM SAVE T H I S MODULE ON THE D I S K A S

4 0 COMMON A S 0 , B S O
50 P R ' I N T : P R I N T A S (l) ; A S (2)
6 0 B $ (I) = " N O T E HOW THE O P T I O N OF S P E C I F Y I N G A

S T A R T I N G L I N E NUMBER"
7 0 B $ < 2) = " W H E N C H A I N I N G A V O I D S THE D I M E N S I O N

STATEMENT I N 'PROGI ' . "
8 0 C H A I N " p r o g l . b a 5 " , 9 0
9 0 END

B E EXECUTED ONCE.

"PROG2.BAS" U S I N G THE A O P T I O N .

Save this program as prog2.bas, using the A option. Load
progl .bas and run it. Your screen should display:

V A R I A B L E S I N COMMON MUST B E A S S I G N E D V A L U E S
BEFORE C H A I N I N G .

NOTE HOW THE O P T I O N OF S P E C I F Y I N G A S T A R T I N G
L I N E NUMBER

WHEN C H A I N I N G A V O I D S THE D I M E N S I O N STATEMENT I N
'PROGI ' .

109

Chapter 10 I BASIC Keywords

Sample Program 2
Enter NEW and this program:

1 0 REM T H I S PROGRAM DEMONSTRATES C H A I N I N G U S I N G

2 0 A $ = " M A I N P R O G . B A S "
3 0 C H A I N MERGE " o v e r l a y l " , 1 0 0 0 , ALL
4 0 END

THE MERGE AND ALL O P T I O N S .

Save this program as mainprog.bas, using the A option. Enter
NEW, and then type:

1 0 0 0 P R I N T A $; " HAS C H A I N E D TO OVERLAY1 . B A S . "
1 0 1 0 A $ = " o v e r l a y l . b a s "
1 0 2 0 B$ = " o v e r l a y 2 . b a 5 "
1 0 3 0 C H A I N MERGE " o v e r l a y 2 . b a 5 " , 1 0 0 0 , ALL,

1 0 4 0 END
D E L E T E 1 0 2 0 - 1 0 4 0

Save this program as overlayl.bas, using the A option. Enter
NEW, and then these lines:

1 0 0 0 P R I N T A $; " HAS C H A I N E D TO ";E$;"."
1 0 1 0 END

Save this program as overlay2.bas, using the A option. Load
mainprog.bas and run it. Your screen should display:

M A I N P R O G . B A S HAS C H A I N E D TO O V E R L A Y 1 . B A S .
O V E R L A Y 1 . B A S HAS C H A I N E D TO O V E R L A Y 2 . B A S .

Hints:
The CHAIN statement with the MERGE option leaves the
files open and preserves the current OPTION BASE setting.

0 The CHAIN statement without the MERGE option does not
preserve variable types or user-defined functions for use by the
chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statements containing shared variables
must be restated in the chained program.

0 When using the MERGE option, place user-defined functions
before any CHAIN MERGE statements in the program. Oth-
erwise, the user-defined functions will be undefined after the
merge is complete.

0 CHAIN automatically executes a RESTORE before running
the chained program. The next READ statement starts a t the
first item of the first DATA statement.

110

Chapter 10 I BASIC Keywords

CHDIR Statement

CHDIR dirpath

Changes the current directory.

Dirpath is a standard directory specification as defined in Chap-
ter 1.

Examples
C H D I R "B: \ f?CCTS\RECVBLE"

changes the currect directory on Drive B to ACCTS\RECVBLE.
C H D I R "\RECORDS"

changes the directory on the current drive to RECORDS.
C H D I R ". . "

changes the current directory to the parent directory of the cur-
rent directory.

111

Chapter 10 I BASIC Keywords

CHR$ Function

CHR$(code)

Returns the character corresponding to an ASCII or control code.

Code is any ASCII or control code.

CHR$ is the inverse of the ASC function and is commonly used
to send a special character to the display.

See Appendix B for a list of ASCII codes.

Example

prints the character corresponding to ASCII code 35, which is #.

P R I N T C H R $ < 3 5)

Sample Program
The following program lets you investigate the effect of printing
ASCII codes on the display.

1 0 0 C L S
1 1 0 I N P U T " T Y P E I N THE CODE"; C
120 P R I N T " C H R $ < C O D E) = " ; C H R $ (C)
1 3 0 GOT0 1 1 0

112

Chapter 10 i BASIC Keywords

CINT Function

C INT(num ber)

Converts number to integer.

Number must be in the range -32768 to 32767.

CINT rounds the fractional portion of number to make it an
integer.

See also FIX and INT, which also return integer values.

Examples
P R I N T C I N T (1 . 5 6)

prints 2.
P R I N T C I N T C - 1 . 6 7)

prints -2.

113

Chapter 10 I BASIC Keywords

CIRCLE/Graphics Statement

Draws an ellipse on the screen with the specified center and
radius.

(x,y) specify the coordinate for the center of the circle. x is the
horizontal coordinate and y is the vertical coordinate.

Color indicates the color of the ellipse and must be a valid num-
ber in the current color set.

The STEP option tells BASIC that the (x,y) coordinates are rela-
tive to the last point referenced.

The possible ranges for x, y, and color depend upon the current
screen mode as defined in Chapter 8, “Displaying Color and
Graphics. ”

Radius is the major axis of the ellipse.

Start and end are the beginning and ending angles in radians
and must be in the range -6.283186 to 6.283186, or -2 * PI to
2 * PI, where PI equals 3.141593. If you specify a negative start
or end angle, the ellipse is connected to the center point with a
line, and the angles are treated as if they were positive.

Aspect is the ratio of the x-radius to the y-radius in terms of co-
ordinates. If aspect is less than 1, radius is the x-radius and is
measured in points in the horizontal direction. If aspect is
greater than 1, radius is the y-radius and is measured in points
in the vertical direction. If you omit aspect, BASIC uses the de-
faults for the current screen mode as defined in Chapter 8. When
you use the default, BASIC draws a circle.

114

Chapter 10 I BASIC Ke.ywords

To draw an ellipse that is wider than it is high, use an aspect
ratio that is less than the default value for that screen mode.
The smaller the aspect ratio you specify, the wider and shorter
the ellipse. For example, in Screen Mode 1, an aspect ratio of 1/2
gives you an ellipse like this:

To draw an ellipse that is higher than it is wide, use an aspect
ratio that is larger than the default value for that screen mode.
The larger the aspect ratio that you use, the taller and thinner
the ellipse. For example, in Screen Mode 1, an aspect ratio of 716
draws an ellipse like this:

115

Chapter 10 I BASIC Keywords

See Chapter 8 for more information on aspect ratio and specify-
ing coordinates.

Examples
1 0 SCREEN 1
2 0 C I R C L E (1 5 0 , 1 0 0) , 5 0

draws a circle with the center at point 150,100 and a radius of
50.

Sample Program
1 0 SCREEN 1
2 0 FOR 1 = 0 TO 3
3 0 C L S
4 0 C I R C L E (1 5 0 , 1 0 0) , 5 0 , 1
5 0 P A I N T (1 5 0 , 1 0 0 1 , I
6 0 FOR Q = l TO 3 0 0 : N E X T Q
7 0 NEXT I
8 0 SCREEN 0

116

Chapter 10 I BASIC Ke-ywords

CLEAR Statement

CLEAR [,memory location.] [,stack space][,uideo
memory1

Frees memory for data without erasing the program currently in
memory. CLEAR erases all arrays, sets numeric variables to
zero and string variables to null, and erases any information set
using a DEF statement , such as DEF SEG and DEF FN.
CLEAR also turns off the SOUND, PEN, and STRIG functions
and resets the music background.

Since CLEAR initializes all variables, place it near the begin-
ning of your program, before any variables have been defined
and before any DEF statements.

Memory location must be an integer. It specifies the highest
memory location available for BASIC. The default is the current
top of memory as specified with the /M: switch when BASIC was
loaded. This option is useful if you will be loading an assembly-
language subroutine, because it prevents BASIC from using that
memory area.

Stack space also must be an integer. This sets aside memory for
temporarily storing internal data and addresses during subrou-
tine calls and during FOR/NEXT loops. If you omit stack space,
BASIC sets aside 768 bytes or one-eighth of the memory avail-
able, whichever is smaller. BASIC displays an “Out of memory”
error if stack space for program execution is insufficient.

Video memory is an integer that specifies the amount of memory
to be set aside as video memory. For graphics modes, if the vdeo
memory you specify is not a multiple of 16K bytes (16384 bytes),
BASIC rounds it down to the nearest multiple of 16K. If you
omit video memory, BASIC sets aside 16K. The video memory
page size for each screen mode is described in Chapter 8, “Dis-
playing Color and Graphics.”

117

Chapter 10 I BASIC Keywords

If you set video memory larger than the required page size,
BASIC divides the assigned memory into pages based on the
page size requirement. For example, if you set aside 32K for
video memory for Screen Mode 1, BASIC divides the video mem-
ory into 2 pages (32/16=2). See Chapter 8, SCREEN, and
PCOPY for more on video pages.

Note: BASIC allocates s t r ing space dynamically.
BASIC displays an “Out of string” space error if no
free memory is left for BASIC.

Ex ample s

clears all variables and closes all files.

CLEAR

CLEAR, 4 5 0 0 0

clears all variables and closes all files; then makes 45000 the
highest address BASIC may use to run your programs.

CLEAR, 6 1 0 0 0 , 3 0 0

clears all variables and closes all files; then makes 61000 the
highest address BASIC may use to run your programs, and allo-
cates 300 bytes for stack space.

CLEAR , , , 3 2 7 6 8

sets aside 32K for video memory.

118

Chapter 10 I BASIC Keywords

Statement

CLOSE [buffer, ...I

Closes access to a disk file.

Buffer is the number assigned to the file when you opened it. If
you omit buffer, BASIC closes all open files.

This command terminates access to a file through the specified
buffer. If buffer has not been assigned by an OPEN statement,
then CLOSE buffer has no effect.

Do not remove a disk that contains an open file. Close the file
first, because the last records may not have been written yet.
Closing the file writes the data currently in the buffer if it has
not been written already.

Note that CLEAR, END, NEW, RESET, and SYSTEM automat-
ically close all files when executed.

See also OPEN and Chapter 7, “Disk Files.”

Examples
C L O S E 1 , 2 , 8

terminates the file assignments to Buffers 1, 2, and 8. You can
now assign these buffers to other files with OPEN statements.

C L O S E FIRST% + COUNT%

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

119

Chapter 10 I BASIC Keywords

CLS Statement

CLS

Clears the screen and returns the cursor to the home position.
Home is Row 0, Column 0, or in other words, the upper left cor-
ner of the screen.

If a viewport is active, CLS clears only the active viewport. To
clear the entire screen, you must use VIEW to redefine the en-
tire screen before using CLS.

Changing the screen mode with SCREEN or changing the width
with WIDTH automatically clears the screen. You can also clear
the screen by typing [CTRL][T] or [CTRL)[HOME].

Sample Program
540 CLS
550 F O R I = 1 TO 24
560 PRINT STRING$(79,33)
570 NEXT I
580 GOTO 540

~

120

Chapter 10 I BASIC Keywords

COLOR/Graphics Statement
Screen Mode 1:

COLOR [background] [,[palette11

COLOR [foreground] [, [background11
Screen Modes 3-6:

Selects the background color and either the palette or foreground
colors, depending on the current screen mode.

Background specifies the background and border colors. It may
be 0-15 as described in Chapter 8, “Displaying Color and
Graphics. ”

Foreground specifies the foreground color. In Screen Modes 3 and
5, foreground may be Colors 1-15. In Screen Modes 4 and 6 , fore-
ground may be Colors 1-3. Specifying 0 as the foreground color
causes an “Illegal Function Call” error. Colors are described in
Chapter 8, “Displaying Color and Graphics.”

Note: If you set foreground the same as background,
the characters are invisible.

Palette specifies which palette to use and may be 0 or 1 to select
Palette 0 or Palette 1. After executing the COLORiGraphics
statement, you may use the PALETTE and PALETTE USING
statements to change any or all these values. See PALETTE
AND PALETTE USING.

If you omit any parameters, BASIC assumes the default values
or previous values.

Examples

sets background to light blue and selects Palette 0 in Screen
Mode 1.

1 0 C O L O R 9 , 0

20 C O L O R , I

background retains its previous value. Palette 1 is selected in
Screen Mode 1.

121

ChaDter 10 I BASIC Keywords

Sample Programs
5 SCREEN 5
1 0 C O L O R 12,l
20 L I N E (0,0) - (319,199)

Line 10 selects a light red foreground with a blue background.
Line 20 draws a light red diagonal line on the display.

5 SCREEN 1
1 0 C O L O R 3,0
20 L I N E (0,0) - (319,199)

Line 10 selects a cyan background and Palette 0. Line 20 draws
a brown diagonal line on the video display. If you select Palette 1
in Line 10, Line 20 draws a white diagonal line.

122

Chapter 10 I BASIC Ke.ywords

C OLOR/Text Statement

COLOR [foreground] , [background] [, border11

Selects the display colors for the foreground, background, and
border for displaying in text mode. To be in text mode, you must
have selected Screen Mode 0 with the SCREEN statement.

Foreground is an integer in the range 0 to 31, specifying the
foreground color. Colors 16-31 cause blinking foreground. To fig-
ure the color, add 16 to the color numbers defined in the 16 Color
Set in Chapter 8.

Background is an integer in the range 0 to 7, specifying the
background color.

COLORiText can use any of the colors in the 16 Color Set as fore-
ground. See Chapter 8 for more information.

Note: If you set foreground the same as background,
the characters are invisible.

Border is an integer in the range 0 to 15, specifying the border
color.

If you omit any parameter, BASIC assumes the previous values
or the default values.

Examples
COLOR 0 , 7

selects black characters on a white background.
COLOR 1 , 0

selects blue characters on a black background.
COLOR 4 , 0

selects red characters on a black background.

123

Chapter 10 I BASIC Ke.ywords

COM Statement

COM(channe1) action

Turns on, turns off, or temporarily halts the trapping of activity
on the specified communications channel.

Channel selects communications channel 1 or 2.

Action may be any of the following:

ON enables communications trapping.
OFF disables communications trapping.
STOP temporarily suspends communications trapping.

Use the COM statement in a communications trap routine with
the ON COM() GOSUB statement to detect when characters
have come into the communications channel.

The COM() ON statement turns on the trap. BASIC checks after
every program statement to see if a character has come into the
communications channel. If so, BASIC transfers program control
t o the line number specified in the ON COM() GOSUB
statement .
The COM() STOP statement temporarily halts communications
trapping. If activity occurs on the communications channel,
BASIC does not transfer program control to the ON COM(1 GO-
SUB statement until you turn on communications trapping
again by executing a COM() ON statement. BASIC remembers
that activity took place and branches to the subroutine immedi-
ately after communications trapping is turned on again.

The COM() OFF statement turns off communications activity
trapping. BASIC does not remember if activity took place when
communications trapping is turned on again.

We recommend that your trap routine read the entire message
from the communications port. Do not use a COM trap to trap a
single character message because the amount of time required
to trap and read every character can cause the communications
buffer to overflow.

124

Chapter 10 I BASIC Keywords

See ON COM() GOSUB for more information about communica-
tions trapping.

Example
1 0 COM(1) ON
2 0 P R I N T "NO A C T I V I T Y "
3 0 ON COM(1 1 GOSUB 1 0 0
4 0 GOT0 2 0

1 0 0 P R I N T "YOU ARE R E C E I V I N G DATA"

Line

2 0 0 RETURN

10 turns on a communications trar, on Channel 1. If char-
acters are received on the communications channel, program
control transfers to the subroutine beginning at Line 100. If
there is no activity on the communications channel, Line 20
prints a message, and Line 40 keeps the program in a loop until
there is activity on the communications channel.

125

Chapter 10 I BASIC Keywords

COMMON Statement

COMMON uariabZe[,uariabZe,. . .I

Passes Variables to a chained program.

Both programs in the chain should contain a COMMON state-
ment. COMMON may appear anywhere in a program, but we
recommend using it at the beginning.

The same variable cannot appear in more than one COMMON
statement in a single program. The size and order of the vari-
ables must be the same in the programs being chained. To spec-
ify array variables, append “0” to the variable name. If you are
passing all variables, use CHAIN with the ALL option and omit
the COMMON statement.

Note: Array variables used in a COMMON statement
must have been declared in a DIM statement.

See the CHAIN statement for more information on passing
variables.

Example
9 0 DIM D (5 0)
1 0 0 COMMON A , E, C, D O , G $
1 1 0 CHFI I N ”PROG3”, 1 0

Line 100 passes variables A, B, C, D, and G$ to the CHAIN
command in Line 110.

126

Chawter 10 I BASIC Kevwords

CONT Statement

CONT

Resumes program execution.

You may only use CONT if the program has been stopped by
[CTRL] [BREAK] or the execution of a STOP or an END statement.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or
change these values. Then type CONT (ENTER] to continue execu-
tion with the new variable values.

You cannot use CONT after editing your program lines or other-
wise changing your program. CONT is also invalid after execu-
tion has ended normally.

See the STOP statement to terminate execution and the GOT0
statement to begin execution at a specific line number.

Example
1 0 I N P U T "ENTER 3 NUMBERS a , b , c " ; A , B, C
2 0 K = A " 2
30 L = B A 3 / . 2 6
4 0 STOP
5 0 M = C + 4 0 * K + 1 0 0 : P R I N T M

Run this program. BASIC prompts for 3 numbers. Type:
1 , 2 , 3 (ENTERJ

The computer displays "Break in 40." You can now enter
a BASIC statement as a command. For example:

P R I N T L [ENTER]

displays 30.76923. You can also change the value of A, B, or C.
For example, to change the value of C, type:

c = 4

Now type:
CONT [ENTER]

and BASIC displays 144.

127

Chapter 10 I BASIC Ke.ywords

cos Function

COS(num ber)

Returns the cosine of number.

COS returns the angle (in radians) whose sine is number.

Number must be given in radians. If number is in degrees, you
can convert it to radians by using COS (number * PI/180), where
PI equals 3.141593.

BASIC always returns the result as a single precision number
unless you specified the /D switch when starting up BASIC.

Examples
PRINT C O S (5 . 8) - COS(85 * . 4 2)

prints the arithmetic (not trigonometric) difference of the 2
cosines.

Y = C O S C X . 0 1 7 4 5 3 3)

stores in Y the cosine of X, if X is an angle in degrees.

128

Chapter 10 I BASIC Keywords

CSNG Function

C SNG(num ber)

Converts number to single precision.

.BASIC rounds the number when converting it to single precision.

Example
P R I N T C S N G C . 1 4 5 3 8 8 5 5 0 9)

prints .1453885

Sample Program
2 8 0 VU = 8 7 6 . 2 3 4 5 6 7 8 U
2 9 0 P R I N T V # , CSNGCV#)

When run, this program prints:
8 7 6 . 2 3 4 5 6 7 8 8 7 6 . 2 3 4 6

129

Chapter 10 I BASIC Keywords

CSRLIN Function

CSRLIN

Returns the current row position of the cursor.

See the POS function to return the current column position and
the LOCATE statement to set the row and column positions.

Example
10 PRINT "This i s Line":
20 PRINT CSRLIN

130

Chapter 10 I BASIC Keywords

CVD, CVI, CVS Function

CVD(8- byte string)
CVI(2-byte string)
CVS(4-byte string)

Converts string values to numeric values.

These functions restore data to numeric form after it is read
from the disk. Typically, the data has been read by a GET state-
ment and is stored in a direct access file buffer.

CVD converts an 8-byte string to a double precision number.

CVS converts a 4-byte string to a single precision number.

CVI converts a 2-byte string to an integer.

CVD, CVI, and CVS are the inverse of MKD$, MKI$, and
MKS$, respectively.

Examples
A # = CVD<GROSSPAY$)

assigns the numeric value of GROSSPAY$ to the double precision
variable A#.

Sample Program
This program reads from the file test.dat, which is created in the
sample program for the MKD$, MKI$, and MKS$ functions.

1420 OPEN "R", 1 , " t e ~ t . d a t " , 14
1430 F I E L D 1 , 2 A S I 1 $, 4 AS I2$, 8 A S 13s
1440 GET 1
1450 PRINT CVI<Il$), CVS(I2$), CVD(I39)
1460 C L O S E

BASIC prints 3000, 3000.1 and 3000.00001.

Note: GET without a record number tells BASIC to
get the first record from the file or the record follow-
ing the last record accessed.

131

Chapter 10 I BASIC Keywords

DATA Statement

DATA constant [,constant,. . .]

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by
commas) as can fit on a line (a maximum of 255 characters in-
cluding the word DATA, commas, and spaces).

DATA statements may appear anywhere it is convenient in a pro-
gram. BASIC reads DATA statements sequentially, starting with
the first constant in the first DATA statement and ending with
the last item in the last DATA statement.

String constants containing delimiters, such as leading or trail-
ing blanks, colons, or commas, must be enclosed in double quota-
tion marks when used in DATA statements.

The data types in a DATA statement must match with the vari-
able types in the corresponding READ statement, otherwise,
BASIC displays a “Syntax error.”

Note that numeric expressions are not allowed in a DATA state-
ment.

To reread DATA statements from the beginning, use a RE-
STORE statement before the next READ statement.

132

Chapter 10 I BASIC Keywords

Examples
DATA NEW Y O R K , C H I C A G O , LOS ANGELES,
P H I L A D E L P H I A , D E T R O I T

stores 5 string data items. Quotation marks are not needed since
the strings contain no delimiters and the leading blanks are not
significant.

DATA 2 . 7 2 , 3 . 1 4 , 0 . 0 1 7 4 5 , 5 7 . 2 9 5 7 8

stores 4 numeric data items.
DATA " S M I T H , T . H . " , 3 8 , "THORN, J . R . " , 4 1

stores both types of constants. Quotation marks are required
around the first and third items because they contain commas.

Sample Program
1 0 PR I NT "C I TY" , "STATE" , "2 I P"
20 READ C S , S $, Z
3 0 DATA "DENVER ,", COLORADO, 8 0 2 1 1
4 0 P R I N T C S , S S , Z

This program reads string and numeric data from the DATA
statement in Line 30.

133

Chapter 10 I BASIC Ke-ywords

DATE$ Function

DATE$[= string]

Sets the date or retrieves the current date.

String is a literal, enclosed in quotation marks, that sets the
current date by assigning a value to DATE$. If you omit string,
BASIC retrieves the current date.

Setting the Date
BASIC uses the same dates as MS-DOS, January 1, 1980 to De-
cember 31, 2099. You may use either a slash or a hyphen to sep-
arate the month, day, and year. You may use any of the following
forms to set the current date:

mmlddlyy mmlddlyyyy
mm-dd-yy mm -dd-YYYY
The month (mm) may be any number 01-12.
The day (dd) may be any number 01-31.
The year (yy or yyyy) may be 01-99 or 1980-2099.

You may omit leading zeroes for the month and day. If you only
supply 2 digits for the year, BASIC precedes these digits with
19.

Retrieving the Date
Regardless of the form you use to set the date, BASIC retrieves
the date in the following form:

mm-dd-y y y y

The month and day are always returned as 2 digits, BASIC in-
serts zeroes as necessary.

134

Chapter 10 I BASIC Ke.ywords

Examples
DATES = " 9 / 6 / 8 4 "
D A T E $ = " 9 / 6 / 1 9 8 4 "
DATES = " 9 - 6 - 8 4 "
DATES = " 9 - 6 - 1 9 8 4 "

All the above set the current date as 09-06-1984.
P R I N T DATES

prints the current system date.
CURDATES = DATES

a s s i g n s t h e value of t h e c u r r e n t d a t e t o t h e var iable
CURDATE$.

135

Chapter 10 I BASIC Keywords

DE FDBL/INT/SNG/STR Statement

DEFDBL letter[,letter, ...I
DEFINT letter[,letter,. . .I
DEFSNG letter[,letter, ...I
DEFSTR letter[,letter, ... 1

Defines any variables beginning with letteris) as: double preci-
sion (DBL), integer (INT), single precision (SNG), or string
(STR).

You may specify letter as a range of letters. For example, A-J.

Remember, a type declaration tag always takes precedence over
a DEF statement.

Examples
DEFDBL L-P

classifies all variables beginning with the letters L through P as
double precision variables.

DEFSTR A

classifies all variables beginning with the letter A as string
variables.

DEFINT I-N, W,Z

classifies all variables beginning with the letters I through N,
W, and Z as integer variables.

DEFSNG I , Q - T

classifies all variables beginning with the letters I or Q through
T as single precision variables.

136

Chawter 10 I BASIC Kevwords

DEF FN Statement

DEF FNname [(argument list)] =expression

Defines mme as a function according to the expression.

Name must be a valid variable name. The type of variable you
use determines the type of value the function returns. For exam-
ple, if you use a single precision variable, the function returns
single precision values. This name, preceded by FN, is the name
of the function when you call it.

Argument list is a list of dummy variables used in expression.
They are replaced on a one-to-one basis with the variables or
values given when the function is called. If you enter several
variables, separate them with commas. These variables do not
affect variables in your program with the same name.

Expression defines the operation to be performed. A variable
used in a function definition may or may not appear in argument
list. If i t does, BASIC uses the value given when the function is
called to perform the function. Otherwise, it uses the current
value of the variable.

Once you define and name a function (by using this statement),
you can use it as you would any BASIC function.

Examples
DEF FNR = RND (1) * 8 9 + 1 0

defines a function FNR to return a random value between 10
and 99. Notice t h a t t he function can be defined with no
arguments.

2 1 0 DEF FNW# <A#,B#)=(A#-B#)*<A#-B#)
2 2 0 I # = 3 4 5 . 9 9 8
230 J# = 1 5 0 . 6 6 7
2 4 0 T = F N W # (I # , J #)
2 5 0 P R I N T T

defines function FNW# in Line 210 using dummy variables A#
and B#. Line 240 calls the function and replaces variables A#
and B # with variables I# and J# which a r e used in the
program.

137

Chapter 10 I BASIC Keywords

DEF SEG Statement

DEF SEG[= address]

Assigns the current segment address. The segment address is
used by BLOAD, BSAVE, CALL, PEEK, POKE, and USR.

Address is a number in the range 0 to 65535, and may be speci-
fied as an integer or a hexadecimal value. If you specify a num-
ber outside this range, BASIC returns an “Illegal function call”
error and uses the previously set address. If you omit address,
BASIC sets the current segment address to its data segment
(DS).
If you specify address, do so on a 16-byte boundary. BASIC
shifts the value to the left 4 bits, which is the same as multiply-
ing it by 16 decimal (10 hexadecimal).

Note: BASIC does not check the validity of the result-
ant segment + offset address.

When you load BASIC, the data segment (DS) register is set to
the address of BASIC’s workspace. You must, therefore, execute a
DEF SEG statement before executing BLOAD, BSAVE, PEEK,
POKE, USR, or CALL (unless you used the /M: switch when you
loaded BASIC). Without the DEF SEG statement or the i M :
switch, BASIC’s workspace could be destroyed.

If you execute a DEF SEG to change the DS register, you must
execute another DEF SEG to restore the DS register to BASIC’s
data segment (DS).

Separate DEF and SEG with a space. Otherwise, BASIC inter-
prets it as the variable DEFSEG.

138

Chapter 10 I BASIC Ke.ywords

See the section “Interfacing With Assembly-Language Subrou-
tines” in Chapter 11 for more information.

Ex ample
10 DEF SEG=&HB800 ’Set segment to & 8 0 0 H e x
20 DEF SEG ‘Restore to BASIC data segment

sets the DS register to B8000 hexadecimal (B800H * 10H),
which is its default value.

139

Chapter 10 I BASIC Keywords

DEF USR Statement

DEF USR[number] = offset

Defines the user number and segment offset of a subroutine to
be called by the USR function.

Number may be an integer in the range 0 to 9. If you omit num-
ber, BASIC assumes USR0.

Offset is an integer in the range 0 to 65535. BASIC computes
where the subroutine begins in memory by adding the offset to
the current segment address as set by DEF SEG. BASIC trans-
fers control to this address when you execute the USR function.

If the subroutine is not in BASIC’s data segment, you must exe-
cute a DEF SEG statement before the USR function.

A program may contain any number of DEF USR statements, al-
lowing access to as many subroutines as necessary. However,
only 10 definitions may be in effect at one time.

See the section “Interfacing With Assembly-Language Subrou-
tines” in Chapter 11 and USR in this chapter for more details.

Examples
DEF U S R 3 = 6 H 0 0 2 0
DEF SEG = & H I 7 0 0

USR3 begins at 20H bytes into the current data segment which
is set at 1700 hexadecimal. When your program calls USR3, con-
trol branches to your subroutine beginning at absolute address
17020. (1700*10 + 20).

140

Chapter 10 I BASIC Ke.ywords

DELETE Statement

DELETE linel -line2

Deletes linel through line2 of the program in memory.

If you omit linel, BASIC deletes from the beginning of the pro-
gram. If omit ZineZ, BASIC deletes to the end of the program.

If you specify a line number that does not exist, BASIC displays
an “Illegal function call” error.

You can substitute a period (.) for either linel or line2 to indicate
the current line number.

Examples

deletes Line 70 from memory.

D E L E T E 7 0

D E L E T E . - I 1 0

deletes from the current line to Line 110, inclusive.
D E L E T E - 4 0

deletes all program lines up to and including Line 40
D E L E T E 1 5 0 -

deletes program lines starting at and including 150 to the end of
the program.

141

Chapter 10 I BASIC Keywords

DIM Statement

DIM array(dimenswn)[,array(dimnsion), . . .I

Sets aside storage for arrays with the dimensions you specify.

Array is the variable name of the array. It may be a string, inte-
ger, single precision, or double precision variable.

Dimension is 1 or more integer numbers separated by commas that
define the dimensions of the array. The lowest element in a dimen-
sion is always zero, unless an OPTION BASE 1 statement is
executed.

When you execute the DIM statement, BASIC reserves space in
memory for each element of the array. Each element is initially
set to zero for numeric arrays or null for string arrays.

If you do not dimension an array, the maximum number of ele-
ments it can have is 11 (0-10).

Remember that arrays are completely independent of variables
that have the same name; that is MN and MNO are unique.

For more information on arrays, see Chapter 6.

Examples
DIM A R (1 0 0)

sets up a 1-dimensional array ARO, containing 101 elements:
AR(0), AR(l), AR(2), ..., through AR(100).

D I M L l % (8 , 2 5)

sets up a 2-dimensional array Ll%(), containing 9 x 26 integer
elements.

142

Chwter 10 I BASIC Keywords

DRAW/Graphics Statement

DRAW string

Draws an image on the screen

String specifies 1 or more of the movement commands listed be-
low. String must be enclosed in quotation marks.

Movement commands
Each of the following movement commands begins movement
from the current graphics position, which is the coordinate of the
last graphics point plotted with another graphics command, such
as LINE or PSET. The current position defaults to the center of
the screen if no previous graphics command has been executed.

Moves up n points.
Moves down n points.
Moves left n points.
Moves right n points.
Moves diagonally up and right n points.
Moves diagonally down and right n points.
Moves diagonally down and left n points.
Moves diagonally up and left n points.
Moves to point x,y. If you precede x with a plus (+) or
minus (-1 sign, DRAW assumes it is a relative posi-
tion. Otherwise, it is an absolute position.

143

Chapter 10 I BASIC Keywords

Prefix Commands
The following prefix commands can precede the movement com-
mands. Prefix commands must be enclosed in quotation marks.

B

N

Aangle

Ccolor

Pcdor,
border

Sfactor

TAangle

plots no points after move.

returns to original position when move is complete.

sets angle of move. Angle may be in the range 0 to 3
(0 = 0 degrees, 1 = 90 degrees, 2 = 180 degrees,
and 3 = 270 degrees).

sets color as described in Chapter 8, “Displaying Color
and Graphics.”

sets the color to paint and border color at which to
stop painting. Possible colors are described in Chapter
8, “Displaying Color and Graphics.”

sets scale factor. Factor is an integer in the range 1 to
255. The scale factor is factor divided by 4. For exam-
ple, if factor is 2, the scale factor is 214. To determine
the actual travel distance, multiply the scale factor by
the number in the movement commands. If you do not
specify a factor, BASIC uses 4, which sets the scale to
1.

moves at the specified angle. Angle is in the range
-360 to +360. If angle is positive, movement is coun-
terclockwise. If angle is negative, movement is
clockwise.

Xuariable;executes a substring. The X command lets you execute
a second substring from the first string, much like the
GOSUB statement. Variable is a string variable in
your program that contains the substring you want to
execute. Variable may contain an X command to exe-
cute another substring. The semicolon after variable is
required.

In the prefix commands, the numeric arguments can be con-
stants or variables. If you use a variable name as a numeric ar-
gument, you must follow it with a semicolon.

144

Chapter 10 I BASIC Keywords

Sample Programs
5 SCREEN 3
1 0 U $ = " U 3 0 ; " : D$= " D 3 0 ; " : L $ = " L 4 0 ; " : R $ =

2 0 S i x $ = U $ + R $ + D$ + L $
30 DRAW " X B O X $; "
4 0 A $ = I N K E Y $: I F A $ = " " T H E N 4 0
5 0 SCREEN 0

" R 4 0 . II

draws a rectangle on the screen.
5 SCREEN 3

" R 4 0 ; I '

2 0 DRAW " X U $; X R B ; XDS; X L $; "
3 0 A $ = I N K E Y $: I F A $ = " " T H E N 30
4 0 SCREEN 0

1 0 U $ = " U 3 0 . " : D $ = " D 3 0 . " : L $ = 'aL40. '1 : R $ =

draws the same rectangle as the previous example.
1 0 SCREEN 1
2 0 DRAW " L 4 0 E 2 0 F 2 0 "
3 0 A $ = I N K E Y $: I F A $ = " " T H E N 3 0
4 0 SCREEN 0

draws a triangle on the screen.

145

Chapter 10 I BASIC Keywords

EDIT Statement

EDIT line

Enters the Edit mode. BASIC displays line for editing.

You can substitute a period (.) for line to indicate the current
line number.

See Chapter 4, “General Information,” for more information on
editing and special keys.

Examples
EDIT 1 0 0

enters Edit mode at Line 100.
EDlT

enters Edit mode at current line.

146

Chapter 10 I BASIC Ke.ywords

END Statement

END

Ends program execution and closes all files.

You may place this statement anywhere in the program. It forces
execution to end at some point other than the last sequential
line.

An END statement a t the end of a program is optional.

Sample Program
4 0 I N P U T S 1 , S 2
50 GOSUB 1 0 0
5 5 P R I N T H
6 0 END
1 0 0 H = S Q R < S l * S l + S 2 * S 2)
1 1 0 RETURN

Line 60 prevents program control from continuing through the
subroutine. Line 100 may be accessed only by a branching state-
ment, such as GOSUB in Line 50.

147

Chapter 10 I BASIC Ke,ywords

ENVIRON Advanced Statement

ENVIRON “parameter id = text” [;“parameter
id = text”, . . .I

Lets you modify BASIC’s Environment String Table, such as
changing the PATH parameter for a child process or passing pa-
rameters to a child process. BASIC’s Environment String Table
is initially empty.

Parameter Id is the name of the parameter.

Text is the new parameter text. It must be separated from pa-
rameter id by an equal sign (=) or a space. BASIC reads the
first nonblank, nonequal sign character after the parameter id as
the text. If you omit text, or specify a null string or a semicolon
(;), BASIC removes the parameter from the Environment String
Table and compresses the table.

Parameter id = text must be enclosed in quotation marks and be
typed in all uppercase characters.

When you change a parameter in the Environment String Table,
BASIC deletes the old parameter and adds the new one to the
end of the table.

If the parameter does not exist in the Environment String Table,
BASIC adds it to the end of the table.

For more information on Environment String Tables, see the Pro-
grammer’s Reference manual for your computer. It is available at
your Radio Shack Computer Store.

Examples
E N V I R O N “ P A T H = A : \ ”

sets the default path to the root directory on Drive A.
E N V I R 0 N “ S A L E S = MY S A L E S ”

sets the name SALES equal to MYSALES. The Environment
String Table now looks like this:

P A T H = A : \ ; S A L E S = M Y S A L E S

148

Chapter 10 I BASIC Keywords

ENVIRON$ Advanced Function

ENVIRON$ [('>parameter id")] [(number>l

Returns the specified environment string from BASIC's Environ-
ment String Table.

Parameter id specifies the parameter for which to search. ENVI-
RON$ returns the text string for parameter id. If the parameter
does not exist or does not contain a text string, ENVIRON$ re-
turns an empty string. Parameter id must be enclosed in quota-
tion marks. If you omit parameter id, you must specify number.

Number specifies which parameter to return by its position
within the table. ENVIRON$ returns the text string for the
number parameter. If there is not a parameter in that position,
ENVIRON$ returns an empty string. If you omit number, you
must specify parameter id.
Parameter id and number are mutually exclusive, only one may
be specified on the command line.

For more information on the Environment String Tables, see the
Programmer's Reference manual for your computer. It is available
a t your Radio Shack Computer Store.

Example
If you execute the following ENVIRON statements:

E N V I R O N " P A T H = A : \ I '

E N V I R O N "SALES=MYSALES"

the Environment String Table looks like this:
P A T H = A : \ ; S A L E S = M Y S A L E S

The command PRINT ENVIRON$("PATH") prints A: \ .
The command PRINT ENVIRON$(B) p r i n t s SALES =
MYSALES.

149

Chapter 10 I BASIC Keywords

EOF Function

E OF(buffer)

Detects the end of a file.

Buffer is the number assigned to the file when you opened it. It
must access an open file.

This function checks t o see whether all characters up to the end-
of-file marker have been accessed so that you can avoid "Input
past end" errors during sequential input.

When used with sequential access files, EOF returns 0 (false),
when the end-of-file record has not been read yet, and -1 (true),
when it has been read.

When used with direct access files, EOF returns -1 (true) if the
last executed GET statement was unable to read an entire record
because of an attempt to read beyond the physical end of the file.

Sample Program

The following sequence of lines reads numeric data from &ta.txt
into the array AO. When the last data character in the file is
read. the EOF test in Line 30 is true. so the program branches
out of the disk access loop.

1 4 7 0 D I M A (1 0 0) 'ASSUMING T H I S
1 4 8 0 OPEN " I " , 1 , "data.txt"
1 4 9 0 I % = 0
1 5 0 0 I F E O F (1 1 THEN GOTO 1 5 4 0
1 5 1 0 I N P U T # I , A(I%)
1 5 2 0 I % = I % + 1
1 5 3 0 GOTO 1 5 0 0
1 5 4 0 REM PROG. CONT. HERE AFTER

I S A SAFE VALUE

D I S K I N P U T

150

Chapter 10 I BASIC Keywords

E OF/Communications Function

EOF(buffer)

Detects an empty input queue for communications files.

Buffer is the number assigned to the file when you opened it. It
must access an open file.

The value EOF returns depends on the mode (ASCII or binary)
in which the file was opened. In ASCII mode, EOF returns a -1
(true) if a CONTROL-Z is received. EOF remains true until the
device is closed. In binary mode, EOF returns a -1 (true) when
the input queue is empty. EOF becomes false when the input
queue is not empty.

Sample Program
These lines are useful in a program when you want to run the
program while waiting for communications activity.

1 0 OPEN " C O M 1 : 3 0 0 , N , 8 , 1 " A S 1
2 0 COM(1) ON
3 0 ON COM(1 1 GOSUB 1 0 0 0

1 0 0 0 " C o m m u n i c a t i o n S u b r o u t i n e Begin5 H e r e

i o 5 0 I F E O F (1) THEN RETURN

Line 10 opens a file for Communications Channel 1 and allocates
Buffer 1. Line 30 causes BASIC to perform the subroutine begin-
ning at Line 1000 as soon as there is activity on the communi-
cations channel. When all the communications data has been
processed, Line 1050 returns to the main program.

151

Chmter 10 I BASIC Keywords

Statement

ERASE array[,array,. . .I

Erases one or more arrays from memory.

This lets you either redimension arrays or use their previously
allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name that is not
used in the program, an “Illegal function call” occurs.

Example
4 5 8 E R A S E C , F
4 6 8 DIM F (9 9)

Line 450 erases arrays C and F. Line 460 redimensions array F.

152

Chapter 10 I BASIC Keywords

ERDEV Advanced Function

ERDEV

Returns the value of a device error within MS-DOS as set by the
Interrupt 24 handler. The lower 8 bits of ERDEV contain the In-
terrupt 24 error code.

For more information on device drivers and errors, see the Pro-
grammer’s Reference manual for your computer. It is available a t
your Radio Shack Computer Store.

See also ERDEV$.

153

Chapter 10 I BASIC Keywords

ERDEV$ Advanced Function

ERDEV$

Returns the name of the device (as set by the Interrupt 24 han-
dler) when a device error occurs.

If the error occurred on a character device, ERDEV$ returns the
8-byte character device name.

If the error does not occur on a character device, ERDEV$ re-
turns the 2-character block device name.

For more information on device drivers and errors, see the Pro-
grammer’s Reference manual for your computer. It is available at
your Radio Shack Computer Store.

See also ERDEV.

154

Chapter 10 I BASIC Ke-ywords

ERL Statement

ERL

Returns the number of the line in which an error has occurred.

This function is primarily used inside an error-handling routine.
If no error has occurred, ERL returns a 0. If a statement entered
at BASIC’s prompt causes the error, ERL returns line number
65535 (the largest number that can be represented in 2 bytes).

Examples
P R I N T ERL

prints the line number of the error.
E = ERL

stores the error’s line number in variable E.

Sample Program
See ERROR.

155

Chapter 10 I BASIC Keywords

Statement

ERR

Returns the error code if an error has occurred.

ERR is only meaningful inside an error-handling routine ac-
cessed by ON ERROR GOTO.

See Chapter 12 for a list of error codes.

Example

branches to Line 1000 if the error is an “Out of memory” error
(code 7); if it is any other error, control goes to Line 2000.

I F E R R = 7 T H E N 1 0 0 0 E L S E 2 0 0 0

Sample Program
See ERROR.

156

Chapter 10 I BASIC Kevwords

ERROR Statement

ERROR code

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specifying
one of BASIC's error codes.

This statement is used mainly for testing an ON ERROR GOTO
routine. When the computer encounters an ERROR statement, it
proceeds as if the error corresponding to that code has occurred.
(Refer t o Chapter 12 for a l ist ing of error codes and their
meanings.)

Example
ERROR 1

causes a "NEXT without FOR" error (Code 1) when BASIC
reaches this line.

Sample Program
1 1 0 ON ERROR GOTO 4 0 0
1 2 0 I N P U T "WHAT I S YOUR B E T " ; B
1 3 0 I F B>5000 THEN ERROR 2 1 E L S E GOTO 4 2 0
4 0 0 I F ERR = 2 1 THEN P R I N T "HOUSE L I M I T I S
$ 5 0 0 0"
4 1 0 I F E R L = 1 3 0 THEN RESUME 5 0 0
4 2 0 S = S+B
4 3 0 GOTO 1 2 0
5 0 0 P R I N T "THE T O T A L AMOUNT OF YOUR B E T 1 S " ; S
5 1 0 END

This program receives and totals bets until one of them exceeds
the house limit.

157

Chapter 10 1 BASIC Keywords

EXP Function

EXP(number)

Returns the natural exponent of number, that is, e (base of natu-
ral logarithms) to the power of number.

Number must be less than or equal to 88.02968

This function is the inverse of the LOG function; therefore, num-
ber = EXP(LOG(number)).

BASIC always returns the result as a single precision number
unless you specified the /D switch when starting up BASIC.

Example
P R I N T E X P C - 2)

prints the exponential value .1353353.

Sample Program
31 0 I N P U T "NUMBER"; N
3 2 0 P R I N T "E RCI ISED TO THE"N"P0WER IS" EXPCN)

158

Chapter 10 I BASIC Keywords

FIELD Statement

FIELD buffer , length AS variable[, length AS
variable, ...I

Divides a direct access buffer into fields so that you can send
data from memory to disk and disk to memory. Each field is
identified by variable and is the length you specify.

Buffer is the number assigned to the file when you opened it.

Variable must be a string variable.

Length is an integer in the range 1 to 255 representing the
length of that field. The sum of all field lengths are equal to the
record length assigned when you opened the file.

An OPEN statement assigning the buffer number must precede
the FIELD statement. FIELD must precede GET and PUT.

You may use the FIELD statement any number of times to re-
field a file buffer. Fielding a buffer does not clear the buffer’s con-
tents; it only alters the way the buffer is accessed. You may ac-
cess the same disk file any number of ways simply by re-fielding
it.

Note: All data-both strings and numbers-must be
placed into the buffer in string form. There are three
pairs of functions (MKI$/CVI, MKS$ICVS, and
MKD$/CVD) for converting numbers to strings and
strings to numbers.

See also Chapter 7, “Disk Files,” OPEN, CLOSE, PUT, GET,
LSET, and RSET.

159

Chapter 10 I BASIC Keywords

Examples

BASIC assigns 128-byte fields to the variables A$ and B$. If you
now print A$ or B$, you can see the contents of the field. Of
course, this value would be meaningless unless you previously
have used GET to read a 256-byte record from disk.

FIELD 3, 1 2 8 A S A $, 1 2 8 A S BS

FIELD 3, 16 A S N M $, 2 5 A S ADS, 1 0 A S C Y $, 2 A S
S T $, 7 A S Z P $

BASIC assigns the first 16 bytes of Buffer 3 to field NM$; the
next 25 bytes to AD$; the next 10 to CY$; the next 2 to ST$;
and the next 7 to ZP$.

160

Chapter 10 I BASIC Keywords

FILES Statement

FILES [pathname]

Displays the names of the files and directories on a disk.

Pathname is a standard file specification as described in Chapter
1.

If you specify pathname, BASIC lists all files which match that
pathname. If you omit pathname, BASIC lists all files and direc-
tories in the current directory on the current drive. Pathname
may contain question marks and asterisks as wild cards. See the
section on wild cards in Chapter 1 for more information.

If you specify a drive as part of pathname, then BASIC lists all
files that match the specified pathname on that drive.

If you omit the filename when specifying pathname, BASIC lists
all files and directories in the specified directory.

If you omit the path in pathname, FILES looks for the file in the
current directory.

161

Chapter 10 I BASIC Keywords

Examples
F I L E 5

lists all files and directories in the current directory on the cur-
rent drive.

F I L E S " \ B O O K S \ "

lists all files in the directory BOOKS.
F I LE5 " * . b a s "

lists all files in the current directory on the current drive with
the extension .bas.

FILES " p a y ? ? ? ? ? .ba5"

lists all files beginning with pay followed by any other five or
fewer characters, in the current directory on the current drive,
with the extension .bas.

162

Chawter 10 I BASIC Kevwords

FIX Function

FIX(num ber)

Returns the truncated integer of number.

Unlike CINT, FIX does not round the fractional portion of num-
ber when making it an integer. Instead, FIX simply strips the
fractional portion from number so that the resultant value is a
whole number. The result is the same precision as the argument
(except for the fractional portion).

Unlike INT, FIX does not return the next lower number for a
negative number.

FIX is the same as:

SGN(number)*INT(ABS(number)).
See also CINT and INT, which also return integer values.

Examples
PRINT FIXC2.6)

prints 2.
PRINT FIX(-2.6)

prints -2.

163

Chapter 10 I BASIC Keywords

FOR/NEXT Statement

FOR variable = initial value TO final value [STEP
increment]
NEXT [variable]

Establishes a program loop that allows a series of program state-
ments to be executed a specified number of times.

Variabb must be either integer or single precision. Each FOR/
NEXT loop must have a unique variable.

Increment is the number BASIC adds to the initial value each
time the loop is executed. If you omit increment, BASIC incre-
ments by 1. If increment is a negative value, BASIC decreases
the initial value each time through the loop. In this case, the f i -
nal value must be less than the initial value.

BASIC executes the program lines following the FOR statement
until it encounters a NEXT. At this point, it increases initial
value by the STEP increment. If initial value is less than or equal
to final value, BASIC branches back to the line after FOR and
repeats the process. When initial value is greater than final
value, the loop is completed, and BASIC continues with the state-
ment after NEXT.

Note: BASIC skips the body of the loop if initial value
is greater than final value when increment is positive
or if final value is greater than initial value when in-
crement is negative.

164

Chapter 10 I BASIC Keywords

Sample Program
BASIC always sets the final value for the loop variable before
setting the initial value. For example:

8 2 0 I = 5
8 3 0 FOR I = 1 TO I + 5
8 4 0 P R I N T I ;
8 5 0 NEXT

executes the loop 10 times, which prints:
1 2 3 4 5 6 7 8 9 1 0

Nested Loops
FORiNEXT loops may be nested; that is, a FOR/NEXT loop may
be placed within the context of another FOR/NEXT loop.

The NEXT statement for the inside loop must appear before the
NEXT for the outside loop. If nested loops have the same end
point, a single NEXT statement may be used for all of them.

Sample Program
8 8 0 FOR I = 1 TO 3
8 9 0 P R I N T "OUTER LOOP"
9 0 0 FOR J = 1 TO 2
9 1 0 P R I N T " I N N E R LOOP"
9 2 0 N E X T J
9 3 0 NEXT I

This program performs 3 outer loops and 2 inner loops within
each of the outer loops. BASIC prints the following:

OUTER LOOP
I N N E R LOOP
I N N E R LOOP

I N N E R LOOP
I N N E R LOOP

I N N E R LOOP
I N N E R LOOP

OUTER LOOP

OUTER LOOP

165

Chapter 10 I BASIC Keywords

By listing the counter variable, you can use the NEXT state-
ment to close nested loops. (Be sure not to type the variables out
of order.) For example, delete Line 920 and change 930 to:

930 NEXT J , I

If you omit the variables in nested loops, BASIC matches the
most recent FOR statement.

166

Chapter 10 I BASIC Keywords

FRE Function

F RE (dummy arg u mnt)

Returns the number of bytes in memory not being used by
BASIC.

Dummy argument can be any string or numeric constant or vari-
able. If you specify a numeric argument, BASIC returns the
amount of memory available. If you specify a string argument,
BASIC compresses the data before returning the amount of
memory available. This frees unused memory that was once used
for strings.

BASIC automatically compresses data if it runs out of work-
space. This may take a few seconds.

Examples
P R I N T F R E (4 4)

prints the amount of memory left.

167

Chapter 10 I BASIC Keywords

GET Statement

GET [#lbuffr[,recordl

Reads a record from a direct access disk file and places it in the
specified buffer.

Buffer is the number assigned to the file when you opened it.
The number sign is optional. It is provided for compatibility with
other BASICs.

Record is an integer in the range 0 to 16,777,215 that specifies
which record number you want to access. If you omit record,
BASIC reads the next sequential record (after the last GET).

When BASIC encounters GET, it reads the record number from
the file and places it into the buffer. The actual number of bytes
read equals the record length set when the file is opened.

Examples
GET 1

reads the next record into Buffer 1.
GET 1 ,25

reads Record 25 into Buffer 1.

168

Chapter 10 1 BASIC Keywords

GET/C ommunic a t ions Statement

GET [#I buffer,number

Transfers data from the communications line to the communica-
tions buffer.

Buffer must be the same buffer assigned to the file when it was
opened. The number sign (#) is optional. It is provided for com-
patibility with other BASICs.

Number is the number of bytes to transfer. Number cannot ex-
ceed the value used in the LEN option of the OPEN COM
statement.

Note: Because of the low performance associated with
telephone line communications, we recommend that
you not use GET and PUT statements in such appli-
cations. Instead, use the other disk 110 statements.

Sample Program
1 0 OPEN "CUM1 :" A S 1
2 0 F I E L D 1 , 8 A S A $
3 0 OPEN " R " , 2 , "F I L E " , 8
4 0 F I E L D 2 , 8 A S E$
5 0 1 = 1
6 0 GET 1 , 8
7 0 P R I N T "COMMUNICATIONS BUFFER C A S) = " ; A $
8 0 L S E T E $ = & $
9 0 P R I N T "NOW F I L E BUFFER <E$) C O N T A I N S : " ; E $
1 0 0 PUT 2 , 1
1 1 0 I = I + 1
1 2 0 I F I N K E Y $ < > "a" THEN GOT0 6 0
1 3 0 CLOSE

This program gets data from Communications Channel 1 and
places it in the communications buffer.

169

Chapter 10 I BASIC Ke-ywords

GET/Graphics

~ ~

Statement

Transfers points from an area on the display to an array.

(x1,yl) specifies the coordinates where the image begins.

(x2,y2) specifies the coordinates where the image ends.

x is the horizontal coordinate and y is the vertical coordinate.
The ranges for the coordinates depend on the screen mode. See
Chapter 8, “Displaying Color and Graphics ,” for more
information.

Array is a numeric array to hold the image. It must be dimen-
sioned large enough to hold the entire image. To ensure that the
array is large enough t o hold the image, use the following
formula:

4 + (INT((F, * b + 7)/8) * u)

where:

h is the length of the horizontal side of the image.
b the number of bits per point (2 in Screen Modes 1, 4, and

u is the length of the vertical side of the image.
6; 1 in Screen Mode 2; and 4 in Screen Modes 3 and 5).

For example, to store an image that is 10 by 12 in Screen Mode
1, type:

4 + (INT((10 * 2 + 7)/8) * 12) = 40

The array must store 40 bytes. The number of bytes per element
of an array are 2 for integer, 4 for single precision, and 6 for dou-
ble precision.

170

Chapter 10 I BASIC Ke-ywords

For this example, you need an integer array with 20 elements, a
single precision array with 10 elements, or a double precision ar-
ray with 7 elements.

The information from the display is stored in the array as:

Element 0
Element 1

The remaining elements of the array store the data bits of the
image. Numeric data is stored low byte first and then high byte,
but the data is transferred high byte first and then low byte.

You use the GETiGraphics and PUTiGraphics statements to-
gether for animation and high-speed object motion in the graph-
ics modes. See also PUTiGraphics statement.

the x dimension of the image
the y dimension of the image

Note: GET and PUT work faster in all resolutions if:

xIMOD(8/bits per point) = 0

(See Chapter 5 for an explanation of MOD.)

Sample Program
1 0 DIM A (5 0 , 5 0)
2 0 SCREEN 1
30 CIRCLE (3 0 , 3 0) , 2 0
4 0 P A I N T (3 0 , 3 0 1
5 0 GET (1 0 , 0) - (5 0 , 5 0) , A
6 0 PUT (2 0 0 , 1 0 0 1 , A
7 0 END

Line 10 sets up an array for storage. Line 20 selects the screen
mode. Line 30 draws a circle, and Line 40 fills in the circle. Line
50 gets the circle, and stores it in Array A(). Line 60 retrieves
the circle, and puts it on the screen in a new location.

171

Chapter 10 I BASIC Keywords

GOSUB Statement

GOSUB line

Branches to the subroutine beginning a t the specified line num-
ber.

Every subroutine must end with a RETURN. You can call a sub-
routine as many times as you want. When BASIC encounters a
RETURN statement in the subroutine, it returns to the state-
ment that follows the GOSUB.

GOSUB is similar to GOT0 in that it may be preceded by a test
st a t ement .

Example
GOSUB 1 0 0 0

branches to the subroutine a t Line 1000.

Sample Program
2 6 0 GOSUB 2 8 0
2 7 0 P R I N T "BACK FROM S U B R O U T I N E " : END
2 8 0 P R I N T " E X E C U T I N G THE SUBROUTINE"
2 9 0 RETURN

transfers control from Line 260 to the subroutine beginning at
Line 280. Line 290 instructs the computer to return to the
statement immediately following GOSUB.

172

Chapter 10 I BASIC Keywords

GOTO Statement

GOTO line

Branches to the specified line.

When used alone, GOTO results in an unconditional branch.
However, test statements, such as IFITHEN, may precede the
GOTO to effect a conditional branch. Note that the GOTO is op-
tional in IFiTHEN statements. For example:

I F X = O THEN 3 6 0 E L S E 2 0 0

BASIC branches t o Line 360 if X equals 0. If not, BASIC
branches to Line 200

You can use GOTO in the command mode as an alternative to
RUN. This lets you pass values assigned as a command to vari-
ables used in the program.

Example
GOTO 1 0 0

BASIC transfers control to Line 100.

Sample Program
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Line 10

READ R
I F R = 1 3 THEN 8 0
PR I NT "R = " ; R
A = 3 . 1 4 * R A 2
P R I N T "AREA = " ; A
GOTO 1 0
DATA 5 , 7 , 1 2 , 1 3
END

reads each of the data items in Line 70; Line 60 returns
program control to Line 10. This enables BASIC to calculate the
area for each of the data items until it reaches item 13.

173

Chapter 10 I BASIC Keywords

HEX$ Function

HEX$(nurnber)

Calculates the hexadecimal value of number.

HEX$ returns a string that represents the hexadecimal value of
number. Since the value returned is like any other string, you
cannot use i t in a numeric expression. You cannot add hex
strings; however, you can concatenate them.

Examples
PRINT H E X $ < 3 0) , H E X $ < 5 0) , H E X t C 9 0)

prints the following strings lE , 32, and 5A.
Y $ = H E X $ < X / 1 6)

Y$ is the hexadecimal string representing the integer quotient
Xl16.

174

Chapter 10 I BASIC Keywords

IF/THE N/E LSE Statement

IF expression T H E N statemnt(s)[ELSE statemnt(s)]

Tests a conditional expression and makes a decision regarding
program flow.

Expresswn is any numeric or string expression, usually making
logical or relational comparisons.

Statement can be 1 or more valid BASIC statements. If there is
more than 1 statement, they must be separated by colons. You
can also specify a l ine number for BASIC t o branch a s a
statement .

If expression is true, BASIC executes the THEN statement. If
expresswn is false, BASIC executes the matching ELSE statement
or the next program line.

You can also use IFiTHEN to test the numeric value of a vari-
able. If the variable contains a 0, the expression is true; other-
wise, the expression is false.

Examples
I F X > 1 2 7 THEN P R I N T "OUT OF RANGE" : END

passes control to PRINT and, then to END if X is greater than
127. If X is not greater than 127, BASIC executes the next line
in the program, skipping the PRINT and END statements.

I F A < B THEN P R I N T " A < E" E L S E P R I N T "E < = A "

tests the first expression. If it is true, BASIC prints A < B .
Otherwise, BASIC jumps to the ELSE statement and prints
B <= A.

175

Chapter 10 I BASIC Ke.ywords

I F X > 0 AND Y < > 0 THEN Y = X + 1 8 0

assigns the value X + 180 to Y if both exm-essions are true.
Otherwise, BASIC executes the next program- line, skipping the
THEN clause.

IF A $ = "YES" THEN 2 1 0 E L S E I F A $ = "NO" THEN

branches to Line 210 if A$ is YES. If not, BASIC skips to the
first ELSE, which introduces a new test. If A$ is NO, then
BASIC branches to Line 400. If A$ is any value besides NO or
YES, BASIC branches to Line 370.

4 0 0 E L S E 3 7 0

Sample Program
IFiTHENiELSE statements may be nested. However, you must
take care to match up the IFs and ELSEs. (If the statement does
not contain the same number of ELSEs and IFs, each ELSE is
matched with the closest unmatched IF.)

1 0 4 0 I N P U T "ENTER TWO NUMBERS"; A , B
1 0 5 0 I F A < = B THEN I F A < B THEN P R I N T A ; E L S E
P R I N T " N E I T H E R " ; E L S E P R I N T E;
1 0 6 0 P R I N T " I S SMALLER THAN THE OTHER"

This program prints the relationship between the 2 numbers
entered.

176

Chapter 10 I BASIC Keywords

INKEY$ Function

INKEY$

Reads a character in the keyboard buffer, and returns a 0-, 1-, or 2-
byte string. INKEY$ does not echo the character to the display.

0 A 0-byte (null) string indicates that no key is pressed.

0 A 1-byte string is an actual character read from the keyboard.

0 A 2-byte string indicates that the key pressed is one of the special
keys that has an extended code. The first byte is hex 00. See Ap-
pendices B and D for a complete list of extended codes.

INKEY$ is invariably put inside some sort of loop. If not, pro-
gram execution passes through the line containing INKEY$ be-
fore you can press a key.
The [C T R L I [m ! and IHOLD] keys are not passed to INKEY$. Also
[ALT][CTRLI[], which does a system reset, is not passed to
INKEY$.

Note: If your program contains an INKEY$ and you
press a function key, BASIC returns 1 character of the
key assignment a t a time. For example, suppose this
statement is executed:
A $ = I N K E Y F

Now suppose you press [, which initially has the
value LIST. The first time the statement is executed
A$ equals L, the second time A$ equals I, and so on.
Keep this in mind when writing a BASIC routine to
trap for a certain key. Your routine may not perform
as expected if you accidently press a function key.

You can assign the result of INKEY$ to a string variable and
test the length of the string to determine whether a 0-, 1-, or 2-
character string is returned by INKEY$. Example:

1 0 A $ = I N K E Y $: IF A $ = " " THEN 1 0
2 0 I F L E N (A $) > l THEN P R I N T A S C (M I D (A $, l , I)) ,

3 0 GOT0 1 0
A S C (M I D $ (A $, 2 , 1)) E L S E P R I N T A S C C A $)

Ex ample
1 0 A $ = I N K E Y S
2 0 I F A $ = "I' THEN 1 0

causes the program to wait for you to press a key.

177

Chapter 10 I BASIC Ke.ywords

INP Function

INP(port)

Returns the byte read from port.

Port may be any integer from 0 to 65535.

INP is the complementary function of the OUT statement.

Example
1 0 0 A=INP(255)

returns the byte read from port 255 into variable A.

178

Chapter 10 I BASIC Keywords

INPUT Statement

INPUT[;] [‘~prompt”;]uariabl[,u~rzabl, ...I

Accepts data from the keyboard and inputs it into 1 or more
variables. When BASIC encounters this statement, it stops exe-
cution and displays a question mark. This means that the pro-
gram is waiting for you to type something.

Prompt is a string constant that BASIC displays before display-
ing the question mark prompt. Prompt must be enclosed in quo-
tation marks, and follow the keyword INPUT. If, instead of a
semicolon, you type a comma after prompt, BASIC suppresses the
question mark when printing the prompt.

Variable may be 1 or more string or numeric variables to receive
the input. If you specify more than 1 variable, separate them by
commas.

If INPUT is immediately followed by a semicolon (;I, BASIC does
not echo the [ENTER] key when you press it as part of a response.

When typing multiple pieces of data on 1 line, separate the data
items with a comma. The number of data items you supply must
be the same as the number of variables you specify.

Responding to INPUT with too many items or with the wrong
type of value (including numeric type) causes BASIC to print the
message “?Redo from start.” No values are assigned until you
provide an acceptable response.

179

Chapter 10 I BASIC Kevwords

Examples
I N P U T Y %

when BASIC reaches this line, you must type any number and
press JENTERI before the program can continue.

I N P U T SENTENCES

when BASIC reaches this line, you must type in a string. The
string does not have to be enclosed in quotation marks unless it
contains a comma, a colon, or a leading blank.

I N P U T "ENTER YOUR NAME, AGE"; N $, A

prints the prompt string on the screen, which helps the user en-
ter the right kind of data.

Sample Program
5 0 I N P U T "HOW MUCH DO YOU WEIGH"; X
6 0 P R I N T "ON MARS YOU WOULD WEIGH ABOUT"
C I N T C X * .38) "POUNDS."

180

Chawter 10 I BASIC Kevioords

INPUT# Statement

INPUT# buffer, variable[,variable.. .I

Accepts data from a sequential device or file and stores it in a
program variable.

Buffer is the number assigned to the file when you opened it.

Variable is any s t r ing or numeric variable to contain the
in for mat ion.

The sequential file may be a disk file, a data stream from a com-
munications device, or the keyboard device.

With INPUT#, data is input sequentially. That is, when the file
is opened, a pointer is set to the beginning of the file. The
pointer advances each time data is input. To start reading from
the beginning of the file again, you must close the file buffer and
reopen it.

INPUT# does not care how you place the data in the file-
whether you use a single PRINT# statement or 10 different
PRINT# statements. INPUT# looks only for the position of the
terminating characters and the end-of-file (EOF) marker.

When inputting data into a variable, BASIC ignores leading
blanks. When the first nonblank character is encountered,
BASIC assumes it has encountered the beginning of the data
item.

181

Chapter 10 I BASIC Ke-ywords

The data item ends when BASIC encounters a terminating char-
acter or when a terminating condition occurs. The terminating
characters vary, depending on whether BASIC is inputting to a
numeric or a string variable:

Numeric: BASIC ends input when it encounters a carriage
return or a comma.

String: BASIC ends input when it encounters a carriage re-
turn or a comma, unless the first character is a quotation
mark("). If the first character is a quotation mark, BASIC
ends input when it encounters a second quotation mark.
Thus, a quoted string may not contain a quotation mark as
a character.

Examples
I N P U T # l , A,B

sequentially inputs 2 numeric data items from the file opened to
Buffer 1 and places them in A and B.

INPUT#4, A $, E $, C $

sequentially inputs 3 string data items from the file opened to
Buffer 4 and places them in A$, B$, and C$.

182

Chapter 10 I BASIC Ke.ywords

INPUT$ Statement

INPUT$ (nu m ber [, [#] buffer])

Accepts a string of characters from either the keyboard or a se-
quential access file.

Number is the number of characters to be input. It must be a
value in the range 1 to 255.

Buffer is a buffer that accesses a sequential input file. If you in-
clude buffer, BASIC inputs the string from sequential access file.
If you omit buffer, BASIC inputs the string from the keyboard.
The number sign (#) is optional. It is provided for compatibility
with other BASICs.

When inputting the string from the keyboard, BASIC waits until
the user enters the number of characters specified by number.
You do not need to press [m] to signify end-of-line. The charac-
ter(s) you type are not displayed on the screen. Any character,
except F][EiEK], is accepted for input.

When inputting from a sequential file, BASIC inputs the num-
ber of bytes specified by number from the file assigned to buffer.

Examples
A $ = I N P U T $ (S)

assigns a string of 5 keyboard characters to A$. Program execu-
tion halts until 5 characters are typed at the keyboard.

A $ = I N P U T $ C 1 1 , 3)

assigns a string of 11 characters to A$. The characters are read
from the file associated with Buffer 3.

183

Chapter 10 I BASIC Keywords

Sample Programs
This program shows how you can use INPUT$ to have an opera-
tor input a password for accessing a protected file. By using IN-
PUT$, you can type in the password without anyone seeing it on
the video display. To see the full file specification, run the pro-
gram. When the BASIC prompt returns, type PRINT F$.

1 1 0 L I N E I N P U T "TYPE I N THE F I L E N A M E . E X T " ; F $
1 2 0 P R I N T "TYPE I N THE PASSWORD - - MUST TYPE 8
CHARACTERS : " ;
1 3 0 P $ = I N P U T $ < 8)
1 4 0 F $ = F $ + ' I . " + P $
1 5 0 P R I N T "YOUR F I L E N A M E I S " ; FS

In the program below, Line 100 opens a sequential input disk
file (which we assume has been previously created). Line 200 re-
trieves a string of 70 characters from the file and stores them in
T$. Line 300 closes the file.

1 0 0 OPEN " I " , 2 , "test.dat"
2 0 0 T $ = I N P U T $ < 7 0 , 2)
3 0 0 C L O S E

184

Chapter 10 I BASIC Keywords

INSTR Function

Searches for the first occurrence of string2 in stringl and re-
turns the position at which the match is found.

Number specifies the position in stringl to begin searching for
string2. Number must be an integer in the range 1 to 255. If you
omit number, INSTR starts searching a t the first character in
stringl .
If BASIC finds string2 in stringl, it returns the starting position
of the match; otherwise, it returns zero. If the entire substring
is not contained in the search string, BASIC returns a zero.

Examples
Suppose A$ = “LINCOLN”

Statement BASIC returns

INSTR(A$, “INC”) 2
INSTR(A$, “12”) 0
INSTR(A$, “LINCOLNABRAHAM”) 0

For a slightly different use of INSTR, try:
1 0 X=INSTR (3 , “ 1 2 3 2 1 2 3 ” , “ 1 2 ”)
20 PRINT X

which pr ints 5, because the search s ta r ted a t the th i rd
character.

185

Chapter 10 I BASIC Ke-ywords

Sample Program
The program below uses INSTR to search through the addresses
contained in the program's DATA statements. It counts the num-
ber of addresses with a specified county zip code (761--) and re-
turns that number. The zip code is preceded by an asterisk to
distinguish it from the other numeric data found in the address.

360 RESTORE
3 7 0 COUNTER = 0
3 9 0 READ ADDRESS$
3 9 5 I F ADDRESS$ = "SEND" THEN 4 1 0
4 0 0 I F INSTRCADDRESSS, " * 7 6 1 ") < > 0 THEN COUNTER
= COUNTER + 1 E L S E 390
4 0 5 GOT0 390
4 1 0 P R I N T "NUMBER OF TARRANT COUNTY, TX
ADDRESSES I S " COUNTER : END
4 2 0 DATA " 5 9 5 0 GORHAM D R I V E , BURLESON, TX
* 7 6 1 4 8 "
4 3 0 DATA " 7 1 F I R S T F I E L D ROAD, GAITHERSBURG, MD
* 2 0 7 6 0 'I
4 4 0 DFlTA " 1 0 0 0 TWO TANDY CENTER, FORT WORTH, TX
* 7 6 1 0 2 "
4 5 0 DATA " 1 6 6 3 3 SOUTH CENTRAL EXPRESSWAY,
R ICHARDSON, TX ~ 7 5 0 8 0 "
4 6 0 DATA . " $ E N D "

186

Chapter 10 I BASIC Keywords

INT Function

INT(num ber)

Converts number to the largest integer that is less than or equal
to number.

Number is not limited to the integer range - 32768 to 32767

The result has the same precision as number (except for the frac-
tional portion).

Unlike CINT, INT does not round positive numbers. It does,
however, round negative numbers.

Examples
PRINT INTC79.89)

prints 79.
PRINT INT (-12.11)

prints -13.

187

Chapter 10 I BASIC Keywords

IOCTL Advanced Statement

IOCTL [#lbuffr,string

Sends a control data string to a device driver. Control data can
be sent to a drive only after it has been opened.

Buffer is the number assigned to the driver when you opened it.
The number sign (#) is optional. It is provided for compatibility
with other BASICs.

String is a string expression containing a series of commands
called "control data." The commands are generally 2 to 3 charac-
ters long and may be followed by an alphanumeric argument.
The commands are separated by semicolons (;). String may be a
maximum of 255 bytes.

For more information on device drivers, see the Programmer's
Reference manual for your computer. It is available at your Radio
Shack Computer Store.

Example
If you write your own driver to replace PRN to set the page
length, the IOCTL command may be:

PLn where n is the new page length.

To open the new PRN driver and set the page length at 56 lines
per page, use the following statements:

1 0 OPEN "PRN" FOR OUTPUT a5 1
20 I O C T L 1 , " P L 5 6 "

188

Chapter 10 I BASIC Keywords

IOCTL$ Advanced Function

IOCTL$([#lbuf,r)

Returns the control data string from a device driver that you
have opened previously.

Buffer is the number assigned to the driver when you opened it.
The number sign (#) is optional. It is provided for compatibility
with other BASICs.

You can use the IOCTL$ function to confirm that a IOCTL
statement succeeded (or failed). You can also use IOCTL$ to get
information from the device.

For more information on device drivers, see the Programmer's
Reference manual for your computer. It is available a t your Radio
Shack Computer Store.

Example
1 0 OPEN " \ D E V \ P R N " FIS 1
2 0 I F I O C T L $ C I) = "NR" THEN P R I N T " P R I N T E R NOT
REFIDY"

189

Chapter 10 I BASIC Keywords

KEY/Set/Display Statement

KEY number,string
KEY ON
KEY OFF
KEY LIST

KEY number,string
Assigns or displays function key values.

Number is an integer in the range 1 t o 12 that indicates the
function key being defined (m -[I.
String is the string expression assigned to the key and may con-
tain a maximum of 15 characters.

You can program the function keys on your computer to generate
a specific string of characters. When you press the key, BASIC
displays the string on the screen just as if you had typed every
character. Initially, the function keys have these values:

F1 LIST F7 T R O N m
F2 RUN= F8 TROFF-
F3 LOAD“ F9 KEY
F4 SAVE“ F1O SCREEN 0,0,0 [ENTERI
F5 CONT- F11 none
F6 , “ L P T l : ” m F12 none

Function keys 11 and 12 do not have initial values. You can use
the KEY statement to define these keys. You also can use the
KEY statement t o redefine the other function keys s o that
BASIC displays the strings you use most often.

You can remove the string from a function key by assigning it a
string length of zero (“ ”). For example:

K E Y 1 , “‘I

Key no longer has a string assigned to it. Moreover, assign-
ing a null string (length zero) to a function key disables it as a
soft key. If the soft key is disabled, INKEY$ returns a 2-byte
string. See Appendix D for more information.

190

Chapter 10 I BASIC Keywords

KEY ON
KEY ON displays the function key assignment values on Line 25
of the screen. If the screen width is 40, the screen shows 5 func-
tion key assignments at a time. If the width is 80, the screen
shows 10 assignments at a time. Press (CTRL] p) t o display the
next screen and to erase the display after the last assignments
are shown.

KEY OFF
KEY OFF erases the soft key assignments from Line 25. The as-
signments are still active, but the screen does not display them.

BASIC reserves Line 25 for the function key display. Even if the
display is turned off, BASIC does not display program lines on
Line 25.

Note: Instead of using KEY ON and KEY OFF, you
can use [m] [TJ as a toggle switch to turn the key as-
signment display on and off, as well as to cause it to
advance to the next screen.

KEY LIST
KEY LIST displays all 15 characters of all 12 soft key assign-
ments on the screen.

Note: If your program contains an INKEY$ and you
press a function key, BASIC returns 1 character of the
key assignment at a time. For example, suppose this
st at ement is executed:

A$ = INKEY$

Now suppose you press I, which initially has the
value LIST. The first time the statement is executed
A$ equals L, the second time A$ equals I, and so on.
Keep this in mind when writing a BASIC routine to
trap for a certain key. Your routine may not perform
as expected if you accidentally press a function key.

191

Chapter 10 I BASIC Keywords

KEY/Trap Statement

KEY(number) action

Turns on, turns off, or temporarily halts key trapping for a spec-
ified key.

Action may be any of the following:

ON enables key trapping
OFF disables key trapping
STOP temporarily suspends key trapping

Number may be a number in the range 1 to 20, indicating the
number of the key to trap. Function keys use their corresponding
function key number (1-10). The cursor direction key trap num-
bers are:

11
12
13
14

User-defined keys are 15-20. Use the following syntax to define
your own user keys:

KEY number, CHR$(key) + CHR$(scan)

Key is one of or a combination of the following:

&H40 [CAPSJ lock key
&H20 (NUMLOCK] key
&H08 (ALT) key
&H04 [CTRLJ key
&H02 Left key
&H01 Right key

Scan is the scan code for a physical key on the keyboard.
See the appendices for a list of scan codes.

Notes:

Trapped keys do not go into the keyboard buffer.

0 Defining a function key or a cursor-direction key has no
effect. BASIC considers them pre-defined.

192

Chapter 10 I BASIC Keywords

0 You can trap any key, including (CTRL] @J, [CTRLIIBREAK),
and [CTRL] [DELETE) (the soft boot). This feature makes
it possible to prevent BASIC application users from con-
trol-breaking out of a program or from accidentally reset-
ting the computer.

You can use the KEYITrap statement in a key trapping routine
with the ON KEYO GOSUB statement to detect when a specific
key is pressed.

The KEYO ON statement turns on key trapping for a specific
key. BASIC checks after each program statement to see if the
specified key has been pressed. If so, BASIC transfers program
control to the line number specified in the ON KEY() GOSUB
statement. For example:

K E Y (3) ON
ON K E Y (3) GOSUB 1 0 0 0

BASIC turns on a trap for m. BASIC continues to execute the
other program statements, checking after each statement to see
if iF3] has been pressed. When IF3] is pressed, BASIC branches to
the subroutine beginning at Line 1000.

KEYO STOP temporarily halts trapping for the specified key. If
the specified key is pressed, BASIC does not transfer program
control to the ON KEYO GOSUB until you turn on key trapping
again with a KEY() ON statement. BASIC remembers that the
key was pressed and branches to the subroutine immediately
after key trapping is turned on again.

KEY() OFF turns off key trapping. BASIC does not remember
that the key has been pressed when key trapping is turned on
again.

Note: Key trapping only occurs while BASIC is run-
ning a program.

See ON KEY() GOSUB for more information on key trapping.

Sample Program
See ON KEY() GOSUB.

193

Chapter 10 I BASIC Keywords

KILL Statement

KILL pathname

Kills (deletes) pathnume from disk.

Pathname is a standard file specification as described in Chapter
1.

You may delete any type of disk file. However, if the file is cur-
rently open, a "File already open" error occurs. You must close
the file before deleting it.

Example
K I LL " f i 1 e . ba 3 "

deletes file.bas if i t exists in the current directory.
KILL "A:\REPORT\data"

deletes data from the directory REPORT in Drive A.

194

Chapter 10 I BASIC Keywords

LCOPY Statement

LCOPY

Copies all text data on the screen to the printer

Sample Program
5 5 0 FOR 1 = 1 TO 2 4
5 6 0 PRINT S T R I N G $ (7 9 , 3 3)
5 7 0 NEXT I
5 8 0 L C O P Y

This program segment prints exclamation points on the screen,
and dumps them to the printer.

195

Chapter 10 I BASIC Keywords

LEFT$ Function

LEFT$(string, num ber)

Returns the specified number of characters from the left portion
of string.

Number must be an integer in the range 1 to 255. If number is
equal to or greater than the length of the string, BASIC returns
the entire string.

Examples

prints BATTLE.

P R I N T L E F T S (" B A T T L E S H I P S " , 6)

P R I N T L E F T $ C " B I G F I E R C E DOG", 28)

Since BIG FIERCE DOG is fewer than 20 characters, BASIC
prints the whole phrase.

Sample Program
7 4 0 A $ = " T I M O T H Y "
750 E $ = L E F T $ (A $, 3)
760 P R I N T E $; " - - T H A T ' S SHORT FOR "; A B

When you run this program, BASIC prints:
T I M - - T H A T ' S SHORT FOR T I M O T H Y

Line 750 gets the 3 left characters of A$ and stores them in B$.
Line 760 prints these 3 characters, a string, and the original
contents of A$.

196

Chapter 10 I BASIC Keywords

LEN Function

LEN(string)

Returns the number of characters in string. Blanks are counted.

Examples
X = L E N < S E N T E N C E S)

gets the length of SENTENCE$ and stores it in X.
P R I N T LEN("CAMBR1DGE") + L E N < " B E R K E L E Y ")

prints 17.
P R I N T L E N (" O R L A N D 0 , F L O R I D A ")

prints 16.

197

Chapter 10 I BASIC Ke-ywords

LET Statement

[LET] variable = expression

Assigns the value of expression t o variable.

Variable is a numeric or string variable.

Expression is a numeric or string constant or expression. A
BASIC function can be substituted for expression.

BASIC does not require assignment statements to begin with
LET, but you might want to use LET to be compatible with ver-
sions of BASIC that do require it.

Examples
L E T A $ = " A ROSE I S A ROSE"
L E T E1 = 1 . 2 3
L E T X = X - 21
L E T X = SQRCB)

In each case, the variable on the left side of the equals
sign is assigned the value of the constant, expression, or
function on the right side.

Sample Program
5 5 0 P = 1 0 0 1 : P R I N T "P 1'' P
5 6 0 L E T P = 2 0 0 1 : P R I N T " N O W P ="P

198

Chapter 10 I BASIC Ke.ywords

LINE/Graphics Statement

Draws a line or a box on the video display.

The STEP option tells BASIC that the (x,y) coordinates are rela-
tive to the last point referenced. If you use STEP with the sec-
ond set of coordinates, the coordinates are relative to the first
set of coordinates.

(x1,yl) specifies the point a t which to begin the line. x l is the
horizontal coordinate, and y l is the vertical coordinate. If you
omit (x1,yl) BASIC begins the line at the last point referenced
on the screen.

(x2,yZ) specifies the point at which to end the line. x2 is the hor-
izontal coordinate and y 2 is the vertical coordinate.

Color indicates the color of the line.

See Chapter 8, “Displaying Color and Graphics” for information
on coordinates and colors for the current screen mode.

If you specify coordinates that are not in the range of the cur-
rent viewport, BASIC displays only that portion of the line that
is within the viewport.

With the B option, BASIC draws a box. The points that you
specify are opposite corners.

If you specify both the B and F options, BASIC draws a box and
fills the box in with color.

Style lets you select the line-style used when drawing normal
lines and unfilled boxes. Style is a 16-bit integer. Each bit repre-
sents a point in the line. If the bit equals 1, then the point is
drawn. If the bit equals zero, then the point is not drawn. A zero
bit does not erase a previously drawn point; therefore, you may
want to draw a background line first to have a known back-
ground. The style pattern is repeated as necessary, to complete
the line drawing.

199

Chapter 10 I BASIC Keywords

Here are some sample styles showing the bit representation, the
line drawn, and their hex equivalents:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 equals &H5555
- is drawn - - - - - _ _

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 lequals&HDBGD
- is drawn _ _ _ _ - - _ _ - _

Examples
You can try these examples in Screen Modes 1 to 6. The color,
size, and position of the image on the display vary, depending on
the current screen mode.

LINE -(319, 199)

draws a line from the last point referenced to point 319,199 in
the default color. This is the simplest form of the LINE state-
ment. Note that when you omit the beginning points you must
still include the hyphen.

L I N E (0,0)-(319,199)

draws a diagonal line on the display in the default color.
LINE C 0,100)-(319,100 1 ,l

draws a horizontal line across the display in Color 1.
LINE (0 , 0) - < 1 0 0 , 1 0 0) , ,E

draws a box in the upper left corner of the display.
LINE (0,0)-(200,200),1 ,BF

draws a box on the display and fills it in with Color 1.
LINE (0,0)-(200,200),1,B, & H 5 5 5 5

draws a box outlined by a dashed line.

200

Chapter ~. 10 I BASIC Keywords

Sample Programs
1 0 C L S
2 0 L I N E -(RND*319,RND*199),RND+4
3 0 GO TO 2 0

In Screen Modes 1 to 6, Lines 10-30 create a loop that draws
random lines on the video display.

4 0 F O R X=O TO 3 1 9

6 0 N E X T
5 0 L I N E (X , B) - (X , 1 9 9) , X FlND 1

In Screen Modes 1 to 6, Lines 40-60 draw an alternating pat-
tern, turning on and off the line.

1 0 C L S
2 0 L I N E -(RND*639,RND*199),RND*2,BF
3 0 GO TO 2 0

This program draws a random filled box in Screen Modes 1 to 6.

201

Chapter 10 I BASIC Keywords

LINE INPUT Statement

LINE INPUT[;]["prompt";] string variable

Accepts an entire line (a maximum of 255 characters) from the
keyboard. LINE INPUT is a convenient way to input string data
without accidental entry of delimiters (commas, quotation marks,
etc.).

Prompt is a string constant enclosed in quotation marks that
BASIC prints before waiting for input.

String variable is the variable to receive the input.

The only way to terminate the string input is to press I.
However, if LINE INPUT is immediately followed by a semicolon,
pressing [ENTER] does not echo a carriage return to the display.

Note: You must place a space between LINE and
INPUT.

LINE INPUT is similar to INPUT, except:

0 BASIC does not display a ? when waiting for input.
0 Only 1 variable can be assigned at a time.
0 Commas and quotation marks can be entered in the string

0 Leading blanks are not ignored.
input.

Examples
L I N E I N P U T A $

waits for input to A$ without displaying a prompt.
L I N E I N P U T " L A S T NAME, F I R S T NAME? ' I ; N $

displays the message and waits for input.

202

Chapter 10 I BASIC Ke.ywords

LINE INPUT# Statement

LINE INPUT# buffer, variable

Accepts an entire line of data from a sequential file to a string
variable.

Buffer is the number assigned to the file when you opened it.

This statement is useful when you want to read an ASCII format
BASIC program file as data or when you want to read in data
without following the usual restrictions regarding leading char-
acters and terminators.

LINE INPUT# reads everything from the first character up to:

0 the end-of-file
the 255th data character

0 a carriage return

Other characters encountered-quotation marks, commas, lead-
ing blanks-are included in the string.

Note: You must place a space between LINE and
INPUT#.

Example
If a ASCII format program file looks like this:

1 0 CLEAR 5 0 0
2 0 OPEN "I", 1 , " p r o g "

then the statement:
L I N E I N P U T # l , A $

can be used repeatedly to read each program line, one at a time.

203

Chapter 10 I BASIC Keywords

LIST Statement

LIST startline-endline [,deuicel

Lists a program in memory to the display.

Startline specifies the first line to be listed. If you omit startline,
BASIC starts with the first line in your program.

Endline specifies the last line to be listed. If you omit endline,
BASIC ends with the last line in your program.

If you omit both startline and endline, BASIC lists the entire
program.

Device may be either SCRN: (screen) or LPT1: (line printer 1). If
you omit deuice, the lines are listed to the screen.

You can temporarily stop the listing by pressing [HOLD1. Press
[HOLDJ again to continue the listing.

You can substitute a period (.) for either startline or endline t o
indicate the current line number.

Examples
LIST

displays the entire program.
LIST 5 0 - 8 5 , " ' s C R N : "

displays lines in the range 50 to 85 on the screen.
LIST . -

displays the program line that you have entered or edited and all
higher numbered lines on the screen.

LIST - 2 2 7

displays all lines up to and including 227 on the screen.
LIST 2 2 7 - , " L P T l : "

lists Line 227 and all higher numbered lines to the printer.

204

Chapter 10 I BASIC Ke-ywords

LLIST Statement

LLIST startline-endline

Lists program lines in memory to the printer.

Startline specifies the first line to be listed. If you omit startline,
BASIC starts with the first line in your program.

Endline specifies the last line to be listed. If you omit endline,
BASIC ends with the last line in your program.

If you omit both startline and endline, BASIC lists the entire
program.

You can substitute a period (.) for either startline or endline to
indicate the current line number.

LLIST assumes an 80-character-wide printer. You may change
this by using the WIDTH statement with the LPRINT option.

Examples
LLIST

lists the entire program to the printer. To stop this process,
press (. This causes a temporary halt in the computer’s out-
put to the printer. Press IHOLD] again to continue printing.

LLIST 68-90

prints lines in the range 68 to 90.

205

Chapter 10 I BASIC Keywords

LOAD Statement

LOAD pathname [,Rl

Loads a BASIC program from disk into memory.

Pathname is a standard file specification used to save the file to
disk.

The R option tells BASIC to run the program. (LOAD with the R
option is equivalent to the command RUN pathname.) When you
specify the R option, BASIC leaves all open files open and runs
the program automatically. If you omit the R option, BASIC
wipes out any resident BASIC program, clears all variables, and
closes all open files.

You can use either of these commands inside programs to allow
program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a "Direct statement in
file" error occurs.

Example
LOAD " A : p r o g l . ba5"

loads progl .bas from Drive A, and then returns to the command
mode.

LOAD " p r o g l . b a s "

loads progl .bas. Because no drive is specified, BASIC searches
for progl .bas on the current drive.

206

Chapter 10 I BASIC Ke.ywords

LOC Function

LOC(buffer)

Returns the current record position within a file.

Buffer is the number assigned to the file when you opened it.

You use LOC to determine the current record position, that is,
the number of the last record processed since you opened the file.

When used with direct access files, LOC returns the record
number accessed by the last GET or PUT statement.

When used with sequential files, LOC returns the number of
128-byte blocks that have been read or written.

Example
I F L O C (1) > 5 5 THEN END

Program execution ends, if the current record position is greater
than 55.

Sample Program
1 3 1 0 CIS = "WILLICIM WILSON"
1 3 2 0 GET 1
1 3 3 0 I F N $ = A $ THEN P R I N T "FOUND I N RECORD"
L O C C I) : CLOSE: END
1 3 4 0 GOT0 1 3 2 0

This is a portion of a direct access program. Elsewhere the file
has been opened and fielded. N$ is a field variable. If N$
matches A$, the record number in which it was found is printed.

207

Chapter 10 I BASIC Keywords

LO C/C ommunic at ions Function

LOC (buffer)

Returns the number of characters in the input queue if that
number is 255 or less.

If the queue contains 256 or more characters, the LOG function
returns the number 255. Since a string is limited to 255 charac-
ters, this limit eliminates the need for testing string size before
reading data into the queue.

Buffer is the number assigned to the file when you opened it.

The default size for the input queue is 256 characters, but you
can change the size by using the /C : option when loading BASIC.

Ex ample
1 0 X = L O C < I)
2 0 I f X > 0 THEN A$=INPUT$(LOC(l),#I)

Line 18 checks to see if there are any characters in the input
queue and stores the number of characters in the variable X.
Line 20 tests the value of X. If X is greater than 0, there are
characters in the input queue, and Line 28 returns the charac-
ters in the buffer into A$.

Notice from the example that INPUT$ is preferred over LINE
INPUT# or INPUT# when reading communications files. This
preference is because all ASCII characters might be significant
in communications. INPUT$ allows all characters to be read.
The other statements do not. LINE INPUT# stops at a carriage
return. INPUT# stops at a comma or a carriage return.

208

Chapter 10 I BASIC Keywords

LOCATE Statement

LOCATE [row][, [coZurnnl[, [cursor] [,[startl[,stopllll

Positions the cursor on the screen.

Row is a numeric expression in the range 1 to 25 that indicates
the screen row where you want to position the cursor.

Column is a numeric expression that indicates the screen column
where you want to position the cursor. It may be in the range 1
to 40 or 1 to 80, depending on the current screen width.

Cursor indicates whether the cursor is visible or invisible. Set
cursor to 1 for a visible cursor and to 0 for an invisible cursor.

Start specifies the starting scan line of the cursor. There are 7
scan lines available for the cursor. Start must be an integer in
the range 0 to 7, where 0 is the top line and 7 is the bottom line.

Stop specifies the ending scan line of the cursor. Stop must be in
the same range as start. If stop is less then start BASIC displays
a split cursor.

Cursor, start, and stop are only effective in Screen Mode 0.

Examples
LOCATE 1 0 , 2 0 , 1 , 4

positions a half cursor on Row 10 in Column 20.
LOCATE 2 4 , l ,l ,7

positions an underline cursor in the first position of the last line.

209

Chapter 10 I BASIC Keywords

LOF Function

LOF (buffer)

Returns the length of the file in bytes.

Buffer is the number assigned to the file when you opened it.

Example
Y = L O F (5)

assigns the length of the file in bytes to variable Y

Sample Programs
During direct access to an existing file, you often need a way to
know when you have read the last valid record. LOF provides a
way:

1 5 4 0 OPEN "R" , 1 , "unknown.txt", 1 2 8
1 5 5 0 F I E L D 1 , 1 2 8 AS A $
1 5 6 0 RCNUM% = 1 'START AT B E G I N N I N G OF F I L E
1 5 7 0 R C S I Z % = 1 2 8 ' S E T RECORD S I Z E
1 5 8 0 I F RCNUM% * R C S I Z % > L O F (1) GOTO 1 6 4 0
1 5 9 0 'CHECK FOR END OF F I L E
1 6 0 0 GET 1 , RCNUMX 'RECORD NUM. TO BE ACCESSED
1 6 1 0 P R I N T A S
1 6 2 0 RCNUM% = RCNUM% + 1 ' INCREMENT RECORD NUM
1 6 3 0 GOTO 1 5 8 0
1 6 4 0 CLOSE

If you attempt to GET record numbers beyond the end-of-file,
BASIC gives you an error.

These lines use LOF to determine where to start adding when
you want to add to the end of a file:

1 7 0 0 RCNUM% = (L O F C 1) / R C S I Z %) + 1
1 7 2 0 ' H I G H E S T E X I S T I N G RECORD
1 7 2 0 PUT 1 , RCNUM% 'ADD NEXT RECORD

210

Chapter 10 I BASIC Ke,ywords

LOFlC ommunications Function

LOF (buffer)

Returns the amount of free space in the input queue.

Buffer is the number assigned to the file when you opened it.

You can use LOF to determine when an input queue is getting
full so that transmission is stopped.

The default length of the communications receive buffer is 256
bytes. If you wish, you can specify a different length by using
the iC: switch when loading BASIC. (See “Options for Loading
BASIC” in Chapter 2.)

211

Chapter 10 I BASIC Keywords

LOG Function

LOG(number)

Returns the natural logarithm of number.

Number must be greater than zero. LOG is the inverse of the
EXP function.

BASIC always returns the result as a single precision number.

Examples
PRINT LOG(3.14159)

prints the value 1.144729
Z = 10 LOG(PS/Pl)

performs the indicated calculation and assigns the value to Z.

Sample Program
This program demonstrates the use of LOG. It utilizes a formula
taken from space communications research.

540 INPUT "DISTANCE SIGNAL MUST TRAVEL (MILES)";
D
550 INPUT "SIGNAL FREQUENCY (GIGAHERTZ)". F
560 L = 96.58 + (2 0 * LOGCF)) + (20 LOiCD))
570 PRINT "SIGNAL STRENGTH LOSS I N FREE SPACE
IS" L "DECIBELS."

212

Chapter 10 I BASIC Keywords

LPOS Function

LPOS(num ber)

Returns the logical position of the print head within the printer’s
buffer.

Number can be 0 or 1 to indicate LPT1:.

LPOS is only useful for checking the position of the print head
after a LPRINT statement that is terminated by a semicolon to
suppress the automatic carriage return. The statement contain-
ing LPOS is not executed until the LPRINT statement is fin-
ished printing.

LPOS does not necessarily give the physical position of the print
head if the printed string contains the ASCII code for a carriage
return. For example, if you are printing a string of 20 characters
and the 10th character is the ASCII code for a carriage return,
the printer advances to the next line after printing the ninth
character before printing the remaining 10 characters. If the
string is terminated by a semicolon to supress the automatic line
feed, the physical location of the print head is at position 10, but
LPOS returns a value of 21 because that is the logical location
of the print head.

Example
You may want t o use LPOS t o determine whether there is
enough room to continue printing more variables on the same
line.

1 0 0 I F L P O S (X) > 6 0 THEN L P R I N T

If the printer has printed more than 60 characters, a carriage
return is sent so that the printer skips to the next line.

213

Chapter 10 I BASIC Keywords

LPRINT Statement

LPRINT [USING format;] data[,data, ...I

Prints data on the printer.

LPRINT assumes a print width of 80 characters. You may
change the width using the WIDTH statement with the LPRINT
option.

See PRINT and PRINT USING for more information on format-
ting the output.

Examples
LPRINT (A * 2) / 3

prints the value of expression (A * 2)/3 on the printer.
LPRINT TAB(S0) "TABBED 5 0 "

moves the printer carriage t o t a b position 50 and prints
TABBED 50. (Refer to the TAB function.)

LPR I NT U S I NG ' I # # # # # . # ' I ; 2 . 1 7

sends the formatted value bbbb2.2 to the printer.

214

Chapter 10 I BASIC Keywords

LSET Statement

LSET field name = data

Moves data to the direct access buffer and places it in field name,
in preparation for a PUT statement.

Field name is a string variable defined in a FIELD statement.

You must have used FIELD to set up buffer fields before using
LSET.

You must convert numeric values to string values before they are
LSET. See MKI$, MKD$, MKS$.

You use LSET to left-justify the variable in the field. If the field
is larger than the variable it is receiving, the field is filled with
blanks on the right. If the variable is larger than the field, char-
acters are truncated on the right. The complement command to
LSET is RSET.

See also Chapter 7, “Files,” and OPEN, CLOSE, FIELD, GET,
PUT, and RSET.

Example
Suppose NM$ and AD$ have been defined as field names for a
direct access file buffer. NM$ has a length of 18 characters; AD$
has a length of 25 characters. The statements:

LSET NM$ = “JIM CRICKET, JR.”
LSET AD$ = “2000 EAST P E C A N ST.”

set the data in the buffer as follows:
JIMMCRICKET,JR.BBM 2 0 0 0 M E A S T M P E C A N M S T . M M B ~ B M

Notice that filler blanks are placed to the right of the data
strings in both cases. If we use RSET statements instead of
LSET, the filler spaces are placed to the left. This is the only
difference between LSET and RSET.

215

Chapter 10 I BASIC Keywords

MERGE Statement

MERGE pathname

Loads a BASIC program and merges it with the program cur-
rently in memory.

Pathnume is a standard file specification as described in Chapter
1. The filename is required. The file must be in ASCII format;
that is, it must have been saved with the A option.

Program lines in pathname are inserted into the resident pro-
gram in sequential order. For example, suppose that 3 lines from
pathname are numbered 75, 85, and 90, and 3 lines from the
resident program are numbered 70, 80, and 90. When you use
MERGE on the 2 programs, this portion of the merged program
is now numbered 70, 75, 80, 85, 90.

If line numbers on the new program coincide with line numbers
in the resident program, the new program's lines replace the res-
ident program's lines.

MERGE closes all files and clears all variables. Upon completion,
BASIC returns its prompt.

Example
Suppose you have a BASIC program on disk, prog2.M (saved in
ASCII), that you want to merge with the program you have in
memory:

MERGE " p r o g 2 . t x t "

merges the 2 programs.

216

Chapter 10 I BASIC Keywords

Sample Programs
MERGE provides a convenient means of putting program mod-
ules together. For example, an often-used set of BASIC subrou-
tines can accompany a variety of programs with this command.

Suppose the following program is in memory:
8 0 REM M A I N PROGRAM
9 0 REM L I N E NUMBER RESERVED FOR S U B R O U T I N E H O O K
1 0 0 REM PROGRAM L I N E
1 1 0 REM PROGRAM L I N E
1 2 0 REM PROGRAM L I N E
1 3 0 END

And suppose the following subroutine, sub.txt, is stored on disk
in ASCII format:

9 0 GOSUB 1 0 0 0 ' S U B R O U T I N E H O O K
1 0 0 0 REM B E G I N N I N G OF S U B R O U T I N E
1 0 1 0 REM S U B R O U T I N E L I N E
1 0 2 0 REM S U B R O U T I N E L I N E
1 0 3 0 REM S U B R O U T I N E L I N E
1 0 4 0 RETURN

You can MERGE the subroutine with the main program with:
MERGE "5ub. t x t "

The new program in memory is:
8 0 REM
9 0 GOSUB 1 0 0 0
1 0 0 REM
1 1 0 REM
1 2 0 REM
1 3 0 END
1 0 0 0 REM
1 0 1 0 REM
1 0 2 0 REM
1 0 3 0 REM
1 0 4 0 RETURN

M A I N PROGRAM
' S U B R O U T I N E H O O K

PROGRAM L I N E
PROGRAM L I N E
PROGRAM L I N E

B E G I N N I N G OF S U B R O U T I N E
S U B R O U T I N E L I N E
S U B R O U T I N E L I N E
S U B R O U T I N E L I N E

217

Chapter 10 I BASIC Ke.ywords

MID$ Statement

MID$(oldstring,start[,length]) = newstring

Replaces a portion of oldstring with newstring.

Oldstring is the variable name of the string you want to change.

Start is a number specifying the position of the first character
you want to change.

Length is a number specifying the number of characters you
want to replace.

Newstring is the string to replace a portion of oldstring.

The length of the resultant string is always the same as the
original string. If newstring is shorter than length, the entire re-
placement string is used.

Examples:
1 0 FIB = " L I N C O L N "
20 MID$CAB,3,4) = "12345": P R I N T A B

prints LI1234N.

Replace Line 20 with:
2 0 MIDB<FIB,S) = "01": PRINT A $

and BASIC prints LINC01N

218

Chapter 10 I BASIC Ke.ywords

MID$ Function

MID$(string, start [,length]>

Returns a substring of a string.

Length is the number of characters in the substring. It must be
in the range 1 to 255.

Start specifies the position in the string from which to get the
substring.

If you omit length or if there are fewer than that number of char-
acters to the right of start position, BASIC returns all characters
to the right of the character at the start position including that
character at start.
If start is greater than number of characters in string, BASIC re-
turns a null string.

Examples
1 0 A $ = "WEATHERFORD"
2 0 P R I N T M I D S C A S , 3 , 2)

prints AT
F$ = M I D $ < A $, 3)

puts ATHERFORD into F$.

Sample Program
2 0 0 I N P U T "AREA CODE AND NUMBER (NNN-NNN-NNNN)" ;
P H $
2 1 0 E X $ = M I D $ C P H $, 5 , 3)
2 2 0 P R I N T "NUMBER I S I N THE " E X $ " EXCHANGE."

The first 3 digits of a local phone number are sometimes called
the exchange of the number. This program looks at a complete
phone number (area code, exchange, last 4 digits) and picks out
the exchange.

219

Chapter 10 I BASIC Ke.ywords

MKDIR Statement

MKDIR dirpath

Creates the directory specified by dirpath.

Dirpath is a standard directory specification as described in
Chapter 1. If you omit the drive identifier, the directory is cre-
ated on the current drive. If you omit the root directory symbol
(\ I , the directory is created in the current directory.

Examples
MKDIR " A : \ A C C T S \ P A Y A B L E "

creates the directory PAYABLE in the ACCTS directory on Drive
A.

MKDI R "\ADDRESS"

creates the directory ADDRESS in the root directory on the cur-
rent drive.

MKDI R "NAMES"

creates the directory NAMES in the current directory on the
current drive.

220

Chapter 10 I BASIC Ke.ywords

MKD$, MKI$, MKS$ Function

MKD$(double precision expression)
MKI$(integer expression)
MKS$(single precision expression)

Converts numeric values to string values.

Any numeric value that is placed in a direct file buffer with an
LSET or RSET statement must be converted to a string.

These 3 functions are the inverse of CVD, CVI, and CVS. The
byte values that make up the number are not changed; only 1
byte, the internal data-type specifier, is changed so that numeric
data can be placed in a string variable.

MKD$ returns an 8-byte string; MKI$ returns a 2-byte string;
and MKS$ returns a 4-byte string.

Example
L S E T AVGS. = MKSS(0.123)

Sample Program
1350 OPEN "R" , 1 I " t e ~ t . d a t " , 14
1360 F I E L D 1 , 2 A S 119, 4 A S I2$, 8 A S 13s
1370 L S E T I I S = MKIS(3000)
1380 L S E T 12s = MKSSC3000.1)
1390 L S E T 13s = MKDSC3000.00001)
1400 PUT 1 , 1
1410 CLOSE 1

For a program that retrieves the data from test.dat, see CVDi
CVI/CVS.

221

Chapter 10 I BASIC Keywords

NAME Statement

NAME old filename AS new filename

Renames old filename as new filename.

With this statement, the data in the file is left unchanged. The
new fi lename may not contain p a t h , password, or drive
specification.

You can only rename a file in the current directory.

Example
N Q M E "file.ba5" AS "f ile.old"

BASIC renames file.bas as file.old.

222

Chawter 10 I BASIC Kevwords

NEW Statement

NEW

Deletes the program currently in memory and clears all vari-
ables. NEW also closes all open files, turns off the trace function
and resets the music background.

Example
NEW

223

Chapter 10 I BASIC Keywords

NOISE Statement

NOISE source, volume,d uratwn

Generates noise through a TV monitor’s speaker (external
speaker).

Source is an integer in the range 0 to 7. It selects the type of
noise. If source is in the range 0 to 3, periodic noise is selected.
If source is in the range 4 to 7, white noise is selected.

Periodic White Frequency
0 4 35795451512
1 5 357954511824
2 6 357954512048
3 7 frequency of Voice 2 (s e e

Volume is an integer in the range 0 to 15 where 0 is the quietest
and 15 is the loudest.

Duration is a numeric expression in the range 0 to 65535. It sets
the duration of the noise. A duration of 18.2 equals 1 second.

You must execute a SOUND ON statement before using NOISE
or BASIC returns an “Illegal function call” error.

SOUND).

Sample Programs
1 0 SOUND ON
2 0 FOR I = 0 TO 7
3 0 NOISE I , 1 5 , 2 5 0
4 0 P L A Y I 1 I, II I, “ V 0 ”
5 0 NEXT I

> ,

224

Chapter 10 I BASIC Keywords

OCT$ Function

OCT$(num ber)

Returns the octal value of number.

OCT$ returns a string that represents the octal value of a deci-
mal number. The value returned is like any other string-it can-
not be used in a numeric expression.

Examples
P R I N T O C T $ C 3 0) , O C T $ (S 0) , O C T $ (9 0)

prints the strings 36, 62, and 132.
Y $ = O C T $ < X / 8 4)

Y$ is a string representation of the integer quotient X/84 to base
8.

225

ChaDter 10 I BASIC Kevwords

ON COM() GOSUB Statement

ON COM(channeZ) GOSUB line

Transfers program control to a subroutine beginning at line
when activity occurs on the communication channel.

Channel selects communications Channel 1 or 2.

Line is the first line of the subroutine to be executed when activ-
ity occurs on the specified communications channel. If you spec-
ify Line 0, you t u r n off communications trapping. Use the
RETURN statement to exit the subroutine.

BASIC executes the ON COM() GOSUB statement only if a
COM(ON statement has been previously executed to enable
communication trapping. If a COM() STOP statement has been
issued to halt communication trapping temporarily, BASIC exe-
cutes the subroutine immediately after the next COM(1 ON
statement.

When you execute the ON COM() GOSUB statement, BASIC
immediately issues a COM(1 STOP statement to prevent recur-
sive traps. When BASIC executes the RETURN from the subrou-
tine, it automatically executes another COM() ON statement to
enable communication trapping again, unless the subroutine exe-
cutes a COM(OFF statement.

226

Chapter 10 I BASIC Keywords

Example
1 0 COM(1) ON

2 0 0 ON COM(1 1 GOSUB 1 0 0 0

Line 10 turns on communication trapping on Channel 1. After
each program statement is executed, BASIC checks to see if the
communication buffer contains characters. If it does, BASIC im-
mediately executes the subroutine beginning at Line 1000.

1 0 COM(1) ON
2 0 ON COMC1) GOSUB 1 0 0 0
3 0 FOR I = 1 TO 1 0
4 0 P R I N T I
5 0 N E X T I

1 0 0 0 ’ S U B R O U T I N E CODE

1 0 5 0 RETURN 2 0 0

If activity occurs on Communication Channel 1 while the FOR/
NEXT loop is executing, BASIC immediately executes the sub-
routine beginning at Line 1000. But the subroutine returns to
Line 200 instead of completing the FORiNEXT loop. This results
in a “For without next” error because any GOSUB, FOR, or
WHILE statement remains active during key trapping.

If the RETURN statement does not include a line number, pro-
gram control returns to complete the FOR/NEXT loop, and no
error occurs.

227

Chapter 10 I BASIC Keywords

ON ERROR GOTO Statement

ON ERROR GOTO line

Transfers control to line if an error occurs.

This lets your program recover from an error and continue exe-
cution. (Normally, you have a particular type of error in mind
when you use the ON ERROR GOTO statement.)

You must execute an ON ERROR GOTO before the error occurs.

To disable it, execute an ON ERROR GOTO 0, which causes
BASIC to stop execution and print an error message. This is rec-
ommended for errors that are trapped and from which you can-
not recover.

Note: If an error occurs during execution of an error-
handling routine, that error message is printed and
execution terminates. Error trapping does not occur
within the error handling routine.

The error-handling routine must be terminated by a RESUME
statement.

Example
1 0 ON E R R O R GOTO 1 5 0 0

branches program control to Line 1500 if an error occurs any-
where after Line 10.

Sample Program
See ERROR.

228

Chapter 10 I BASIC Keywords

ONIGOSUB Statement

ON n GOSUB Zine[,Zine, ... I

Looks at n and transfers program control to the subroutine indi-
cated by the nth line listed.

For example, if n equals 1, BASIC branches to the first line
listed; if n equals 2, BASIC branches to the second line listed.

Line is the subroutine line at which execution begins when
BASIC makes the branch.

N must be a number in the range 0 to 255. If necessary, BASIC
rounds n to an integer before evaluating it. If n is 0 or greater
than the number of line numbers listed, BASIC continues with
the next statement. If n is negative or is greater than 255, an
“Illegal function call” error occurs.

Use the RETURN statement to exit the subroutine.

Example
1 0 ON Y GOSUB 1 0 0 0 , 2 0 0 0 , 3000

If Y equals 1, BASIC branches to a subroutine, beginning at
Line 1000. If Y equals 2, BASIC branches to a subroutine, be-
ginning at Line 2000. If Y equals 3, BASIC branches to a sub-
routine, beginning at Line 3000.

If Y is outside the range 1 to 3, BASIC either continues with the
next statement or generates an “Illegal function call,” as men-
tioned earlier.

229

Chapter 10 I BASIC Keywords

Sample Program
4 3 0 I N P U T "CHOOSE 1 , 2 , OR 3" ; I
4 4 0 ON I GOSUB 5 0 0 , 6 0 0 , 7 0 0
4 5 0 END
5 0 0 P R I N T "SUBROUTINE # I " : RETURN
6 0 0 P R I N T "SUBROUTINE # 2 " : RETURN
7 0 0 P R I N T "SUBROUTINE #3": RETURN

230

Chapter 10 I BASIC Keywords

ON/GOTO Statement

ON n GOTO line[,line, ... I

Looks at n and transfers program control to the nth line listed.

For example, if n equals 1, BASIC branches to the first line
listed; if n equals 2, BASIC branches to the second line listed.

N must be in the range 0 to 255. If necessary, BASIC rounds n
to an integer before evaluating it. If n is 0 or is greater than the
number of line numbers listed, BASIC continues with the next
statement. If n is negative or is greater than 255, an "Illegal
function call" error occurs.

Example
1 0 ON M I GOTO 1 5 0 , 1 6 0 , 1 7 0 , 1 5 0 , 1 8 0

tells BASIC to evaluate MI. If MI equals 1, BASIC branches to
Line 150; if MI equals 2, BASIC branches to Line 160; and so
on. If MI is outside of the range 1 to 5, BASIC either continues
with the next statement or generates an Illegal function call, as
mentioned earlier.

Sample Program

5 REM < C A P S > MUST B E ON
1 0 I N P U T "ENTER A , B , o r C,";LS
2 0 L=CISC C L S)
3 0 O N L - 6 4 GOTO 5 0 , 6 0 , 7 0
4 0 P R I N T "TRY AGCI1N":GOTO 1 0

6 0 P R I N T "YOU TYPED ' B ' " : E N D
7 0 P R I N T "YOU T Y P E D 'C ' " :END

5 0 PRINT 9 1 ~ 0 ~ TYPED ' A ' ~ ~ : E N D

231

Chapter 10 I BASIC Keywords

ON KEY() GOSUB Statement

ON KEY(number) GOSUB line

Transfers program control to a subroutine when you press the
specified key.

Number may be a number in the range 1 to 20, indicating the
number of the key to trap. Function keys use their corresponding
function key numbers. The cursor direction keys are numbered:

11
12

El 13
El 14

m
El

User keys are numbered 15 through 20. User keys are defined
with the KEY statement.

Line is the first line number in the subroutine to execute when
the specific key is pressed. If you specify Line 0, you turn off key
trapping for that key. It is the same as executing a KEYO OFF
statement. Use the RETURN statement to exit the subroutine.

BASIC executes the ON KEYO GOSUB statement only if a
KEYO ON statement has been executed previously to enable key
trapping for that key.

If a KEYO STOP statement has been issued to halt key trapping
for that key temporarily, BASIC executes the subroutine immedi-
ately after the next KEYO ON statement for that key.

When you execute the ON KEY() GOSUB statement, BASIC im-
mediately issues a KEYO STOP statement for that key to pre-
vent recursive traps. When BASIC executes the RETURN from
the subroutine, it automatically executes another KEY () ON
statement for that key to enable key trapping again, unless the
subroutine executes a KEYO OFF statement for that key.

232

Chapter 10 I BASIC Ke-ywords

Sample Program
1 0 K E Y (5) ON
2 0 K E Y (1) ON
3 0 ON K E Y (5) GOSUB 8 0
4 0 ON K E Y (1) GOSUB 1 0 0
5 0 FOR I = 1 TO 1 0 0
6 0 P R I N T "NO KEY PRESSED"
7 0 NEXT 1 : E N D
8 0 P R I N T " K E Y (5) PRESSED * * * * * * * * * * * * ' I

9 0 RETURN
1 0 0 P R I N T " K E Y (1 PRESSED ; ; ; ; ; ; ; ;;;; ;'I
1 1 0 RETURN

This program sets up [F51 and to be trapped.

233

Chapter 10 1 BASIC Keywords

ON PEN GOSUB Statement

ON PEN GOSUB line

Transfers program control to a subroutine when you activate the
light pen.

Line is the first line number in the subroutine to execute when
the light pen is activated. If you specify Line 0, you turn off
trapping for the pen. It is the same as executing a PEN OFF
statement. Use the RETURN statement to exit the subroutine.

BASIC executes the ON PEN GOSUB statement only if a PEN
ON statement has been executed previously to enable light pen
trapping.

If a PEN STOP statement has been issued to halt trapping for
the pen temporarily, BASIC executes the subroutine immediately
after the next PEN ON statement.

When you execute the ON PEN GOSUB statement, BASIC im-
mediately issues a PEN STOP statement to prevent recursive
traps. When BASIC executes the RETURN from the subroutine,
it automatically executes another PEN ON statement to enable
pen trapping again, unless the subroutine executes a PEN OFF
statement.

234

Chapter 10 I BASIC Keywords

Example
1 0 PEN ON
2 0 ON P E N GOSUB 1 0 0 0
3 0 REM

5 0 0 END
1 0 0 0 REM P R O C E S S I N G R O U T I N E

1 1 0 0 RETURN ' 3 0

Line 10 turns on pen trapping. After each program statement is
executed, BASIC checks to see if the pen has been activated. If i t
has, BASIC immediately executes the subroutine at Line 1000.

235

Chapter 10 I BASIC Keywords

ON PLAY() GOSUB Statement

ON PLAY(number) GOSUB line

Transfers program control to a subroutine when the number of
notes in the background music buffer goes from number to num-
ber minus 1. This event trapping allows continuous music by let-
ting you maintain a full music buffer.

Number is an integer in the range 1 to 32, indicating that con-
trol should transfer to line when the number of notes left in the
music buffer is less than number.

Line is the first line of the subroutine to execute when the num-
ber of notes in the music buffer is less than number. If you spec-
ify Line 0, you turn off play event trapping. Use the RETURN
statement to exit the subroutine.

BASIC executes the ON PLAY() GOSUB statement only when
playing background music (PLAY “MB”) and if the PLAY ON
statement has been executed to enable event trapping.

If a PLAY STOP statement has been issued to halt event trap-
ping temporarily, BASIC executes the subroutine immediately
after the next PLAY ON statement.

When you execute the ON PLAY() GOSUB statement, BASIC
immediately issues a PLAY() STOP to prevent recursive traps.
When BASIC executes the RETURN from the subroutine, it au-
tomatically executes another PLAY0 ON statement to enable
trapping again, unless the subroutine executes a PLAY0 OFF
statement .

Notes: BASIC does not issue a play event trap if the
background music queue is already empty when you
execute a PLAY ON.

The PLAY statement is supported by a 32-element mu-
sic queue. Given that “normal” and “staccato” notes
are constructed from 2-note elements, the queue can
contain as few as 16 notes or as many as 32 notes.

236

Chapter 10 I BASIC Keywords

Therefore, select conservative values for the trap num-
ber. For example, if number is set at 32, event traps
might happen so often that there is little time to exe-
cute the rest of your program. It is suggested that the
trap number be less than 16 for better performance.

Example
1 0 P L A Y ON
2 0 ON P L A Y (2) GOSUB
3 0 REM

5 0 0 END
1 0 0 0 REM P R O C E S S I N G

1 1 0 0 RETURN 3 0

1 0 0 0

R O U T I N E

Line 10 turns on play trapping. After each program statement is
executed, BASIC checks to see if the number of notes in the mu-
sic buffer is less than 2 notes. If it is, BASIC immediately exe-
cutes the subroutine at Line 1000.

237

Chapter 10 I BASIC Keywords

ON STRIG() GOSUB Statement

ON STRIG(number) GOSUB line

Transfers program control to a subroutine when you press one of
the joystick’s buttons.

Number specifies the number of the button pressed and is one of
the following:

0 left joystick, button 1
2 right joystick, button 1
4 left joystick, button 2
6 right joystick, button 2

Line is the first line number of the subroutine to be executed
when you press one of the joystick’s buttons. If you specify Line
0, you turn off trapping for the joysticks. Use RETURN to exit
the subroutine.

BASIC executes the ON STRIGO GOSUB statement only if a
STRIG ON statement has been executed previously to enable
joystick trapping.

If a STRIG STOP statement has been issued to halt joystick
trapping temporarily, BASIC executes the subroutine immedi-
ately after the next STRIG ON statement.

When the ON STRIGO GOSUB statement is executed, BASIC
immediately issues a STRIG STOP statement to prevent recur-
sive traps. When BASIC executes the RETURN from the subrou-
tine, it automatically executes another STRIG ON statement to
enable joystick button trapping again, unless the subroutine exe-
cutes a STRIG OFF statement.

238

Chawter 10 I BASIC Kevwords

Sample Program
5 S T R I G (0) O N : S T R I G (2) ON
1 0 ON S T R I G C 0) GOSUB 1 0 0 0
2 0 ON S T R I G C 2) GOSUB 2 0 0 0
3 0 P R I N T "Press one o f the joystick buttons."
4 0 FOR I = 1 TO 3 0 0 0 : N E X T I
5 0 GOTO 3 0
1 0 0 0 P R I N T "You pressed the left button."
:RETURN
2 0 0 0 P R I N T "You pressed the right button."
: RETURN

Lines 10 and 20 turn on joystick trapping. Line 30 instructs you
to press one of the buttons. Line 40 waits for you to press a but-
ton. If you press the left button, BASIC transfers program control
to the subroutine at Line 1000. If you press the right button,
BASIC transfers program control to the subroutine at Line 2000.
If you do not press a button, Line 50 returns to print the mes-
sage again. This program is a continuous loop. To end the pro-
gram, press [C T R L] m] .

239

Chapter 10 I BASIC Keywords

ON TIMER() GOSUB Statement

ON TIMER(number1 GOSUB line

Transfers program control to a subroutine when the specified pe-
riod of time has elapsed.

Number indicates the number of seconds. Number may be a
value in the range 1 to 86400 (86400 seconds = 24 hours).

Line is the first line number in the subroutine to execute when
the specified time has passed. If you specify Line 0, you turn off
trapping for the timer. Use RETURN to exit the subroutine.

BASIC executes the ON TIMER0 GOSUB statement only if a
TIMER ON statement has been executed previously to enable
time event trapping.

If a TIMER STOP statement has been issued to halt time event
trapping temporarily, BASIC executes the subroutine immedi-
ately after the next TIMER ON statement.

When you execute the ON TIMER() GOSUB statement, BASIC
immediately issues a TIMER STOP to prevent recursive traps.
When BASIC executes the RETURN from the subroutine, it au-
tomatically executes another TIMER ON statement to enable
trapping again, unless the subroutine executes a TIMER OFF
statement.

240

Chapter 10 I BASIC Keywords

Example
1 0 T I M E R ON
2 0 ON T I M E R (6 0) GOSUB 1 0 0 0
3 0 REM

5 0 0 END

1 0 0 0 REM P R O C E S S I N G R O U T I N E

1 1 0 0 RETURN 3 0

Line 10 turns on timer trapping. After each statement is exe-
cuted, BASIC checks to see if the specified time has elapsed. If
it has, BASIC immediately executes the subroutine a t Line
1000.

241

Chapter 10 I BASIC Keywords

OPEN Statement

OPEN mode,[#]buffer,[pathname][dev:][,record length]
OPEN [pathname][dev:l [FOR model AS [#]buffer
[LEN = record length1

Establishes an input/output path for a file or device.

Buffer is an integer in the range 1 to 15. It specifies the 110
buffer in memory to use when accessing the file. The number
sign (#) is optional. It is provided for compatibility with other
BASICs.

Pathname is a standard file specification as described in Chapter
1. If you omit pathname, you must include deu:.

deu: specifies the device to be opened for communication.

Record length is an integer in the range 1 to 32768 that sets the
record length for direct access files. If you omit record length,
BASIC assumes a default record length of 128 bytes. Do not use
this option with sequential access files.
Mode specifies any of the following:

0 or OUTPUT
I or INPUT
A or APPEND
R or RANDOM

sequential output mode
sequential input mode
sequential output and extend mode
direct inputloutput mode

In the first form of the syntax, you must use the abbreviated
form of mode, and it must be enclosed in quotation marks.

In the second form of the syntax, you must specify the complete
word for mode. You may not specify RANDOM. If you want to
use direct access in the second form of the syntax, omit mode.

242

Chapter 10 I BASIC Kevwords

You may open a file for output in only one buffer at a time. Once
you assign a buffer to a file with the OPEN statement, you can-
not use that buffer in another OPEN statement until you close
the first file. However, BASIC lets you access the same file for in-
put by opening it in different buffers. You may keep several rec-
ords from the same file in memory for quick access.

If you open a file for input that does not exist, BASIC returns a
"File not found" error.

If you open a file for output that does not exist, BASIC creates
the file.

If you open a file for append that does not exist, BASIC creates
the file and sets the mode to RANDOM.

If you open a file for direct access with a record length that does
not match the record length assigned to the file when it was cre-
ated, an error occurs.

Examples
OPEN " R " , 2 , " t e s t . d a t "

opens the file test.dat in direct access mode, using Buffer 2. If
test.dat does not exist, BASIC creates it on the current drive.
The record length is 128 bytes.

OPEN " L P T I : I ' FOR OUTPUT A S 2

opens the printer for sequential output using Buffer 2.
OPEN " A : \ P A Y R O L L \ d a t a . b a 3 " F O R I N P U T A S 1

opens the file databas in the PAYROLL directory on Drive A for
sequential input using Buffer 1.

243

Chapter 10 I BASIC Ke.ywords

OPE N/C ommunications Statement

OPEN “ C O M c h a n ~ l : [speed] [,purity1 [,datul[,stopl
[,RSI[,CS[secondsl][,DS[secondslj[,CD[seconds] j[,m&]
[,PEl [,LFl” AS [#lbuffer[LEN = number]

Opens a file and allocates a buffer for RS-232C (Asynchronous
Communications Adapter) communication.

Channel can be 1 or 2 to select the communications channel to
be opened.

Speed is a n integer specifying the transmit and receive rate in
bits per second (bps). Valid speeds are 75, 110, 150, 300, 600,
1200, 2400, 4800, and 9600. If you omit speed, BASIC sets the
speed at 300 bps.

Parity is a constant specifying the parity to be used when the
data is transmitted and received. The constant must be one of
the following:

E

0

M

S

N

EVEN transmit parity, EVEN receive parity
checking.
ODD t ransmi t par i ty , ODD receive parity
checking.
parity bit always transmitted and received as a
mark (1 bit).
parity bit always transmitted and received as a
space (0 bit).
no transmit parity, no receive parity checking.

If you omit parity, BASIC assumes E (EVEN).

Data is an integer specifying the number of transmit and re-
ceive bits. Valid values are 5 , 6, 7, and 8. If you do not specify
data, BASIC assumes 7.

Note: Eight data bits with parity is illegal.

Stop must be either 1 or 2 to indicate the number of stop bits. If
you omit stop, 75 and 110 bps transmit 2 stop bits, and all other
speeds transmit 1 stop bit.

244

Chapter 10 I BASIC Keywords

Buffer is a number in the range 1 to 15, indicating the buffer
that accesses the file. The number sign (#) is optional. It is pro-
vided for compatibility with other BASICs.

Number specifies the maximum number of bytes that can be ac-
cessed in the communications buffer by GET and PUT state-
ments. If you omit the LEN option, BASIC assumes 128 bytes.

The parameters speed, parity, data, and stop are all positional.
That is, they must be in the order specified in the syntax. If you
omit one of the parameters, you must still include the comma to
hold its position.

The remaining parmeters are not positional. They may be in any
order, or you may omit them. They control the software commu-
nication signal lines between 2 terminals. If you omit the CS,
DS, or CD options, the signals are not checked at all. Include
them only if you are testing these software signals.

The RS option suppresses the Request To Send (RTS) signal. Re-
quest To Send is a signal that is sent from the sending terminal
to the receiving terminal to ensure that the receiving terminal
is ready to accept communication data. When you execute an
OPEN COM statement, the RTS line is turned on, unless you in-
clude the RS option.

The CS option controls the Clear To Send (CTS) signal which is
sent from the receiving terminal to the sending terminal to let
the sending terminal know that the receiving terminal is ready
to receive.

You can think of RTS and CTS as a hand-shaking exercise, in
which the 2 terminals let each other know that they are ready to
send and/or receive data. RTS is an output signal from the send-
ing terminal, and CS is an input signal to the sending terminal.

The DS option controls the Data Set Ready (DSR) signal. The
DSR signal ensures that a data set, such as a modem, is present
to transmit the data.

The CD option controls the Carrier Detect (CD) signal. The CD
signal is an input signal which ensures that the data set is
ready to transmit the data.

245

Chapter 10 I BASIC Keywords

The seconds argument in the CS, DS, and CD options specifies
the number of milliseconds to wait for the signal before return-
ing a “Device Timeout” error. Seconds may be in the range 0 to
65535. If you omit seconds or specify a zero, the signal is not
checked.

If you specify RS, seconds defaults to zero for CS. If you omit RS,
the default for CS is 1000. Either an RS or a CS is required.
That is, if you omit RS, the Clear To Send signal is not checked.
If you include RS, OPEN COM waits 1 second for CS before issu-
ing a “Device Timeout” error.

If you omit seconds after the DS option, the default value is
1000, and OPEN COM waits 1 second before issuing a “Device
Timeout” error. If you omit seconds after CD, the default is zero
and the signal is not checked.

IiO statements to a communications file do not execute if these
signals are off. The system waits 1 second before returning a
“Device Timeout” error. Specifying these options lets you ignore
these signals or specify the length of time to wait for the signal.

The LF option sends a line feed character after every carriage
return. This is useful if you are printing the communication
data to a serial line printer. A line feed is also sent after the
carriage return that is the result of the width setting. Note that
when you specify the LF option, INPUT# and LINE INPUT#
stop when they read a carriage return and ignore the line feed.

Mode specifies the type of data that is transmitted. It may be
either BIN for binary mode or ASC for ASCII mode. If you omit
mode, OPEN COMl opens the device in binary mode.

If you specify the BIN mode, OPEN COM does not expand tabs
to spaces, does not force a carriage return at the end of the line,
does not recognize Control Z as an end-of-file, and ignores the
LF option.

If you specify the ASC mode, OPEN COM expands tabs to
spaces, forces a carriage return at the end of the line, and recog-
nizes Control Z as the end-of-file. When you close the channel,
Control Z is sent over the RS-232 line.

246

Chapter 10 I BASIC Keywords

The PE option enables parity checking. With the option on, par-
ity errors cause Device IiO errors and turn on the high order bit
for 7 or fewer data bits. The default is no parity checking. Fram-
ing and overrun errors always cause Device IiO errors and turn
on the high order bit, regardless of whether or not you use the
PE option.

Examples
OPEN "CUM1 : " A S 1

opens Buffer 1 for Communications Channel 1 at a rate of 300
bps with even parity, 7 data bits, and 1 stop bit. RTS is sent.

OPEN "COM2:9600,N,8,1 ,BIN" A S 2

opens Buffer 2 for Communications Channel 2 at a rate of 9600
bps with no parity, 8 data bits, and 1 stop bit. The data is
binary.

OPEN "COM1 : 4800,, , ,CS3000 ,DS2000" A S 1

opens Buffer 1 for Communications Channel 1 at a rate of 4800
bps with even parity, 7 data bits, and 1 stop bit. RTS is sent.
OPEN COM issues a "Device Timeout" error if there is no CS
signal after 3 seconds and no DS signal after 2 seconds. Note
that even though parity, data, and stop are not included, the
commas are required.

247

Chapter 10 I BASIC Keywords

OPTION BASE Statement

OPTION BASE value

Sets value as the minimum value for an array subscript.

Value may be 1 or 0. The default is 0.

If you use this statement in a program, it must precede the DIM
statement.

If the statement:
OPTION BFISE 1

is executed, 1 is the lowest value an array subscript may have.

248

Chapter 10 I BASIC Keywords

OUT Statement

OUTport, data byte

Sends a data byte to a machine output port. A port is an input/
output location in memory.

Port is an integer in the range 0 to 65535.

Data byte is an integer in the range 0 to 255.

Example
OUT 3 2 , 1 0 0

sends 100 to port 32.

249

Chapter 10 I BASIC Ke.ywords

PAINTlGraphics Statement

Fills in an area on the display with a selected color or pattern.

(x,y) specify the coordinates where the painting begins. x is the
horizontal coordinate, and y is the vertical coordinate.

Color can be either a number.or a string expression. If color is a
number it specifies a color number available in the current
screen mode.

If color is a string expression, it specifies the mask to be used for
tiling. The tiling mask describes a pattern to be used when
painting and is in the form:

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Hnn) ...
Border specifies the border color at which to stop painting, and
must be a color number in the current palette. If you omit bor-
der, BASIC assumes the value of color.

See Chapter 8, “Displaying Color and Graphics,” for information
on coordinates and colors for the current screen mode.

Background is a 1-byte string expression specifying which color
to skip when checking for borders while paint tiling.

BASIC begins to change the color of pixels at the point you spec-
ify with x and y coordinates. BASIC continues to change the
color of every pixel that is not the same color as color. When
BASIC paints 1 line of pixels without changing the color of any
pixel in that line, PAINT is complete.

However, you may continue past this point while tile painting.
The background option tells PAINT what background tile pattern
or color byte to skip when checking for the boundary.

250

Chapter 10 I BASIC Keywords

This means that instead of stopping when 1 line of points has
been painted without changing the color, PAINT can continue, if
you specify background. For example, normally you cannot draw
alternating blue and red lines on a red background because
PAINT stops after painting the first red line. However, by speci-
fying red as the background color (&HAA), you can draw the red
line over the red background.

PAINT must start on a nonborder point. If the point is already
border or color color, BASIC does not execute the PAINT
statement.

PAINT can fill any figure, but painting jagged edges or very
complex figures may result in an “Out of memory” error. If this
happens, you must use the CLEAR statement to increase the
amount of stack space available.

Tiling
Tiling lets you select a pattern to be used when painting an area
on the screen. The tile mask is 8-bits wide and may be a maxi-
mum of 64 bytes long:

X,Y 8 7 6 5 4 3 2 1 tile byte

0,0
0,1
012
073

. 1

. 2

. 3

. 4

0,63 64

Each byte in the mask represents 8 points along the horizontal
row and 1 point along the vertical row. PAINT repeats the tile
mask pattern (horizontally and vertically) to create a uniform
pattern over the entire area being painted.

251

Chapter 10 I BASIC Keywords

In high resolution graphics, 1 bit of the tile mask equals 1 point
on the screen. Therefore, each position in the tile mask with the
bit value one (1) is drawn. You can paint a pattern of Xs with
this tile mask:

byte 8 7 6 5 4 3 2 1

0 1 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1 0
2 0 0 1 0 0 1 0 0
3 0 0 0 1 1 0 0 0
4 0 0 0 1 1 0 0 0
5 0 0 1 0 0 1 0 0
6 0 1 0 0 0 0 1 0
7 1 0 0 0 0 0 0 1

CHR$(&H8 1)
CHR$(&H42)
CHR$(&H24)
CHR$(&H18)
CHR$(&H18)
CHR$(&H24)
CHR$(&H42)
CHR$(&H81)

In 4-color graphics, 2 bits correspond to each point on the screen.
That is, each byte of the tile mask describes only 4 points. These
2 bits describe the color for the point being drawn. The following
chart shows the values for the given colors. Remember, Color 0 is
the set background color. (See COLOR.)

Palette Palette binary
0 1 value

green cyan 01
red magenta 10

brown white 11

The following tile mask sets up a star pattern in green and
brown using Palette 0 or in cyan and white using Palette 1.

BYTE

0 01 00 00 01 CHR$(&H41)
1 00 01 01 00 CHR$(&H14)
2 11 11 11 11 CHR$(&HFF)
3 00 01 01 00 CHR$(&H14)
4 01 00 00 01 CHR$(&H41)

In 16-color graphics (Modes 3 and 5) , 4 bits correspond to each
point on the screen. That is, each byte of the tile mask describes
only 2 points.

252

Chapter 10 I BASIC Keywords

PALETTE/Graphics Statement

PALETTE [color,dispZay color]

Changes the color associated with a particular color number in
the current palette.

Color specifies the color number in the current palette you want
to change. It is an integer in the range 0 to 15. See Chapter 8,
“Displaying Color and Graphics,” for information on colors in the
current screen mode.

Display color specifies the new color you want BASIC to display
when color is specified. Display color may be a number in the
range 0 to 15 as described in Chapter 8, “Displaying Color and
Graphics .”
For example, in Screen Mode 3, Color 1 is blue. You can use the
PALETTE statement to change it so that Color 1 is associated
with a different color. For example, use this statement to change
Color 1 to magenta:

P A L E T T E 1 , 5

When you execute a PALETTE statement to change the default
values, the new values remain in effect until you execute another
COLOR/Graphic, PALETTE or PALETTE USING statement. A
PALETTE statement without parameters forces the position
numbers to return to their default values.

You can change only 1 position in the palette each time you exe-
cute a PALETTE statement. To change more than 1 position in a
palette, see the PALETTE USING statement.

253

Chapter 10 I BASIC Ke.ywords

Example
P A L E T T E 3 , 7

changes the third position from cyan to gray.
P A L E T T E

changes all positions in the current palette to their default
values.

Sample Program
5 SCREEN 1

1 0 COLOR 0 , 0
2 0 P A L E T T E 3 , l
3 0 L I N E (0 , 1 - 0 0) - (3 1 9 , 1 0 0) , 3
4 0 P A I N T (1 , 1 0 0) , 3 , 6
5 0 P A L E T T E

Line 10 selects Palette 0 as the current palette. Line 20 changes
position Number 3 from brown to blue. Line 30 draws a horizon-
tal blue line across the center of the screen. Line 40 colors the
lower half of the screen blue. Line 50 causes the palette to re-
turn to its original value. Position 3 is now brown again.

254

Chawter 10 I BASIC Kevwords

PALETTE USING/Graphics Statement

PALETTE USING array(subscrippt)

Changes the colors associated with more than 1 of the color
numbers in the current palette.

Array is the name of an integer array in which you define the
order in which colors are to be put in the current palette.

Subscript is the array position that contains the value of the
color that you want put in the first palette position. After BASIC
assigns that value to the first position, it assigns the remaining
array values to the remaining palette positions. Therefore, when
you create the array, have at least 16 elements following sub-
script so that PALETTE USING has enough colors to fill the
palette.

The array can be larger than the palette. PALETTE USING
stops filling the current palette when it reaches the last position
in the palette.

To create the array, load a color number into each element.
Group color numbers that you use most often. For example, if you
use 2 shades of blue with 2 shades of green, place their color
numbers adjacent in the array, like this:

Subscript Color

0 2 (Green)
1 10 (Light Green)
2 1 (Blue)
3 9 (Light Blue)

In the statement:
P A L E T T E USING A C 0)

Color 0 becomes green, Color 1 becomes light green, Color 2 be-
comes blue, and Color 3 becomes light blue.

If you assign a value of -1 to a position in the array, PALETTE
USING does not change the corresponding color from its previous
value.

255

Chapter 10 1 BASIC Keywords

The array may be larger than the palette. PALETTE USING
stops filling the current palette when it reaches the last position
in the palette.

If you use the 2 shades of blue with the 2 shades of red, and also
use the 2 shades of blue with the 2 shades of cyan, you can put
the numbers for the shades of blue in your array as often as you
need them. You can expand the previous array, for example:

Subscript Color

0
1
2
3
4
5
6
7
8
9

2 (Green)
10 (Light Green)
1 (Blue)
9 (Light Blue)
4 (Red)

12 (Light Red)
9 (Light Blue)
1 (Blue)
3 (Cyan)

11 (Light Cyan)

Examples
P A L E T T E USING A (2)

loads the palette with the blues and reds. Color 1 is still blue.
Color 2 becomes light blue, Color 3 becomes red, Color 4 becomes
light red.

P A L E T T E USING A (4)

puts the same colors in the palette in a different order. In this
case, Color 1 becomes red, Color 2 becomes light red, Color 3 be-
comes light blue, Color 4 becomes blue.

256

Chawter 10 I BASIC Kevwords

PCOPY Statement

PCOPY source page,destinatwn page

Copies one video page to another.

Source page is an integer representing a video page in memory
to be copied. The range depends on the current screen mode and
the amount of video memory.

Destination page represents the video page to receive the copy.
Its requirements are the same as source page.

Example
P C O P Y 3 , 5

copies the contents of Video Page 3 to Video Page 5.

257

Chawter 10 I BASIC Kevwords

PEEK Function

PEEK(mmry location)

Returns a byte from memory location

Memory location must be in the range -32768 to 65535.

The value returned is an integer in the range 0 to 255. (For the
interpretation of a negative value of memory location, see the
VARPTR statement.)

PEEK is the complementary function of the POKE statement.

Example
A = P E E K (6 H S A 0 0)

BASIC returns the value stored at address 5A00 and stores it in
variable A.

258

Chapter 10 I BASIC Keywords

PEN Function

PEN(num ber)

Returns the light pen’s coordinates.

Number is a number in the range 0 to 9 that tells BASIC what
to return. Values 0-5 return x,y coordinates corresponding to the
current screen mode. Values 6-9 return the character row or col-
umn position.

0

1

2

3

4

5

6

7

8

9

Returns a -1 if pen button has been pressed since last
poll. Returns a 0 if not.

Returns the x coordinate (horizontal) where the pen
was last activated.

Returns the y coordinate (vertical) where the pen was
last activated.

Returns a -1 if the pen button is being pressed. Re-
turns a 0 if it is up.

R e t u r n s t h e l a s t known valid x coordinate
(horizontal).

Returns the last known valid y coordinate (vertical).

Returns the character row position where the pen was
last activated.

Returns the character column position where the pen
was last activated.

Returns the last known character row position.

Returns the last known character column position.

You must execute a PEN ON statement before executing the
PEN function. If you do not, an “Illegal function call” error
occurs.

Example
A = P E N C 1)

returns the x coordinate of the pen.

259

Chapter 10 I BASIC Keywords

PEN/Trap Statement

PEN action

Turns on, t u r n s off, or temporarily ha l t s l ight pen event
trapping,

Actwn may be any of the following:

ON enables event trapping
OFF disables event trapping.
STOP temporarily suspends event trapping.

Use the PEN/Trap statement in a light pen trap routine with
the ON PEN statement to detect when the light pen has been
activated.

The PEN ON statement turns on the trap. BASIC checks after
each program line to see if the light pen has been activated. If
so, BASIC transfers program control to the line number specified
in the ON PEN GOSUB statement.

The PEN STOP statement temporarily halts light pen trapping.
If the light pen is activated, BASIC does not transfer program
control to the ON PEN GOSUB statement until you turn on
trapping again by executing a PEN ON statement. BASIC re-
members that the light pen was activated and branches to the
subroutine immediately after trapping is turned on again.

The PEN OFF statement turns off light pen trapping. BASIC
does not remember if the light pen was activated when trapping
is turned on again.

You must also use PEN ON before executing the PEN function.

See ON PEN GOSUB for more information about light pen
trapping.

260

Chapter 10 I BASIC Ke-ywords

PLAY Statement

PLAY string [,[string1 [,string11

Plays the musical notes specified by string. PLAY supports 3
separate strings to allow independent control of each of 3 voices.

String is a string expression consisting of 1 or more single-char-
acter music commands. String must be enclosed in quotation
marks.

The single character music commands are:

A - G plays notes A through G of one musical scale.
You may include an optional number sign (#) or
plus sign (+) to indicate a sharp note or a minus
sign (-) t o indicate a flat note. You may only
specify sharp or flat notes that correspond to the
black keys on a piano. The letters A, C, D, F,
and G may be followed by a plus because they
are followed by black keys on a piano. The letters
A, B, D, E, and G may be followed by minus be-
cause they a re preceded by black keys on a
piano.

sets the duration of the notes that follow. n may
be a value in the range 1 to 64. Here are a few of
the more common lengths:

Ln

1 indicates a whole note.
2 indicates a half note.
4 indicates a quarter note.
8 indicates an eighth note.

16 indicates a sixteenth note.

If you want to change the duration for only 1
note, place n immediately after the note, omit-
ting the L. For example, A16 is equivalent t o
L16A.

sets the current octave. There are 7 octaves, 0
through 6. Each octave starts with C and ends
with B. Octave 3 starts with middle C. If you
omit n, BASIC assumes Octave 4.

On

261

Chapter 10 I BASIC Keywords

>

<

Nn

Pn

Tn

MF

MB

MN

Changes the current octave to the next higher
octave.

Changes the current octave to the next lower
octave.

plays a note. n may be in the range 0 to 84. In
the 7 possible octaves, there are 84 notes. Instead
of specifying the letter and the octave of the note,
you may specify its number 1 to 84. Specifying
zero means rest.

rests. n may be in the range 1 to 64 and has the
same meaning as n with the L option.

sets the number of quarter notes in 1 minute. n
may be in the range of 32 to 255. If you omit n,
BASIC assumes 120 quarter notes in 1 minute.
That is a moderate tempo. See the SOUND
statement for information on beats per minute for
common tempos.

plays as a dotted note. BASIC plays the note one-
half its length longer. You may use more than
one dot after each note. BASIC scales the length
of time accordingly. Dots may also appear after
the P option to scale the length of the rest.

plays the music in the foreground, which includes
sounds made by both PLAY and SOUND. This
means that each subsequent note or sound does
not start until the previous note or sound is fin-
ished. If you omit MF and MB, BASIC assumes
MF.

plays the music in the background, which in-
cludes sounds made by both PLAY and SOUND.
This means that each note or sound is placed in
a buffer allowing the BASIC program to continue
execution while music plays in the background. A
maximum of 32 notes and/or rests can play in
background at a time.

sets “music normal”; each note plays 718 of the
duration as set by the L option. If you omit MN
and MS, BASIC assumes MN.

262

Chapter 10 I BASIC Keywords

ML

MS

X variable;

sets "music legato"; each note plays the full du-
ration as set by the L option.

sets "music staccato"; each note plays 3/4 of the
duration as set by the L option.

executes a substring. The X command lets you
execute a second substring from a string, much
like GOSUB. You can have one string execute
another, which executes a third, and so on. Vari-
able is a string variable in your program that
contains the substring you want to execute. Vari-
able may contain an X command to execute an-
other substring. The semicolon after the variable
name is required.

sets the volume. n must be in the range 0 to 15.
You must execute a SOUND ON statement to use
this option. If you omit volume, BASIC uses 8.

With the 0, N, P, and T commands, n may also be a numeric
variable in your BASIC program. Do not space between the com-
mand and the n or between the command and the variable. You
must include a semicolon after the variable name.

The lowest note the multi-voice sound chip can produce is Note A
of Octave 0, which is 110Hz. If you try to play a lower note,
BASIC does not return an error. Instead, BASIC plays Note A of
Octave 0.

Vn

Ex ample
1 0 PLAY " C 4 F . C 8 F 8 . C 1 6 F 8 . G 1 6 A 2 F 2 "
2 0 I N P U T "CAN YOU NAME THAT TUNE " ; A $
4 0 I F A $ = "THE EYES OF T E X A S " THEN GOTO 5 0 ELSE

5 0 P R I N T " T H A T ' S R I G H T ! "
P R I N T "TRY A G A I N " : GOTO 1 0

263

Chapter 10 I BASIC Keywords

PLAY Function

PLAY (num ber)

Returns the number of notes currently in the background music
queue.

Number is a dummy argument when SOUND is OFF. If you exe-
cute a SOUND ON, then number may be one of the following:

0

1

2

returns the number of notes left to play on voice
channel 0.
returns the number of notes left to play on voice
channel 1.
returns the number of notes left to play on voice
channel 2.

If you specify a number other than 0-2, BASIC assumes 0.

The PLAY function returns a 0 when the program is running in
music foreground mode.

See also SOUND

Sample Program
1 0 P L A Y "ME ABCDEFG"
2 0 IF P L A Y (0) = 4 GOTO 40
30 GOTO 20
4 0 P L A Y "GFEDCBA"

Line 10 sends notes to the music buffer. When the number of
notes is less than 4. Line 40 sends more notes to the buffer.

264

Chapter 10 I BASIC Keywords

PLAY/Trap Statement

PLAY action

Turns on, turns off, or temporarily halts background music event
trapping.

Action may be any of the following:

ON enables play event trapping.

OFF disables play event trapping.

STOP

Use the PLAY/Trap statement in a background music trap rou-
tine with the ON PLAY GOSUB statement to detect when the
number of notes in the background music queue goes from num-
ber to number minus 1.

The PLAY ON statement turns on the trap. BASIC checks the
number of notes in the background music queue after each pro-
gram line. If the number is equal to that in the ON PLAYO GO-
SUB statement, BASIC transfers program control to the line
number specified.

The PLAY STOP statement temporarily halts background music
trapping. If the number of notes equals the specified number,
BASIC does not transfer program control to the ON PLAYO GO-
SUB statement until you turn on trapping again by executing a
PLAY ON statement. BASIC remembers that the number of
notes was equal and branches to the subroutine immediately
after trapping is turned on again.

The PLAY OFF statement turns off background music trapping.
BASIC does not remember if the number of notes in the queue is
equal to the number specified when trapping is turned on again.

See ON PLAYO GOSUB for more information about background
music trapping.

temporarily suspends play event trapping.

265

Chapter 10 I BASIC Ke.ywords

PMAP Function

PMAP(coordinate,action)

Returns the physical or world coordinate for the specified coordi-
nate.

Coordinate is any x- or y-coordinate. If coordinate is a physical
coordinate, it must be within the limits of the screen. If coordi-
nate is a world coordinate, it may be any single precision floating
point number.

Action is one of the following:

0 returns the physical x-coordinate for the specified
world coordinate.

returns the physical y-coordinate for the specified
world coordinate.

returns the world x-coordinate for the specified physi-
cal coordinate.

returns the world y-coordinate for the specified physi-
cal coordinate.

1

2

3

Example
A = P M A P (2 0 0 , B)

returns the physical x-coordinate of the world coordinate 200
and places it in A.

266

Chawter 10 I BASIC Kevwords

POINT/Graphics Function

POINT (x,y)
POINT (action)

Returns the color number of a point on the screen or returns the
current physical or world coordinates.

(x,y) specify the coordinates of the point. x is the horizontal
point, and y is the vertical point. The x and y coordinates must
be absolute values. If you specify a point that is out of range,
BASIC returns a -1.

See Chapter 8, “Displaying Color and Graphics,” for information
on coordinates for the current screen modes.

Action is one of the following:

0 returns the current physical x-coordinate (horizontal).

1 returns the current physical y-coordinate (vertical).

2 If WINDOW is active, returns the world x-coordinate.

3 If WINDOW is active, returns the world y-coordinate.

When retrieving the color number, POINT returns the color
number as it is defined in the current palette.

Otherwise, returns the physical x-coordinate.

Otherwise, returns the physical y-coordinate.

Example
1 0 SCREEN 2
20 I F P O I N T (1 , 1) < > 0 THEN PRESET (1 ,I 1 ELSE PSET
(1 , I)

If point 1,l is any foreground color, PRESET changes it t o the
background color. If the point is the background color, PSET
changes it to Color 3.

1 0 SCREEN 1
20 X = P O I N T (0) : Y = P O I N T (I)
3 0 P R I N T X , Y

BASIC prints the coordinates of the graphics cursor.

267

Chapter 10 I BASIC Keywords

POKE Statement

POKE memory location, data byte

Writes data byte into memory location.

Both memory location and data byte must be integers. Memory lo-
cation must be in the range -32768 to 65535.

POKE is the complementary statement of PEEK. The argument
to PEEK is a memory location from which a byte is to be read.

PEEK and POKE are useful for storing data efficiently, loading
assembly-language subroutines, and passing arguments (or re-
sults) to and from assembly-language subroutines.

See also VARPTR.

Example
P O K E & H 5 A 0 0 , CHFF

writes a hexadecimal FF into memory location 5A00.

268

Chapter 10 I BASIC Keywords

POS Function

POS(number)

Returns the current column position of the cursor.

Number is a dummy argument.

POS returns a number in the range 1 to 80, indicating the cur-
rent cursor-column position on the display.

Example
P R I N T T F I B (4 0) P O S (0)

prints 40. The PRINT TAB statement moves the cursor to Posi-
tion 40; therefore, POS(0) returns the value 40. (However, be-
cause a blank is inserted before the “4” to accommodate the
sign, the “4” is actually at Position 41.)

Sample Program
1 5 0 C L S
1 6 0 FIF = I N K E Y F
1 7 0 I F A $ = I”’ THEN 1 6 0
1 8 0 I F P O S (X) > 7 0 THEN I F A $ = C H R F (3 2) THEN FIB
= C H R F (1 3)
2 0 0 L P R I N T F I B ;
2 1 0 GOT0 1 6 0

This program lets you use your printer as a typewriter (except
that you cannot correct mistakes). Your computer keyboard is
the typewriter keyboard. Everything you type is printed on your
printer. The program also makes sure that no word is divided
between two lines.

269

Chapter 10 I BASIC Keywords

PRINT Statement

PRINT data[,data, ...I

Prints numeric or string data on the display. You can substitute
a question mark (?) in place of the word PRINT.

Data is any numeric or string constant or variable. If you omit
datu, BASIC prints a blank line. If you specify more that 1 data
item in the statement, separate them by commas, semicolons, or
spaces.

If you use commas, the cursor automatically advances to the
next tab position before printing the next item. (BASIC divides
each line into print zones containing 14 positions each, at col-
umns 14, 28, 42, 56, and 70.)

If you use semicolons or spaces to separate the data items,
PRINT prints the items without any spaces between them.
BASIC begins the next PRINT item where the last one stopped.

If no trailing punctuation is at the end of the PRINT statement,
the cursor drops to the beginning of the next line.

If BASIC tries to print a string longer than it can fit on the cur-
rent line, it moves to the next line and prints the string.

Single precision numbers with 7 or fewer digits that can be accu-
rately represented are printed in regular format rather than ex-
ponential format. For example, 1E-7 is printed as .0000001; 1E-8
is printed as 1E-08.

Double precision numbers with 16 or fewer digits that can be ac-
curately represented are printed in regular format rather than
exponent ia l format . For example, 1D-15 i s pr in ted a s
.000000000000001; 1D-16 is printed as 1D-16.

BASIC prints all numbers with a trailing blank and prints posi-
tive numbers with a leading blank. Negative numbers are pre-
ceded by a minus sign.

String constants must be enclosed in quotation marks.

270

Chapter 10 I BASIC Ke-ywords

Examples
P R I N T "DO"; "NOT"; " L E A V E " ; "SPACES"; "BETWEEN";

"THE S E " ; "W URDS"

displays DONOTLEAVESPACESBETWEENTHESEWORDS

Sample Program
60 I N P U T "ENTER T H I S YEAR"; Y
7 0 I N P U T "ENTER YOUR AGE";A
80 I N P U T "ENTER f? YEAR I N THE FUTURE" ;F
90 N = A + (F - Y)

OLD"
1 0 0 PRINT "IN THE Y E A R " F - Y O U WILL B E " N " Y E A R S

Because F and N are positive numbers, PRINT inserts a space
before and after them; therefore, your display should look similar
to this (depending on your input):

I N THE YEAR 2 0 0 4 YOU WILL BE 4 6 YEARS OLD

If we had separated each expression in Line 100 by a comma:
1 0 0 P R I N T " I N THE YEAR" ,F , "YOU W I L L BE" ,N, "YEARS
OLD"

BASIC would move to the next tab position after printing each
data item.

271

Chapter 10 I BASIC Keywords

PRINT USING Statement

PRINT USING format; data[,data, ... I

Prints data using a format you specified. This statement is espe-
cially useful for printing report headings, accounting reports,
checks, or any other documents that require a specific format.

Format consists of 1 or more field specifierb), or any alphanu-
meric character. Format must be enclosed in quotation marks.

Data may be string and/or numeric value(s1. If you specify more
than 1 data item in the statement, use the same separators as
described in PRINT.

With PRINT USING, you may use certain characters called field
specifiers, to format the field. You may use more than 1 field spe-
cifier, except as indicated.

Specifiers for String Fields:

! prints the first character in the string only
P R I N T U S I N G ' I ! " ; "PERSONNEL"

BASIC prints P.

\spaces \ prints 2 + n characters from the string (n is the num-
ber of spaces between the slashes). If you type the
backslashes without any spaces, BASIC prints 2 char-
acters; with one space, BASIC prints 3 characters, and
so on. If the string is longer than the field, the extra
characters are ignored. If the field is longer than the
string, the string is left-justified and padded with
spaces on the right.
P R I N T U S I N G " \ B B B \ " ; "PERSONNEL"

BASIC prints PERSO

prints the string without modifications.
1 0 A $ = " T A K E " : B $ = " R A C E "
2 0 P R I N T U S I N G " ! " ; A $;
3 0 P R I N T U S I N G "&";E$

When this program is run, BASIC prints TRACE.

&

272

Chapter 10 I BASIC Keywords

Specifiers for Numeric Fields:

prints the same number of digit positions as number
signs (#I. Numbers are rounded as necessary.

You may insert a decimal point at any position. BASIC
always prints the digits preceding the decimal point. If
there is no number, BASIC prints a zero.

If the number to be printed has fewer digits than posi-
tions specified, the number is right-justified (preceded
by spaces). If the number to be printed is larger than
the specified numeric field, a percent sign (%) is
printed in front of the number.
PRINT US I NG ' I## . ##' I ; 1 1 1 .22
PRINT U S I NG ' I # # . ##' I ; .75
PRINT US I NG I .###. ##";876.567

BASIC prints %111.22, 0.75 and 876.57, respectively.

If the number of digits specified exceeds 24, an "Illegal
function call" occurs.

prints the sign of the number. The plus sign may be
typed at the beginning or at the end of the format
string.

+

PRINT USING ' I + # # . # # ' I; -98.45,3.50,22.22,-.9

BASIC prints: -98.45 + 3.50 + 22.22 -0.90
P R I N T USING ' I # # . # # + ' I ; -98.45,3.50,22.22,-.9

BASIC prints: 98.45- 3.50 + 22.22 + 0.90-

(Note the use of spaces at the end of a format string to
separate printed values.)

prints a negative sign after negative numbers (and a
space after positive numbers).

-

PRINT USING l o # # # . # - " ; -768.668

BASIC prints 768.7-.

273

Chapter 10 I BASIC Ke.ywords

fills leading spaces with asterisks. The 2 asterisks also
establish 2 more positions in the field.
PRINT USING " * * # # # # " ; 44.0

BASIC prints ****44

prints a dollar sign immediately before the number.
This specifies 2 more digit positions, one of which is
the dollar sign. You may not use exponent format with
$$.
PRINT USING " $ $ # # . # # ' I ; 112.7890

BASIC prints $112.79

fills leading spaces with asterisks and prints a dollar
sign immediately before the number.
PRINT USING " * * $ # # . # # ' I ; 8.333

BASIC prints """$8.33

prints a comma before every third digit to the left of
the decimal point. The comma establishes another digit
position.
PRINT US I NG 1234.5

BASIC prints 1,234.50

prints in exponential format. The 4 exponent signs are
placed after the digit position characters. You may
specify any decimal point position. You may not use $$
with exponent format.
P R I N T US I NG " . 888888

BASIC prints .88893 + 06

Prints next character as a literal character
PRINT US I NG "-! # # . ##- ! "; 12.34

BASIC prints ! 1 2.3 4!

274

Chapter 10 1 BASIC Keywords

Sample Program
4 2 0 C L S : A $ = ' I * * $ # # , # # # # # # . # # DOLLARS"
4 3 0 I N P U T "WHAT I S YOUR F I R S T NAME"; F $
4 4 0 I N P U T "WHAT I S YOUR M I D D L E NAME"; M $
4 5 0 I N P U T "WHAT I S YOUR L A S T NAME". L $
4 6 0 I N P U T "ENTER AMOUNT P A Y A B L E " ; b
4 7 0 C L S : P R I N T "PAY TO THE ORDER OF 'I;

4 8 0 P R I N T U S I N G " ! ! ! ! 'I; F S ; ' I . " ; M B ; " 0 , ' I .

4 9 0 P R I N T L F
500 P R I N T : P R I N T U S I N G A $; P

In Line 480, each ! picks up the first character of one of the fol-
lowing strings (F$, ".", M$, and "." again). Notice the 2 spaces in
"!!b!!b". These 2 spaces insert the appropriate spaces after the
initials of the name (see below). Also notice the use of the vari-
ables A$ for format and P for item list in Line 500. Any serious
use of the PRINT USING statement would probably require the
use of variables rather than constants, at least for data items.
(We have used constants in our examples for the sake of better
illustration.)

When the program above is run, the display shows:
WHAT I S YOUR F I R S T NAME? JOHN
WHAT I S YOUR M I D D L E NAME? P A U L
WHAT I S YOUR L A S T NAME? JONES
ENTER AMOUNT P A Y A B L E ? 1 2 3 4 5 . 6
PAY TO THE ORDER OF J . P . JONES

* * * * * $ 1 2 , 3 4 5 . 6 0 D O L L A R S

275

Chapter 10 I BASIC Keywords

PRINT# Statement

PRINT# buffr,[USING format] data[,data, ...I

Writes data items to a sequential disk file.

Buffer is the number assigned to the file when you opened it.

When you first open a file for sequential output, BASIC sets a
pointer to the beginning of the file-that is where PRINT#
starts writing the data items. At the end of each PRINT# opera-
tion, the pointer advances so that data items are written in
sequence.

A PRINT# statement creates a disk image similar to the image
a PRINT to the display creates on the screen. For this reason, be
sure to delimit the data so that it will be input correctly from
the disk.

PRINT# does not compress the data before writing it to disk. It
writes an ASCII-coded image of the data.

When you include the USING option, data is written to the disk
in the format you specify. See PRINT USING.

Examples
I f A = 1 2 3 . 4 5
PRINT# l , A

writes this 9-byte character sequence to the file as:
h l 1 2 3 . 4 5 h l carriage return

The punctuation in the PRINT list is very important. Unquoted
commas and semicolons have the same effect as they do in regu-
lar PRINT statements to the display. For example:

A = 2 3 0 0
B = 1 . 3 0 3
PRINT# 1 , A , B

writes the data on disk as:
hl 2 3 0 0 hlhlhlbhlbhlhlhlhl 1 . 3 0 3 M carriage return

276

Chapter 10 I BASIC Keywords

The comma tells BASIC to tab between A and B, which creates
10 extra spaces in the file. Generally you do not want to use up
storage space this way, so you use semicolons instead of commas.

P R I N T # 1 , A ; ” , ‘ I *

This time BASIC writes the data as:
1 2 3 . 4 5 , l . 3 0 3

An INPUT# statement reads this as 2 separate fields.

If s t r ing variables contain commas, semicolons, or leading
blanks, enclose them in quotation marks. For example:

A $ = CAMERA, A U T O M A T I C
E$ = 1 0 2 3 8 2
P R I N T # 1 , A $; E$

writes the data as:
C A M E R A M M M ~ M M M M ~ ~ A U T O M A T I C l 8 2 3 8 2

An INPUT# statement reads this as 2 separate fields
A $ = CAMERA
E$ = A U T O M A T I C 1 8 2 3 8 2

To separate these 2 strings properly in the file, write quotation
marks using the hexadecimal representation CHR$(34). For
example :

P R I N T # 1 , C H R $ (3 4) ; A $; C H R $ (3 4) ; E$; C H R s (3 4)

BASIC writes the following image to the file:
“CAMERA, A U T O M A T I C ” 1 0 2 3 8 2 ”

The s t a t e m e n t INPUT# 1, A$, B$ r eads “CAM-
ERA,AUTOMATIC” into A$ and “102382” into B$.

277

Chapter 10 I BASIC Ke,ywords

You can write files in a carefully controlled format using
PRINT# USING. You also can use this option to control how
many characters of a value are written to disk.

For example, suppose A$ = “LUDWIG’, B$ = “VAN”, and C$ =
“BEETHOVEN’. Then the statement:

P R I N T # 1 , U S I N G ” ! . ! . \ M M \ “ ; A $; B $; C $

writes the data in nickname form:
L . V . B E E T

(In this case, we did not want to add any explicit delimiters.) See
PRINT USING for more information on the USING option.

278

Chapter 10 I BASIC Ke.ywords

PSET/PRESET/Graphics Statement

PSET [STEP] (x,y)[,colorl
PRESET [STEP] (x,y)[,colorl

Draws a point on the display.

The STEP option tells BASIC that the (XJ) coordinates are rela-
tive to the last point referenced.

(XJ) specify the coordinates in which to draw the point. X is the
horizontal coordinate and y is the vertical coordinate.

Color specifies the color of the point.

See Chapter 8, “Displaying Color and Graphics” for information
on coordinates and colors.

The only difference between the PSET and PRESET statements
is the default values for color. If you use PSET, color defaults to
the foreground color. If you use PRESET, color defaults to the
background color.

Note: BASIC does not print and does not issue an er-
ror message for points the coordinate values of which
are beyond the edge of the screen. However, values
outside the integer range (-32768 to 32767) cause an
overflow error.

Sample Program
5 SCREEN 3
10 FOR 1 = 0 TO 100
20 P S E T (1,I)
3 0 NEXT I’draw a diagonal line t o (100,100)
4 0 FOR I = 100 TO 0 STEP -1
50 P R E S E T (1,1),0
6 0 NEXT I
7 0 ‘clear t h e line b y setting each pixel to 0
8 0 SCREEN 0

Lines 10 to 30 draw a diagonal line on the screen from the home
position to Position 100,100. Lines 40 to 60 erase the line by
drawing another line a t the same position in the background
color.

279

Chapter 10 I BASIC Keywords

PUT Statement

PUT [#lbuffr[,recordl

Puts a record in a direct access disk file.

Buffer is the number assigned to the file when you opened it.
The number sign (#) is optional. It is provided for compatibility
with other BASICs.

Record is the record number you want to write to the file. It is
an integer in the range 1 to 16,777,215. If you omit record, the
current record number is used.

If record is higher than the end-of-file record number, then rec-
ord becomes the new end-of-file record number.

The first time you use PUT after opening a file you must specify
the record. The first time you access a file via a particular buffer
the next record is set equal to one greater than the last record
accessed.

See Chapter 7, “Disk Files,” for programming information.

Examples
PUT 1

writes the next record from Buffer 1 to a direct access file.
PUT 1 ,25

writes Record 25 from Buffer 1 to a direct access file.

280

Chapter 10 I BASIC Keywords

PUT/Communications Statement

PUT [# 1 buf fr , num ber

Transfers data from the communications buffer to the communi-
cations line.

Buffer is the number assigned to the file when you opened it.
The number sign (#) is optional. It is provided for compatibility
with other BASICs.

Number is the number of bytes to transfer. It cannot exceed the
value you used in the LEN option in the OPEN COM statement.

Note: Because of the low performance associated with
telephone line communications, we recommend that
you not use GET and PUT statements in such
applications.

Example
PUT 2 , 8 0

transfers 80 bytes from communications buffer (Buffer 2) to the
communications line.

Sample Program
1 0 OPEN "COM1 : I ' A S 1
2 0 F I E L D 1 , 8 AS A $
3 0 OPEN "R" , 3 , "da t a . f i 1 " ,8
4 0 F I E L D 3 , 8 A S N S
5 0 FOR I = 1 TO 7
6 0 GET 3 , I
7 0 L S E T A $ = N $
8 0 PUT 1 ,8
9 0 NEXT I
1 0 0 C L O S E

This program moves the data from the data.fiZ file buffer to the
communications buffer. Line 80 sends the data in the communi-
cations buffer to the communications line.

281

Chapter 10 I BASIC Keywords

PUT/Graphics Statement

Transfers an image stored in an array onto the screen.

You get the GET/Graphics and PUTiGraphics statements to-
gether for animation and high-speed object motion in Screen
Modes 1, 2, 3, or 4. The GET/Graphics statement transfers the
screen image described by specified points of the rectangle in the
array. The PUT/Graphics statement transfers the image from
the array to the display.

(x,y) specify the coordinates where the image begins. x is the
horizontal coordinate and y is the vertical coordinate.

The x and y coordinates specify the coordinate of the upper left
corner of the image. If you omit x and y , BASIC begins the im-
age at the last point referenced on the screen. See Chapter 8,
“Displaying Color and Graphics” for information on coordinates
for the current screen mode.

BASIC returns an “Illegal function call” error if the image is too
large to fit on the current viewport.

Array is the array variable name that holds the image.

Action sets the type of interaction between the transferred image
and the image already on the screen. Action may be PSET, PRE-
SET, AND, OR, or XOR. If you omit action, BASIC assumes
XOR. The following describes each type of action:

PSET transfers the data to the screen exactly as it was
stored in the array.

282

Chapter 10 I BASIC Keywords

PRESET produces an opposite image on the screen. With 2
color sets, white becomes black on the screen. With 4 and
16 color sets, the color value becomes the numeric opposite
on the screen. This table shows the color displayed for each
possible value:

16 color 4 color

Array Screen Array Screen
Value Color Value Color

0 3 0 15
1 2 1 14
2 1 2 13
3 0 3 12

4 11
5 10
6 9
7 8
8 7
9 6

10 5
11 4
12 3
13 2
14 1
15 0

AND transfers the image over existing image. The result is
a logical AND of the array and the image on the screen.

OR superimposes an image onto an existing image. The re-
sult is a logical OR of the array and the image on the
screen.

XOR inverts the points on the screen where a point exists
in the array image. When an image is PUT against a com-
plex background twice, the background is restored un-
changed. This lets you move an object around the screen
without obliterating the background.

283

Chapter 10 I BASIC Keywords

Animation
To perform object animation, follow these steps:

1. Put the object on the screen using XOR.
2. Calculate the next position of the object.
3. Put the object on the screen a second time at the previous lo-

cation to remove the previous image.
4. Repeat Step 1, putting the object at the next location.

If you do movement this way, the background is not changed. You
can reduce flicker by minimizing the time between Steps 4 and
1 and by ensuring enough time delay between Steps 1 and 3. If
you are animating more than 1 object, process every object at
the same time, 1 step at a time.

If preserving the background is not important, you can perform
animation using the PSET action rather than the XOR action.
Leave a border around the image as large or larger than the
maximum distance the object moves. When you move an object,
this border effectively erases any points. This method may be
faster than the XOR method described before, because only one
PUT is required to move an object.

Sample Program
See the GET/Graphics statement.

284

Chapter 10 I BASIC Ke.ywords

RANDOMIZE

RANDOMIZE [number]

Function

Reseeds the random number generator.

Number may be an integer, or single- or double precision num-
ber. If you omit number, BASIC suspends program execution and
prompts you for a number before executing RANDOMIZE:

Random Number Seed (-32768 to 32767)7

If the random number generator is not reseeded, the RND func-
tion returns the same sequence of numbers each time it is exe-
cuted. To change the sequence of random numbers every time
the RND function is executed, place a RANDOMIZE statement
before the RND function.

You can use the TIMER function to ensure that the random
number generator is reseeded with a different value each time
BASIC executes the RANDOMIZE function. For example, the
statement:

RANDOMIZE TIMER

uses the value returned by TIMER as the seed. TIMER returns
the number of seconds that have elapsed since midnight or the
last system reset. Because the seconds are constantly changing,
number has a different value each time BASIC executes this
st a t ement .

Sample Program
1 0 C L S
20 RANDOMIZE TIMER
30 INPUT "PICK A NUMBER BETWEEN 1 AND 1 0 0 " ; A
40 B = INT<RND*100)
50 IF A = B THEN 80
6 0 PRINT "You lose, the answer is"B;"--try
a ga i n . "
7 0 GOT0 20
8 0 PRINT "You picked the right number - - you
win."

285

Chawter 10 I BASIC Keywords

READ Statement

READ variable[,uariable,.. .I

Reads values from a DATA statement and assigns them t o
variables.

BASIC assigns values from the DATA statement on a one-to-one
basis. The first time READ is executed, the first value in the
first DATA statement is assigned to the first variable; the second
time, the second value is assigned to the second variable, and so
on.

A single READ may access 1 or more DATA statements, or sev-
eral READS may access the same DATA statement. If a program
contains multiple DATA statements, BASIC reads them in the or-
der they appear.

The values read must agree with the variable types specified in
a list of variables; otherwise, a “Syntax error” occurs.

If the number of variables in the READ statement exceeds the
number of elements in the DATA statement(s1, BASIC returns an
“Out of DATA” error message. If the number of variables speci-
fied is less than the number of elements in the DATA state-
ment(s), the next READ statements begin reading data at the
first unread element.

To reread DATA statements from the start, use the RESTORE
statement.

Example
READ T

reads a numeric value from a DATA statement and assigns it to
variable T.

286

Chawter 10 I BASIC Kevwords

Sample Program
This program illustrates a common application for the READ
and DATA statements.

4 0 P R I N T "NAME", "AGE"
5 0 READ N$
6 0 I F N $ = " E N D " THEN P R I N T "END OF L I S T " : END
7 0 READ AGE
8 0 I F A G E < 1 8 THEN P R I N T N $, AGE
9 0 GOT0 5 0
1 0 0 DATFI " S M I T H , JOHN", 3 0 , "ANDERS, T . M . " 2 0
1 1 0 DATA "JONES, B I L L " , 1 5 , "DOE, S A L L Y " , ;1
1 2 0 DATA " C O L L I N S , W . P . " , 1 7 , "END"

287

Chapter 10 I BASIC Kevwords

Statement

REM

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the program
line, which lets you insert remarks in your program for docu-
mentation. Thus, when you look at a listing of your program, you
can quickly interpret it.

If REM is used in a multistatement program line, it must be the
last statement in the line.

You may use an apostrophe ('1 as an abbreviation for REM.

Sample Program
1 1 0 D I M V < 2 0)
1 2 0 REM C A L C U L A T E AVERAGE V E L O C I T Y
1 3 0 FOR 1 = 1 TO 2 0
1 4 0 SUM=SUM + V C I)
1 5 0 NEXT I

OR
1 1 0 DIM V (2 0)
1 2 0 FOR 1 = 1 TO 2 0 ' C A L C U L A T E AVERAGE V E L O C I T Y
1 3 0 SUM=SUM + V < I)
1 4 0 NEXT I

288

ChaDter 10 I BASIC Kevwords

RENUM Statement

RE NUM [new Line1 [[I inel [increment1 I

Renumbers the program currently in memory. You can renumber
the entire program or renumber from a specific line to the end.

Line is the line in the program where BASIC starts renumber-
ing. If you omit line, it renumbers the entire program.

New line is the new line number assigned to line. If you omit
new line, BASIC starts numbering at Line 10.

Increment tells BASIC how to number the successive line. If you
omit increment, it increments by 10.

RENUM also changes all line number references appearing after
GOTO, GOSUB, THEN, ON/GOTO, ONiGOSUB, ON ERROR
GOTO, RESUME, and ERL.

You cannot use RENUM to change the order of program lines.
For example, if a program has lines numbered 10, 20, and 30,
the command RENUM 15,30 is illegal, since this would place
Line 30 before Line 20.

Also RENUM cannot create line numbers greater than 65529. If
you attempt to do this, BASIC returns an “Illegal function call”
error and leaves the program unchanged.

If BASIC finds an undefined line number within the program, it
prints a warning message, “Undefined line xxxx in yyyy,” where
xxxx is the undefined line number and yyyy is the line where it
appears. RENUM renumbers the program despite this warning
message. It does not change the incorrect line number reference,
but it does renumber yyyy.

289

Chapter 10 I BASIC Keywords

Examples

renumbers the entire program, using an increment of 10. The
new number of the first line is 10.

RENUM 6 0 0 , 5000, 1 0 0

RENUM

renumbers from Line 5000 to the end of the program. The first
renumbered line becomes 600, and an increment of 100 is used
between subsequent lines.

RENUM 1 0 0 , , 1 0 0

renumbers the entire program, starting with a new line number
100, and incrementing by 100s. Notice that the commas must be
retained even though the middle argument is not used.

290

Chapter 10 I BASIC Ke-ywords

RESET Statement

RESET

Closes all open files on all drives.

If a disk contains any open files, RESET writes all blocks in
memory to disk.

RESET ensures that all files on all diskettes are closed before
you remove them from the drives. RESET is the same as a
CLOSE statement for each open file.

291

Chapter 10 I BASIC Keywords

RESTORE Statement

RESTORE [Line]

Restores a program’s access to previously read DATA statements.

Line is a line number that contains a DATA statement. If you
specify line, the next READ statement accesses the first item in
the specified DATA statement. If you omit line, BASIC resets to
the first DATA statement in the program.

This lets your program reuse the same DATA lines.

Sample Program
1 6 0 RECID X $
1 7 0 RESTORE
1 8 0 READ Y $
1 9 0 P R I N T X S , Y $
2 0 0 DCITFI F I R S T I T E M , SECOND I T E M

When you run this program, BASIC prints:
F I R S T I T E M F I R S T I T E M

Because of the RESTORE statement in Line 170, the second
READ statement starts over with the first DATA item.

292

Chapter 10 I BASIC Ke.ywords

RESUME Statement

RESUME [line]
RESUME NEXT

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME 0 both cause the
computer to return to the statement in which the error has
occurred.

RESUME line causes the computer to branch to the specified
line number.

RESUME NEXT causes the computer to branch to the state-
ment following the point at which the error has occurred.

Examples
RESUME

If an error has occurred, this line transfers program control to
the statement in which it has occurred.

RESUME 1 0

If an error has occurred, transfers control to Line 10.

Sample Program
1 0 ON ERROR GOT0 9 0 0

9 0 0 I F < E R R = 2 3 0) A N D (E R L = 9 0) THEN P R I N T "TRY
A G A I N " : RESUME 8 0

293

Chapter 10 I BASIC Keywords

RETURN Statement

RETURN [Line]

Returns control to the line immediately following the most re-
cently executed GOSUB.

Line tells BASIC to return to a specific line in the program. If
you omit line, BASIC goes to the line immediately following the
GOSUB.

Use caution when specifying a line number with RETURN. Any
other GOSUB, WHILE, or FOR statement remains active while
a GOSUB subroutine is executing. If BASIC returns to a line
number that is outside these loops, an error occurs because the
loops were left incomplete.

If the program encounters a RETURN statement without execu-
tion of a matching GOSUB, an error occurs.

Example
RETURN 4 0

returns from the subroutine to Line 40 in the program.

Sample Program
3 3 0 P R I N T " T H I S PROGRAM F I N D S THE AREA OF A
C I R C L E "
3 4 0 I N P U T "TYPE I N FI VALUE FOR THE R A D I U S " ; R
3 5 0 GOSUB 3 7 0
3 6 0 P R I N T "AREA I S " ; A : END
3 7 0 A = 3 . 1 4 R * R
3 8 0 RETURN

294

Chapter 10 I BASIC Keywords

RIGHT$ Function

RIGHT$(string,nurnber)

Returns the specified number of characters from the far right
portion of string.

Number is an integer in the range 1 to 255.

If number is equal to or greater than the length of string, BASIC
returns the entire string.

Examples
P R I N T RIGHT$("WATERMELON", 5)

prints MELON.
P R I N T R I G H T $ (" M I L K Y W A Y " , 2 5)

prints MILKY WAY.

Sample Program
8 5 0 RESTORE : ON ERROR GOTO 8 8 0
8 6 0 READ COMPANY$
8 7 0 P R I N T R I G H T $ C C O M P A N Y $, 2 1 , : GOTO 860
8 8 0 END
8 9 0 DATA "BECHMAN LUMBER COMPANY, S E A T T L E , W A "
9 0 0 D A T A "ED NORTON SEWER S E R V I C E , BROOKLYN, NY"
9 1 0 D A T A "HAMMON M A N U F A C T U R I N G COMPANY ~ HAMMOND,
I N "

This program prints the name of the state in which each com-
pany is located.

295

Chapter 10 I BASIC Keywords

RMDIR Statement

RMDIR dirpath

Removes (deletes) the directory specified by dirpath.

Dirpath is a standard directory specification as described in
Chapter 1. If you omit the drive identifier, the directory is de-
leted from the current drive. If you omit the root directory sym-
bol (\ 1, the directory is deleted from the current directory.

The directory being deleted must be empty except for the "." and
".." symbols. Use the MS-DOS COPY command to move those
files you want to save; then use KILL to remove all files from
the directory.

Examples
RMDIR " A : \ACCTS\PAYABLE"

removes the directory PAYABLE from the ACCTS directory on
Drive A.

RMDIR "\ADDRESS"

removes the directory ADDRESS from the root directory on the
current drive.

RMDI R "NAMES"

removes the directory NAMES from the current directory on the
current drive.

296

Chapter 10 I BASIC Keywords

RND Function

RND[(nurnber)]

Returns a random number in the range 0 and 1.

BASIC uses the current seed when generating a random number
and produces the same sequence of random numbers each time
the program is run unless you reseed the random number gener-
ator. Use the RANDOMIZE statement to reseed the random
number generator

If number is negative, RND starts the sequence of random num-
bers at the beginning. If number is 0, RND repeats the last
number generated. If you omit number or specify a positive
value, RND returns the next number in the sequence.

Example
PRINT RND(1 1

prints the next decimal fraction in the sequence.

Sample Program
1 0 F O R I = 1 TO 5
20 PRINT INT(RND*l00);
30 NEXT I

This program produces 5 random integers. Line 20 converts the
decimal fraction returned by RND to a real number and trun-
cates the real number t o an integer.

297

Chapter 10 I BASIC Keywords

RSET Statement

RSET field name = data

Sets data in a direct access buffer field name in preparation for a
PUT statement.

Field name is a string variable defined in a FIELD statement.

This statement is similar to LSET. The difference is that with
RSET, data is right-justified in the buffer.

See LSET for details.

298

Chapter 10 I BASIC Ke.ywords

RUN Statement

RUN [line]
RUN pathmme[,R]

Executes a program.

Line is the program line where BASIC begins execution. If you
omit line, BASIC executes the program from the beginning.

Pathnume specifies the disk file for BASIC to load into memory
and execute.

If you specify the R option, BASIC does not close the open files
before loading the new program into memory. If you omit the R
option, BASIC closes all open files before loading the program.

RUN automatically clears all variables.

Ex ample s
RUN

starts execution a t the beginning of the program.
RUN 1 0 0

starts execution a t Line 100.
RUN " p r o g r a m . a"

loads and executes pr0gram.a.
R U N " \ W O R D \ e d i t d a t a " , R

loads and executes editdata from the WORD directory without
closing any open files.

299

ChaDter 10 I BASIC Kevwords

SAVE Statement

SAVE pathname [,AI
SAVE pathname [,PI

Saves a program on disk with the specified name.

Pathname is a standard file specification as described in Chapter
1. When you save a file to disk, you must specify the filename. If
the file already exists on disk, its contents are lost when the file
is re-created.

The A option tells BASIC to save the program in ASCII format.
If you omit the A option, BASIC saves the file in a compressed
format.

The compressed format takes less disk space than ASCII format.
Also BASIC can save and load in compressed format faster than
in ASCII format. BASIC programs are stored in RAM using
compressed format.

Use the ASCII format if you plan to use the MERGE command
to merge the program with another. Also, data programs that be
read by other programs usually must be in ASCII.

When using the ASCII option, be sure your program has no
embedded line feeds; otherwise, the computer will not be able to
read it properly. Embedded line feeds are produced by typing
[CTRL][T] in a program line.

For compressed-format programs, a useful convention is the ex-
tension .bas. For ASCII-format programs, use .txt.

The P option protects the file by saving it in an encoded binary
format. When a protected file is later run (or loaded), any at-
tempt to list or edit it fails. The only operations that you can
perform on a protected file are RUN, LOAD, and CHAIN.

300

\

Chapter 10 I BASIC Ke.ywords

Examples
SAVE " A : f i le1 . b a s "

saves the resident program in compressed format as filel.bas.
The file is placed on Drive A: in the current directory.

SAVE " \ E D U C \ m a t h p a k . txt", A

saves the resident program in ASCII form, using the name math-
pak.txt, on the current drive in the directory EDUC.

301

Chapter 10 I BASIC Ke,ywords

SCREEN Function

SCREEN (row, column, [num ber])

Returns the ASCII code for the character at the specified row
and column.

Row is an integer in the range 1 to 25.

Column is an integer in the range 1 to 80. Column must be in
the range for the current screen mode.

Number is applicable only for text mode. If you specify a non-zero
number, SCREEN returns the color attribute, rather than the
ASCII code, of the character. The attribute is in the range of 0
to 255, and can be translated as follows:

attribute MOD 16 = foreground color (((attribute - foreground)/
16)MOD 128) = background color

(number>l27) is true (-1) if the character is blinking and false
(0) if it is not.

In the graphics modes, if the location does not contain a stan-
dard ASCII character, BASIC returns a value of zero.

Sample Program
1 0 LOCQTE 20,20
20 P R I N T “ROBBIE”
30 A = SCREEN(20,20):B = SCREEN(20,2l)
40 PRINT A,B

Line 10 positions the cursor to Row 20, Column 20. Line 20
prints the message at the current cursor position. Line 30 stores
the ASCII code for “R’ in the variable A and the ASCII code for
“0” in variable B. Line 40 prints:

8 2 79

302

Chapter 10 I BASIC Ke.ywords

SCREEN Statement

SCREEN [model[, [burst][, [active pagel[,dispZay page11
[,erasell

Sets the screen attributes to be used by all other graphics state-
ments (CIRCLE, LINE, DRAW, POINT, PSET, PRESET, PAL-
ETTE, and PALETTE USING).

Mode is an integer in the range 0 to 6 that sets the valid coordi-
nates and the number of colors you can use. Screen Mode de-
scriptions a re given in Chapter 8, “Displaying Color and
Graphics .”

When you change from one mode to another, BASIC stores the
new screen mode, erases the video display, and sets the fore-
ground color to white and the background and border colors to
black.

Burst enables or disables color. In Screen Mode 0 (text mode), set
burst to 0 to disable color or 1 to enable color. In medium resolu-
tion (Screen Modes 1 and 4), set burst to 0 to enable color or 1 to
disable color. Burst has no effect in high and low resolution
(Screen Modes 3, 5, and 6) where color is always enabled or in
Screen Mode 2, which is black and white.

Active page is an integer that selects the video page to which
BASIC will write. All output statements to the screen go to the
selected active page. The range depends on the screen mode and
the amount of video memory available. If you omit active page,
BASIC assumes the current active page. Active page is initially
set to Page 0.

Display page is an integer that selects the video page for BASIC
to display. The range is the same as active page. If you omit dis-
play page, BASIC uses the same page as active page. BASIC au-
tomatically sets display page to active page if the program halts
because of an END or STOP statement or because of an error.

All video pages share one cursor. Therefore, when switching ac-
tive pages, you should save the cursor position with the POS and
CSRLIN statements. Then when you return to an active page,
you can restore the cursor with the LOCATE statement.

303

Chapter 10 I BASIC Ke.ywords

Erase is an integer in the range 0 to 2 that tells BASIC how
much video memory to erase. Erase can be one of the following:

Do not erase video memory, even if the screen mode
changes.

Erase the union of the new page and old page if mode
or burst change.

Erase all video memory if mode or burst changes.

0

1

2

If you omit erase, BASIC assumes 1.

If you omit any parameters (except display page), BASIC uses
the previous values.

For more information on the graphics statements and video
pages, see CLEAR and Chapter 8, “Displaying Color and
Graphics.”

Examples
1 0 SCREEN 0 , 0

selects text mode with color off.
6 0 SCREEN 2

changes to high resolution, 2-color, graphics mode.

304

Chapter 10 I BASIC Keywords

SGN Function

S GN(num her)

Determines number's sign.

If number is a negative number, SGN returns -1.
If number is a positive number, SGN returns 1.
If number is zero, SGN returns 0.

Examples
Y = SGN<A * E)

determines the sign of the expression A * B, and passes the ap-
propriate number (-1,0,1) to Y.

Sample Program
6 1 0 I N P U T "ENTER A NUMBER"; X
6 2 0 ON SGNCX) + 2 GOT0 6 3 0 , 6 4 0 , 6 5 0
6 3 0 P R I N T " N E G A T I V E " : END

6 5 0 P R I N T " P O S I T I V E " : END
6 4 0 PRINT " Z E R O - : END

305

Chapter 10 I BASIC Keywords

SHELL Advanced Statement

SHELL [command]

Loads and executes another program (.EXE or .COW or an in-
ternal command as a child process to the original program.
After the child process ends, control returns to the BASIC pro-
gram a t the statement following the SHELL statement.

Command is a string expression containing the name of the pro-
gram you want to run. You may also specify command argu-
ments on the command line. Use a space to separate arguments
from the program name. If you omit command, SHELL transfers
control to COMMAND. You can now execute MS-DOS commands
as allowed by COMMAND. To return to BASIC, use the MS-
DOS EXIT command.

SHELL sends the command information to COMMAND.COM,
the MS-DOS command processor. If you omit the extension in
the program name, COMMAND looks for the program with a
.COM extension, then with an .EXE extension and finally with a
.BAT extension. If COMMAND still cannot find the program, it
issues a “File not found” error to SHELL.

Note: Do not specify BASIC as the command string of
SHELL. If you do, BASIC might not function properly.

For more information on child processes and COMMAND.COM,
see the MS-DOS Reference and the Programmer’s Reference man-
uals for your computer. They are available through your Radio
Shack Computer Store.

306

Chapter 10 I BASIC Keywords

Examples
S H E L L

transfers control to COMMAND.COM. You can execute MS-DOS
commands such as:

D I R
T I N E

and then type EXIT to return to BASIC.

The following command uses redirection of input and output and
the MS-DOS SORT command.

S H E L L " S 0 R T <data. in >data.out"

sorts the text from data.in and writes it to data.out.

307

Chapter 10 I BASIC Ke.ywords

SIN Function

SIN(number)

Returns the sine of number

SIN returns the angle (in radians) whose cosine is number.

Number must be in radians. To obtain the sine of number when
number is in degrees, use SIN(number * PI/180), where PI
equals 3.141593.

BASIC always returns the result as a single precision number
unless you set the /D switch when starting up BASIC.

Examples
P R I N T S I N C 7 . 9 6)

prints .9943854.

Sample Program
6 6 0 I N P U T "FINGLE I N DEGREES"; A
6 7 0 P R I N T " S I N E IS"; S I N < A .01745329)

308

Chapter 10 I BASIC Keywords

SOUND Statement

SOUND frequency, duration[, [uolumel [,[voice111
SOUND ON
SOUND OFF

Generates a sound with the frequency and duration specified.

When a SOUND statement is producing sound, the program con-
tinues to execute. See the PLAY statement for more information
about executing program lines during SOUND.

frequency specifies the desired tone in Hertz, and is an integer in
the range 1 to 32767. The lowest frequency the multi-voice sound
chip can produce is 110 Hz. Any value below 110 Hz sounds at
110 Hz. The frequency 32767 is treated as the silence frequency.
To create periods of silence, use SOUND 32767, duration.

Possible frequencies are given later.

Duration is an integer in the range 1 to 65535, specifying the
duration in clock ticks. Clock ticks occur 18.2 times per second.
The shortest sound is 1, and the longest is 65535. If duration is
0, BASIC turns off any currently running SOUND statement.
Otherwise, BASIC completes the first SOUND statement before
executing the next one.

Volume is an integer in the range 0 to 15, where 0 is the lowest
volume and 15 is the highest volume. If you omit uolurne, BASIC
uses 8. You must execute a SOUND ON statement to use uolurne.

Voice is an integer in the range 0 to 2. If you omit voice, BASIC
uses 0. You must execute a SOUND ON statement to use voice.
You can set each voice to a different tone to produce a 3-note
chord.

SOUND ON enables the external speaker that supports multi-
voice sounds using the PLAY or SOUND statements.

SOUND OFF disables the external speaker.

You can use SOUND with BEEP to direct sound to either the
computer’s speaker or external speaker. See also BEEP for the
results of the different combinations of BEEP and SOUND.

309

Chapter 10 i BASIC Keywords

This statement can be especially useful in educational applica-
tions. For example, you can have the computer respond with a
sound if a user has answered a program’s prompt incorrectly (or
vice versa).

You can use the SOUND or PLAY statements to generate musi-
cal notes from your computer. This chart shows the frequency
you specify to generate the notes in the octave above middle C.
Middle C is the first note in the chart.

Note Frequency

C 523.25
D 587.33
E 659.26
F 698.46
G 783.99
A 880.00
B 987.77
C 1046.50

To generate notes in the octave below middle C, find the fre-
quency of the note’s letter in the chart and divide that number
by 2. For example, the note A in the octave below middle C has a
frequency of 440.00

To generate notes in the octave above middle C, find the fre-
quency of the note’s letter in the chart and multiply that number
by 2. For example, the note A in the octave above middle C has a
frequency of 1760.00

There are 1092 clock ticks per minute. To determine the number
of clock ticks for 1 beat, divide the beats per minute into 1092.
The chart below shows the number of clock ticks for some typical
tempos.

Beats Ticks
Tempo per minute per minutes

Largo 40- 60 27.3 -18.2
Larghetto 60- 66 18.2 -16.55
Adagio 66- 76 16.55-14.37
Andante 76-108 14.37-10.11
Moderato 108-120 10.11- 9.1
Allegro 120-168 9.1 - 6.5
Presto 168-208 6.5 - 5.25

310

Chapter 10 I BASIC Keywords

Sample Program
5 SOUND ON
1 0 I N P U T " I N HONOR OF WHOM WAS THE C O N T I N E N T OF
AMERICA NAMED"; A $
2 0 I F A$="AMERIGO V E S P U C C I " THEN SOUND 5 0 0 , 5 0
E L S E GOT0 4 0
3 0 P R I N T " T H A T ' S R I G H T ! " : END
4 0 SOUND 37,2 : P R I N T "THE CORRECT ANSWER I S
AMER I GO VESPUCC I "

311

Chapter 10 I BASIC Keywords

SPACE$ Function

SPACE $(num ber)

Returns a string of number spaces.

Number must be in the range 0 to 255.

Example
PR I NT "DESCR I P T I ON" SPFICE $ (4 1 "TYPE" SPACE $ (9 1
" Q U A N T I T Y "

prints DESCRIPTION, 4 spaces, TYPE, 9 spaces, QUANTITY.

Sample Program
9 2 0 P R I N T "Here"
9 3 0 P R I N T S P & C E $ C 1 3) "i5"
9 4 0 P R I N T SPFICESC26) "an"
9 5 0 P R I N T S P A C E S (3 9) "example"
9 6 0 PR. INT S P A C E $ < S E) " o f "
9 7 0 P R I N T S P F I C E $ < 6 5) " S P A C E $ "

312

Chapter 10 I BASIC Keywords

SPC Function

SPC(number)

Skips number spaces in a PRINT statement.

Number is in the range 0 to 255. A semicolon is assumed to fol-
low the SPC(number) command.

You may use SPC only with PRINT, LPRINT, or PRINT# .
See also SPACE$.

Example
P R I N T "HELLO" S P C (1 5) "THERE"

prints:
H E L L O THERE

313

Chapter 10 I BASIC Ke.ywords

SQR Function

SQR(number)

Returns the square root of number.

Number must be greater than zero.

BASIC always returns the result as a single precision number
unless you specified the /D switch when starting up BASIC.

Example
P R I N T S Q R (1 5 5 . 7)

prints 12.47798.

Sample Program
6 8 0 I N P U T "TOTAL R E S I S T A N C E (OHMS)" ; R
690 I N P U T "TOTAL REACTANCE (OHMS)"; X
7 0 0 2 = SQR((R * R) + (X * X I)
7 1 0 P R I N T " T O T A L IMPEDANCE (OHMS) I S " 2

This program computes the total impedance for series circuits.

314

Chapter 10 I BASIC Keywords

STICK Function

STICK (action)

Returns the coordinates of the joysticks.

Action may be one of the following:

0

1
2
3

reads all 4 coordinates, and returns the horizontal (x)
coordinate for Joystick A.
returns the vertical (y) coordinate for Joystick A.
returns the horizontal (x) coordinate for Joystick B.
returns the vertical (y) coordinate for Joystick B.

The coordinates returned by STICK(l), STICK(2), and STICK(3)
are those previously read by STICK(0).

Joystick A is the left joystick and Joystick B is the right joystick.

Sample Program
The following program continually displays the coordinates of
joystick B.

1 0 CLS
2 0 LOCATE 1 ,I
2 5 T = S T I C K < 0)
3 0 P R I N T " B : "; S T I C K (2)
4 0 P R I NT"B : " ; ST I C K (3 1
5 0 GOT0 2 0

315

Chapter 10 I BASIC Keywords

STOP Statement

Stops program execution.

When BASIC encounters a STOP statement, it prints the mes-
sage “BREAK IN xax,” where xxxx is the line number that con-
tains the STOP. STOP is primarily a debugging tool. During the
break in execution, you can examine variables or change their
values.

Use the CONT statement if you want to resume execution. If the
program itself has been altered during the break, you cannot
use CONT.

Unlike the END statement, STOP does not close files.

Sample Program
2260 X = RNDCl0)
2270 STOP
2280 GOT0 2260

A random number in the range 1 to 10 is assigned to X and
then program execution halts at Line 2270. You can now exam-
ine the value X with PRINT X. Type CONT to start the cycle
again.

316

Chapter 10 I BASIC Keywords

STR$ Function

STR$(number)

Converts number to a string.

If number is positive, STR$ places a blank before the string. If
number is negative, STR$ places a minus sign (-1 before the
string.

While arithmetic operations may be performed on number, only
string functions and operations may be performed on the string.

The complementary function to STR$ is VAL.

Example

converts the number X into a string and stores it in S$.

S $ = S T R $ < X)

Sample Program
1 0 A = 1 .6 : B# = A : C # = V A L (S T R $ (A))
20 P R I N T "REGULAR CONVERSION" T A B (4 0) "SPEC I AL
CONVERSION"
30 P R I N T B# T A B (4 0) C#

317

Chapter 10 I BASIC Ke.ywords

STRIG Stat emen t

STRIG ON
STRIG OFF

Enables the STRIG function.

STRIG ON
STRIG ON lets you execute STRIG function statements to return
the status of the joystick buttons. If you attempt to execute a
STRIG function before you execute a STRIG ON statement,
BASIC issues an “Illegal function call” error.

STRIG OFF
If you execute a STRIG OFF statement, you can not execute
STRIG function. Executing a STRIG function after a STRIG
OFF statement results in an “Illegal function call” error.

When you load BASIC, the default is STRIG OFF and you cannot
execute STRIG/Function statements.

You cannot place a STRIG function in a subroutine that you
branch to as a result of an ON STRIGO GOSUB statement.
BASIC does not keep track of which button was pressed after the
ON STRIG() GOSUB statement is executed. If you wish to trap
both buttons and perform a different procedure for each button,
you must execute a STRIG/Trap for each button, and you must
branch to different subroutines with different ON STRIGO GO-
SUB statements.

See STRIG Function, STRIG/Trap, and ON STRIGO GOSUB for
additional information on joystick trapping.

318

Chapter 10 I BASIC Keywords

STRIG Function

STRIG(number)

Returns the status of joystick buttons.

Number is an integer in the range 0 to 7 to test the status of the
joystick buttons.

Variable is a numeric variable to receive the value returned by
number .
Each number tests for a different status of the buttons and re-
turns a numeric value in variable regarding the results of the
test. The numbers and their functions are:

Tests to see if Trigger A1 has been pressed and re-
leased since the last STRIG(0) function was executed.
BASIC returns a -1 if it has been pressed and a 0 if
not.

Tests to see if you are currently pressing Trigger Al.
BASIC returns a -1 if you are pressing it and a 0 if
not.

Tests to see if Trigger B1 has been pressed and re-
leased since the last STRIG(2) function was executed.
BASIC returns a -1 if it has been pressed and a 0 if
not.

Tests to see if you are currently pressing Trigger B1.
BASIC returns a -1 if you are pressing it and a 0 if
not.

Tests to see if Trigger A2 has been pressed and re-
leased since the last STRIG(4) function was executed.
BASIC returns a -1 if it has been pressed and a 0 if
not.

Tests to see if you are currently pressing Trigger A2.
BASIC returns a -1 if you are pressing it and a 0 if
not.

319

Chapter 10 I BASIC Keywords

6 Tests to see if Trigger B2 has been pressed and re-
leased since the last STRIG(6) function was executed.
BASIC returns a -1 if it has been pressed and a 0 if
not.

Tests to see if you are currently pressing Trigger B2.
BASIC returns a -1 if you are pressing it and a 0 if
not.

7

Joystick A is the left joystick and Joystick B is the right joystick.

You must execute a STRIG ON statement before you can execute
a STRIG function. If you attempt to execute a STRIG function
before you execute a STRIG ON, BASIC issues an “Illegal func-
tion call” error. See STRIG/Trap.

You cannot place a STRIG function in a subroutine that you
branch to as a result of an ON STRIGO GOSUB statement.
BASIC does not keep track of which button was pressed after the
ON STRIG() GOSUB statement is executed. If you wish to trap
both buttons and perform a different procedure for each button,
you must execute a STRIGiTrap for each button, and you must
branch to different subroutines with different ON STRIGO GO-
SUB statements.

Sample Program
This program tells BASIC to beep whenever the trigger on Joys-
tick A is pressed.

1 0 STRIG ON
20 IF STRIG(0) THEN BEEP
30 GOT0 20

320

Chapter 10 I BASIC Keywords

STRIG/Trap Statement

STRIG(number) ON
STRIG(number) OFF
STRIG(number) STOP

Turns on, turns off, or temporarily halts joystick trapping.

Number is a value of 0, 2, 4, or 6 to indicate the joystick button
you are trapping:

0 indicates Trigger Al.
2 indicates Trigger B1.
4 indicates Trigger A2.
6 indicates Trigger B2.

Joystick A is the left joystick and Joystick B is the right joystick.

STRIGO ON
STRIGO ON enables joystick trapping with the ON STRIGO
GOSUB statement. If you execute a STRIGO ON statement,
BASIC checks after every program statement to see if you
pressed a joystick button. If you press a joystick button, BASIC
transfers program control to the line number specified in the ON
STRIGO GOSUB statement. See ON STRIGO GOSUB.

Note: Do not confuse the STRIG/Trap statement with
the STRIG function statement. These are 2 separate
statements that perform 2 distinct functions in BASIC.

STRIGO STOP
STRIG() STOP temporarily halts joystick trapping. If you press a
joystick button after a STRIGO STOP statement is executed,
BASIC does not transfer program control to the subroutine until
trapping is turned on again with a STRIGO ON statement.
BASIC remembers that the joystick buttons were pressed and
transfers program control to the subroutine immediately after
joystick trapping is turned on again.

321

Chapter 10 I BASIC Keywords

STRIG OFF
STRIGO OFF turns off joystick trapping with the ON STRIGO
GOSUB statement.

When you load BASIC, STRIGO OFF is the default, because joy-
stick trapping slows program execution. Therefore, if you execute
a STRIGO ON statement to enable joystick button trapping, we
recommend that you also execute a STRIGO OFF statement
when you no longer need to check for joystick button activity.

If you press a joystick button after a STRIG() OFF statement is
executed, BASIC does not remember that the joystick buttons
were pressed when joystick trapping is turned on again.

Example
See STRIG.

322

Chapter 10 I BASIC Keywords

STRING$ Function

STRING$(number,character)

Returns a string containing the specified number of character.

Number must be in the range 0 to 255.

Character is a string or an ASCII code. If you use a string con-
stant, you must enclose it in quotation marks. All the characters
in the string have either the ASCII code, or the first letter of the
string specified.

STRING$ is useful for creating graphs or tables.

Examples:
B$ = STRINGSC25, “ X ”)

puts a string of 25 “X”s into B$.
PRINT STRING$(50, 10)

prints 50 blank lines on the display, because 10 is the ASCII
code for a line feed.

Sample Program
1040 C L E A R 300
1050 INPUT “TYPE I N 3 NUMBERS BETWEEN 33 AND

1060 C L S : FOR I = 1 TO 4: PRINT STRING$(20, Nl):

1070 F O R J = 1 TO 2: PRINT STRINGs(40, N2): NEXT

1080 PRINT STRINGB(80, N3)

159”; N1 , N2, N3

NEXT I

J

This program prints 3 strings. Each string has the character
corresponding to one of the ASCII codes provided.

323

Chapter 10 I BASIC Keywords

Statement

SWAP varia blel paria ble2

Exchanges the values of 2 variables.

You may swap variables of any type (integer, single precision,
double precision, or string). However, both must be of the same
type; otherwise, a "Type mismatch" error results.

Either or both variables may be elements of arrays. If one or
both of the variables are non-array variables that have not been
assigned values, an "Illegal function call" error results.

Example
SWAP F 1 # , F 2 #

swaps the values of F1# and F2#. The contents of F2# are put
into F1#, and the contents of F1# are put into F2#.

Sample Program
1 0 A$="ONE " : B $ = " A L L " : C $ = " F O R "

2 0 P R I N T A $ C $ E$
30 SWAP A S , E $
4 0 P R I N T A $ C $ E $

When run, the program displays:
ONE FOR A L L
A L L FOR ONE

324

Chapter 10 I BASIC Ke.ywords

SYSTEM Statement

SYSTEM

Returns you to the MS-DOS command level.

BASIC closes all files before returning to MS-DOS. Your resident
BASIC program is not retained in memory.

Examples

returns you to MS-DOS. Your resident BASIC program is lost.

SYSTEM

325

Chapter 10 I BASIC Keywords

TAB Function

TAB (number)

Spaces to position number on the display.

Number must be in the range 1 to 255 and specifies the charac-
ter position to which to tab. The leftmost position is 1, and the
rightmost position is the set width minus 1 (WIDTH-1).

If the current print position is already beyond space number,
TAB goes to that position on the next line.

You cannot use TAB to move the cursor to the left.

You cannot use TAB more than once in a print list.

You may u s e TAB only w i t h t h e PRINT a n d LPRINT
statements.

Sample Program
1 0 P R I N T "NAME" T A B (2 5) "AMOUNT": P R I N T
2 0 READ A $, B $
3 0 P R I N T A $ T A B C 2 5) B S
4 0 DATA " G . T . J O N E S " , " $ 2 5 . 0 0 "

When you run this program, the display shows:
NAME AMOUNT

G. T . JONES $ 2 5 . 0 0

326

Chapter 10 I BASIC Ke.ywords

TAN Function

TAN(num ber)

Returns the tangent of number.

Return the angle (in radians) whose arc tangent is number.

Number must be in radians. To obtain the tangent of number
when it is in degrees, use TAN (number * PI/180), where PI
equals 3.141593.

BASIC always returns the result as a single precision number
unless you set the /D switch when starting up BASIC.

Example

prints -9.396959.

P R I N T T A N (7 . 9 6)

Sample Program
This programs asks you to input an angle in degrees and re-
turns the tangent in radians.

7 2 0 I N P U T "ANGLE I N DEGREES". ANGLE
7 3 0 T = TANCCINGLE * . 0 1 7 4 5 3 2 4)
7 4 0 P R I N T "TAN I S " T

327

Chapter 10 I BASIC Keywords

TIME$ Function

TIME$[= string]

Sets or retrieves the current time.

String is a literal, enclosed in quotation marks, that sets the
time by assigning its value to TIME$. If you omit string, BASIC
retrieves the current time.

BASIC uses a 24-hour clock. For example, it sets 8:15 P.M. as
20:15:00.

Setting the Time
You set the time in the following format:

hh:mm:ss

The hours (hh) may be any number 0-23.
The minutes (mm) and the seconds (ss) may be any number
0 through 59.

If you omit the minutes, minutes and seconds default to
zero. If you omit the seconds, seconds default to zero.

Although you may omit leading zeros in each of the values, you
must include at least 1 digit of the preceding value. For example,
you may type 1:5 to set the the time to 1:05 A.M. However, :5 is
invalid.

Retrieving the Time
BASIC always returns the time in the 8-character (hh:mm:ss)
format, with leading zeros. You may set the time before you enter
BASIC. If you do not set the time at the MS-DOS time prompt or
with the TIME$ statement, BASIC returns the length of the
time that has elapsed since you turned on the computer.

328

Chapter 10 I BASIC Keywords

Examples
TIMES = " 1 4 : 1 5 "

sets the current time to 14:15:00.
TIMES = "3:3:3"

sets the current time to 03:03:03.
FIS = T I M E S

assigns the current time to the variable A$.
PRINT TIMES

prints the current time.

329

Chapter 10 I BASIC Keywords

TIMER Function

TIMER

Returns the number of seconds since midnight or since the last
system reset.

BASIC always returns a single precision number.

You can use TIMER as the argument for the RANDOMIZE
statement to reseed the random number generator. See RAN-
DOMIZE for more information.

Example
A = TIMER

stores the number returned by TIMER into variable A.

330

Chawter 10 I BASIC Kevwords

TIME R/Trap Statement

TIMER action

Turns on, turns off, or temporarily halts timer event trapping.

Action may be any of the following:

ON enables timer event trapping.
OFF disables timer event trapping.
STOP

The TIMER ON statement turns on the trap. BASIC checks the
the value of timer after each program line. If the number is
equal to that in the ON TIMERO GOSUB statement, BASIC
transfers program control to the line number specified.

The TIMER STOP statement temporarily halts timer trapping.
If the timer equals the specified number, BASIC does not trans-
fer program control to the ON TIMERO GOSUB statement until
you turn on trapping again by executing a TIMER ON state-
ment. BASIC remembers that the timer value was equal and
branches to the subroutine immediately after trapping is turned
on again.

The TIMER OFF statement turns off timer trapping. BASIC
does not remember if the value of timer equals the number spec-
ified when trapping is turned on again.

temporarily suspends timer event trapping.

Sample Program
See ON TIMERO GOSUB for an example.

331

Chapter 10 I BASIC Keywords

TROFF, TRON Statements

TROFF
TRON

Turn the trace function on/off.

TRON turns on the tracer and TROFF turns it off.

The tracer lets you follow program flow. This is helpful for de-
bugging and for analyzing the execution of a program. After a
program is debugged, you can remove the TRON and TROFF
statements .
Each time the program advances to a new line, the tracer dis-
plays that line number inside a pair of brackets.

Sample Program
2 2 9 0 TRON
2 3 0 0 X = X * 3 . 1 4 1 5 9
2 3 1 0 TROFF

Lines 2290 and 2310 assure you that Line 2300 is actually
being executed, because [23001 is printed on the display each
time it is executed.

5 TRON
1 0 K = 1 0
2 0 FOR J = l TO 2
3 0 L = K + 1 0
4 0 P R I N T J ; K ; L
5 0 K = K + 1 0
6 0 NEXT J
7 0 TROFF
8 0 END

When you run this program, BASIC prints:
[1 0 1 [2 0 1 [3 0 1 ~ 4 0 1 1 1 0 2 0
~ 5 0 1 ~ 6 0 1 [3 0 1 [4 0 1 2 2 0 3 0
[5 0 1 [6 0 1 [7 0 1

332

Chapter 10 I BASIC Keywords

USR Function

USR[nu m ber] (argument)

Calls a user’s assembly-language subroutine identified with
number and passes argument to that subroutine.

The number you specify must be the same as the corresponding
DEF USR statement for that routine. If you omit number, BASIC
assumes zero.

USR lets you call as many as 10 assembly-language subroutines
and then continue execution of your BASIC program.

Before you can execute a USR function call, you must define the
subroutine’s address in a DEF SEG and DEF USR statement.
The DEF SEG defines the address of the segment containing the
subroutine. The DEF USR statement defines the subroutine
being called and its offset from the beginning of the segment set
by DEF SEG. See DEF SEG, DEF USR, and the section “Inter-
facing With Assembly-Language Subroutines” in Chapter 11.

333

Chapter 10 I BASIC Ke-ywords

VAL Function

VAL(string)

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This num-
ber may be integer, single precision, or double precision, depend-
ing on the range of values and the rules used for typing all
constants .
VAL terminates its evaluation on the first character that has no
meaning in a numeric value.

If the string is nonnumeric or null, VAL returns a zero.

Ex ample s
P R I N T V A L (" 1 0 0 D O L L A R S ")

prints 100.
P R I N T V A L (" 1 2 3 4 E 5 ")

prints 123400000.

Sample Programs
1 0 READ N A M E $, C I T Y $, S T A T E $, Z I P $
2 0 I F V A L C Z I P $) < 9 0 0 0 0 O R V A L (Z I P $) > 96699
THEN P R I N T NAME$ T A B C 2 5) "OUT OF S T A T E "
3 0 I F V A L (Z I P $) > 9 0 8 0 1 AND V A L < Z I P $) < = 9 0 8 1 5
THEN P R I N T NAME$ T A B (2 5) "LONG BEACH"

This program searches for zip codes within the specified ranges
to determine if they are within Long Beach or "out of state.''

334

Chapter 10 I BASIC Keywords

VARPTR Function

VARPTR (variable)
VARPTR ([#]buffer)

Returns the offset into BASIC’s data segment of a variable or a
disk buffer.

Variable is a numeric or string variable.

Buffer is the number assigned to the file when you opened it.
The number sign is optional. It is provided for compatibility with
other BASICs.

VARPTR can help you locate a value in memory. When used
with Variable, it returns the address of the first byte of data
identified with variable. See the section “How Variables are
Stored” in Chapter 11 for the format.

If the variable you specify has not been assigned a value, an “Il-
legal function call” occurs.

When used with sequential access files, VARPTR returns the
starting address of the disk buffer. When used with direct access
files, VARPTR returns the address of the FIELD buffer.

If you specify a buffer that was not allocated when loading
BASIC, a “Bad file number” error occurs. (See Chapter 2 for in-
formation on how to load BASIC.)

The offset returned is an integer in the range -32768 to 32767.
It is always an offset into BASIC’s data segment, regardless of
whether you have executed a DEF SEG to change the segment.

VARPTR is used primarily to pass a value to a n assembly
language subroutine via USR. Since VARPTR returns an offset
that indicates where the value of a variable is stored, you can
pass this address to an assembly-language subroutine as the ar-
gument of USR. The subroutine can then extract the contents of
the variable with the help of the address that you have supplied
to it.

If VARPTR returns a negative address, add it to 65536 to obtain
the actual address.

335

Chapter 10 I BASIC Keywords

VARPTR$ Function

VARPTR$(uaria ble)

Returns a character form of the memory address of the variable.
VARPTR$ is primarily used with PLAY and DRAW in programs
that are later executed.

Variable is a numeric or string variable.

VARPTR$ returns a 3-byte string:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

Type is 2 for integer variables, 3 for string variables, 4 for single
precision variables, and 8 for double precision variables.

Note: Because array and string addresses and file
data blocks change whenever you assign a new vari-
able, do not store the contents of VARPTR$ into a
variable.

Example
1 0 PLCIY " X " + V A R P T R $ < A $)

uses the PLAY subcommand X, plus the contents of A$, as the
argument for PLAY.

336

ChuDter 10 I BASIC Keywords

VIE WIGraphics Statement

Creates a viewport that redefines the screen parameters. This
defined area, a window, becomes the only place you can draw
graphic displays.

(XI ,yI) specifies the upper-left coordinates for the rectangular
viewport.

(~ 2 3 2) specifies the lower-right coordinates for the rectangular
viewport.

All coordinates must be within the limitations of the screen.

Color lets you fill in the specified viewport with the specified
color. See Chapter 8, “Displaying Color and Graphics,” for infor-
mation on color.

Border is an integer in the range 0 to 15. See Chapter 8, “Dis-
playing Color and Graphics,” for information on the 16 color set
used for borders.

SCREEN specifies that all coordinates used in drawing are ab-
solute to Point 0,0 on the screen. If you omit SCREEN, all coor-
dinates specified are relative to the viewport coordinates.

If you omit all options, BASIC sets the viewport to define the en-
tire screen.

Examples
VIEW (10,10)-(100,1 00)

sets up a viewport with the upper-left corner at 10,10 and the
lower-right corner a t 100,100. Since SCREEN is omitted, all
subsequent coordinates are relative to the viewport. For example,
PSET (5,5),3 actually sets point 15,15.

V I E W SCREEN <20,25)-<100,150)

sets up a viewport. Because SCREEN is specified, all subse-
quent coordinates are absolute. For example, PSET (5,5),3 does
not appear because it is outside the viewport. PSET (30,30),3 is
within the viewport.

337

Chapter 10 I BASIC Keywords

Notes:
0 BASIC ignores any points that are outside the viewport's

0 RUN, SCREEN, and WINDOW statements, without parame-

CLS clears only the active viewport.

Sample Program

limits.

ters, define the entire screen as the viewport.

1 0 SCREEN 1
2 0 V I E W (1 0 , 1 0) - (2 0 0 , 1 0 0) , 2
3 0 PSET (1 0 0 , 5 0)
4 0 DRFlW " L 4 0 E 2 0 F 2 0 "

Line 20 sets the viewport. Line 30 sets the starting point for the
DRAW statement in Line 40.

~

338

ChuDter 10 I BASIC Keywords

VIEW PRINT Statement

VIEW PRINT top line TO bottom line

Creates a text viewport that redefines the text screen parame-
ters. All statements and functions that normally function within
the text viewport now function in the new text screen parame-
ters. Cursor movement and scrolling are also limited to the text
viewport.

Top line specifies the first line of the text viewport. It may be in
in the range 1 to 24, but must be less than bottom line. If you
omit top line, BASIC assumes Line 1 as the beginning of the
text viewport.

Bottom line specifies the last line of the text viewport. It may be
in the range 1 to 24, but must be greater than top line. If you
omit bottom line, BASIC assumes Line 24 as the end of the text
viewport.

If you omit all parameters, VIEW PRINT defines the entire
screen as the text viewport.

Example
V I E W PRINT 1 TO 1 5

BASIC defines the first 15 lines of the video as the text viewport.
All cursor movements, scrolling, and text screen functions and
statements are limited to these boundaries.

339

Chapter 10 I BASIC Keywords

WAIT Statement

WAIT port, numberl [,number21

Suspends program execution until a machine input port develops
a specified bit pattern. (A port is an inputloutput location.)

Number1 and Number2 are integers in the range 0 to 255.

BASIC reads the data at the specified port and XORs i t with
number2, if given. If you omit number2, BASIC XORs the data
with zero. BASIC then ANDs the result with numberl. If the re-
sult is zero, BASIC starts again with reading the data a t the
port again. If the result is nonzero, BASIC continues with the
next statement.

It is possible to enter an infinite loop with the WAIT statement.
In this case, you must restart the machine manually. To avoid
this, WAIT must have the specified value at port number during
some point in program execution.

Example
1 0 0 WAIT 32 ,2

340

Chapter 10 I BASIC Ke.ywords

WHILE ... WEND Statement

WHILE expression
WEND

Executes a series of statements in a loop as long as a given con-
dition is true.

Expression is any numeric or string expression, usually making
logical or relational comparisons.

If expression is true, BASIC executes the statements after the
WHILE statement until it encounters a WEND statement. Then
BASIC returns to the WHILE statement and checks expression.
If it is still true, BASIC repeats the process. If it is not true, exe-
cution resumes with the statement following the WEND
statement.

You may nest WHILE/WEND loops to any level. Each WEND
matches the most recent WHILE. An unmatched WHILE state-
ment causes a “WHILE without WEND” error, and an un-
matched WEND causes a “WEND without WHILE” error.

Sample Program
9 0 “BUBBLE SORT ARRAY A $
100 FLIPS=l “FORCE ONE PASS THRU LOOP
1 1 0 WHILE FLIPS
115 FLIPS=0
120 FOR I = l TO J-1
130 IF A$(I)>A$(I+l)THEN SWAP A $ < I) ,

140 NEXT I
150 WEND

A $ (I + 1 1 : FLIPS=l

This program sorts the elements in array A$. Control falls out of
the WHILE loop when no more swaps are performed on Line
130.

341

ChaDter 10 I BASIC Kevwords

WIDTH Statement

WIDTH [LPRINT] size
WIDTH buffer, size
WIDTH device, size

Sets the line width in number of characters for the display, line
printer, or communication channel.

Size may be an integer in the range 0 to 255 that specifies the
number of characters in a line. For the screen, size may be only
20, 40, or 80.

Buffer is an integer in the range 0 to 15 and specifies the buffer
used in the OPEN statment.

When you specify buffer, BASIC changes the width immediately.
This lets you change the width when the file is open. To return
to the previous width, execute another WIDTH statement,.

Device is a valid device enclosed in quotation marks that speci-
fies on which device you want to set the width. See Chapter 1 for
valid device names.

When you specify device, BASIC stores the new width and does
not change the current width of the device. When a subsequent
OPEN statement opens that device, BASIC uses the new width
while the file is open. After you close the file, the device returns
to the previous width.

When you set the width for the line printer, BASIC sends a car-
riage return after every size character. For example:

1 0 WIDTH LPRINT 100
20 LPRINT "This line is 100 character5 long. See
what happen5 when y o u print a 5tring longer than
width . "

Line 10 sets the printer width to 100 characters. After printing
100 characters, BASIC issues a carriage return. The carriage re-
turn causes the printer to print the remaining characters on the
next line.

342

Chapter 10 I BASIC Keywords

When you set the width for the communications channel, BASIC
sends a carriage return after every size character up to and in-
cluding 254. A width of 255, however, is interpreted as “infinite”
width and disables line wrapping. The default for communica-
tions channels is 255.

To set WIDTH at the screen, you may omit the LPRINT option
in the first form of the syntax, like this:

WIDTH 40

or you may use the third form of the syntax and specify the
device:

WIDTH “ S C R N : ” , 40

You may only use the WIDTH statement to select a width of 80
if you are using the VM-2 Monochrome Monitor or CM-2 Color
Monitor. If you are using the VM-2 Monochrome Monitor or the
CM-2 Color Monitor, you should note the following:

If you change the screen width, BASIC clears the screen and
sets the background to black and the foreground to white.

Changing the screen width does not affect the color enabling/
disabling value (burst value).

If the current video memory (allocated through a CLEAR
statement) is not enough to accommodate the new screen
mode, BASIC issues an “illegal function call” error.

0 The table below shows the actual effect of WIDTH statements
on the various modes. Given a particular mode and width, the
table shows the new screen mode that results.

Width
20 40 80

0
8 1
8 2 4 s
8 E 4
5

+ o 3
b

5
6

u

~

343

Chawter 10 I BASIC Kevwords

If you attempt to select a size outside the range 0 to 255, an "il-
legal function call" error results.

Examples
WIDTH LPRINT 132
WIDTH "LPTI : ' I , 132

Both these statements change the printer width to 132. The sec-
ond statement does not change the printer width until LPT1: is
specified as the device in an OPEN statement.

1 0 WIDTH LPRINT 80

100 OPEN "LPT1 : I ' FOR OUTPUT A S # 1

150 PRINT # 1

1000 WIDTH # I , 40

Line 10 changes the width of the printer to 80 characters. Line
150 prints the records as 80 characters each. After BASIC exe-
cutes Line 1000, Line 150 prints the records as 40 characters
each.

344

Chapter 10 I BASIC Ke.ywords

WINDOW Statement

Lets you change the physical coordinates of the screen (or cur-
rent viewport) by defining “world coordinates.” World coordinates
can be any single-precision floating point numbers, including
numbers outside the physical range of the screen as defined by
the VIEW statement.

Note: The viewport is set to the entire screen by de-
fault . For more information on viewports, see the
VIEW command.

(x1,yl) specifies the world coordinates for the upper-left corner of
the screen. x is the horizontal coordinate, and y is the vertical
coordinate.

(~ 2 ~ 2) specifies the world coordinates for the lower-left corner of
the display. x is the horizontal coordinate, and y is the vertical
coordinate.

The SCREEN option tells BASIC to set the coordinates like the
screen display where the lesser y-coordinate is in the upper-left
corner of the screen. If you omit screen, BASIC inverts the
y-coordinates to show a true Cartesian coordinate system. That
is, the lesser y-coordinate is in the lower-left corner of the
screen.

WINDOW lets you plot points outside the normal screen coordi-
nate limits by setting new world coordinates to the screen. WIN-
DOW transforms the new world coordinates onto the screen,
usually altering the aspect ratio.

Note: CIRCLE, GET, and PUT do not use world
coordinates.

You can easily plot graphs by specifying coordinates that are di-
rectly proportional to the limits of the graph. For example, to plot
the increase of sales from 1984 to 1987 with sales averaging
100,000 to 300,000, you can use the following command:

W I N D O W < 1 9 8 4 , 1 0 0 0 0 0) - < 1 9 8 7 , 3 0 0 0 0 0)

345

ChaBter 10 I BASIC Kevwords

The coordinates can be pictured for commands that use world
coordinates:

If you give the command:
W I N D O W S C R E E N (1 9 8 4 , 1 0 0 0 0 0) - (1 9 8 7 , 3 0 0 0 0 0)

the coordinates can be pictured as follows for commands that use
world coordinates:

Note: RUN, SCREEN and WINDOW statements,
without parameters, define the entire screen as the
window.

346

Chapter 10 I BASIC Ke.ywords

WRITE Statement

WRITE data[,data, ...I

Writes data to the screen.

Data can be any string or numeric expression or variables. If you
omit data, BASIC outputs a blank line.

The only difference between WRITE and PRINT is that WRITE
prints commas between the data items and prints quotation
marks around strings.

347

Chapter 10 I BASIC Keywords

WRITE# Statement

WRITE#buffer, data[,data,. ..I

Writes data to a sequential access disk file.

Buffer is the number assigned to the file when you opened it.

Data may be numeric or string expressions. If you specify more
than one data item, separate the items with commas.

WRITE# inserts commas between the data items it writes to
disk. It delimits strings with quotation marks. Therefore, it is
not necessary to put explicit delimiters between the data.

WRITE# inserts a carriage return after writing the last data
item to disk.

Example
A$="MICROCOMPUTER": B$="NEWS"
W R I T E # I , A $, E $

writes the following image to disk:
"MICROCOMPUTER" ,"NEWS"

348

Chapter 11

TECHNICAL INFORMATION

This chapter provides various information of a technical nature.
If you are just beginning to use BASIC, you may want to skip
this chapter until later.

Interfacing with Assembly-Language
Subroutines
This section is for users who call subroutines written in other
languages from their BASIC programs. BASIC provides for inter-
facing with subroutines through the USR function and through
the CALL and the CALLS statements.

You can load your assembly language subroutine into BASIC’s
work area or into another segment of memory. We will show you
both methods.

Memory Allocation Outside BASIC’s Work Area

When you load BASIC, the DS (data segment) register is set to
the address of BASIC’s work area. To access an area of memory
outside this work area, execute a DEF SEG statement to specify
the address of the segment of memory you are accessing. If you
don’t execute a DEF SEG statement, your CALL, CALLS, or
USR statements transfer control to an area within BASIC’s work
area. After returning from the subroutine, execute another DEF
SEG statement to restore the DS register to its original value.
See DEF SEG in Chapter 10 for more information.

Memory Allocation Inside BASIC’s Work Area

To set aside memory space for an assembly language subroutine
within BASIC’s work area, use the IM: switch when you load
BASIC. See Chapter 2 for a review of the start-up procedure.

351

Chapter 11 I Technical Information

The /M: switch sets the highest memory address that BASIC can
use. The value that you specify with the /M: switch tells BASIC
that it can use all memory up to that offset. Load your subrou-
tine at that offset. Using the iM: switch prevents BASIC from de-
stroying your subroutine. For example,

BASIC /M:&HF000

sets the highest memory location that BASIC can use at hexade-
cimal address EFFF. This reserves the highest 4K bytes of
memory for your subroutine. You can load your subroutine at
hexadecimal address &HF000 like this:

BLOAD "SUBA.ASM", g H F 0 0 0

Stack Space
If you need more stack space when you call an assembly lan-
guage subroutine, you can save the BASIC stack and set up a
new stack for the subroutine. You must restore the BASIC stack
before returning from the subroutine. You save the stack, create
a new stack, and restore the stack in your subroutine.

Loading the Subroutine into Memory
You can use the operating system or the POKE statement to load
the subroutine into memory. You may assemble the routines
with the Macro Assembler (available through your Radio Shack
dealer) and link them with Linker. The Linker is part of the
MS-DOS package. To load the program file, observe these
guidelines:

0 Be sure t h a t the subroutines do not contain any long
references.

Skip the first 512 bytes of the LINK output file and then
read in the rest of the file.

352

Chapter 11 I Technical Information

Poking a Subroutine into Memory
You can code short subroutines in machine language and use the
POKE statement to put the code into memory. To do so, follow
these steps:

1. Code the machine language instructions for your subroutine.

2. Put the assembly instruction code for each byte of the ma-
chine language code into DATA statements, preceded by the
&H symbols to denote that they are hexadecimal values.

Execute a loop that reads the DATA statements and POKES
them into an area of memory.

3.

For example, the instruction code for the statement
P U S H BP

is 55. The DATA statement for that instruction is
DATA & H 5 5

After the loop is complete, the subroutine is in memory. Whether
you are using the USR function or the CALL statement to call
the subroutine, you must set the value of the subroutine entry
point as the location specified in the first POKE statement.

CALL Statement
When the CALL statement is executed, the following occurs:

1. For each parameter in the parameter list, the two-byte offset
of the parameter’s location within the data segment (DS) is
pushed onto the stack. If the parameter is a string variable,
the offset points to the string descriptor. See the section “Ac-
cessing String Parameters” in this appendix.

The BASIC return address code segment (CS) and offset (IP)
are pushed onto the stack.

Control is transferred to the subroutine by an 8086 long call
to the segment address given in the last DEF SEG state-
ment and the offset given in uariabk.

2.

3.

353

Chapter 11 I Technical Information

When the CALL statement is executed, the operating system
loads the CS (code segment) register with the value specified in
the last DEF SEG statement. If you are CALLing a subroutine
within BASIC’s work area, and no DEF SEG is required, the CS
register is loaded with the address of BASIC’s work area. This
address is shifted left 4 bits; in other words, which is the same
as multiplying it by 16 decimal (10 hexadecimal). Then, the off-
set of the subroutine is added to the segment address.

Example
1 7 1 0 0 + 0 0 2 0 = 1 7 1 2 0

17120 is the absolute address of the first instruction in the
subroutine.

Technical Functions

The called routine may destroy the previous contents of all regis-
ters. If you want to save the contents of the registers, the first
instructions in the subroutine must be a PUSH for each register,
and the last instructions in the subroutine must be a POP to re-
store the registers to their original value. You must execute a
POP for every PUSH to maintain stack integrity.

The subroutine may refer to the passed parameters as positive
offsets to the Base Pointer (BPI. The CALLed routine must
PUSH BP on the stack and then move the current stack pointer
into BP. BP should be the first register you PUSH so that the
parameters may be referenced as an offset to BP. The first 4
bytes of the stack contain the IP and CS register values that
BASIC saves when the CALL is executed. To calculate the pa-
rameters offset from the BP, use this equation:

2 * (total parameters - parameter position) + 6 = offset

For example, the address of parameter 1 is a t 10(BP), parameter
2 is a t S(BP), and parameter 3 is a t 6(BP).

354

Chapter 11 I Technical Information

Exiting the Subroutine

The called routine must execute a RET number statement to ad-
just the stack to the start of the calling sequence. The value of
number is 2 times the number of parameters in the parameter
list.

CALLS Statement
The CALLS statement is the same as CALL except the argu-
ments are passed as segmented addresses. CALLS should be
used to access MS-FORTRAN routines.

Because MS-FORTRAN routines need to know the segment
value for each argument passed, the segment is pushed first, fol-
lowed by the offset. CALLS pushes 4 bytes for each argument;
therefore, the number in the RET statement (RETn) must be 4
times the number of arguments.

USR Function
When the USR statement is executed, the operating system loads
the CS (code segment) register with the value specified in the
last DEF SEG statement. If you are accessing a subroutine
within BASIC’s work area and no DEF SEG is required, the CS
register is loaded with the address of BASIC’s work area. This
address is shifted left 4 bits; which is the same as multiplying it
by 16 decimal (10 hexadecimal). Then the offset of the subrou-
tine is added to the segment address.

Example

17100 + 0020 = 17120

This is the absolute address of the first instruction in the
subroutine.

355

Chapter 11 I Technical Information

Technical Functions

When the USR function call is made, register AL contains a
value that specifies the type of argument that was given. The
value in AL may be one of the following:

Value in AL Type of Argument

2 2-byte integer (two’s complement)
3 String
4 Single precision floating-point number
8 Double precision floating-point number

If the argument is a string, the DX register pair points to the
“string descriptor.” See the section “Accessing String Variables”
in this chapter.

If the argument is a number, the BX register pair points to the
Floating-point Accumulator (FAC) where the argument is stored:

FAC is the exponent minus 128, and the binary point is to
the left of the most significant bit of the mantissa.

FAC-1 contains the highest 7 bits of mantissa with leading
1 suppressed (implied). Bit 7 is the sign of the number
(0 =positive, 1 = negative).

If the argument is an integer:

FAC-2 contains the upper 8 bits of the argument.

FAC-3 contains the lower 8 bits of the argument.

If the argument is a single precision floating-point number:

FAC-2 contains the middle 8 bits of mantissa.

FAC-3 contains the lowest 8 bits of mantissa.

If the argument is a double precision floating-point number:

FAC-4 through FAC-7 contain 4 more bytes of mantissa
(FAC-7 contains the lowest 8 bits).

Exiting the Subroutine

The subroutine must execute a RET 7 statement to adjust the
stack to the start of the calling sequence.

356

Chapter 11 I Technical Information

How Variables are Stored
BASIC stores variables in its data segment as follows:

Byte

Byte 0

Bytes 1 and 2

Byte 3

Byte 4 +
integer stored
in Byte 3

Byte 4 + length

Contents Description

Type Identifies the type of vari-
able stored at this location:

2 integer
3 string
4 single precision
8 double precision

Name The first 2 characters of the
variable name.

Integer Integer is the number of ad-
3 - 38 ditional characters in the

variable name.

Name The remainder of the vari-
able name is stored at bytes
4 + the integer stored in
Byte 3.

The contents of the variable
are stored in the bytes im-
mediately following the vari-
able name. The data can be
2, 3, 4, or 8 bytes in length,
depending on the type of
data.

Data

At least 3 bytes are required to store any variable name. A 1- or
2-character variable name occupies exactly 3 bytes. Bytes 1 and
2 for the first 2 characters and Byte 3 to contain a zero to indi-
cate that there are no additional characters in the variable
name. If the variable name only contains 1 or 2 characters, the
data is stored beginning at Byte 4. As you can see, the location
of the first actual byte of data depends on the length of the vari-
able name. VARPTR returns the offset of the first actual byte of
data, not the offset of the beginning of the storage area.

357

Chapter 11 1 Technical Information

Accessing String Variables
If the parameter passed in a CALL statement is a string expres-
sion, the parameters offset points to the string descriptor. If the
argument passed in a USR function call is a string expression,
the DX register points to the string descriptor.

The string descriptor is a 3-byte area of memory that points to
the text of the s t r ing. The string descriptor contains the
following:

Byte 0 contains the length of the string (0 to 255).

Byte 1 contains the lower 8 bits of the string
starting address in BASIC’s data segment.

Byte 2 contains the upper 8 bits of the string
starting address in BASIC’s data segment.

The text of the string may be altered by the subroutine, but the
length of the string must not be changed. BASIC cannot cor-
rectly manipulate strings if their lengths are modified by exter-
nal routines.

Since the string descriptor points to an area of memory in your
BASIC program, you must be careful not to alter or destroy your
program. To avoid unpredictable results, add the concatenation
symbol (+) to the string. This forces the string to be copied into
string space, where the string may be modified without affecting
the program.

Example

20 A$ = “MONTHLY SALES REPORT” + “ ”

File Control Block
A file control block is a storage area in BASIC’s data segment
that contains information BASIC needs for all functions per-
formed on that file. When you execute the VARPTR function and
specify the buffer number, BASIC returns the address of the
BASIC file control block for that file. Note that this is the BASIC
file control block, not the DOS file control block. The address is
specified as an offset into BASIC data segment. In this section
we define the information in the file control block. Offsets are
relative to the value returned by VARPTR. Length is in bytes.

358

Chapter 11 I Technical Information

OFFSET LENGTH DESCRIPTION

0

1

39

41

42

43

46

47

48

1

38

2

1

1

3

1

1

1

Mode

FCB

CURLOC

ORNOFS

NMLOFS

DEVICE

WIDTH

POS

The mode in which the file
was opened:

1 - Input Only
2 - Output Only
4 - Random I/O

16 - Append Only
32 - Internal use
64 - Future use

128 - Internal use

Disk File Control Block.
Refer to DOS User's Guide
for contents.

Number of sectors read or
wri t ten for sequential ac-
cess. For random access, it
conta ins t h e l a s t record
number + 1 read or written.

Number of bytes in sector
when read or written.

Number of bytes left in In-
put buffer.

Reserved for future
expansion.

Device number:
0-9 - Disks A: thru J:
255 - KYBD:
254 - SCRN:
253 - LPT1:
251 - COM1:
250 - COM2:
249 - LF'T2: (not available)
248 - LF'T3: (not available)

Device width.

Posi t ion i n buffer for
PRINT#.

359

Chapter 11 I Technical Information

OFFSET LENGTH DESCRIPTION

49

50

51

179

181

183

185

186

188

1

1

128

2

2

2

1

2

<n>

FLAGS

OUTPOS

BUFFER

VRECL

PHYREC

LOGREC

OUTPOS

FIELD

Internal use during LOAD/
SAVE; not used for d a t a
files.

Output position used during
tab expansion.

Physical data buffer. Used
to t ransfer da t a between
DOS and BASIC. Use this
offset to examine da ta in
Sequential I/O mode.

Variable length record size.
Defaul t i s 128 . S e t by
l eng th option i n OPEN
statement.

Cur ren t physical record
number.

C u r r e n t logical record
number.

Future use.

Disk files only. Output posi-
tion for PRINT#, INPUT#,
and WRITE#.

Actual FIELD data buffer.
Size is determined by /S:
switch. VRECL bytes a re
t r a n s f e r r e d be tween
BUFFER and FIELD on I/O
operations. Use this offset to
examine File data in Ran-
dom I/O mode.

360

Chapter 11 I Technical Information

User Installed Devices
When writing device drives to use with BASIC, note the follow-
ing rules:

0 BASIC sends only a carriage return as an end of line. If the
device requires a line feed also, you must provide for this in
your driver.

BASIC must read and write control information to the device.
Reading and writing Device Control data is handled by the
BASIC IOCTL statement and the IOCTL$ function.

0 Your driver must provide the following control functions:

The driver must set a maximum line width as requested by
the OPEN statement.

The driver must return the current maximum line width
when BASIC asks for it.

Input Devices must re turn a n “end-of-file’’ condition to
BASIC if you want to be able to close sequential input files
open to the device driver. This is used by the EOF statement.

Input Devices should return a “.Z [CTRL] [q if BASIC attempts
to read past the end of the device input stream. BASIC uses
this to give an “Input past end” error.

For more information on device drives, see the Programmer’s
Reference Manual for your computer. It is available a t your Radio
Shack Computer Store.

Information for Creating Child Processes
When writing programs for use as child processes from BASIC,
please note the following rules and information:

Child processes that use the screen device might modify the
screen mode parameters. If necessary, restore these parame-
ters from BIOS.

0 Save and restore interrupt vectors the child process uses.

BASIC places many hardware devices in specific states.
These devices include an Interrupt Controller, Counter Tim-
ers, DMA Controller, I/O Latch, and Uarts.

361

Chapter 11 I Technical Information

Be careful when altering any files opened by the BASIC par-
ent program. The BASIC parent program should close all files
before executing SHELL and then reopen them upon return.

0 When the SHELL command executes, BASIC tries to free
any memory not being used. However, BASIC does not free
memory preserved with the /M switch. This may cause an
“Out of memory” error.

To avoid this, load your machine language routines before en-
tering BASIC. Use Interrupt 27 to let the routines to exit
MS-DOS but still remain in memory.

For more information, see the Programmer’s Reference man-
ual for your computer. It is available through your Radio
Shack Computer Center.

0 Never use Interrupt 27 on a child process. If you attempt to
terminate a child process but have it remain in memory,
BASIC may not have enough room to expand its workspace to
its original size. If the workspace cannot be restored, BASIC
closes all files, prints the error message “SHELL can’t con-
tinue,” and exits to MS-DOS.

You cannot run BASIC as a child process to itself.

362

Chapter 12

BASIC ERROR CODES AND MESSAGES

Number Message

1 NEXT without FOR

BASIC executed a NEXT statement without previ-
ously executing a FOR statement, or a variable in a
NEXT statement does not correspond to a previ-
ously executed FOR statement.

2 Syntax error

BASIC encountered a line that contains an incor-
rect sequence of characters (such as unmatched pa-
r e n t h e s e s , misspe l led s t a t e m e n t , incorrect
punctuation, etc.). BASIC automatically enters the
edit mode at the line that caused the error.

3 RETURN without GOSUB

BASIC executed a RETURN statement without pre-
viously executing a GOSUB statement.

4 Out of DATA

When executing a READ statement, BASIC could
not find any DATA statements or unread data
items.

5 Illegal function call

A parameter that is out of range was passed to a
math or string function. This error may also occur
as the result of:

negative array subscript or an unreasonably
large array subscript.

negative or zero argument with LOG.

0 negative argument to SQR.

0 negative mantissa with a noninteger exponent.

0 invalid exponential number

365

Chavter 12 I Error Messages

Number Message

0 a call to a USR function without a starting ad-
dress set by DEF USR.

improper argument to MID$, LEFT$, RIGHT$,
PEEK, POKE, TAB, SPC, STRING$, SPACE$,
INSTR, or LEFT$, RIGHT$, PEEK, POKE,
TAB, SPC, STRING$, SPACE$, INSTR, or
ON ... GOTO.

negative record number used with GET or PUT.

0

0

6 Overflow

The result of a calculation was too large to be rep-
resented in BASIC numeric format. If underflow oc-
curs, the result is zero, and execution continues
without an error.

7 Out of memory

A program is too large, has too many FOR loops or
GOSUBs, has too many variables, or has expres-
sions that are too complicated.

8 Undefined line number

A nonexistent line was referenced in a GOTO, GO-
SUB, IF ... THEN ... ELSE, or DELETE statement.

9 Subscript out of range

An array element is referenced with a subscript
outside the dimensions of the array or with the
wrong number of subscripts.

10 Redimensioned Array/Duplicate Definition

BASIC encountered 2 DIM statements for the same
array, or a DIM statement after the default dimen-
sion of 10 had already been established for that
array.

366

Chapter 12 I Error Messages

Number

11

12

13

14

15

16

17

Mess age

Division by zero

An expression includes division by zero, or the oper-
ation of involution results in zero being raised to a
negative power. BASIC supplies machine infinity
with the sign of the numerator as the result of the
division, or it supplies positive machine infinity
a s the resul t of the involution. Execution then
continues.

Illegal direct

A statement that is illegal as a command was en-
tered at BASIC’s prompt.

Type mismatch

A string variable name was assigned a numeric
value or vice versa. A string function was given a
numeric argument or vice versa.

Out of string space

The amount of memory used by string variables ex-
ceeded the amount of free memory.

String too long

An attempt was made to create a string more than
255 characters.

String formula too complex

A string expression is too long or too complex. The
expression should be broken in to sma l l e r
expressions.

Can’t continue

An attempt was made to continue a program that:

halted because of an error.

0 was modified during a break in execution.

0 does not exist.

367

Chapter 12 I Error Messages

Number

18

19

20

21

22

23

24

25

26

27

Message

Undefined user function.

A USR function was called before providing a func-
tion definition (DEF USR statement).

No RESUME

BASIC executed an error-handling routine that did-
not have a RESUME statement.

RESUME without error

BASIC executed a RESUME statement when no er-
ror had occurred.

Unprintable error

An error message is not available for the error that
occurred.

Missing operand

BASIC encountered an expression that contained an
operator but no operand.

Line buffer overflow

The line being input is too long.

Device Timeout

BASIC did not receive information from an 110 de-
vice within a predetermined amount of time.

Device Fault

An incorrect device designation has been entered.

FOR without NEXT

BASIC executed a FOR statement that did not have
a matching NEXT.

Out of Paper

BASIC received an out of paper status from the
printer.

368

Chapter 12 I Error Messages

Number Message

29 WHILE without WEND

BASIC encountered a WHILE statement that did
not have a matching WEND.

30 WEND without WHILE

BASIC executed a WEND statement before execut-
ing a WHILE statement.

369

Chapter 12 I Error Messages

Disk Errors
Number

50

51

52

53

54

55

57

58

Mess age
FIELD overflow

A FIELD statement is allocating more bytes than
the specified record length of the direct access file.

Internal error

An internal malfunction has occurred in BASIC.
Report to Radio Shack the conditions under which
the message appeared.

Bad file number

BASIC encountered a reference to a buffer number
that is not open or is out of the range of the number
of files specified when BASIC was loaded.

File not found

A LOAD, KILL, or OPEN statement references a
file that does not exist on the current disk.

Bad file mode

An attempt was made to use PUT, GET, or LOF
with a sequential file, to LOAD a direct file, or to
execute a n OPEN statement with a file mode other
than I, 0, R, E or D.

File already open

BASIC encountered an OPEN statement for sequen-
tial output, or a KILL statement, for a file that is
already open.

Device I/O Error

An Input/Output error occurred. This is a fatal er-
ror; the operating system cannot recover it.

File already exists

The filename specified in a NAME statement is
identical to a filespec already in use on the disk.

370

Chapter 12 I Error Messages
~~

Number

61

62

63

64

66

67

68

Message

Disk full

All disk storage space is in use.

Input past end

BASIC executed an INPUT statement after all the
data in the file had been read, or BASIC executed
an INPUT statement to a null (empty) file. To avoid
this error, use the EOF function to detect the end-
of-file.

Bad record number

In a GET or PUT statement. the record number is
e i t h e r g r e a t e r t h a n t h e max
(16,777,215) or equal to zero.

Bad file name

An il legal pa thname was used
SAVE, KILL, or OPEN statement

mum allowed

with a LOAD,
(for example, a

filename with too many characters).

Direct statement in file

Information in a non-ASCII format was encountered
while LOADing an ASCII-format file. The LOAD is
terminated.

Too many files

The diskette already contains the maximum num-
ber of files allowed. This usually occurs on SAVE or
OPEN. An attempt was made to create a new file
(using SAVE or OPEN) when all directory entries
are full.

Device Unavailable

An attempt was made to open a file to a non-
existent device. It may be that hardware does not
exist to support the device, such as LPT2: or LPT3:,
or that the device is disabled. This occurs if an
OPEN “COM1: ... statement is executed but the user
disabled RS232 support via the /C:0 switch direc-
tive on the command line.

371

Chapter 12 I Error Messages

Number

69

70

71

72

73

74

75

76

77

Message

Communication buffer overflow

Not enough space has been reserved for the commu-
nications buffer.

Disk write protected

Occurs when an attempt is made to write to a
diskette that is write-protected. Use an ON ERROR
GOTO statement to detect this situation and re-
quest user action.

Disk not Ready

Occurs when the diskette drive door is open or a
diskette is not in the drive. Use an ON ERROR
GOTO statement to recover.

Disk media error

Occurs when the FDC controller detects a hardware
or media fault. This usually indicates harmed me-
dia. Copy any existing files to a new diskette and
re-format the damaged diskette. FORMAT flags any
bad tracks and records them in a special file. The
remainder of the diskette is then usable.

Advanced Feature

Rename across disks

An attempt was made to rename a file with a new
drive designation. BASIC does not allow this.

PatWFile Access Error

During an OPEN, MKDIR, CHDIR, or RMDIR op-
eration, MS-DOS was unable to make a correct
Path-to-Filename connection.

Path not found

The OPEN, MKDIR, CHDIR, or RMDIR statement
references a path that does not exist.

Deadlock

372

Appendix A

BASIC Reserved Words
and Derived Functions

Reserved BASIC Words
ABS DELETE IOCTL OR SOUND
AND DIM IOCTL$ OUT SPACE$
ASC DRAW KEY PAINT SPC (
ATN EDIT KEY$ PALETTE SQR
AUTO ELSE KILL PALETTE USING STEP
BEEP END LEFT$ PCOPY
BLOAD ENVIRON LEN PEEK
BSAVE ENVIRON$ LET PEN
CALL EOF
CDBL EQV
CHAIN ERASE
CHDIR ERDEV
CHR$ ERDEV$
CINT ERL
CIRCLE ERR
CLEAR ERROR
CLOSE EXP
CLS FIELD
COLOR FILES
COM FIX
COMMON FN
CONT FOR
cos FRE
CSRLIN GET
CSNG GOSUB
CVD GOT0
CVI HEX$
cvs IF
DATA IMP
DATE$ INKEY$
DEF INP
DEFDBL INPUT
DEFINT INPUT#
DEFSNG INPUT$
DEFSTR INSTR
DEFFN INT
DEF USR INTER$

LINE PLAY
LIST PMAP
LLIST POINT
LOAD POKE
LOC POS
LOCATE PRESET
LOF PRINT
LOG PRINT#
LPOS PSET
LPRINT PUT
LSET RANDOMIZE
MERGE READ
MID$ REM
MKDIR RENUM
MKD$ RESET
MKI$ RESTORE
MKS$ RESUME
MOD RETURN
MOTOR RIGHT$
NAME RMDIR
NEW RND
NEXT RSET
NOISE RUN
NOT SAVE
OCT$ SBN
OFF SCREEN
ON SGN
OPEN SHELL
OPTION SIN

STICK
STOP
STR$
STRIG
STRING$
SWAP
SYSTEM
TAB(
TAN
TERM
THEN
TIME$
TIMER
TO
TROFF
TRON
USING
USR
VAL
VARPTR
VARPTR$
VIEW
WAIT
WEND
WHILE
WIDTH
WINDOW
WRITE
WRITE#
XOR

375

Appendix A
~

Derived BASIC Functions
Functions which are not intrinsic to BASIC may be calculated as
follows:

Function
SECANT
COSECANT
CONTANGENT
INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE
COSECANT

INVERSE
COTANGENT

HYPERBOLIC
SINE

HYPERBOLIC
COSINE

HYPERBOLIC
TANGENT

HYPERBOLIC
SECANT

HYPERBOLIC
COSECANT

HYPERBOLIC
COTANGENT

INVERSE
HYPERBOLIC
SINE

INVERSE
HYPERBOLIC
COSINE

INVERSE
HYPERBOLIC
TANGENT

BASIC Equivalent
SEC(X) = 1/COS(X)
CSC(X) = l/SIN(X)
COT(X) = l/TAN(X)
ARCSIN(X) = ATN(X/
SQR(- X*X + 1))
ARCCOS(X) = - ATN(X/
SQR(- X*X + 1)) + 1.5708

SQR(X*X - 1)) + (SGN(X) - 1)

ARCCSC(X) = ATN(X/SQR(X*X - 1))
+ (SGN(X) - 1)*1.5708

ARCSEC(X) = ATN(X/

*1.5708

ARCCOT(X) = ATN(X) + 1.5708

SINH(X) = (EXP(X) - EXP(- X))/2

COSH(X) = (EXP(X) + EXP(- X))/2
TANH(X) = (EXP(X) - EXP(- XI)/
(EXP(X) + EXP(- X))

SECH(X) = 2/(EXP(X) + EXP(- XI)

CSCH(X) = SI(EXP(X1- EXP(- XI)
COTH(X) = (EXP(X) + (EXP(- X))/
(EXP(X) - EXP(- X))

ARCSINH(X1 = LOG(X
+ SQR(X*X + 1))

ARCCOSH(X) = LOG(X
+ SQR(X*X - 1))

ARCTANH(X) = LOG((l+ XI/(1 - X))/
2

376

Appendix A

Function BASIC Equivalent

INVERSE
HYPERBOLIC ARCSECH(X) = LOG((SQR
SECANT

HYPERBOLIC ARCCSCH(X) = LOG((SGN(X)*

(- x * x + 1) + 1)/X)

SQR(X*X + 1) + l)/X)

INVERSE

COSECANT

HYPERBOLIC
INVERSE

COTANGENT ARCCOTH(X) =LOG((X + l)/(X - 1))/2

377

Appendix B

KEYBOARD AND CHARACTER CODE
CHARTS

Keyboard ASCIIiScan Codes
The first table in this appendix lists the keys on the Tandy 1000
keyboard in scan code order, along with the ASCII codes they
generate. For each key, the following entries are given:

Scan Code - A value in the range 01H-5AH which uniquely
identifies the physical key on the keyboard that is pressed.

Keyboard Legend - The physical marking(s) on the key. If
there is more than one marking, the upper one is listed
first.

ASCII Code - The ASCII codes associated with the key. The
four modes are:

Normal - The normal ASCII value (returned when only
the indicated key is depressed).

SHIFT - The shifted ASCII value (returned when SHIFT
is also depressed).

CTRL - The control ASCII value (returned when CTRL is
also depressed.)

ALT - The alternate ASCII value (returned when ALT is
also depressed).

Remarks - Any remarks or special functions.

The following special symbols appear in the table:

Values preceded by an “x” are extended ASCII codes
(codes preceded by an ASCII NUL, 00).

No ASCII code is generated.

x

-

* No ASCII code is generated, but the special function
described in the Remarks column is performed.

379

Append ix B

The IALT] key provides a way to generate the ASCII codes of deci-
mal numbers in the range 1 to 255. Hold down the [ALTI key
while you type on the numeric keypad any decimal number in the
range 1 to 255. When you release [, the ASCII code of the
number typed is generated and displayed.

Note: When the NUM LOCK light is off, the Normal
and SHIFT columns for these keys should be reversed.

All numeric values in the table are expressed in hexadecimal.

QWERTY (USA) - Tandy 1000

ASCII Codes
Scan Keyboard SHIFT CTRL
Code Legend Normal ALT Remarks

01 ESC 1B
02
03
04
05
06
07
08
09
0A
OB
0 c
0D
BE
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F
20
21
22

1 !
2 @
3 #
4 $
5 %
6
7 &?

8
9 (
0 1

*

-
+ - -

BACK SPACE
TAB
Q
W
E
R
T
Y
U
I
0
P
[{
1 I
ENTER
CTRL
A
S
D
F
G

31
32
33
34
35
36
37
38
39
30
2D
3D
08
09
71
77
65
72
74
79
75
69
6F
70
5B
5D
OD

61
73
64
66
67

*

1B
21
40
23
24
25
5E
26
2A
28
29
5F
2B
08

x0F
51
57
45
52
54
59
55
49
4F
50
7B
7D
OD

41
53
44
46
47

*

1B x8B
x E l x78
x03 x79
xE3 x7A
xE4 x7B
xE5 x7C
1E x7D

xE7 x7E
xE8 x7F
xE9 x80
xE0 x81

1F x82
xF5 x83

7F x8C
x8D x8E

11 x10
17 x l l
05 x12
12 x13
14 x14
19 x15
15 x16
09 x17
OF x18
10 x19
1B xEB
1D xF0
OA x8F Main Keyboard * * Control Mode
01 x l E
13 x l F
04 x20
06 x21
07 x22

380

Appendix B

ASCII Codes
Scan Keyboard SHIFT CTRL
Code Legend Normal ALT Remarks

23
24
25
26
27
28
29
2A
2B
2 c
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3c
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4 c
4D
4E
4F
50
51
52
53

H
J
K
L

U P ARROW
SHIFT
LEFT ARROW
Z
X
C
V
B
N
M

<
>

I ?
SHIFT
PRINT
ALT
space bar
CAPS
F1
F2
F3
F4
F5
F6
F7
F8
F9
F1O
NUM LOCK
HOLD
7 \
8
9 PG UP
DOWN ARROW

5
6
RIGHT ARROW
1 END
2
3 PG DN
0

4 I

DELETE

68
6A
6B
6C
3B
27

x48

x4B
7A
78
63
76
62
6E
6D
2 c
2E
2F

10

20

x3B
x3c
x3D
x3E
x3F
x40
x4 1
x42
x43
x44

*

*

*
*

*
*

37
38
39

x50
34
35
36

x4D
31
32
33
30
2D

48
4A
4B
4 c
3A
22

x85

X87
5A
58
43
56
42
4E
4D
3 c
3E
3F

*

*
*
*

20

x54
x55
x56
x57
x58
x59
x5A
x5B
x5c
x5D

*

*
*

5 c
7E

x49
x86
7C

xF3
xF4
X 8 8
x4F

60
x5 1
x9B
x53

08
OA
OB
0 c

xF6
xF7
x90

x73
1A
18
03
16
02
OE
OD

xF9
xFA
xFB

x72

20

x5E
x5F
x60
x6 1
x62
x63
x64
x65
x66
x67

*

*

*
*

*
*

x93
x94
x84
x96
x95
xFC
xFD
x74
x75
x9A
x76
x9c
x9D

x23
x24
x25
x26
xF8
xF1
x91

* Left SHIFT
x92
x2c
x2D
x2E
x2F
x30
x3 1
x32
x89
x8A
xF2

* Right SHIFT
x46 SCR Print Toggle

* Alternate Mode
20
* Caps lock

x68
x69
x6A
x6B
x6C
x6D
x6E
x6F
x70
x7 1

* number lock
* Freeze display *
*
*

x97 *
*
*

xEA *
*
*
*

x9E

381

Appendix B

ASCII Codes
Scan Keyboard SHIFT CTRL
Code Leeend Normal ALT Remarks

54 BREAK xOO xOO * * CTRLBREAK
is the control
brk routine
(INT 1BH).
ALT BREAK is
the scroll lock
bit toggle.

55 + INSERT 2B x52 x9F xA0
56 . 2E xAl xA4 xA5 Numeric keypad
57 ENTER 0D OD 0A x8F Numeric keypad
58 HOME x47 x4A x77 xA6
59 F11 x98 xA2 xAC xB6
5A F12 x99 xA3 xAD xB7

382

Awwendix B

ASCII Character Codes
The previous table listed the ASCII codes (in hexadecimal) gen-
erated by each key. The following table lists the characters gen-
erated by those ASCII codes. (Note: All ASCII codes in this table
are expressed in decimal form.)

You can display the characters listed by doing either of the
following:

0 Using the BASIC statement PRINT CHR$(code), where code is

0 Pressing and, without releasing it, typing the ASCII code

For Codes 0-31, the table also lists the standard interpretations.
The interpretations are usually used for control functions or
communications.

Note: The BASIC program editor has its own special
interpretation of some codes and may not display the
character listed.

the ASCII code.

on the numeric keypad.

383

Appendix B

ASCII CHARACTER CODES
~ ~

ASCII
code Character

Control
Character

000
00 1
002
003
004
005
006
007
008
009
01 0
01 1
01 2
013
01 4
015
01 6
01 7
01 8
01 9
020
02 1
022
023
024
025
026
027

028
029
030
03 1

(null)
@
e
V
+

(beep)
13
(tab)
(line feed)
(home)
(form feed)
(carriage return)

1J
43
b

4

t
!!

ll
5

1.
t
J

I

*
t

(cursor right)
(cursor left)
(cursor up)
(cursor down)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
0s
HT

LF
VT
FF

CR
so
SI
DLE
DC 1
DC2
DC3
DC4
NAK
SY N
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

384

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

032
033
034

035
036
037

038
039
040
041

042
043
044

045
046
047
048
049
050
05 1

052
053
054

055
056
057

058
059

060
06 1

062
063
064
065
066
067

(space)
!

9 ,

$
%
&

(
1

+

-

I
0
1

2
3
4

5
6
7
8
9

,
<
- -
>
?
@
A
E?
C

068
069
070
071
072
073
074
075
076
077
078
079
080
08 1
082
083
084
085
086

087
088
089
090
09 1
092
093
094
095

096
097

098
099
100
101
102

103

D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y

Z

[
\
1
A
-

a
b
C

d
e
f

9

385

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

104

105
106
107
108
109
110
111

112
113
114

115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132

133
134
135
136
137
138
139

h 140
I 141
j 142
k 143
I 144

m 145

n 146
0 147
P 148
q 149
r 150
S 151
t 152
U 153
v 154
W 155
X 156
Y 157
z 158

{ 159

I 160
1 161

162
0 163

164
165 ii

e 166
a 167
a 168
a 169
Q 170

171 F
6 172
e 173
e 174

I 175

I

-

c
,.

I

I

A
R
E

R
E

A

0

0

6

b

0

U

Y

U
a
E

Pt
'f

a

6
u

N

a
o_
i

I

-
n -

r

1

'/2

'/4

((

I

))

386

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209
21 0

21 1

3 21 2
2 213
i% 214

I 215
i 216

=I 21 7
i l 21 8
n 219 - 220

221 4
I1 222

J

=il 223
3 224
11 225
=I 226
7 227
L 228
I 229
T 230

23 1
- 232

+ 233
t 234

235
236 e

ti= 237
JL 238

239 i r

1: 240

24 1

4; 242
I 243
Y 244
=F 245
7 246
L 247

1

It

-

- -

387

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

0 248 252 'I

249 0 253 2

250 0 254 w
251 If 255 (blank 'FF')

388

Appendix C

VIDE 0 DISPLAY WORKSHEET

The following page contains a video display worksheet of your
text screen’s coordinates. This map is provided to help you
quickly position the cursor for screen prints. You’ll find it espe-
cially useful for creating visually pleasing, easy-to-follow screen
menus. See the CSRLIN and POS function for information on re-
turning the current cursor position. See the LOCATE statement
and the TAB function for information on positioning the cursor.

389

390

Appendix D

EXTENDED CODES

For certain keys and key combinations, INKEY$ returns a 2-
character code. The first character is a null character (ASCII
Code 00). The second is usually the scan code of the key(s)
pressed. The key(s) and associated ASCII codes (in decimal) are
listed below.

Second Key(s) Second Key($
Character Pressed Character Pressed
15
16
17
18
19
20
21
22
23
24
25
30
31
32
33
34
35
36
37
38
44
45
46
47
48
49
50
59
60
61
62
63

64
65
66
67
68
71
72
73
75
77
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

391

Appendix D

Second Key(s) Second KeyW
Character Pressed Character Pressed
102
103
104
105
106
107
108
109
110
111
112
113
115
116
117
118
119
120
1 2 1

122
123
124
125
126
127
128
129
130
1 3 1
132
152
153
162
163
172
173
182
183

392

INDEX

ABS Fn 92, 97
Absolute coordinates 82
Absolute value 97
Active page 80, 303
Addition 52
ALT key 38
AND 54
Animation 171, 282
Arctangent 99
Arguments 8
Arithmetic operators 51
Arrays 59-63, 117, 142, 152, 248

defining 63, 142
erasing 152
types 62

ASC Fn 92, 98
ASCII codes 98, 112, 302, 379-388
Aspect ratio 77, 78
Assembly-language subroutines 351-356

CALL 105
calling 105
DEFUSR 140
interfacing 351-353
loading 352
poking 353
USR 333

ATN Fn 92, 99
AUTO St 87, 100

Background colors 78, 79, 80
Backups 17-19
BASIC

commands 33
concepts 43-56
derived function 376-377
device names 14
directory paths 12-13
disk files 11
editing 33-36
line numbers 43, 100
loading 19, 27

393

Index

BASIC (cont.)
loading options 19-21
pathnames 12-13
program 43
redirection 21, 23-24
reserved words 375
sample session 27-29
special keys 36-38
statement 43
wildcards 13
work area 351-352

BEEP St 87, 101

Boolean operators 54
Borders 80
Branching 172, 173, 175-176, 231

Buffer 8, 159-160, 215, 242, 298,

Buffer, communications 21, 208, 211, 244-247, 279,

Buffer, music 264
Buffer, printer 213

Calling subroutines 105, 140
CALLS St 87, 106, 355
CDBL Fn 92, 107
Chaining 108, 126
CHAIN St 108, 126
CHOIR St 87, 111
Child processes 306-307, 361-362
CHR$ Fn 92, 112
CINT Fn 92, 113

CLOSE St 87, 119, 291
Clear 117-118, 120, 223

memory 117-118, 223
screen 120

CLS St 87, 120
Color 78-79, 121-122, 123, 250, 253, 255, 303
COLOR/Graphics St 87, 121-122
Color sets 78-79

BLOAD St 87, 102-103, 104

BSAVE St 87, 102-103, 104

342-343

281

CALL St 87, 105, 353-355

CIRCLE St 87, 114-116

CLEAR St 87, 117-118

394

Index

COLOR/Text St 87, 123

COM/Trap St 87, 124-125
Commands 33
Comments 43, 288
COMMON St 87, 126
Communications 151, 169, 208, 211, 244-247, 281
Communications buffer 21, 208, 211, 281
Communications trapping 124-125, 226-227
Compressed files 300
Concatenation 52
Concepts 43-56
Constants 46-47

COM St 87, 124-125

classifying 47-49
declaring 47-49

CONT St 87, 127, 316
Converting precision 49-50 107, 113, 129
Converting strings 317, 334
Coordinates 82

absolute 82
relative 82
physical 266, 267, 345-346
world 266, 267, 345-346

COS Fn 92, 128
Cosine 128
CSNG Fn 92, 129
CSRLIN Fn 92, 130
Current segment 138-139
Cursor 130, 209, 269
CVD Fn 92, 131
CVI Fn 92, 131
CVS Fn 92, 131

Data 44-46
constants 46-47
converting 49-50, 107, 113, 129, 221
double precision 45, 48, 49, 107, 131, 221
hexadecimal 45, 174
integers 44, 113, 131, 163, 187, 221
manipulating 51
numeric 44-46
octal 46, 225
printing 214
single precision 45, 48, 49, 129, 221
strings 44, 49, 136, 185-186, 196, 197, 295

395

Index

DATA St 87, 132-133, 286-287, 292
Data files 21, 242-243, see also Disk files
Date, retrieving 134-135
Date, setting 134
DATE$ Fn 92, 134-135
Debugging 127, 316, 332
DEFDBL St 87, 136
DEFFN St 87, 137
DEFINT St 87, 136

DEFSNG St 87, 136
DEFSTR St 87, 136
DEFUSR St 87, 140
DELETE St 87, 141
Derived functions 376-377
Device errors 153, 154
Device names 14
Devices 14, 242-243, 342, 361
DIM St 63, 87, 142
Direct access 70-73, see also Disk files
Directories 11, 111

changing 111
creating 220
displaying 161-162
removing 296

Directory path 12
Disk files

buffer 8, 159-160, 215, 242, 298
CLOSE 119
closing 291
converting data 131
direct access 70-73

accessing 73-74, 168
closing 119
creating 71-73
EOF 150

GET 168
locating records 207
LSET 215
MKD$ 221
MKI$ 221
MKS$ 221

DEFSEG St 87, 138-139

FIELD 159-160

OPEN 242-243

396

Index

Disk files (cont.)
PUT 280
RSET 298

displaying 161-162
end of file 150

file control block 358-360
length 210
LOAD 206
LOF 210

FIELD 159-160

MERGE 216-217
OPEN 242-243
renaming 222
sequential access 67-70

closing 119
creating 68-69
end of file 150
EOF 150
INPUT# 181-182
IN PUT$ 183-184
LINE INPUT# 203
locating records 207
OPEN 242-243
PRINT# 276-278
PRINT# USING 276-278
updating 69-70

Diskcopy 18-19
Display page 80, 303
Division 52

integer 52
Double precision 45

CDBL 107
CVD 131
DEFDBL 136
MKD$ 221

Draw point 279

EDIT St 88, 146
Editing 33-36, 146
END St 88, 147
End of file 150
ENVIRON St 88, 148
ENVIRON$ Fn 88, 149
Environment String Table 148, 149

DRAW St 87, 143-145

397

Index

EOF Fn 92, 150-151
Equal sign 52
EQV 54
ERASE St 88, 152
ERDEV Fn 92, 153
ERDEV$ Fn 92, 154
ERL St 88, 155
ERR St 88, 156
ERROR St 88, 157
Error codes 365-373
Error messages 365-372
Errors 153-157, 365-372

device 153-154
ERDEV 153
ERDEV$ 154
ERL 155
ERR 156
ERROR 157
RESUME 293
simulate 157
trapping 156, 157, 228

EXP Fn 92, 158
Exponent, natural 158
Exponential numbers 48
Exponentiation 51
Expressions 51, 175
Extensions 12

File control block 358-360
Filenames 12, 13
Files see Disk files

FIX Fn 92, 163
Format 18-19
Formatting printing 214, 270-275

FORTRAN routines 106
FRE Fn 92, 167
Function keys 190-193

assigning 190
displaying 191
trapping 192-193, 232-233

Functions 56, 92-94
Function, user 137

FIELD St 88, 159-168

FILES St 88, 161-162

FOR/NEXT St 88, 164-166

398

Index

GET/Communications St 88, 169
GET/Graphics St 88, 170-171
GET St 88, 131, 168
GOSUB St 88, 172, 294
GOTO St 88, 173
Graphics 77-82, 114-116, 143-145, 199-201,

Graphics modes 80-82
Greater Than sign 52
Greater Than/Equal To sign 53

HEX$ Fn 93, 174
Hexadecimal 7, 45, 174
Hierarchy of operators 55-56

Image file 102-103, 104
IMP 54
Inequality sign 52
INKEY$ Fn 93, 177
INP Fn 93, 178

250-252, 253-254, 255-256, 279,
282-284, 303-304, 337-338

IF/THEN/ELSE St 88, 175-176

INPUT St 88, 179-180
INPUT# St 88, 181-182
INPUT$ St 88, 183-184
Input

communications 169
device 181-182
disk 168, 181-182, 183-184, 203
graphics 170-171
keyboard 177, 179-180, 183-184, 202
joysticks 315, 319-320
light pen 259
memory 258
music buffer 264
port 178, 340

Input, redirection 23-24
INSTR Fn 93, 185-186
INT Fn 93, 187
Integer division 52
Integers 44, 48, 49

ClNT 113
CVI 131
DEFDBL 136

399

Index

Integers (cont.)
FIX 163
INT 187
MKI$ 221

IOCTL St 88, 188
IOCTL$ Fn 93, 189

Joystick 315, 318, 319-320
Trapping 238-239, 321-322

KEY St 88, 190-191, 194
Keyboard codes 379-388
Keyboard input 177, 179-180, 183-184, 202
Keys 36-39, 193
Keys, user-defined 193
KEY/Trap St 88, 192-193
Key trapping 192-193, 232-233
KILL St 88, 194

LCOPY 88, 195
LEFT$ Fn 93, 196
LEN Fn 93, 197
Less Than sign 52
Less Than/Equal To sign 53
LET St 88, 198
Light pen

trapping 234, 260

LINE INPUT St 88, 202
LINE INPUT# St 88, 203
Line length 33
Line numbers 43

automatic 100
LIST St 89, 204
LLIST St 89, 205

Loading

LINE St 88, 199-201

LOAD St 28-29, 89, 206

BASIC 19, 27
Basic options 19-21

programs 28-29, 206
LOC Fn 93, 207-208
LOCATE St 89, 209
Locating cursor 130, 269
Locating record 207

MS-DOS 17

400

Index

LOC/Communication Fn 93, 208
LOF Fn 93, 210-211
LOF/Communication Fn 93, 211
LOG Fn 93, 212
Logarithms 158, 212
Logical operators 54-55

LPOS Fn 93, 213
LPRINT St 89, 214, 326
LPRINT USING St 89, 214, 326
LSET St 89, 215

Memory allocation 351-352
Memory image file 102-103, 104
Memory read 258
Memory size 20, 117-118, 138, 167

MID$ Fn 93, 219
MID$ St 89, 218
MKD$ Fn 93, 221
MKDIR St 89, 220
MKI$ Fn 93, 221
MKS$ Fn 93, 221
MOD 52
Modulus arithmetic 52

child processes 306
directory path 12-13
directory structure 11
loading 17
names 13
pathnames 12
root 11
SYSTEM 325

Multiplication 52
Music 261-265

buffer 264

trapping 236-237, 265

LOOPS 164-166

MERGE St 89, 216-217

MS-DOS 11, 306-307, 325

PLAY 261-265

NAME St 89, 222
Natural exponent 158
Natural logarithm 212
Negation 51

401

Index

Nested loops 165-166
NEW St 89, 223
NOISE St 89, 224
NOT 54
Notations 7
Numbers

converting 49-50, 107, 113, 129, 221
double precision 45, 48, 49, 107, 131, 221
hexadecimal 45, 174
integers 44, 113, 131, 163, 187, 221
octal 46, 225
single precision 45, 48, 49, 129, 221

Numeric constants 46
Numeric data 44-46
Numeric variables 47

OCT$ Fn 93, 225
Octal 7, 46, 225

ON ERROR GOTO St 89, 228, 293

ON/GOTO St 89, 231

ON COM() GOSUB St 89, 124, 226-227

ON/GOSUB St 89, 229-230, 294

ON KEY() GOSUB St 89, 193, 232-233
ON PEN GOSUB St 89, 234-235, 260
ON PLAY() GOSUB St 89, 236-237, 265
ON STRIG() GOSUB St 89, 238-239, 318, 321-322
ON TIMER() GOSUB St 89, 240-241, 331
OPEN St 89, 242-243
0PEN"COM St 89, 244-247
Operators 51-56

arithmetic 51-52
hierarchy 55-56
logical 54-55
relational 52-54
string relational 53-54

OPTION BASE St 89, 248
OR 54
OUT St 89, 249
output

communication 281
disk 276-278, 280, 348
display 204, 270-271, 272-275, 279, 326, 347
graphics 282-284
memory 268

402

Index

Output (cont.)
music 261-263
port 249
printer 205, 214, 326
sound 101, 117, 224

Output redirection 23-24

Pages, video 79-80

Palettes 78-79, 121

Parameters 8
Pathnames 12
PCOPY St 90, 257
PEEK Fn 94, 258, 268
PEN Fn 94, 259
PEN/Trap St 90, 234-235, 259, 260
Physical coordinates 266, 267, 345-346
PLAY Fn 94, 264

PLAY/Trap St 90, 236-237, 265
PMAP Fn 94, 266
POINT Fn 94, 267
POKE St 90, 258, 268
Ports 178, 249, 340
POS Fn 94, 269
Position cursor 209
Precision conversion 49-50, 107, 113, 129
PRESET St 90, 279

PAINT St 90, 250-252
PALETTE St 90, 253-254

PALETTE USING St 90, 255-256

PLAY St 90, 261-263

PRINT St 90, 270-271, 326
PRINT# St 90, 276-278
PRINT# USING St 90, 276-278
Print buffer 213
Printer 205, 213, 214, 326, 342-344
Printing, formatted 214, 270-275

Program
PRINT USING St 90, 272-275

elements 43
execution 299
line numbers 43, 289-290
lines 33, 289-290
listing 204, 205
loops 164-166, 341

403

Index

Program merging 216-217
Program renumbering 289-290
Program termination 147, 316
PSET St 90, 279
PUT St 90, 280
PUT/Communication St 90, 281
PUT/Graphics St 90, 282-284

RANDOMIZE St 90, 285, 330
Random numbers 285, 297

Records 67
Record size 21
Redirection 21, 23-24
Relational operators 52-54

with strings 53-54
Relative coordinates 82
REM St 90, 288
Remarks 43, 288
Removing directories 296
Removing files 195
Removing lines 141
Removing programs 223
Renaming files 222

Reserved words 375
RESET St 90, 291
Resolution 77-78
RESTORE St 90, 292
RESUME St 90, 293
Retrieving date 134-135
Retrieving ti me 328-329
RETURN St 90, 294
RIGHT$ Fn 94, 295
RMDIR St 90, 296
RND Fn 94, 297
Root directory 11
RSET St 90, 298
RUN 29
RUN St 90, 299

Sample session 27-29

Saving programs 28, 300-301

READ St 90, 132-133, 286-287, 292

RENUM St 90, 289-298

SAVE St 28, 91, 300-301

404

Index

Scan codes 379-382
SCREEN Fn 94, 302

Screen, clear 120
Screen modes 80-82, 303-304
Search, strings 185-186
Segment address 138-139
Sequential access files 67-70

SCREEN St 91, 303-304

closing 119
creating 68-69
end of file 150
EOF 150
INPUT# 181-182
IN PUT$ 183-184
LINE INPUT# 203
locating records 207
OPEN 242-243
PRINT# 276-278
PRINT# USING 276-278
Updating 69-70

Setting date 134
Setting time 328
SGN Fn 94, 305

SIN Fn 94, 308
Sine 308
Single precision 45, 48, 49

CSNG 129
CVS 131
DEFSNG 136
MKS$ 221

SHELL St 91, 306-307

SOUND St 91, 101, 117, 224, 264,

SPACE$ Fn 94, 312
SPC Fn 94, 313
Speakers 101, 224, 309-311
Special keys 36-38
SQR Fn 94, 314
Square root 314
Stack space 117
Statements 43, 87-91
STICK Fn 94, 315
STOP St 91, 127, 316
STR$ Fn 94, 317, 334

309-311

405

Index

STRIG Fn 94, 319-320
STRIG St 91, 119, 318
STRIG/Trap St 91, 117, 238-239, 321-322
STRING$ Fn 94, 323
String constants 46, 47
Strings 44, 46-47, 49, 136, 185-186, 196, 197, 295
String space 167
String variables 47, 49
Subroutines 105, 140, 172, 229, 294, 333
Subtraction 52
SWAP St 91, 324
Syntax 8
SYSTEM St 91, 325

TAB Fn 94, 326
TAN Fn 94, 327
Tang en t 327
TERM St 91
Terms 8, 86
Text mode 80, 123, 303-304, 339
Tiling 251-252
Time 328-329, 330

setting 328-329
trapping 240-241

TIME$ Fn 94, 328-329
TIMER Fn 94, 285, 330
TIMER/Trap St 91, 240-241, 331
Tracer 332
Trap p i n g

communication 124-125, 226-227
errors 156, 157, 228
joystick 238-239, 321-322
keys 192-193, 232-233
light pen 234, 260
music 236-237, 265
timer 240-241, 331

TROFF St 91, 332
TRON St 91, 332
Typing programs 27-28

User installed devices 361
Unary minus 51
USR Fn 94, 333, 355-356

406

Index

VAL Fn 94, 317, 334
Variables 47, 117, 198, 324, 335, 336, 357-358

classifying 47-49, 136
clearing 117
declaring 47-49, 136
numeric 47, 136
string 47, 136, 356

VARPTR Fn 94, 335
VARPTR$ Fn 94, 336
Video aspect ratio 77-78
Video, clear 120
Video display worksheet 389
Video memory 79-80, 117-118, 257
Video pages 79-80, 117-118, 257
Video resolution 77-78

Viewports 337-338
VIEW PRINT St 91, 339

WAIT St 91, 340
WEND St 91, 341
WHILE/WEND St 91, 341

Wildcards 13-14

World coordinates 266, 267, 345-346
WRITE St 91, 347
WRITE# St 91, 348

XOR 54

VIEW St 91, 337-338

WIDTH St 91, 342-344

WINDOW St 91, 345-346

407

	Contents
	Introduction to BASIC
	About this Manual
	Notations
	Terms

	Chapter 1 / About BASIC for MS-DOS
	Disk Files
	Pathnames
	Directory Paths
	Names
	Wildcards

	Device Names

	Chapter 2 / Loading MS-DOS and BASIC
	Loading MS-DOS
	Making Backups
	One Drive System
	Two Drive System

	Loading BASIC
	Loading BASIC via BASICA
	Options for Loading BASIC
	Redirection of Input and Output

	Chapter 3 / Sample Session
	Loading BASIC
	Typing the Program
	Saving the Program on Disk
	Loading the Program into Memory

	Chapter 4 / General Information
	Editing
	Sample Editing Session
	Special Keys
	The ALT Key
	The PRINT Key

	Chapter 5 / Basic Concepts
	Elements of a Program
	Data
	Constants
	Variables
	Declaring Numeric Constants and Variables
	Numeric Constants
	Numeric Variables

	Numeric Precision Conversion
	Manipulating Data
	Arithmetic Operators
	String Operator
	Relational Operators
	Logical Operators
	Hierarchy of Operators
	Functions

	Chapter 6 / Arrays
	Types of Arrays
	Defining Arrays

	Chapter 7 / Disk Files
	Sequential Access Files
	Creating a Sequential Access File
	Updating a Sequential Access File

	Direct Access Files
	Creating a Direct Access File
	Accessing a Direct Access File

	Chapter 8 / Displaying Color and Graphics
	Resolution
	Video Pages
	Selecting Screen Modes
	Specifying Coordinates

	Chapter 9 / Introduction to BASIC Keywords
	Format for Chapter 10
	Terms Used in Chapter 10
	Statements
	Functions

	Chapter 10 / BASIC Keywords
	Chapter 11 / Technical Information
	Interfacing With Assembly-Language Routines
	Memory Allocation Outside BASIC's Work Area
	Memory Allocation Inside BASIC's Work Area
	CALL Statement
	CALLS Statement
	USR Function

	How Variables are Stored
	Accessing String Variables
	File Control Block
	User Installed Devices
	Information for Creating Child Processes

	Chapter 12 / BASIC Error Codes and Messages
	Appendix A / BASIC Reserved Words and Derived Functions
	Appendix B / Keyboard and Character Code Charts
	Keyboard ASCII/Scan Codes
	ASCII Character Codes

	Appendix C / Video Display Worksheet
	Appendix D / Extended Codes
	Index

