

Software.
C. No action arisin out of an claimed breach of this Warranty or transactions under this Warranty may be brought

more than two 12) ears a h r the cause of action has accrued,or more, than four (4) years after the date of the
Radio Shack sales dbcument for the Equipment or Software whichever first occurs.

0. Some states do not ,allow the limitation or exclusion of' incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non-exclusive. paid-up license to use the TANOY Software on one Computer,
subject to the following provisions:
A. Except as otherwise provided in this Software License applicable co yright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette a rdor diskette) or stored (ROM) IS transferred to

CUSTOMER but not title to the Software.
C. CUSTOMER'may use Software on a multiuser or network system only if either. the Software IS expressly labeled

to be for use on a multiuser or network system, or one copy of this software IS purchased for each node or
terminal on which Software is to be used simultaneously.

D. CUSTOMER shall not use make manufacture or reproduce copies of Software except for use on one computer
and as is specifically proiided i n this Software License. Customer is expressly prohibited from disassembling the
Software.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of one corn uter with the Software but only to the extent the
Software allows a backup copy to be made. However, for TJSDOS Software, CUSTOMER is permined to make a
limited number of additional copies for CUSTOMER'S, own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
cop of the Software fo r each,one sold or distributed. The provisions of this Software License shall also be
app[cable to third parties receiviny copies of the Software from CUSTOMER.

G. All copyright notices shall be retained on all copies of the Soitware.
APPLICABILITY OF WARRANTY
A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a

sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for !ease to CUSTOMER.

B. The limitations, of lability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS
The warranties granted herein give the orlglnal CUSTOMER specific legal rights, and the original CUSTOMER may
have other rights which vary from state to state. 4187

Tandy

GW-BASIC

GW-BASIC@ softwa e: 65 01983,1984,1985,1987 Microsoft Corporation.
Licensed to Tandy Corporation.

All Rights Reserved.

AI1 portions of this software are copyrighted and are the proprietary and trade secret infor-
mation of Tandy Corporation and/or its licensor. Use, reproduction, o r publication of any
portion of this material without prior written authorization by Tandy Corporation is strict-
ly prohibited.

Tandy GW-BASIC User’s Guide Manual
Copyright 1987 Tandy Corporation

All Rights Reserved.

Tandy GW-BASIC User’s Reference Manual
Copyright 1987 Tandy Corporation

All Rights Reserved.

Reproduction or use of any portion of these manuals without express written permission
from Tandy Corporation and/or its licensor is prohibited. While reasonable efforts have
been made in the preparation of these manuals to assure their accuracy, Tandy Corpora-
tion assumes no liability resulting from any errors in o r omissions from these manuals, o r
from the information contained herein.

Tandy is a registered trademark of Tandy Corporation.
Microsoft, MS-DOS, and GW are registered trademarks of Microsoft Corporation.
IBM is a registered trademark of International Business Machines Corporation.

10 9 8 7 6 5 4 3

Tandy

GW-BASIC
User’s Guide

CONTENTS

1 Welcome to GW-BASIC . 1
Systems Requirements . 1

Preliminaries . 1
Notational Conventions . 2
Organization of This Manual

Bibliography . 3

2 Getting Started With GW-BASIC 5
Loading GW-BASIC . 5
Loading BASIC with BASICA .
Modes of Operation . 7

Direct Mode . 7
Indirect Mode . 7

Redirection of Standard Input and Output 10

Keywords .
Commands . 12
Statements . 12
Functions . 12

Numeric Functions . 12
String Functions . 13

Line Format . 13
Returning to MS-DOS . 15

3 Reviewing and Practicing GW-BASIC 17

Example for the Direct Mode . 17
Examples for the Indirect Mode 18
Function Keys . 19
Editing Lines . 20
Saving Your Program File . 22

2

6

The GW-BASIC Command Line Format 7

GW-BASIC Statements. Functions. Commands. and Variables . 11
11

. Variables 13

1

MS-DOS Reference

4 The GW-BASIC Screen Editor . 23
Editing Lines in New Files . 23
Editing Lines in Saved Files . 23

Editing the Information in a Program Line 24
Special Keys . 25
Function Keys . 29

5 Creating and Using Files . 31
Program File Commands . 31
Data Files . 32

Creating a Sequential File . 32
Accessing a Sequential File . 35
Adding Data to a Sequential File 36

Random Access Files . 37
. 39 Accessing a Random Access File

6 Constants. Variables. Expressions and Operators 45
Constants . 45

Single- and Double-Precision Form for Numeric Constants . 47
Variables . 47

Variable Names and Declarations 48
Array Variables . 49
Memory Space Requirements for Variable Storage 50

Type Conversion . 51
Expressions and Operators . 52

Arithmetic Operators . 53
Integer Division and Modulus Arithmetic 54
Overflow and Division by Zero 54

Relational Operators . 55

Functional Operators . 58
String Operators . 59

Logical Operators . 56

11

Contents ._..

Appendices
A Error Codes and Messages . 61
B ASCII Character Codes . 69

E Communications . 91
F Hexadecimal Equivalents . 101
G KeyScanCodes . 105
H Characters Recognized by GW-BASIC
I Glossary . 109

C Assembly Language (Machine Code) Subroutines 77
D Converting BASIC PROGRAMS to GW-BASIC 89

107

...
111

Chapter 1

Welcome to GW-BASIC

Microsoft@ GW-BASIC@ is a simple, easy-to-learn, easy-to-use com-
puter programming language with English-like statements and mathe-
matical notations. With GW-BASIC you can write both simple and
complex programs to run on your computer. You can also modify existing
software that is written in GW-BASIC.

This guide is designed to help you use the GW-BASIC Interpreter with
the MS-DOS@ operating system. The Bibliography in this chapter lists
resources that can help you learn how to program.

equirernen ts
This version of GW-BASIC requires MS-DOS version 3.2 or later.

Preliminaries
Your GW-BASIC files are on the MS-DOS diskette, which is located at
the back of the Tandy 3000l4000 MS-DOS User’s Reference. Be sure to
make a working copy of the diskette before you proceed.

Note: Be sure you are familiar with MS-DOS before you begin using
this manual. For more information on MS-DOS, refer to the Tan@
3OOOl4OOO MS-DOS Handbook and the Tan& 300014000 MS-DOS
Reference Manual.

1

1 I GW-BASIC User’s Guide

Notational Conventions
Throughout this manual, the following conventions are used to distin-
guish elements of text:

bold Used for commands, options, switches, and literal
portions of syntax that must appear exactly as shown

italic

sans-serif type

-1
Brackets surround optional command line elements.

Used for variables, new terms, and manual names

Used for sample command lines, program code and
examples, and sample sessions

Used for keys and key sequences

Organization of This Manual
The GW-BASIC User’s Guide is divided into six chapters and nine appen-
dices, including a glossary:

Chapter 1, “Welcome to GW-BASIC,” describes this manual.

Chapter 2, “Getting Started With GW-BASIC,” is an elementary guide
on how to begin programming.

Chapter 3, “Reviewing and Practicing GW-BASIC,” lets you use the
principles of GW-BASIC explained in Chapter 2.

Chapter 4, “The GW-BASIC Screen Editor,” discusses editing com-
mands you can use when entering or modifying a GW-BASIC program. It
also explains the unique properties of the ten redefinable function keys
and of other keys and keystroke combinations.

Chapter 5, “Creating and Using Files,” tells you how to create files and
use the diskette input/output (I/O) procedures.

Chapter 6, “Constants, Variables, Expressions, and Operators,” defines
the elements of GW-BASIC and describes how you will use them.

Appendix A, “Error Codes and Messages,” is a summary of all the error
codes and error messages you might encounter while using GW-BASIC.

Appendix B, “ASCII Character Codes,” lists the ASCII character codes
recognized by GW-BASIC.

2

1 J Welcome to GW-BASIC

Appendix C, “Assembly Language (Machine Code) Subroutines,” shows
how to include assembly language subroutines with GW-BASIC.

Appendix D, “Converting BASIC Programs to GW-BASIC,” provides
pointers on converting programs written in BASIC to GW-BASIC.

Appendix E, “Communications,” describes the GW-BASIC statements
required to support RS-232 asynchronous communications with other
computers and peripheral devices.

Appendix F, “Hexadecimal Equivalents,” lists decimal and binary
equivalents to hexadecimal values,

Appendix G, “Key Scan Codes,” lists and illustrates the key scan code
values used in GW-BASIC.

Appendix H, “Characters Recognized by GW-BASIC,” describes the
GW-BASIC character set.

Appendix I, “Glossary,” defines words and phrases commonly used in
GW-BASIC and data processing,

This manual is a guide to the use of the GW-BASIC Interpreter. It makes
no attempt to teach the BASIC programming language. You might find
the following books useful for learning BASIC programming:

Albrecht, Robert L., LeRoy Finkel, and Jerry Brown. BASIC. 2d ed. New
York: Wiley Interscience, 1978.

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company,
1978.

Dwyer, Thomas A. and Margot Critchfield. BASIC and the Personal
Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Ettlin, Walter A. and Gregory Solberg. The MBASZC Handbook.
Berkeley, Calif.: Osborne/McGraw Hill, 1983.

Knecht, Ken. Microsoft BASIC. Portland, Oreg.: Dilithium Press, 1982.

3

Chapter 2

Getting Started With GW-BASIC

This chapter describes how to load GW-BASIC into your system. It also
explains the two different types of operation modes, the line formats, and
the various elements of GW-BASIC.

Loading GW-BASIC
To use the GW-BASIC language, load it into the memory of your com-
puter from your working copy of the MS-DOS diskette. Use the following
procedure:

1. Turn on your computer.

2. Insert your working copy of the MS-DOS diskette into Drive A of your

3. From the system prompt (such as A > or C >) type the following com-

computer, and press m.
mand and press jENTERl :
basic

Once you enter GW-BASIC, the GW-BASIC prompt, Ok, replaces the
MS-DOS prompt, A > .

On the screen, the line Xxxxx Bytes Free indicates the number of bytes
available for use in memory while using GW-BASIC.

The function key (/F1/ -) assignments appear on the bottom line
of the screen. You can use these function keys to eliminate keystrokes and
save time. Chapter 4, “The GW-BASIC Screen Editor,” contains detailed
information on function keys.

5

__ -~
2 / GW-BASIC User’s Guide
~ I - . _ _ - .

For compatibility, some computers require that you use the BASICA
program to load GW-BASIC. To use BASICA, type the following and
press /ENTER :

BAS1 CA

Your computer first loads Basica.com, which in turn loads GW-BASIC.

BASICA provides the following advantages:
0 BASICA loads BASIC at a different memory location. This lets YOU

run some BASIC programs that use memory locations normally
reserved for BASIC’s operations.

0 You can gain space on your program or system diskette because you
can store the Basic.exe file on a separate diskette.

The only limitations imposed by BASICA are:

The /i option switch, discussed in “Options for Loading BASIC, is al-
ways on.

The communications buffer size is limited to 40K bytes if the system has
one RS232 card or 20K bytes if it has two.

After you execute BASICA, it searches the current directory for the file
Basic.exe. If it finds Basic.exe, Basica.com loads it and passes control to
it.

If Basica.com does not find Basic.exe, it asks you to replace your program
disk with a disk that contains the file. Place a diskette containing
Basic.exe in any drive, and press /ENTER/ . The program searches all
drives, beginning with the current drive, until it finds Basic.exe or until you
press 1x1 IC1 .
After finding Basic.exe, BASICA asks you to re-insert your program dis-
kette if you removed it. Put the program diskette back into the drive and
press [ENTER]. BASICA transfers control back to BASIC.

6

2 1 Getting Started with G W-BASIC
.~

Once GW-BASIC is initialimd (loaded), the Ok prompt appears on the
screen. Ok means GW-BASIC is at contnzand level; that is, it is ready to
accept commands. At this point, you can use GW-BASIC in either of two
modes: direct mode or indirect mode.

Direct Mode
In the direct mode, GW-BASIC statements and commands are executed
as they are entered. Results of arithmetic and logical operations are dis-
played immediately and/or stored for later use, but the instructions them-
selves are lost after execution. This mode is useful for debugging and for
using GW-BASIC as a calculator for quick computations that do not re-
quire a complete program.

Indirect Mode
Use the indirect mode to enter programs. Program lines, which are al-
ways preceded by line numbers, are stored in memory. The program
stored in memory is executed by entering the RUN command.

ine t
The GW-BASIC command line lets you change the environment or the
conditions that apply while using GW-BASIC.

Note: When you specify modifications to the operating environ-
ment of GW-BASIC, be sure to maintain the parameter sequence
shown in the syntax statement.

GW-BASIC uses a command line similar to the following:

basic [filename][< stdirt][[> J >stdorit][/f: nuntber][/i]
[/s: number][lc: mmzber][/m:[rtzmtber][, nz~nzberJJ[ld]

fileizaine is the name of a GW-BASIC program file. If this parameter is
present, GW-BASIC proceeds as if a RUN command had been given. If
no extension is provided for the filename, a default file extension of .BAS
is assumed. The .BAS extension indicates that the file is a GW-BASIC
file. A filename can contain a maximum of eight characters, plus a
decimal and three extension characters.

7

2 1 GW-BASIC User's Guide

<stdin redirects GW-BASIC's standard input to be read from the
specified file. When used, it must appear before any switches.

This might be used when your program is using multiple files and you
want to specify a particular input file.

>stdout redirects GW-BASIC's standard output to the specified file or
device. When used, it must appear before any switches. Using > >
before stdout causes output to be appended.

You can redirect GW-BASIC to read from standard input (keyboard)
and write to standard output (screen) by providing the input and output
filenames on the command line as follows:

basicprogram name e input file [>] >output file
An explanation of file redirection follows this discussion of the GW-
BASIC command line.

Switches appear frequently in command lines. They designate a specified
course of action for the command, as opposed to using the default for
that setting. A switch parameter is preceded by a slash (/).

/f: nuntber sets the maximum number of files that can be opened simul-
taneously during the execution of a GW-BASIC program. Each file re-
quires 194 bytes for the File Control Block (FCB) plus 128 bytes for the
data buffer. You can alter the data buffer size with the Is: switch. If the /f:
switch is omitted, the maximum number of open files defaults to 3. This
switch is ignored unless the Ii switch is also specified on the command
line.

/i makes GW-BASIC statically allocate space required for file opera-
tions, based on the Is: and /f: switches.

Is: number sets the maximum record length allowed for use with files. The
record length option in the OPEN statement cannot exceed this value. If
you omit the /s: switch, the record length defaults to 128 bytes. The max-
imum record size is 32767.

8

2 / Getting Started with GW-BASIC

/c: number controls RS-232 communications. If RS-232 cards are
present, /c:O disables RS-232 support and any subsequent 110 attempts
for each RS-232 card present. If you omit the /c:, 256 bytes are allocated
for the receive buffer and 128 bytes for the transmit buffer for each card
present.

The /c: switch has no effect when RS-232 cards are not present. The /c:
number switch allocatesnumber bytes for the receive buffer and 128 bytes
for the transmit buffer for each RS-232 card present.

/m: number[, number] sets the highest memory location (first number)
and maximum block size (second number) used by GW-BASIC. GW-
BASIC attempts to allocate 64K bytes of memory for the data and stack
segments. If you use machine language subroutines with GW-BASIC
programs, use the /m: switch to set the highest location that GW-BASIC
can use. The maximum block size is in multiples of 16. It is used to reserve
space for user programs (assembly language subroutines) beyond GW-
BASIC’s workspace.

The default for the maximum block size is the highest memory location.
The default for the highest memory location is 64K bytes unless the max-
imum block size is specified, in which case the default is the maximum
block size (in multiples of 16).

/d allows certain functions to return double-precision results. When you
specify the /d switch, approximately 3000 bytes of additional code space
are used. The functions affected are ATN, COS, EXP, LOG, SIN, SQR,
and TAN.

Note: You can specify all switch numbers as decimal, octal
(preceded by &O), or hexadecimal (preceded by &H).

The following examples are sample GW-BASIC command lines.

The following example uses 64K bytes of memory and three files, and
loads and executes the program file PayrolLbas:

A > basic payroll

The next example uses 64K bytes of memory and six files, and loads and
executes the program file 1nvent.bas:

A > basic invent /f:6

9

2 I GW-BASIC User’s Guide

The following example disables RS-232 support and uses only the first
32K bytes of memory. The 32K bytes above that are reserved for user
programs:

A > basic /c:O /m:32768,4096

The next example uses four files and allows a maximum record length of
512 bytes:

A > basic I f 4 /s:512

The following example uses 64K bytes of memory and three files. It allo-
cates 512 bytes to RS-232 receive buffers and 128 bytes to transmit buf-
fers, and loads and executes the program file Tty.bas:

A > basic tty /c:512

For more information about RS-232 communications, see Appendix E.

Redirection of Standard Input and Output
When redirected, all INPUT, LINE INPUT, INPUT$, and INKEY$
statements are read from the specified input file instead of from the
keyboard.

All PRINT statements write to the specified output file instead of to the
screen.

Error messages go to standard output and to the screen.

File input from KYBD: is still read from the keyboard.

File output to SCRN: still outputs to the screen.

GW-BASIC continues to trap keys when the ON KEY nziniber statement
is used.

Pressing CTRLlleREAKi when output is redirected causes GW-BASIC
to close any open files, issue the message Break in line itnizn to standard
output, exit GW-BASIC, and return to MS-DOS.

When input is redirected, GW-BASIC continues to read from this source
until it detects a CTRL-Z character. You can test this condition with the
end-of-file (EOF) function. If the file is not terminated by a CTRL-Z

10

2 I Getting Started with G W-BASIC

character, or if a GW-BASIC file input statement tries to read past the
end of file, then any open files are closed, and GW-BASIC returns to

For further information about these statements and other statements,
functions, commands, and variables mentioned in this text, refer to the
GW-BASIC User’s Reference.

Some examples of redirection follow.
basic myprog > data.out

MS-DOS.

Data read by the INPUT and LINE INPUT statements continues to
come from the keyboard. Data output by the PRINT statement goes into
the Data.out file.

basic myprog < data.in

Data read by the INPUT and LINE INPUT statements comes from
Data.in. Data output by PRINT continues to go to the screen.

basic myprog < myinput.bat > myoutput.dat

Data read by the INPUT and LINE INPUT statements now comes from
the file, Myinput.dat, and data output by the PRINT statements goes into
Myoutput .dat .

basic myprog < \sales\john\trans.dat > > \sales\sales.dat

Data read by the INPUT and LINE INPUT statements now comes from
the file \sales\ohn\trans.dat. Data output by the PRINT statement is
appended to the file \sales\sales.dat.

9

A GW-BASIC program is made up of several elements: keywords, com-
mands, statements, functions, and variables.

Keywords
GW-BASIC keywords, such as print, goto, and return have special sig-
nificance for the GW-BASIC Interpreter. GW-BASIC interprets
keywords as part of statements or commands.

11

2 1 GW-BASIC User's Guide

Keywords are also called reserved words. They cannot be used as variable
names, or the system will interpret them as commands. However,
keywords can be embedded within variable names.

Keywords are stored in the system as tokens (1- or 2-byte characters) for
the most efficient use of memory space.

Commands
Commands and statements are both executable instructions. The dif-
ference between commands and statements is that you generally execute
commands in GW-BASIC's direct mode or the command level. They
usually perform program maintenance such as editing, loading, or saving
programs. When GW-BASIC is invoked and the GW-BASIC prompt,
Ok, appears, the system assumes command level.

Statements
A statement, such as ON ERROR ... GOTO, is a group of GW-BASIC
keywords generally used in GW-BASIC program lines as part of a
program. When the program is run, statements are executed when, and
as, they appear.

Functions
The GW-BASIC Interpreter performs both numeric and string func-
tions.

Numeric Functions

The GW-BASIC Interpreter can perform certain mathematical (arith-
metical or algebraic) calculations. For example, it calculates the sine
(sin), cosine (cos), or tangent (tan) of anglex.

Unless otherwise indicated, numeric functions return only integer and
single-precision results.

12

2 I Getting Started with G W-BASIC

String Functions

String functions operate on strings. For example, TIME$ and DATE$
return the time and date known by the system. If you enter the current
time and date during system startup, the correct time and date are given.
(The internal clock in the computer keeps track.)

User-Defined Functions

Functions can be user-defined by means of the DEF FN statement. These
functions can be either string or numeric.

Variables
Certain groups of alphanumeric characters are assigned values and are
called variables. When variables are built into the GW-BASIC program,
they provide information as they are executed.

For example, ERR defines the latest error that occurred in the program;
ERL gives the location of that error. Either you or a program’s content
can define and/or redefine variables.

All GW-BASIC commands, statements, functions, and variables are in-
dividually described in the GW-BASIC User’s Reference.

Li t
Each element of GW-BASIC can make up sections of a program that are
called statements. These statements are similar to English sentences.
Statements are then put together in a logical manner to create programs.
The GW-BASIC User’s Reference describes all the statements available
for use in GW-BASIC.

In a GW-BASIC program, lines have the following format:

nnnnn statement [statements]

nnnnn is a line number.

statement is a GW-BASIC statement.

13

2 I GW-BASIC User’s Guide

A GW-BASIC program line always begins with a line number and must
contain at least one character but no more than 255 characters. Line
numbers indicate the order in which the program lines are stored in
memory, and are also used as references when branching and editing.
The program line ends when you press /ENTER/ .
Depending on the logic of your program, there might be more than one
statement on a line. If so, each must be separated by a colon (:).

Precede each line in a program with a line number. This number can be
any whole integer, 0-65529. It is customary to use line numbers such as 10,
20, 30, and 40, in order to leave room for any additional lines that YOU
might want to add later. Because the computer runs the statements in
numerical order, additional lines needn’t appear in consecutive order on
the screen. For example, if you entered Line 35 after Line 60, the com-
puter would still run Line 35 after Line 30 and before Line 40. This line
numbering technique might save you from re-entering an entire program
only to include one line that you have forgotten.

The width of your screen is 80 characters. If your statement exceeds this
width, the cursor wraps to the next screen line automatically. Only when
you press the -1 key does the computer acknowledge the end of the
line. Resist the temptation to press jENTER1 as you approach the edge of
the screen (or beyond). The computer automatically wraps the line for
you. You can also press m-, which causes the cursor to
move to the beginning of the next screen line without actually entering the
line. When you press -1, the ent i re logical line passes to
GW-BASIC for storage in the program.

In GW-BASIC, any line of text that begins with a numeric character is
considered a program line and is processed in one of three ways after you
press /ENTER] :
0 A new line is added to the program. This occurs if the line number is

legal (within the range 0-65529) and if at least one alpha or special
character follows the line number in the line.

0 An existing line is modified. This occurs if the line number matches
the line number of an existing line in the program. The existing line is
replaced with the text of the newly entered line. This process is called
editing.

14

2 / Getting Started with G W-BASIC ~ _ _ _ _ _ _ - -i___ I .-

Note: Reusing an existing line number causes all the information
contained in the original line to be lost. Be careful when entering
numbers in the indirect mode. You might erase some program lines
accident ally.

0 An existing line is deleted. This occurs if the line number matches the
line number of an existing line and the entered line contains only a line
number. If you attempt to delete a nonexistent line, the screen displays
an Undefined line number error message.

Before you return to MS-DOS, you must save the work you have entered
under GW-BASIC; otherwise, the work will be lost.

To return to MS-DOS, type the following after the Ok prompt, and press
/ENTER1 :

system

The system returns to MS-DOS, and the A > prompt appears on your
screen.

15

Chapter 3

Reviewing and Practicing GW-BASIC

The practice sessions in this chapter will help you review what you have
learned. If you have not done so, this is a good time to turn on your com-
puter and load the GW-BASIC Interpreter.

Example for the Direct Mode
You can use your computer in the direct mode to perform fundamental
arithmetic operations. GW-BASIC recognizes the following symbols as
arithmetic operators:

Operation GW-BASIC Operator

Addition +
Subtraction
Multiplication *
Division I
To enter an arithmetic problem, respond to the Ok prompt with a ques-
tion mark (?) followed by the statement of the problem you want to
solve, and press m. In GW-BASIC, you can use the question mark
interchangeably with the keyword PRINT. The answer is then displayed.

Type the following, and press [HGK :
?2+2

GW-BASIC displays the answer on your screen:
4
Ok

To practice other arithmetic operations, replace the + sign with the
desired operator.

17

3 I GW-BASIC User’s Guide

The GW-BASIC language is not restricted to arithmetic functions. YOU
can also enter complex algebraic and trigonometric functions. The for-
mats for these functions are provided in Chapter 6, “Constants, Vari-
ables, Expressions and Operators.”

Examples for the I ~ ~ i r e c t e
You can use the GW-BASIC language to perform functions other than
simple algebraic calculations. You can create a program that performs a
series of operations and then displays the answer. To begin program-
ming, you create lines of instructions called statements. Remember that
there can be more than one statement on a line and that each line is
preceded by a number.

For example, to create the command PRINT 2 + 3 as a statement, type:
10 print2+3

When you press -1, the cursor shifts to the next line, but nothing
else happens. To make the computer perform the calculation, type the
following and press -1 :

run

Your screen should display this answer:
5
Ok

YOU have just written a program in GW-BASIC.

The computer reserves its calculation until specifically commanded to
continue (with the RUN command). This enables you to enter more lines
of instruction. When you type the RUN command, the computer per-
forms the addition and displays the answer.

The following program has two lines of instructions. Enter it:
10 x=3
20 print 2 +x

Now, use the RUN command to make the computer calculate the
answer.

3 I Retiewiiip and Practicing GW-BASIC

Your screen should display:
5
Ok

The two features that distinguish a program from a calculation are:
0 the numbered lines
0 the use of the RUN command

These features let the computer know that you have finished typing all the
statements and that it can carry out the computation from beginning to
end. The numbering of the lines first signals the computer that this is a
program, not a calculation, and that it must not do the actual computa-
tion until you enter the RUN command.

In other words, calculations are performed in the direct mode. Programs
are written in the indirect mode.

To display the entire program again, type the LIST command, and press
PTTRI :

list

Your screen should display:
10 x=3
20 PRlNT2+X
Ok

You’ll notice a slight change in the program. The lowercase letters you
entered have been converted into uppercase letters. The LIST command
makes this change automatically.

ctio
Function keys are keys that have been assigned to frequently used com-
mands. A guide to these ten keys and their assigned commands appears
at the bottom of the GW-BASIC screen. To save time and keystrokes,
you can press a function key instead of typing a command name.

19

3 I GW-BASIC User’s Guide

For example, to list your program again, you needn’t type the LIST com-
mand. Instead, you can use the function key assigned to it:

1. Press the IF1J key.

2. Press-I.
Your program should appear on the screen.

To run the program, simply press /F21 , which is assigned to the RUN
command.

As you learn more commands, you learn to use keys
Chapter 4, “The GW-BASIC Screen Editor,” contains more information
about keys used in GW-BASIC.

- /F101.

Editing Lines
There are two basic ways to change lines. You can:

’ 0 Delete and replace them
0 Alter them with the EDIT command

To delete a line, type the line number and press -1. For example,
if you type 12 and press JENTERI, Line 12 is deleted from your program.

To use the EDIT command to change a line, type the command followed
by the number of the line you want to change. For example, type the fol-
lowing, and press /ENTER\ :

edit 10

3 I Reviewing and Practicing GW-BASIC

You can then use the following keys to perform editing:

Key Function

rn

/tl
El
1 BACKSPACE J

Moves the cursor to the previous line

Moves the cursor to the next line
Moves the cursor within the statement

Moves the cursor within the statement
Deletes the character to the left of the cursor

Deletes the current character

Lets you insert characters left of the cursor

For example, to modify statement (line) 10 to read x = 4, use the
key to move the cursor under the 3, and then type 4. The number 4 replaces
the number 3 in the statement.
Now, press -1 and then m.
Your screen displays:

6
Ok

21

-- 3 I G W-BASIC User’s Guide

r ile
Creating a program is like creating a data file. The program is a file that
contains specific instructions, or statements, for the computer. In order
to use the program again, you must save it, just as you would a data file.

To save a file in GW-BASIC, use the following procedure:

1. Press m. The command word SAVE appears on your screen.

2. Type a name for the program, and press FTm.

The file is saved under the name you specified.

To recall a saved file, use the following procedure:

1. Press /F31. The command word LOAD appears on your screen.

2. Type the name of the file.

3. Press-].

The file is loaded into memory, ready for you to list, edit, or run.

22

Chapter 4

The GW-BASIC Screen Editor

You can edit GW-BASIC program lines either as you enter them or after
you have saved them in a program file.

If you make a mistake while typing a GW-BASIC line, you can use use the
[BACKSPACE i, jDELl, or the 1 C T R L ~ ~ keys to erase the erroneous
character. After you delete the character, you can continue to type on the
line.

The iESC key lets you cancel a line that you are typing. In other words, if
you have not yet pressed 1 ENTER 1 and you want to terminate the line you
are entering, press jESC .
To delete the entire program currently residing in memory, enter the
NEW command. NEW is usually used to clear memory prior to entering
a new program.

-

ti
After you have entered your GW-BASIC program and saved it, you
might discover that you need to make some changes. To make these
modifications, use the LIST statement to display the program lines that
are affected:

1. Reload the program.

2. Type the LIST command, or press IF1/.
3. Type the line number, or range of numbers, that you want to edit.

The lines appear on your screen.

4 I GW-BASIC User's Guide

Editing the Information in a Program Line
YOU can make changes to the information in a line by positioning the cur-
sor where you want to make the change and doing one of the following:

Typing over the characters that are already there.
0 Deleting characters to the left of the cursor, using the
8 Deleting characters at the cursor position, using the /DELI key on the

number pad.
0 Inserting characters at the cursor position by pressing the IINS/ key

on the number pad. This moves the characters following the cursor to
the right, making room for the new information.

key.

0 Adding to or truncating characters at the end of the program line.

Always press '-1 on every line you modify. If you forget to press
enter, the line you are modifying is not changed.

Modified lines are stored in the proper numerical sequence, even if you
do not update them in numerical order.

Note: Changes you make to a program line are not actually
recorded in GW-BASIC until you press JENTER; with the cursor
positioned somewhere on the edit line.

You do not have to move the cursor to the end of the line before pressing
the -1 key. The GW-BASIC Interpreter remembers where each
line ends and transfers the whole line, even if you press lENTERj while
the cursor is in the middle or at the beginning of the line.

Type [CTRLllENDl or jCTRLl'a, then -1, to truncate, or cut off, a
line at the current cursor position.

If you originally saved your program to a program file, be sure to save the
edited version of your program. If you do not, your modifications will not
be recorded.

4 I The G W-BASIC Screen Editor

Special Keys
GW-BASIC recognizes the nine numeric keys located at the right side of
your keyboard. It also recognizes the 1 BACKSPACE i key, the /ESCI key,
and the /CTRLI key. The following keys and key sequences have special
functions in GW-BASIC:

1 BACKSPACE I or -']IT/
Deletes the last character typed, or deletes the character to the left of
the cursor. All characters to the right of the cursor move left one posi-
tion. Subsequent characters and lines within the current logical line
move up as with the key.

F R L / m] or ICTRL/
Returns to the direct mode, without saving changes made to the cur-
rent line. Also exits auto line-numbering mode.

-1 i - 1 or [ZZK le]
Moves the cursor to the beginning of the previous word. The previous
word is defined as the next letter or number to the left of the cursor
that follows a blank or other special character.

/CTRLI or /F]
Moves the cursor to the cursor to the beginning of the next word. The
previous word is defined as the next letter or number to the right of the
cursor that follows a blank or other special character.

Moves the cursor down one line on the screen.

or T C T K Fl

25

4 I GW-BASIC User’s Guide

1c/ or iCTRqn1
Moves the cursor one position left. When the cursor advances beyond
the left edge of the screen, it wraps to the end of the preceding line.

m o r I C T R L J i q

Moves the cursor one position right. When the cursor advances
beyond the right edge of the screen, it wraps to the beginning of the
following line.

morjCTRL1m

Moves the cursor up one line on the screen.

/ C T R L J F S P A C E]arm
Deletes the character positioned at the cursor. All characters to the
right then move one position left to fill in the space left by the deletion.
If a logical line extends beyond one physical line, characters on sub-
sequent lines move left one position to fill in the deleted space, and the
character in the fnst column of each subsequent line moves up to the
end of the preceding line.

(insert). Deleting text reduces
logical line length.

(delete) is the opposite of

/CTRLj S N ~ or 3-1 [TI
Erases from the cursor position to the end of the logical line. All physi-
cal screen lines are erased until GW-BASIC encounters the terminat-
ing /ENTER .

26

4 I The GW-BASIC Screen Editor __ -.

jN1 or m]
Moves the cursor to the end of the logical line. Characters typed from
this position are added to the line.

EX1 1-1 or mi Dl
Moves the cursor to the beginning of the next screen line. This lets you
create logical program lines that are longer than the physical screen
width. Logical lines can be up to 255 characters long. You can also use
this function as a line feed.

ml or -1
Enters a line into the GW-BASIC program. Also moves the cursor to
the next logical line.

-1 IT] or mi

jCTRLl

Erases the entire logical line on which the cursor is located.

Emits a beep from your computer’s speaker.

/CTRLI IKI or I=/
Moves the cursor to the upper left corner of the screen. The screen
contents are unchanged.

m1-1 or /CTRLI
Clears the screen and positions the cursor in the upper left corner of
the screen.

ITYiEiJFIorm
Turns the Insert Mode on and off.

Insert Mode is indicated by the cursor blotting the lower half of the
character position. In Graphics Mode, the normal cursor covers the
whole character position. When Insert Mode is active, only the lower
half of the character position is blanked by the cursor.

27

4 I The GW-BASIC Screen Editor

Certain keys or combinations of keys let you perform frequently used
commands or functions with a minimum number of keystrokes. These
keys are calledfriiictiori keys.

You can temporarily redefine the special function keys that appear on
your keyboard to meet programming requirements and specific functions
of your program.

Function keys enable rapid entry of as many as 15 characters into a
program by using only one keystroke. These keys are labeled F1 through
F10. GW-BASIC has already assigned special functions to each of these
keys. The key assignments are some of the most frequently used com-
mands. After you load GW-BASIC, these special key functions appear
on the bottom line of your screen.

Initially, the function keys are assigned the following special functions:

Table 4.1

GW-BASIC Function Key Assignments

Key Function Kes Function

F1 LIST F6 ,“LPTl:”t
F2 RUNT F7 TRONt
F3 LOAD” F8 TROFFT
F4 SAVE“ F!J KEY
F5 CONTt F10 SCREEN O,O,Ot

Note: The T symbol following a function indicates that you needn’t
press ZKTFiRJ after pressing the function key. GW-BASIC
immediately executes the selected command.

If you choose, you can change the assignments of one or all function keys.
For more information, see the explanations of the KEY and ON KEY
statements in the GW-BASIC User’s Reference.

29

Chapter 5

Creating and Using Files

There are two types of files in the MS-DOS system:
0 Progranrfiles, which contain the program or instructions for the com-

0 Datafiles, which contain information used or created by program files
puter

ile Corn S

Following are the commands and statements most frequently used with
program files. The GW-BASIC User’s Reference contains more informa-
tion on each of them.

SAVEfilerrante [,a][,p]

Writes the program currently residing in memory to diskette.

LOADfileiruine [,r]

Loads the program from a diskette into memory. LOAD deletes the cur-
rent contents of memory and closes all files before loading the program.

RUNfileiiarne [,r]

Loads the program from a diskette into memory and runs it immediately.
RUN deletes the current contents of memory and closes all files before
loading the program.

MERGEfileriante

Loads the program from a diskette into memory but does not delete the
current program already in memory.

KILLfilenanze

Deletes the file from a diskette. (You can also use this command with
data files.)

NAME old filenume AS new filename

31

~- _- 5 I' GW-BASIC User's Guide _____ ______ ~. ___-

Changes the name of a diskette file. Only the name of the file is changed.
The file is not modified, and it remains in the same space and position on
the disk. (You can also use this command with data files.)

Data Files
GW-BASIC programs can work with two types of data files:
0 Sequential files
0 Random access files

Sequential files are easier to create than random access files but are
limited in flexibility and speed when accessing data. GW-BASIC writes
data to a sequential file as a series of ASCII characters. This data is
stored, one item after another (sequentially), in the order sent. It is read
back in the same way.

Creating and accessing random access files requires more program steps
than creating and accessing sequential files, but random files require less
room on the disk because GW-BASIC stores them in a compressed for-
mat in the form of a string.

The following sections discuss how to create and use these two types of
data files.

Creating a Sequential File
The following statements and functions are used with sequential files:

CLOSE LOF
EOF OPEN
INPUT# PRINT#
LINE INPUT# PRINT# USING
LOC UNLOCK
LOCK WRITE#

5 / Creating arid Using Files
.- - . -. . _ _ _ _ ~ ~- -

The following program steps are required to create a sequential file and
access the data in the file:

1. Open the file in output (0) mode. The current program will use this
file first for output:

OPEN “0”, # 1 ,“filename”

2. Write data to the file using the PRINT# or WRITE# statement:
PRINT#l ,A$
PRINT#l ,B$
PRINT#l ,C$

3. To access the data in the file, you must close the file and reopen it in
input (I) mode:

CLOSE #1
OPEN “I”,#l ,“filename”

4. Use the INPUT# or LINE INPUT# statement to read data from the
sequential file into the program:

INPUT#l ,X$,Y$,Z$

33

5 f G W-BASIC User's Guide

The example that follows is a short program that creates a sequential file,
named data, from information input at the terminal.

10 OPEN "0",#1 ,"DATA'
20 INPUT "NAME";N$
30 IF N$="DONE" THEN END
40 INPUT "DEPARTMENT";D$
50 INPUT "DATE HIRED";H$
60 PRINT# 1 , N$;","D$","; H$
70 PRINT:GOTO 20

RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIONISUAL AIDS
DATE HIRED? 01/12/72
NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65
NAME? EBENEZER SCROOGE
DEPARTMENT? ACCOUNT1 NG
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? DONE

OK

34

5 I Creating and Using Files

Accessing a Sequential File
The program in the following example accesses the file, data, created in
the previous example, and displays the name of everyone hired in 1978.

10 OPEN "I",#l ,"DATA'
20 INPUT#l ,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20
50 CLOSE #1
RUN
EBENEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

The program in the above example reads, sequentially, every item in the
file. When all the data has been read, Line 20 causes an Input past end
error. To avoid this error, insert Line 15, which uses the EOF function to
test for end of file:

151F EOF(1) THEN END

and change Line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data to
the diskette with the PRINT# USING statement. For example, the fol-
lowing statement could be used to write numeric data to diskette without
explicit delimiters:

PRINT#l ,USING"####.##,";A,B,C,D

The comma at the end of the format string serves to separate the items in
the disk file.

The LOC function, when used with a sequential file, returns the number
of 128-byte records that have been written to or read from the file since it
was opened.

35

5 I GW-BASIC User's Guide

Adding Data to a Sequential File
When a sequential file is opened in 0 mode, the current contents are
destroyed. To add data to an existing file without destroying its contents,
open the file in append (A) mode.

The program in the next example can be used to create or add to a file
called names. This program illustrates the use of LINE INPUT. LINE
INPUT reads in characters until it sees a carriage return indicator or
until it reads 255 characters. It does not stop at quotation marks or com-
mas.

10 ON ERROR GOTO 2000
20 OPEN "A',#l ,"NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";N$
130 IF N$="" THEN 200 'CR EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";A$
150 LINE INPUT "BIRTHDAY? ";B$
160 PRINT#l,N$
170 PRINT#l ,A$
180 PRINT#l ,B$
190 PRINT:GOTO 120
200 CLOSE #1
2000 ON ERROR GOTO 0

Lines 10 and 2000 contain the O N ERROR GOTO statement. This state-
ment enables error trapping and specifies the first Line (2000) of the
error handling subroutine. Line 10 enables the error handling routine.
Line 2000 disables the error handling routine and is the point to which
GW-BASIC is to branch to print the error messages.

36

5 I Creating arid Using Files

andorn Access Files
Information in random access files is stored and accessed in distinct,
numbered units called records. Since the information is called by number,
the data can be called from any disk location- the program needn’t read
the entire disk, as when seeking sequential files, to locate data. GW-
BASIC supports large random files. The maximum logical record num-
ber is 232 - 1.

You can use the following statements and functions with random files:
CLOSE FIELD MKI$
CVD LOC M KS$
CVI LOCK OPEN
cvs LOF PUT
EOF LSET/RSET UNLOCK
ET M KD$

Creating a Random Access File
The following program steps are required in creating a random data file:

1. Open the file for random access (R) mode. The following example
specifies a record length of 32 bytes. If the record length is omitted,
the default is 128 bytes.

OPEN “R”, #1, “fi/ename”,32

2. Use the FIELD statement to allocate space in the random buffer for
any variables that will be written to the random file:

FIELD#l,20 AS N$,4 AS A$,8 AS P$

In the above example, the first 20 positions (bytes) in the random file
buffer are allocated to the string variable N$. The ncxt four positions
are allocated to A$; the next eight, to P$.

37

5 i GW-BASIC User's Guide

3. Use LSET or RSET to move the data into the random buffer fields in
left- or right-justified format (L= left SET;R = right SET). Numeric
values must be made into strings when placed in the buffer. MKI$ con-
verts an integer value into a string, MKS$ converts a single-precision
value, and MKD$ converts a double-precision value.

LSET N$=X$
LSET A$ = MKS$(AMT)
LSET P$=TEL$

4. Write the data from the buffer to the diskette, using the PUT state-
ment:

PUT #l,CODE%

The program in the following example takes information keyed as input
at the terminal and writes it to a random access data file. Each time the
PUT statement is executed, a record is written to the file. In the example,
the two-digit CODE% input in Line 30 becomes the record number.

Note: Do not use a fielded string variable in an INPUT or LET
statement. This causes the pointer for that variable to point into
string space instead of into the random file buffer.

10
20
30
40
50
60
70
80
90

OPEN "R",#l ,"INFOFILE',32
FlELD#1,20 AS N$, 4 AS A$, 8 AS P$

INPUT "NAME";X$
IN PUT "AMOU NT';AMT
INPUT "PHONE';TEL$:PRINT
LSET N$=X$
LSET A$ = MKS$(AMT)
LSET P$=TEL$

INPUT "2-DIGIT CODE";CODE%

100 PUT #l,CODE%
110 GOT0 30

- I_______-

38

5 1 Creating and Using Files

Accessing a Random Access File
The following program steps are required to access a random file:

1. Open the file in R mode:
OPEN “R ”, # 1 , “fi/ename”,32

2. Use the FIELD statement to allocate space in the random buffer for
any variables that will be read from the file:

FIELD, #1, 20 AS N$, 4 AS A$, 8 AS P$

In this example, the first u) positions (bytes) in the random file buffer
are allocated to the string variable N$. The next four positions are allo-
cated to A$; the next eight, to P$.

Note: In a program that performs both INPUT and OUTPUT on
the same random file, you can often use just one OPEN statement
and one FIELD statement.

3. Use the GET statement to move the desired record into the random
buffer.

GET #l,CODE%

The program can now access the data in the buffer.

4. Convert numeric values back to numbers using the convert functions:
CVI for integers, CVS for single-precision values, and CVD for
double-precision values.

PRINT N$
PRINT CVS(A$)

5 I G W-BASIC User's Guide

The program in this next example accesses the random file Infofile which
was created in the previous example. By inputting the three-digit code,
the information associated with that code is read from the file and dis-
played.

10 OPEN "R",#l ,"INFOFILE",32
20 FIELD # I , 20 AS N$, 4 AS A$, 8 AS P$

40 GET # I , CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$)
70 PRINT P$:PRINT
80 GOT0 30

30 INPUT "2-DIGIT CODE";CODE%

With random files, the LOC function returns the current record number.
The current record number is the last record number used in a GET or
PUT statement. For example, the following line ends program execution
if the current record number in file#l is higher than 99:

IF LOC(1)>99 THEN END
The following example is an inventory program that illustrates random
file access. In this program, the record number is used as the part num-
ber, and it is assumed that the inventory will contain no more than 100
different part numbers.

Lines 900-960 initialiie the data file by writing CHR$(255) as the first
character of each record. This is used later (Line 270 and Line 500) to
determine whether an entry already exists for that part number.

5 Creating and Using Files

Lines 230-220 display the different inventory functions that the program
performs. When you type the desired function number, Line 230
branches to the appropriate subroutine.

120 OPEN"R",#1 ,"INVEN,DAT",39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS

P$
1 30 PRI NT: PRI NT "FUNCTIONS : ": PRI NT
135 PRINT 1 ,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRYi
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART'
160 PRINT 4,"ADD TO STOCK'
170 PRINT 5,"SUBTRACT FROM STOCK'
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER

220 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
225 IF (FUNCTION < l)OR(FUNCTION >6) THEN PRINT "BAD

230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOT0 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$) < >255 THEN INPUT"OVERWRITE";A$:

280 LSET F$=CHR$(O)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK';Q%
320 LSET Q$ = MKI$(Q%)
330 INPUT "REORDER LEVEL';R%
340 LSET R$ = MKI$(R%)
350 INPUT "UNIT PRICE";P
360 LSET P$=MKS$(P)
370 PUT#1 ,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840

LEVEL'

FUNCTION NUMBER":GOTO 130

IF A$< >"Y" THEN RETURN

410 IF ASC(F$) =255 THEN PRINT "NULL ENTRY':RETURN

41

5 1 GW-BASIC User's Guide

420 PRINT USING "PART NUMBER ###";PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####";CVl(Q$)
450 PRINT USING "REORDER LEVEL #####";CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$) =255 THEN PRINT "NULL ENTRY':RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD";A%
520 Q% = CVI (Q$) -I- A%
530 LSET Q$ = MKI$(Q%)
540 PUT#1 ,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840

590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVl(Q$)
620 IF (Q%-S%)<O THEN PRINT "ONLY';Q%;" IN STOCK':

580 IF ASC(F$) =255 THEN PRINT "NULL ENTRY':RETURN

GOT0 600
630 Q%=Q%-S%
640 IF Q%= <CVl(R$) THEN PRINT "QUANTITY NOW';

650 LSET Q$ = MKI$(Q%)
660 PUT#1 ,PART%
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL 4
690 FOR I=1 TO 100
710 GET#l,I
720 IF CVl(Q$) -= CVl(R$) THEN PRINT D$;" QUANTITY';

730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PART%

(2%; "REORDER LEVEL";CVI(R$)

CVI (Q$) TAB(50) "REORDER LEVEL';CVI (R$)

42

5 I Creating and Using Files - I__.

850 IF(PART%< l)OR(PART% > 100) THEN PRINT "BAD
PART NUMBER":GOTO 840 ELSE GET#1 ,PART%
:RETURN

890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$ < > "Y' THEN

920 LSET F$ = CHR$(255)
930 FOR I=1 TO 100
940 PUT#1,1
950 NEXT I
960 RETURN

RETURN

43

Chapter 6

Constants, Variables, Expressions and
Operators

After you learn the fundamentals of programming in GW-BASIC, you’ll
probably want to write more complex programs. The information in this
chapter will help you learn more about using constants, variables, expres-
sions, and operators in GW-BASIC, as well as how you can use them to
develop more sophisticated programs.

S

Constants are static values the GW-BASIC Interpreter uses during ex-
ecution of your program. There are two lypes of constants: string and
iiiuneric.

A string corzstatit is a sequence of 0 to 255 alphanumeric characters
enclosed in double quotation marks. The following are sample string con-
stants:

“HELLO”
“$25000.00”
“Number of Employees”

45

6 I G W-BASIC User’s Guide

Numeric constants can be positive or negative. When entering a numeric
constant in GW-BASIC, do not type the commas. For instance, if the
number 10,000 were to be entered as a constant, it would be typed as
10000. There are five types of numeric constants: integer, fired-point,
floating-point, hexadecimal, and octal.

Constant Description

Integer

Fixed-point

Floating-Point

Whole numbers between -32768 and +32767 that
do not contain decimal points.

Positive or negative real numbers that contain
decimal points.

Positive or negative numbers represented in CX-
ponential form (similar to scientific notation). A
floating-point constant consists of an optionally-
signed integer or fined-point number (the mantis-
sa) , followed by the le t ter E and an
optionally-signed integer (the exponent).

The allowable range for floating-point constants is
3.0 to 1.7 lo3*:

235.988E-7 = .0000235988
2359E6 = 2359000000

Hexadecimal

Octal

Hexadecimal numbers with the prefix SrH:

&H76
&H32F

Octal numbers with the prefix &O or &:

&0347
&1234

46

6 J Constants, Variables, Expressions and Operators

Single-and Double-Precision Form
for Numeric Constants

Numeric constants can be either integers, single-precision numbers, or
double-precision numbers. Integer constants are stored as whole num-
bers only. Single-precision numeric constants are stored with seven digits
(although only six might be accurate). Double-precision numeric con-
stants are stored with 17 digits of precision and printed with as many as
16 digits.

A single-precision constant is any numeric constant with any of the
following:
0 Seven or fewer digits
0 Exponential form using E
0 A trailing exclamation point (!)

A double-precision constant is any numeric constant with any of the
following:
0 Eight or more digits
0 Exponential form using D
0 A trailing number sign (#)

Following are examples of single- and double-precision numeric con-
stants:

Single-Precision Double-Precision

46.8

3489.0
22.5!

-1.09E-06
345692811

3490.0#
7654321.1234

- 1.09432D-06

ariables
Variables are the names that you choose to represent values used in a
GW-BASIC program. The value of a variable can be assigned specifical-
ly or can be the result of calculations in your program. If a variable is
assigned no value, GW-BASIC assumes the variable’s value to be zero.

47

6 I G W-BASIC User’s Guide -~

Variable Names and Declarations
GW-BASIC variable names can be any length. Up to 40 characters are
significant. The characters allowed in a variable name are letters, num-
bers, and the decimal point. The first character in the variable name must
be a letter. Special t ~ p e declaration c1iaracter.y are also allowed.

You cannot use reserved words as variable names. However, if the
reserved word is embedded within the variable name, it is accepted.
Reserved words include all the words used as GW-BASIC commands,
statements, functions, and operators.

Variables can represent either numeric values or strings.

Type Declaration Characters
Type declaration characters indicate whether a variable represents a
string, an integer, a single-precision number, or a double-precision num-
ber. GW-BASIC recognizes the following type declaration characters:

Character Type of Variable Sample

$
7%
!

String variable N$

Double-precision variable P1#

Integer variable LIMIT%
Single-precision variable MINIMUM!

The default type for a numeric variable name is single-precision. Double-
precision, while very accurate, uses more memory space and more cal-
culation time. Single-precision is sufficiently accurate for most
applications. However, the seventh significant digit (if printed) might not
always be accurate. Be careful when making conversions among integer,
single-precision, and double-precision variables.

The following variable is a single-precision value by default:
ABC

Variables beginning with FN are assumed to be calls to a user-defined
function.

You can include the GW-BASIC statements DEFINT, DEFSTR,
DEFSNG, and DEFDBL in a program to declare the types of values for
certain variable names.

48

6 1 Constants, Variables, Expressions arid Operators

Array Variables
An a m y is a group or table of values referred to by the same variable
name. Each eleemerar in an array is referred to by an avav variable that is a
subscripted integer or an integer expression. The subscript is enclosed
within parentheses. An array variable name has as many subscripts as
there are dimensions in the array.

For example:

W O)

W,4)

Refers to a value in a one-dimensional array.

Refers to a value in a two-dimensional array.

The maximum number of dimensions for an array in GW-BASIC is 255.
The maximum number of elements per dimension is 32767.

Note: If you are using an array with a subscript value greater than
10, use the DIM statement. Refer to the GW-BASIC User’s
Reference for more information. If you use a subscript greater than
the maximum specified, you see the error message Subscript out
of range.

Multidimensional arrays (more than one subscript separated by commas)
are useful for storing tabular data. For example, A(1,4) could be used to
represent a two-row, five-column array such as the following:
Column 0 1 2 3 4
Row 0 10 20 30 40 50
Row 1 60 70 80 90 100
In this example, element A(1,2) = 80 and A(0,3) = 40,

Rows and columns begin with 0, not 1, unless otherwise declared. For
more information, see the OPTION BASE statement in the GW-BASIC
L3er’s Referelice.

- 6 I GW-BASIC User's Guide --

Memory Space Requirements for Variable Storage
The different types of variables require different amounts of storage.
Depending on the storage and memory capacity of your computer and
the size of the program that you are developing, the required storage
amounts can be important considerations.

Variable Type Required Bytes of Storage

integer 2
single-precision 4
double-precision 8

Array Type

integer 2 per element
single-precision 4 per element
double-precision 8 per element

Strings: String variables require three bytes overhead, plus one byte for
each character in the string. The quotation marks at the beginning and

Required Bytes of Storage

, end of each string are not counted.

6 I Constants, Variables, Expressions arid Operators

When necessary, GW-BASIC converts a numeric constant from one type
of variable to another, according to the following rules:
0 If a numeric constant of one type is set equal to a numeric variable of

a different type, the number is stored as the type declared in the vari-
able name. For example:

10 A% = 23.42
20 PRlNTA%

RUN
23

If a string variable is set equal to a numeric value or vice versa, a Type
Mismatch error occurs.
During an expression evaluation, all the operands in an arithmetic or
relational operation are converted to the same degree of precision,
that is, that of the most precise operand. The result of an arithmetic
operation is also returned to this degree of precision. For example, in
the following program lines, the arithmetic is performed in double-
precision, and the result is returned in D# as a double-precision value:

10 D# = 6#/7
20 PRINT D#

RUN
.8571428571428571

In the following example, the arithmetic is performed in double-
precision, and the result is returned to D (single-precision variable),
rounded and printed as a single-precision value.

10 D = 6#/7
20 PRINT D

0 Logical operators convert their operands to integers and return an in-
teger result. Operands must be within the range of -32768 to 32767;
otherwise, an Overflow error occurs.

51

6 I GW-BASIC User’s Guide

0 When a floating-point value is converted to an integer, the fractional
portion is rounded.

For example:
10 c% = 55.88
20 PRINT C%
RUN
56

0 If a double-precision variable is assigned a single-precision value, only
the first seven digits (rounded) of the converted number are valid. This
is because only seven digits of accuracy were supplied with the single-
precision value. The absolute value of the difference between the
printed double-precision number and the original single-precision
value is less than 6.3E-8 times the original single-precision value. For
example:

10 A = 2.04
20 B# = A
30 PRINT A;B#

RUN
2.04 2.039999961 853027

x ~ r ~ s s ~ a ~ s an
An apression can be simply a string or numeric constant, a variable, or a
combination of constants and variables with operators to produce a
single value.

Operators perform mathematical or logical operations on values. The
operators provided by GW-BASIC are divided into four categories:
0 Arithmetic
0 Relational
0 Logical
0 Functional

52

6 I Constants, Variables, Expressions and Operators -~ --

Arithmetic Operators
GW-BASIC recognizes the following aritlimetic operators. The operators
appear in order of precedence.

Operator Operation
A exponentiation

negation
multiplication
floating-point division
addition
subtraction

Operations within parentheses are performed first. Inside the paren-
theses, the usual order of precedence is maintained.

Following are a few sample algebraic expressions and their GW-BASIC
counterparts:

Algebraic BASIC

x - z (X-Y)/Z
Y

- XY X*YlZ
Z

x + Y
Z

(X + Y)/Z

(X2IY (X A 2) ^ Y

XYZ x A (Y*Z)

X(-Y) X*(-Y)

Two consecutive operators must be separated by parentheses.

53

6 I GW-BASIC User’s Guide

Integer Division and Modulus Arithmetic

Two additional arithmetic operators are available: integer division and
modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are
rounded to integers (must be within the range of -32768 to 32767) before
the division is performed, and the quotient is truncated to an integer.

The following are examples of integer division:
10\4 = 2
25.68\6.99 = 3

In the order of occurrence within GW-BASIC, integer division is per-
formed just after floating-point division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer
value that is the remainder of an integer division.

The following are examples of modulus arithmetic:
10.4 MOD 4 = 2
(10/4=2 with a remainder 2)

(26/7=3 with a remainder 5)
25.68 MOD 6.99 = 5

In the order of occurrence within GW-BASIC, modulus arithmetic fol-
lows integer division. As well, the INT and FIX functions, described in
the GW-BASIC User’s Reference, are also useful in modulus arithmetic.

Overflow and Division by Zero

If, during the evaluation of an expression, a division by zero is en-
countered, the Division by zero error message appears, your computer’s
representation of infinity (such as 1.701412E + 38) with the sign of the
numerator is supplied as the result of the division, and execution con-
tinues.

If the evaluation of an exponentiation results in zero being raised to a
negative power, the Division by Zero error message appears, positive
machine infinity is supplied as the result of the exponentiation, and ex-
ecution continues.

54

6 I Constants, Variables, Expressions and Operators

If overflow occurs, the Overflow error message appears, machine infinity
with the algebraically correct sign is supplied as the result, and execution
continues. The errors that occur in overflow and division by zero are not
trapped by the error trapping function.

Relational Opera tors
Relational operators let you compare two values. The result of the com-
parison is either true (-1) or false (0). This result can then be used to
make a decision regarding program flow.

The following table displays the relational operators.

Operator Relation Tested Expression

- - Equality X = Y
< > Inequality x < > Y

< = Less than or equal to x< = Y
> = Greater than or equal to x> = Y

< Less than X < Y
> Greater than X > Y

The equal sign is also used to assign a value to a variable. See the explana-
tion of the LET statement in the GW-BASIC User’s Reference.

When arithmetic and relational operators are combined in one expres-
sion, the arithmetic is always performed first:

X + Y < (-r-l)/Z
This expression is true if the value of X + Y is less than the value of T-1
divided by Z.

55

6 I G W-BASIC User’s Guide

Logical Operators
Logical operators perform tests on multiple relations, bit manipulation, or
Boolean operations. The logical operator returns a bit-wise result that is
either true (not zero) or false (zero). In an expression, logical operations
are performed after arithmetic and relational operations. The outcome
of a logical operation is determined as shown in the following tables. The
operators are listed in order of precedence.

NOT If X is: The Result is:

True
False

False
True

AND If X is: And Y is: Then X AND Y is:

True True
True False
False True
False False

True
False
False
False

OR If X is: And Y is: Then X OR Y is:

True True
True False
False True
False False

True
True
True
False

XOR If X is: And Y is: Then X XOR Y is:

True True False
True False True
False True True
False False False

EQV If X is: And Y is: Then X EQV Y is:

True True
True False
False True
False False

True
False
False
True

56

6 I Coitstaants, Variables, Expressioiis and Operators

IMP If X is: And Y is: Then X IMP Y is:

True True
True False
False True
False False

True
False
True
True

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a true or false value to be used in a decision. For example:

IF D<200 AND F<4 THEN 80
IF 1>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators convert their operands to 16-bi1, signed, two’s comple-
ment integers within the range of -32768 to + 32767. (If the operands are
not within this range, an error results.) If both operands are supplied as 0
or -1, logical operators return 0 or -1. The given operation is performed
on these integers in bits; that is, each bit of the result is determined by the
corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a particular bit
pattern. For instance, the AND operator can be used to mask all but one
of the bits of a status byte at a machine 1/0 port. The OR operator can be
used to merge two bytes to create a particular binary value.

57

6 I G W-BASIC User’s Guide

The following examples demonstrate how the logical operators work:

Example Explanation

63 AND 16 = 16 63 = binary 111111 and 16 = binary 10000,
SO 63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 = b i n a r y l l l l l l l l l l l l l l l l and8 = binary 1000,

4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 = binary 1010,
so 10 OR 10 = 10 (binary 1010).

-1 = binary 1111111111111111 and -2 = binary
1111 111 11111 11 10,
so -1 OR -2 = -1 (binary 1111111111111111). The
bit complement of 16 zeros is 16 ones, which is the
two’s complement representation of -1.

The two’s complement of any integer is the bit com-
plement plus one.

15 AND 14 = 14

-1 AND 8=8
SO -1 AND 8 = 8

4 0 R 2 = 6

10 OR 10 = 10

-1 OR -2=-1.

NOT X = -(X + 1)

Functional Operators
Afincfion is used in an expression to call a predetermined operation that
is to be performed on an operand. GW-BASIC has intrinsic functions
that reside in the system, such as SQR (square root) or SIN (sine).

GW-BASIC also allows you to write user-defined functions. See the ex-
planation of the DEF FN statement in the GW-BASIC User’s Reference.

58

6 I Constants. Variables, Exmessions and Overators

String Operators
To compare strings, use the same relational operators used with num-
bers:

Operator Meaning

Equal to
< > Unequal
< Less than
> Greater than
< =
> =

- -

Less than or equal to
Greater than or equal to

The GW-BASIC Interpreter compares strings by taking one character at
a time from each string and comparing the characters' ASCII codes. If
the ASCII codes in each string are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the higher code. If
the interpreter reaches the end of one string during string comparison,
the shorter string is said to be smaller, providing that both strings are the
same up to that point. Leading and trailing blanks are significant.

For example:
"AA" < "AB'
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL (1 , = "CL"

"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78' where B$ = "8/12/78'

String comparisons can also be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

59

6 I GW-BASIC User's Guide

Strings can be concatenated by using the plus (+) sign. For example:
10 A$ = "FILE": B$ = "NAME"
20 PRINT A$+B$
30 PRINT "NEW I' + A$+B$

RUN
FILENAME

60

Appendix A

Error Codes and Messages

NEXT without FOR
A NEXT statement does not have a corresponding FOR statement.
Check the FOR statement variable for a matching NEXT statement
variable.
Syntax error

A line is encountered that contains an incorrect sequence of charac-
ters (such as unmatched parentheses, a misspelled command or state-
ment, or incorrect punctuation). This error causes GW-BASIC to
display the incorrect line in edit mode.
RETURN without GOSUB
A RETURN statement is encountered for which there is no previous
GOSUB statement.
Out of DATA
A READ statement is executed when there are no DATA statements
with unread data remaining in the program.
Illegal function call
An out-of-range parameter is passed to a math or string function. An
illegal function call error can also occur as the result of
0

0

0

0

0

A negative or unreasonably large subscript
A negative or zero argument with LOG
A negative argument to SQR
A negative mantissa with a non-integer power
A call to a USR function for which the starting address has not
yet been given
An improper argument to MID$, LEFT$, RIGHT$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, STRING$, SPACE$, INSTR,
or ON ... GOT0

0

. . . . ~ _ _ _ -

61

A I G W-BASIC User’s Guide -

Overflow
The result of a calculation is too large to be represented in GW-
BASIC’s number format. If underflow occurs, the result is zero, and
execution continues without an error.
Out of memory
A program is too large, has too many FOR loops, GOSUBs, variables,
or expressions that are too complicated. Use the CLEAR statement to
set aside more stack space or memory area.
Undefined line number
A h e reference in a GOTO, GOSUB, IF-THEN ... ELSE, or
DELETE is a nonexistent line.
Subscript out of range
An array element is referred to either with a subscript that is outside
the dimensions of the array or with the wrong number of subscripts.

10 Duplicate Definition
Two DIM statements are given for the same array, or a DIM statement
is given for an array after the default dimension of 10 has been estab-
lished for that array.

A division by zero is encountered in an expression, or the operation of
involution results in zero being raised to a negative power. Machine in-
finity with the sign of the numerator is supplied as the result of the
division, or positive machine infinity is supplied as the result of the in-
volution, and execution continues.

12 Illegal direct
A statement that is illegal in direct mode is entered as a direct mode
command.

A string variable name is assigned a numeric value or vice versa; a
function that expects a numeric argument is given a string argument or
vice versa.

String variables have caused GW-BASIC to exceed the amount of free
memory remaining. GW-BASIC allocates string space dynamically
until it runs out of memory.

An attempt is made to create a string more than 255 characters long.

11 Division by zero

13 Type mismatch

14 Out of string space

15 String too long

62

A I Error Codes and Messages

16 String formula too complex
A string expression is too long or too complex. Break the expression
into smaller expressions.

An attempt is made to continue a program that:
0

0

0 Does not exist

A USR function is called before the function definition (DEF state-
ment) is given.

19 NoRESUME
An error-trapping routine is entered that contains no RESUME state-
ment.

A RESUME statement is encountered before an error-trapping
routine is entered.

21 Unprintable error
No error message is available for the existing error condition. This is
usually caused by an error with an undefined error code.

An expression contains an operator with no operand following it.

An attempt is made to input a line that has too many characters.

GW-BASIC did not receive information from an I/O device within a
predetermined amount of time.

Indicates a hardware error in the printer or interface card.

A FOR was encountered without a matching NEXT.

The printer is out of paper, or a printer fault is indicated.

17 Can’t continue

Has halted because of an error
Has been modified during a break in execution

18 Undefined user function

20 RESUME without error

22 Missing operand

23 Line buffer overtlow

24 Device Timeout

25 Device Fault

26 FOR Without NEXT

27 Out of Paper

63

I .~ - A I GW-BASIC User’s Guide .

28 Unprintable error
No error message is available for the existing error condition. This is
usually caused by an error with an undefined error code.

A WHILE statement does not have a matching WEND.

A WEND was encountered without a matching WHILE.

No error message is available for the existing error condition. This is
usually caused by an error with an undefined error code.

A FIELD statement is attempting to allocate more bytes than were
specified for the record length of a random file.

An internal malfunction has occurred in GW-BASIC. Report to your
dealer the conditions under which the message appeared.

A statement or command refers to a file with a file number that is not
open or that is out of the range of file numbers specified at initializa-
tion.

A LOAD, KILL, NAME, FILES, or OPEN statement refers to a file
that does not exist on the current diskette.

An attempt is made to use PUT, GET, or LOF with a sequential file,
to LOAD a random file, or to execute an OPEN with a file mode other
than I, 0, A, or R.

55 File already open
A sequential output mode OPEN is issued for a file that is already
open, or a KILL is given for a file that is open.

An error message is not available for the error condition that exists.
This is usually caused by an ERROR with an undefined error code.

Usually a disk I/O error, but generalized to include all I/O devices.
This is a fatal error; that is, the operating system cannot recover from
the error.

29 WHILE without WEND

30 WEND without WHILE

31-49 Unprintable error

50 FIELD overtlow

51 Internal error

52 Bad file number

53 File not found

54 Bad file mode

56 Unprintable error

57 Device I/O Error

64

A 1 Error Codes and Messages

59-60 Unprintable error
No error message is available for the existing error condition. This is
usually caused by an error with an undefined error code.

All disk storage space is in use.

An INPUT statement is executed after all the data in the file has been
input or for a null (empty) file. To avoid this error, use the EOF func-
tion to detect the end of file.

In a PUT or GET statement, the record number is either greater than
the maximum allowed (16,777,215) or equal to zero.

An illegal form is used for the filename with LOAD, SAVE, KILL, or
OPEN. Example: a filename contains too many characters.

No error message is available for the existing error condition. This is
usually caused by an error with an undefined error code.

A direct statement is encountered while loading an ASCII-format file.
The LOAD is terminated.

An attempt is made to create a new file (using SAVE or OPEN) when
all directory entries are full or the file specifications are invalid.

An attempt is made to open a file to a nonexistent device. It might be
that hardware does not exist to support the device, such as lpt2 or
lpt3:, or that it is disabled by the user. This occurs if an OPEN
“COM1: statement is executed but the user disables RS232 support
with the IC: switch directive on the command line.

61 Diskfull

62 Input past end

63 Bad record number

64 Badfilename

65 Unprintable error

66 Direct statement in file

67 Too many files

68 Device Unavailable

65

A I GW-BASIC User’s Guide

69 Communication buffer overflow
Occurs when a communications input statement is executed when the
input queue is already full. Use an ON ERROR GOT0 statement to
retry the input when this condition occurs. Subsequent inputs attempt
to clear this fault unless characters continue to be received faster than
the program can process them. In this case, several options are avail-
able:
0 Increase the size of the COM receive buffer by using the /c:

switch.
Implement a hand-shaking protocol with the hosthatellite (such
as: XON/XOFF, as demonstrated in the TTY programming ex-
ample) to turn transmit off long enough to catch up.
Use a lower baud rate for transmit and receive.

0

0

This is one of three hard disk errors returned from the diskette con-
troller.
0 An attempt has been made to write onto a diskette that is write

protected.
Another process has attempted to access a file already in use.

0 The UNLOCK range specified does not match the preceding
LOCK statement.

70 Permission Denied

71 Disk not Ready
Occurs when the diskette drive door is open or a diskette is not in the
drive. Use an ON ERROR GOT0 statement to recover.

Occurs when the diskette controller detects a hardware or media fault.
This usually indicates damaged media. Copy any existing files to a new
diskette, and reformat the damaged diskette. FORMAT maps the bad
tracks in the file allocation table. The remainder of the diskette is now
usable.

An attempt was made to use a reserved word that is not available in
this version of GW-BASIC.

An attempt is made to rename a file to a new name declared to be on a
disk other than the disk specified for the old name. The naming opera-
tion is not performed.

72 Disk media error

73 Advanced Feature

74 Rename across disks

66

A 1 Error Codes and Messages

75 PathlFile Access Error
During an OPEN, MKDIR, CHDIR, or RMDIR operation, MS-DOS
is unable to make a correct path-to-filename connection. The opera-
tion is not completed.

During an OPEN, MKDIR, CHDIR, or RMDIR operation, MS-DOS
is unable to find the path specified. The operation is not completed.

76 Path not found

67

Appendix B

ASCII Character Codes
ASCII Control
Code Character Character

000
00 1
002
003
004
005
006
00 7
008
009
010
01 1

012
013
014
015
016
017
018
019
020
02 1

022
023
024
025
026
027
028
029
030
03 1

-- . _ _ _ _ ~

(null)
@
e
V
+
4
+
(beep)
0

(tab)
(line feed)
(home)
(form feed)
(carriage return)
m

- 4

0
w
4

t

II
§

1.
t
1

I1

-

+

+

(cursor right)
(cursor left)
(cursor up)
(cursor down)

NUL
SOH
STX
ETX
EOT
EN0
ACK
BEL
BS
HT

LF
VT
FF

CR
so
SI
DLE
DC 1

DC2
DC3
DC4
NAK
SY N
ETB
CAN

EM
SUB
ESC
FS
GS
RS
us

69

B 1 G W-BASIC User’s Guide

ASCII ASCII
Code Character Code Character

032
033

034
035
036
037
038
039
040
04 1

042
043
044
045
046
047
048
049
050
05 1
052
053
054
055
056
057
058
059
060
06 1

062
063
064

065
066
067

(space)
I

$ 3

$
%
&

(
1

+

-

I

0
1

2
3
4

5
6
7
8
9

<
- -
>
?

@
A

B
C

068
069
070
07 1

072
073
074
075
076
077
078
079
080
08 1

082
083
084
085
086
087
088
089
090
09 1
092
093
094
095
096
097
098
099
100
101
102
103

D

E
F

G
H

I
J

K

L
M
N
0
P

0
R
S
T
U
V
w
X
Y

2

[
\

1
A
-

6

a
b
C

d
e
f

9

70

B IASCZZ Character Codes

ASCII ASCII
Code Character Code Character

104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

h

I

I
k
I
m
n
0

P
9
r

S

t

U

v
W

X

Y
Z

{

1

0
c
ij
e
a
a
a
$
F
6
e
e

I
I

-

I

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175

I

I

A
R
E

E
a!

0

0

6

b

0

c
U

Y

U
Q
E

Pt

f
a

0

‘f

I

U -
n

rJ
a
L?

-

L

r-

1

1/2

‘14

((

I

))

71

B I GW-BASIC User's Guide

ASCII ASCII
Code Character Code Character

176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
20 1

202
203
204
205
206
207
208
209
210
21 1

% 212
'% 213
8 214

I 215
i 216
4 21 7
i I 21 8
n 219 - 220
2
71 221
I1 222

TI 223
3 224
li 225
A 226
7 227
L 228
I 229
T 230
k 23 1

- 232
+ 233
I= 234
It 235
LL 236
F 23 7
JL 238

239
I: 240

24 1
242 -r

I 243
Y 244
7 245
7 246
LL 247

-
i r

- -
J L

72

B /ASCII Character Codes

ASCII ASCII
Code Character Code Character

0 248 252 rl
249 253 2

250 0 254 m
251 f 255 (blank 'FF')

73

B I GW-BASIC User’s Guide

Extended Codes
For certain keys and key combinations, INKEY$ returns a 2-
character code. The first character is a null character (ASCII
Code 00). The second is usually the scan code of the key(s)
pressed. The key(s) and associated ASCII codes (in decimal) are
listed below.

Second Key(s) Second Key($
Character Pressed Character Pressed

15
16
17
18
19
20
21
22
23
24
25
30
31
32
33
34
35
36
37
38
44
45
46
47
48
49
50
59
60
61
62
63

64
65
66
67
68
71
72
73
75
77
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

74

B I ASCII Character Codes

Second KeyW Second Key(s)
Character Pressed Character Pressed
102
103
104
105
106
107
108
109
110
111
112
113
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

75

Appendix C

Assembly Language (Machine Code)
Subroutines

This appendix is written primarily for users experienced in assembly lan-
guage programming.

GW-BASIC lets you interface with assembly language subroutines by
using the USR function and the CALL statement. WSR allows BASIC to
call assembly language subroutines in the same way it calls GW-BASIC
intrinsic functions. However, we recommend the CALL statement for in-
terfacing machine language programs with GW-BASIC. The CALL
statement is compatible with more languages than is the USR function
call, produces more readable source code, and can pass multiple argu-
ments.

Memory space must be set aside for an assembly language (or a machine
code) subroutine before it can be loaded. There are three recommended
ways to set aside space for assembly language routines:
0 Specify an array and use VARPTR to locate the start of the array

before every access.
0 Use the /m switch in the command line. Get GW-BASIC’s Data seg-

ment (DS), and add the size of DS to refer to the reserved space above
the data segment.

0 Execute a .COM file that stays resident, and store a pointer to it in an
unused interrupt vector location.

C I GW-BASIC User’s Reference

There are three recommended ways to load assembly language routines:
0 BLOAD the file. Use DEBUG to load in a .EXE file that is in high

memory, run GW-BASIC, and BSAVE the .EXE file.
0 Execute a .COM file that contains the routines. Save the pointer to

these routines in unused interrupt-vector locations so that your ap-
plication in GW-BASIC can get the pointer and use the routine(s).

0 Place the routine into the specified area.

If more stack space is needed when an assembly language subroutine is
called, GW-BASIC stack space can be saved, and a new stack set up for
use by the assembly language subroutine. The GW-BASIC stack space
must be restored, however, before returning from the subroutine.

78

C I Assembly Language (Machine Code) Subroutines

CALL Statement

CALL variab/eizai~te[(a~i i~teiz~~)]

variablenante contains the offset in the current segment of the subroutine
being called.

arguments are the variables or constants, separated by commas, that are
to be passed to the routine.

For each parameter in arguments, the two-byte offset of the parameter’s
location within the data segment (DS) is pushed onto the stack.

The GW-BASIC return address code segment (CS) and offset (IP) are
pushed onto the stack.

A long call to the segment address given in the last DEF SEG statement
and the offset given in variablenante transfers control to your routine.

The stack segment (S S) , data segment (DS), extra segment (ES), and
stack pointer (SP) must be preserved.

High Address

Low / dress

Parameter 0
Parameter 1

Parameter n

Return Segment
Address

Return Offset

Each parameter is a
2-byte pointer to memory

- Stack Pointer

Figure D. 1 Stack Layout Wheii rlie CALL Statentent i s Activated

79

C 1 GW-BASIC User’s Reference - - .I___

Figure D.l shows the state of the stack at the time of the CALL state-
ment:

Your routine now has control. Parameters can be referred to by moving
the stack pointer (SP) to the base pointer (BP) and adding a positive of-
fset to BP. Upon entry, the segment registers DS, ES, and SS all point to
the address of the segment that contains the GW-BASIC interpreter
code. The code segment register CS contains the latest value supplied by
DEF SEG. If no DEF SEG has been specified, it then points to the same
address as DS, ES, and SS (the default DEF SEG).

High Addresses

4
Low Addresses

Parameter 0
Parameter 1

Parameter n

Return Segment Address

Return Offset

Old Stack Marker

Local Variables

This space might be used
during procedure execution

+ A b s e n t if any
p a r a m e t e r i s
referenced within
a nested proce-
dure

-Absent in Local
Procedure

*-- - Stack Pointer

-New Stack
Marker

--Only in re-entrant
procedure

-Stack Pointer can
change dur ing
procedure execu-
tion

Figure 0.2 Stack Layout Diiriiig Execution of a CALL Statement

80

C I Assembly Language (Macltine Code) Subroutines
-I___

Figure D.2 shows the condition of the stack during execution of the called
subroutine:

You must observe the following rules when coding a subroutine:
0 The called routine can destroy the contents of the AX, BX, CX, DX,

SI, DI, and BP registers. They do not require restoration upon return
to GW-BASIC. However, all segment registers and the stack pointer
must be restored. Good programming practice dictates that interrupts
enabled or disabled be restored to the state observed upon entry.

0 The called program must know the number and length of the
parameters passed. References to parameters are positive offsets
added to BP, assuming the called routine moved the current stack
pointer into BP; that is, MOV BP,SP. When three parameters are
passed, the location of PO is at BP + 10, P1 is at BP + 8, and P2 is at
BP + 6.

0 The called routine must perform a RETURN n (n is two times the
number of parameters in the argument list) to adjust the stack to the
start of the calling sequence. Also, programs must be defined by a
PROC FAR statement.
Values are returned to GW-BASIC by including in the argument list
the variable name that receives the result.

0 If the argument is a string, the parameter offset points to three bytes
called the string descriptor. Byte 0 of the string descriptor contains the
length of the string (0 to 255). Bytes 1 and 2, respectively, are the lower
and upper eight bits of the string starting address in string space.

Note: The called routine must not change the contents of any
of the three bytes of the string descriptor.

0 Your routines can alter strings, but they are not allowed to change the
strings' lengths. GW-BASIC cannot correctly manipulate strings if
their lengths are modified by external routines.
If the argument is a string literal in the program, the string descriptor
points to program text. Be careful not to alter or destroy your program
this way. To avoid unpredictable results, add + "" to the string literal
in the program. For example, the following line forces the string literal
to be copied into string space allocated outside of program memory
space:
20 A$ = "BASIC" + ""
The string can then be modified without affecting the program.

81

C I G W-BASIC User’s Reference

Examples:
100 DEF SEG = &H2OOO
1 10 ACC = &H7FA
120 CALL ACC(A,B$,C)

In the above example, Line 100 sets the segment to 2000 hex. The value of
variable ACC is added into the address as the low word after the DEF
SEG value is left-shifted four bits. (This is a function of the microproces-
sor, not of GW-BASIC.) Here, ACC is set to &H7FA, so that the call to
ACC executes the subroutine at location 2000:7FA hex.

Upon entry, only 16 bytes (eight words) remain available within the allo-
cated stack space. If the called program requires additional stack space,
then your program must reset the stack pointer to a new allocated space.
Be sure to restore the stack pointer adjusted to the start of the calling se-
quence on return to GW-BASIC.

The following example demonstrates access of the parameters passed
and storage of a return result in the variable C.

Note: The called program must know the variable type for numeric
parameters passed. In these examples, the following instruction
copies only two bytes:

MOVSW

This is adequate if variables A and C are integer. It would be necessary to
copy four bytes if they were single precision or eight bytes if they were
double precision.
MOV BP,SP
MOV BX,8[BP]
MOV CL, [BX]
MOV DX, 1 [BX]
MOV SI,lO[BP]
MOV DI,G[BP]
MOVSW
RET 6

Gets the current stack position in BP
Gets the address of B$ description
Gets the length of B$ in CL
Gets the address of B$ string descriptor in DX
Gets the address of A in SI
Gets the pointer to C in DI
Stores variable A in ’C’
Restores stack; returns

82

C 1 Assembly Language (Machiite Code) Subroutines

USR Function Calls

Although the CALL statement is the recommended way of calling as-
sembly language subroutines, the USR function call is still available for
compatibility with previously written programs.

Syntax:
USR[it](argpment)

n is a number, 0-9, that specifies the USR routine being called. (See the
DEF USR statement.) If n is omitted, USRO is assumed.

argument is any numeric or string expression.

In GW-BASIC, a DEF SEG statement should be executed prior to a
USR function call to ensure that the code segment points to the sub-
routine being called. The segment address given in the DEF SEG state-
ment determines the starting segment of the subroutine.

For each USR function call, a corresponding DEF USR statement must
have been executed to define the USR function call offset. This offset and
the currently active DEF SEG address determine the starting address of
the subroutine.

When the USR function call is made, register AL contains the number
ypeflag (NTF), which specifies the type of argument given. The NTF
value can be one of the following:

NTF Value Specifies

2
3 a string
4
8

a two-byte integer (two’s complement format)

a single-precision floating point number
a double-precision floating point number

83

. _ _ _ _ i ~ - - - -

C I GW-BASIC User’s Reference __

If the argument of a USR function call is a number (AL < > 3), the value
of the argument is placed in the floating-poittt accuittulator (FAC). The
FAC is eight bytes long and is in the GW-BASIC data segment. Register
BX will point at the fifth byte of the FAC. Figure D.3 shows the repre-
sentation of all the GW-BASIC number types in the FAC:

l l ! l l ~ l l I I Integer

Most significant byte
Least significant byte

j 1 1 Single Precision

Exponent minus 128
L- Most significant byte

Least significant byte
i ! (sign byte)

1 Least significant byte
Most significant byte
(sign byte)
Exponent minus 128

I

Number Types in Floating-Point Accuntulator

If the argument is a single-precision, floating-point number:
0 BX + 3 is the exponent, minus 128. The binary point is to the left of the

most significant bit of the mantissa.
0 BX + 2 contains the highest seven bits of mantissa with leading 1 sup-

pressed (implied). Bit 7 is the sign of the number. (O=positive,
1 =negative.)

0 BX + 1 contains the middle eight bits of the mantissa.
0 BX + 0 contains the lowest eight bits of the mantissa.

84

C /Assembly Language (Machiize Code) Sitbroirtiiies

If the argument is an integer:
0 BX + 1 contains the upper eight bits of the argument.
0 BX+O contains the lower eight bits of the argument.

If the argument is a double-precision, floating-point number:
0 BX + 0 through BX + 3 are the same as for single-precision, floating-

0 BX-1 to BX-4 contain four more bytes of mantissa. BX-4 contains the

If the argument is a string (indicated by the value 3 stored in the AL
register):

The (DX) register pair points to three bytes called the string descriptor.
Byte 0 of the string descriptor contains the length of the string (0 to 255).
Bytes 1 and 2, respectively, are the lower and upper eight bits of the string
starting address in the GW-BASIC data segment.

If the argument is a string literal in the program, the string descriptor
points to program text. Be careful not to alter or destroy programs this
way. (See the preceding CALL statement.)

Usually, the value returned by a USR function call is the same type (in-
teger, string, single-precision, or double-precision) as the argument that
was passed to it. The registers that must be preserved are the same as in
the CALL statement.

A far return is required to exit the USR subroutine. The returned value
must be stored in the FAC.

point.

lowest eight bits of the mantissa.

S

This section contains two sample GW-BASIC programs that:
0 load an assembly language routine to add two numbers together
0 return the sum into memory
0 remain resident in memory

The code segment and offset to the first routine is stored in the interrupt
vector at 0:lOOH.

C I GW-BASIC User’s Reference

The following example calls an assembly language subroutine:
10 DEF SEG=O
100
200
250
300
400
500
600
700
800

CS = PEEK(&H102) + PEEK(&H103)*256
OFFSET = PEEK(&H100) + PEEK(&H101)*256
DEF SEG
C1% = 2:C2% = 3:C3% = 0
TWOSUM =OFFSET
DEF SEG=CS
CALL TWOSUM(C1 %,C2%,C3%)
PRINT C3%
END

The assembly language subroutine called in the above program must be
assembled, linked, and converted to a .COM file. The program, when ex-
ecuted prior to the running of the GW-BASIC program, will remain in
memory until the system power is turned off or the system is rebooted.
01 00
01 00

0100 EB 17 90
01 03
0103 55
0104 88 EC
0106 88 76 08

0109 88 04
0108 8B 76 OA

010E 03 04

0110 8B 7E 06

0113 89 05

0115 5D
01 16 ca 0006
01 19

org 100H
double segment
assume cs:double
start: imp start1
usrprg proc far

push bp
mov bp,sp
rnov si, [bp] + 8

mov ax,[si]
mov si, [bp] + 10

add ax,[si]

mov di,[bp] +6

mov [di],ax

POP bP
ret 6
usrprg endp

;get address of
;parameter b
;get value of b
;get address of
;parameter a
;add value of a to
;value of b
;get address of
;parameter c
;store sum in
;parameter c

86

C 1 Assembly Language (Machine Code) Subroutines ___ _- ~ _ _ ~

01 19
01 19 B8 0000
Ol lC 8E D8
011E BB 0100
0121 83 3F 00
0125 75 16

0127 83 7F 02 00
012A 75 11

012C 88 0103 R
012F 89 07
0131 8C c8
0133 89 47 02
0136 OE
0137 1F
0138 BA 0119 R
0138 CD 27

;Prog. put procedure
;in memory and remain
;resident. The offset and
;segment are stored in
;location 100-103H.

startl :
mov ax,O
mov ds,ax
mov bx,Ol OOH
cmp word ptr [bx],O
jne quit ;program

cmp word ptr [bx+2],0
jne quit ;program

mov ax,offset usrprg
mov [bx],ax ;program offset
mov ax,cs
mov [bx + 2],ax
push cs

mov dx,offset startl
int 27h

;data segment to OOOOH
;pointer to int vector 40H

;already run, exit

;already run, exit

;data segment

POP ds

01 3D quit:
013D CD 20 int 20h
01 3F double ends

end start

87

C I GW-BASIC User’s Refererice

The following example places the assembly language subroutine in the
specified area:

10 I=O:JC=O
100
150
200
300
400
450
500
600
700
800
900
950

DIM A%(23)
MEM% =VARPTR(A%(l))
FOR I = 1 TO 23
READ JC
POKE MEM%,JC
MEM% = MEM% + 1
NEXT
c1% = 2:C2% = 3:C3% = 0
TWOSUM = VARPTR(A%(l))
CALL TWOSUM(C1 %,C2%,C3%)
PRINT C3%
END

1000 DATA &H55,&H8b,&Hec &H8b,&H76,&H08,&H8b,

1 100 DATA &HOa,&H03,&H04,&H8b,&H7e,&H06,&H89,&H05,

1200 DATA &Hca,&H06,&H00

&H04,&H8b,&H76

&H5d

88

Appendix D

Converting BASIC Programs
to GW-BASIC

Programs written in a BASIC language other than GW-BASIC might re-
quire some minor adjustments before they can be run. This appendix
describes these adjustments.

Strin sions
Delete all statements used to declare the length of strings. A statement
such as the following:

DIM A$(I,J)

which dimensions a string array for J elements of length I, should be con-
verted to the following statement:

DIM A$(J)

Some BASIC languages use a comma or ampersand (&) for string con-
catenation. Each of these must be changed to a plus sign (+), which is
the operator for GW-BASIC string concatenation.

In GW-BASIC, the MID$, RIGHT$, and LEFT$ functions are used to
take substrings of strings. Forms such as A$(I) to access the Ith character
in A$, or A$(I,J) to take a substring of A$ from position I to position J,
must be changed as follows:

Other BASIC: GW-BASIC:

X$ = A$(I)

X$ = A$(1,J)

X$ = MID$(A$,I,l)

X$ = MID$(A$,I,J-I + 1)

D 1 GW-BASIC User’s Guide

If the substring reference is on the left side of an assignment and X$ is
used to replace characters in A$, convert as follows:

Other BASIC: GW-BASIC:

A$(I) = X$ MID$(A$,I,l) = x$
A$(I,J) = X$ MID$(A$,I,J-I + 1) =X$

Multiple Assign
Some BASIC languages allow statements of the following form to set B
and C equal to zero:

10 LETB=C=O

GW-BASIC would interpret the second equal sign as a logical operator
and set B equal to -1 if C equaled 0. Convert this statement to two assign-
ment statements:

10 C=O:B=O

~ u l t i p l e S t a ~ e ~ e ~ t s
Some BASIC languages use a backslash (\) to separate multiple state-
ments on a line. With GW-BASIC, be sure all elements on a line are
separated by a colon (:).

To execute properly, programs using the MAT functions available in
some BASIC languages must be rewritten using FOR-NEXT loops.

FOR-NEXT LOOPS
Some BASIC languages will always execute a FOR-NEXT loop once,
regardless of the limits. GW-BASIC checks the limits first and does not
execute the loop if it is past the limits.

90

Appendix E

Communications

This appendix describes the GW-BASIC statements necessary to sup-
port RS-232 asynchronous communications with other computers and
peripheral devices.

g ~ o m m ~ n i c a t i o n s Files
The OPEN COM statement allocates a buffer for input and output in the
same manner as the OPEN statement opens disk files.

municat~ons 1 / 0
Since the communications port is opened as a file, all I/O statements valid
for disk files are valid for COM.

COM sequential input statements are the same as those for disk files:
INPUT#
LINE INPUT#
INPUT$

COM sequential output statements are the same as those for diskette:
PRINT#
PRINT# USING

See the GW-BASIC User’s Reference for more information on these state-
ments.

91

E I GW-BASIC User’s Guide

The COM I/
The most difficult aspect of asynchronous communications is processing
characters as quickly as they are received. At rates above 2400 baud
(bps), it is necessary to suspend character transmission from the host
long enough for the receiver to catch up. This can be done by sending
XOFF (CTRL-S) to the host to temporarily suspend transmission, and
XON (CTRL-Q) to resume, if the application supports it.

GW-BASIC provides three functions that help determine when an over-
run condition is imminent:

LOC(x) Returns the number of characters in the input queue waiting
to be read. The input queue can hold more than 255
characters (determined by the IC: switch). If there are more
than 255 characters in the queue, LOC(x) returns 255. Since
a string is limited to 255 characters, this practical limit
alleviates the need for you to test for string size before
reading data into it.

Returns the amount of free space in the input queue, that
is:

LOF(x)

/c:(size)-mtntber of characters in the iiipilt qlterte

LOF(x) can be used to detect when the input queue is reach-
ing storage capacity.

True (-1) is returned if the input queue is empty. False (0)
is returned if any characters are waiting to be read.

EOF(x)

ossi rrors
A Communications buffer overflow error occurs if a read is attempted
after the input queue is full (if LOC(x) returns 0).

A Device I/O error occurs if any of the following line conditions are
detected on receive: overrun error (OE), framing error (FE), or break in-
terrupt (BI). The error is reset by subsequent inputs, but the character
causing the error is lost.

A Device fault error occurs if data set ready (DSR) is lost during 110.

92

E I Coniniiuiications

A Parity error occurs if the PE (parity enable) option was used in the
OPEN COM statement and incorrect parity was received.

The INPUT$ Function
The INPUT$ function is preferred over the INPUT and LINE INPUT
statements for reading COM files because all ASCII characters might be
significant in communications. INPUT is least desirable because input
stops when a comma or an enter is seen. LINE INPUT terminates when
an ENTER is seen.

INPUT$ allows all characters read to be assigned to a string.

INPUT$ returns x characters from the y file. The following statements,
then, are most efficient for reading a COM file:

10 WHILE NOT EOF(1)
20 A$ = INPUT$(LOC(l),#l)
30 ...
40 ... Process data returned in A$...
50 ...
60 WEND

This sequence of statements translates: As long as something is in the
input queue, return the number of characters in the queue, and store
them in A$. If there are more than 255 characters, only 255 are returned
at a time to prevent string overflow. If this is the case, EOF(1) is false, and
input continues until the input queue is empty.

93

E 1 GW-BASIC User’s Guide

T Statements for COM Files

Purpose:
To allow fixed-length Ii’O for COM.

Syntax:
GET fileniuitber, itbytes PUTfileitiintber, itbytes

Comments:
fileiiuniber is an integer expression returning a valid file number.

rzbytes is an integer expression returning the number of bytes to be trans-
ferred into or out of the file buffer. nbytex cannot exceed the value set by
the i s : switch when GW-BASIC was invoked.

Because of the low performance associated with telephone line com-
munications, we recommend that you not use GET and PUT in such ap-
plications.

The following TTY sample program is an exercise in communications
IiO. It is designed to enable your computer to be used as a conventional
terminal. Besides full-duplex communications with a host, the TTY
program allows data to be downloaded to a file as well as uploaded
(transmitted) to another machine.

In addition to demonstrating the elements of asynchronous communica-
tions, this program is useful for transferring GW-BASIC programs and
data to and from a computer.

Note: This program is set up to communicate with a DEC@ SYS-
TEM-20 especially in the use of XON and XOFF. It might require
modification to communicate with other types of hardware.

94

E 1 Cornrnunications

10 SCREEN 0,O:WIDTH 80
15 KEY 0FF:CLS:CLOSE

25 LOCATE 25,l
30 PRINT STRING$(GO," ")
40 FALSE = 0:TRUE = NOT FALSE
50 MENU=5 'Value of MENU Key ("E)
60 XOFF$=CHR$(IS):XON$=CHR$(17)

20 DEFINT A-Z

100
110
120
130
1 40
200
21 0
220
230
240
250
260
270
280
300
310
400
41 0
420

430
440
500
51 0
520
530
540
550
600

,

LOCATE 25,l :PRINT "Async TTY Program";
LOCATE 1,l :LINE INPUT "Speed?";"SPEED$
COMFIL$="COMl:"+ SPEED$ +",E,7'
OPEN COMFIL$ AS #1
OPEN "SCRN:"FOR OUTPUT AS #3
PAUSE = FALSE
A$ = INKEY$:IF A$ =""THEN 230
IF ASC(A$)=MENU THEN 300 ELSE PRINT #l,A$;
IF EOF(1) THEN 210
IF LOC(1) > 128 THEN PAUSE=TRUE:PRINT #1 ,XOFF$;
A$ = INPUT$(LOC(I),#I)
PRINT #3,A$;:IF LOC(l)>O THEN 240
IF PAUSE THEN PAUSE = FALSE:PRINT #1 ,XON$;
GOTO 210
LOCATE 1,l :PRINT STRING$(30,32):LOCATE 1,l
LINE INPUT "FILE?"; DSKFl L$
LOCATE 1,l :PRINT STRING$(30,32):LOCATE 1,l
LINE INPUT"(T) ransmit or (R) eceive?";TXRX$
IF TXRX$="T' THEN OPEN DSKFIL$ FOR INPUT AS
#2:GOTO 1000
OPEN DSKFIL$ FOR OUTPUT AS #2
PRINT #1 ,CHR$(13);
IF EOF(1) THEN GOSUB 600
IF LOC(1) > 128 THEN PAUSE=TRUE:PRINT #I,XOFF$;
A$= INPUT$(LOC(l),#l)
PRINT #2,A$;:IF LOC(l)>O THEN 510
IF PAUSE THEN PAUSE = FALSE:PRINT #1 ,XON$;
GOTO 500
FOR I=1 TO 5000

-.___I .-

95

E I GW-BASIC User's Guide

610 IF NOT EOF(1) THEN I=9999
620 NEXT I
630 IF I > =9999 THEN RETURN
640 CLOSE #2;CLS:LOCATE 25,lO:PRINT 'I* Download

complete *'I;

650 RETURN 200
1000
1010
1020
1 030
1040
1050

1060
9999

WHILE NOT EOF(2)
A$ = INPUT$(1,#2)
PRINT #l,A$;
WEND
PRINT #l,CHR$(28); "2 to make close file.
CLOSE #2:CLS:LOCATE 25,lO:PRINT "** Upload
complete **'I;

GOT0 200
CL0SE:KEY ON

%

E 1 Comntunications

Notes on the TTY Sample Program
Note: Asyitclzronous implies character I/O as opposed to line or
block 110. Therefore, all prints (either to the COM file or to the
screen) are terminated with a semicolon (;). This slows the return
line feed normally issued at the end of the PRINT statement.

Line
Number Comments

10

15

20

Sets the SCREEN to black and white alpha mode, and sets
the width to 80.
Turns off the soft key display, clears the screen, and assures
that all files are closed.
Defines all numeric variables as integer, primarily for. the
benefit of the subroutine at 600-620. Any program looking
for speed optimization should use integer counters in loops
where possible.

Defines Boolean true and false.

Defines the ASCII (ASC) value of the MENU key.

Defines the ASCII XON and XOFF characters.

Prints program ID and asks for baud rate (speed). Opens
communications to file number 1, even parity, 7 data bits.

40
50

60

100-130

97

E I GW-BASIC User’s Guide

200-2230 This section performs full-duplex I10 between the video
screen and the device connected to the RS-232 connector
as follows:

1. Read a character from the keyboard into A$. INKEY$
returns a null string if no character is waiting.

2. If a keyboard character is available, waiting, then:

If the character is the MENU key, the operator is
ready to download a file. Get filename.

If the character (A$) is not the MENU key, send it by
writing to the communications file (PRINT #1 ...).

3. If no character is waiting, check to see whether any
characters are being received.

4. At 230, see whether any characters are waiting in COM
buffer. If not, go back and check the keyboard.

5. At 240, if more than 128 characters are waiting, set
PAUSE flag to indicate that input is being suspended.
Send XOFF to host, stopping further transmission.

6. At 250-260, read and display contents of COM buffer on
screen until empty. Continue to monitor size of COM
buffer (in 240). Suspend transmission if reception falls
behind.

7. Resume host transmission by sending XON only if
suspended by previous XOFF.

8. Repeat process until the MENU key is pressed.

Gets disk filename to be downloaded to or uploaded from.

Asks whether file named is to be transmitted (uploaded) or
received (down-loaded).

300-310
400-430

98

E / Comniunications

440

500

510

520-530

540-550

600-650

1000-1060

9999

Receive routine. Sends a RETURN to the host to begin the
download. This program assumes that the last command
sent to the host was to begin such a transfer and was missing
only the terminating RETURN. If a DEC@ system is the
host, such a command might be:

COPY TTY: = MANUAL.MEM (MENU Key)

if the MENU key were pressed instead of RETURN.

When no more characters are being received, EOF(1)
returns 0, and the program jumps to the timeout routine at
Line 600.
If more than 128 characters are waiting, signals a pause and
sends XOFF to the host.
Reads all characters in COM queue (LOC(x)) and writes
them to diskette (PRINT #2 ...) until reception catches up
to transmission.
If a pause is issued, restarts host by sending XON and
clearing the pause flag. Continues the process until no
characters are received for a predetermined time.

Time-out subroutine. The FOR loop count was determined
by experimentation. If no character is received from the host
for 17-20 seconds, transmission is assumed complete. If any
character is received during this time (Line 610), then sets
n well above the FOR loop range to exit loop and return to
caller. If host transmission is complete, closes the disk file
and resumes regular activities.

Transmit routine. Until end of disk file, reads one character
into A$ with INPUT$ statement. Sends character to COM
device in 1020. Sends a A Z at end of file in 1040 in case
receiving device needs one to close its file. Lines 1050 and
1060 close disk file, print completion message, and go back
to conversation mode in Line 200.

Presently not executed. As an exercise, add some lines to
the routine 400-420 to exit the program via Line 9999. This
line closes the COM file left open and restores the function
key display.

99

Appendix F

Hexadecimal Equivalents

Table G.l lists decimal and binary equivalents to hexadecimal values.

Table G.1
Decimal and Binary Equivalents to Hexadecimal Values
Hexadecimal Decimal Binary
Value: Equivalent: Equivalent:

0 0 0000
1 1 000 1
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

101

I

F i GW-BASIC User’s Guide ~- -

Table G.2 lists decimal equivalents to hexadecimal values.

Table 6.2
Decimal Equivalents to Hexadecimal Values
Hexadecimal Decimal Hexadecimal Decimal
Value Equivalent: Value: Equivalent:

0 0 80 128
1 1
2 2
3 3
4 4 90 144
5 5
6 6
7 7
8 8 A0 160
9 9
A 10
B 11
C 12 B O 176
D 13
E 14
F 15
10 16 C O 192
11 17
12 18
13 19
14 20 DO 208
15 21
16 22
17 23
18 24 EO 224
19 25
1A 26
1B 27

1D 29 100 256
1E 30 200 512
1F 31 300 768
20 32 400 1024

500 1280

1c 28 F O 240

102

Hexadecimal Decimal Hexadecimal Decimal
Value Equivalent: Value: Equivalent:

600 1536
700 1792

30 48 800 2048
900 2304
A00 2560
BO0 28 16

40 64 coo 3072
DO0 3328
EO0 3584
FOO 3840

50 80 1000 4096
2000 8192
3000 12288
4000 16384

60 96 5000 20480
6000 24576
7000 28672
8000 32768

70 112 9000 36864
A000 40960
BOO0 45056
coo0 49152
DO00 53248
EOOO 57344
FOOO 61440

103

Appendix G

Key Scan Codes
key # -
SCAN
CODE

01
02
03
04
05
06
07
08
09
OA
OB
0 c
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

NORM CASE
(ASCII coder

ESC
1
2
3
4
5
6
7
8
9
0

- -

BS

q

e

-
w

r
t
Y
U
1

0

P
I
1
CR
CTRL
a

d
f
g
h
I
k
1

S

left SHIFT
\
2

K

1B
31
32
33
34
35
36
37
38
39
30
2D
3D
08
09
71
77
65
72
74
79
75
69
6 F
70
5B
5D
OD

61
73
64
66
67
68
6A
6B
6C
3B
27
60

5 c
7A
78
63

-

-

V 76

UPPER CASE
(ASCII code)

ESC
!
((1

$
Q

&

(

1

*

-
+
BS
c

Q
W
E
R
T
Y
U
I
0
P
t
1
CR
CTRL
A
S
D
F
G
H
J
K
L

1B
21
40
23
24
25
5E
26
2A
28
29
5F
2B
08

X00F
51
57
45
52
54
59
55
49
4F
50
7B
7D
0D

41
53
44
46
47
48
4A
4B
4 c
3A

-

22
7E

left SHIFT -
I 7C
z 5A
X 58
C 43
V 56

CTRL CASE
(ASCII code1

ESC

NULL
-

-
-
-

RS
-
-
-
-

us
DEL

DC 1
ETB

DC2
DC4
EM
NAK
HT
SI
DLE
ESC
GS
LF
CTRL
SOH
DC3
EOT
ACK
BEL
BS
LF
VT
FF

-

-

ENQ

-
-
-

left SHIFT
FS
SUB
CAN
ETX
SY N

1B

00
-

-
-
-

1E
-
-
-
-

I F

7F

11
17
05
12
14
19
15
09
OF
10
1B
1D
OA

01
13
04
06
07
08
0A
0B
0 c

-

-

-

-
-
-
-

IC
1A
18
03
16

ALT CASE
IASCII codel

- -

ALTI X078
ALTZ X079
ALT3 X07A
ALT4 X07B
ALT5 X07C
ALTG X07D
ALT7 X07E
ALT8 X07F
ALTS X080
ALT0 X081
ALT- X082
ALT= X083
- -
- -

ALTQ XO1O
ALTW X011
ALTE X012
ALTR X013
ALTT X014
ALTY X015
ALTU X016
ALTI X017
ALTO X018
ALTP X019

- -
CTRL -
ALTA X01E
ALTS X0lF
ALTD X020
ALTF X021
ALTG X022
ALTH X023
ALTJ X024
ALTK X025
ALTL X026
- -

- -

left SHIFT -

ALTZ X02C
ALTX X02D
ALTC X02E
ALTV X02F

105

G / GW-BASIC User’s Guide

key # .
SCAN
CODE

30
31
32
33
34
35
36
37
38
39
3A
3B
3 c
3D
3E
3F
40
41
42
43
44
45
46

54

-
NORM CASE
(ASCII code)

b 62
n 6E
m 6D

2 c
2E

f 2F
right SHIFT - * 2A
ALT -

SPACE 20
CAPS -
F1 X03B
F2 X03C
F3 X03D
F4 X03E
F5 X03F
F6 X040
F7 X041
F8 X042
F9 X043
F10 X044
NUM LOCK -
SCROLL
LOCK -
SYS**

4B

4 c 35
36

UPPER CASE
(ASCII code)

B 42
N 4E
M 4D
< 3 c
> 3E
? 3 F
right SHIFT -
PrScr**
ALT -

SPACE 20
CAPS -
F11 X054
F12 X055
F13 X056
F14 X057
F15 X058
F16 X059
F17 X05A
F18 X05B
F19 X05C
F20 X05D
NUM LOCK-
SCROLL
LOCK -
SYS**

CTRL CASE
(ASCII code)

STX 02
so OE
CR 0D
- -

- -

right SHIFT -
CPrScr** X072
ALT -

SPACE 20
- -

F2 1 X05E
F22 X05F
F23 X060
F24 X061
F25 X062
F26 X063
F27 X064
F28 X065
F29 X066
F30 X067
PAUSE **
BREAK **

SYS**

Numeric key pad
BASE CASE
(ASCII code)

HOME X047
t X048
P G U P X049

~ 2D
c X04B

+ 2B
END X04F
1 X050
P G D N X051
INS X052
DEL X053

ALT CASE
(ASCII code!

ALTB X030
ALTN X031
ALTM X032

- -
right SHIFT-

ALT -
SPACE X020
CAPS -
F31 X068
F32 X069
F33 X06A
F34 X06B
F35 X06C
F36 X06D
F37 X06E
F38 X06F
F39 X070
F40 X071
NUM L O C I C
SCROLL
LOCK -
SYS**

CTRL CASE
iASCII code!

CLR SCN X077

TOP OF TEXT X084
AND HOME

LEFTONE X073
WORD

RIGHT ONE X074
WORD

ERASE TO EOL X075

ERASE TO EOS X076

- -

- -

- -

- -

- -

- -
- -

ALT CASE
(ASCII code!

-

t

indicates that no ASCII code is generated.
indicates that the keys perform the special function noted.
indicates that you can generate the character by holding down
type the decimal number on the keypad.

* *
while you

106

4E
4F
50
51
52
53

+ 2B
1 31
2 32
3 33
0 30

2E

Appendix H

Characters Recognized by GW-BASIC

The GW-BASIC character set includes all characters that are legal in
GW-BASIC commands, statements, functions, and variables. The set is
made up of alphabetic, numeric, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and lower-
case letters of the alphabet.

The numeric characters in GW-BASIC are the digits 0 through 9.

The following special characters and terminal keys are recognized by
GW-BASIC:

Character Description

Blank.
Equal sign or assignment symbol.
Plus sign or string concatenation.
Minus sign.

- -
+
* Asterisk or multiplication symbol.
I Slash or division symbol.
A Caret, exponentiation symbol.
(
1

Left parenthesis.
Right parenthesis.

% Percent or integer declaration.
Number sign or double-precision declaration.
$ Dollar sign or string declaration.
I Exclamation point or single-precision declaration.

Left bracket.
Right bracket.

Double quotation marks or string delimiter.
Period, dot, or decimal point.

[

9 Comma.
1
",>

> Single quotation mark, apostrophe, or remark indicator.
Semicolon or carriage return suppressor. 9

107

H 1 GW-BASIC User’s Guide

Character Description

8L

?
<
>
\

BACKSPACE
ESC
TAB

LINEFEED
ENTER

Colon or line statement delimiter.
Ampersand or descriptor for hexadecimal and octal
number conversion.
Question mark.
Less than symbol.
Greater than symbol.
Backslash or integer division symbol.
Underscore.
Deletes last character typed.
Erases the current logical line from the screen.
Moves print position to next tab stop. Tab stops are at
every eight columns.
Moves cursor to next physical line.
Terminates input to a line and moves cursor to
beginning of the next line, or executes statement
in direct mode.

108

Appendix I

Glossary

abend An acronym for abnormal end of task. An abend is the termina-
tion of computer processing on a job or task prior to its completion be-
cause of an error condition that cannot be resolved by programmed
recovery procedures.

access The process of seeking, reading, or writing data on a storage
unit.

access methods Techniques and programs used to move data between
main memory and input/outpvt devices.

accuracy The degree of freedom from error. Accuracy is often con-
fused with precision, which refers to the degree of preciseness of a
measurement.

acronym A word formed by the initial letters of words or by initial let-
ters plus parts of several words. Acronyms are widely used in computer
technology. For example, COBOL is an acronym for Common Business-
Oriented Language.

active partition A section of the computer’s memory that houses the
operating system being used.

address A name, label, or number identifying a register, location, or
unit where information is stored.

algebraic language A language whose statements are structured to
resemble the structure of algebraic expression. Fortran is a good example
of an algebraic language.

algorithm A set of well-defined rules or procedures to be followed in
order to obtain the solution of a problem in a finite number of steps. An
algorithm can involve arithmetic, algebraic, logical, and other types of
procedures and instructions. An algorithm can be simple or complex.
However, all algorithms must produce a solution within a finite number

109

~- __ I I G W-BASIC Reference

of steps. Algorithms are fundamental when using a computer to solve
problems, because the computer must be supplied with a specific set of
instructions that yields a solution in a reasonable length of time.

alphabetic Data representation by alphabetical characters in contrast
to numerical; the letters of the alphabet.

alphanumeric A contraction of the words alphabetic and numeric; a set
of characters including letters, numerals, and special symbols.

application The system or problem to which a computer is applied.
Reference is often made to an application as being either of the computa-
tional type, in which arithmetic computations predominate, or of the data
processing type, in which data handling operations predominate.

application program A computer program designed to meet specific
user needs.

argument 1) A type of variable whose value is not a direct function of
another variable. It can represent the location of a number in a mathe-
matical operation or the number with which a function works to produce
its results. 2) A known reference factor that is required to find a
desired item (function) in a table. For example, in the square root func-
tion SQRT(X), X is the argument. The value of X determines the square
root value returned by this function.

array 1) An organized collection of data in which the argument is posi-
tioned before the function. 2) A group of items or elements in which
the position of each item or element is significant. A multiplication table
is a good example of an array.

ASCII Acronym for American Standard Code for Information Inter-
change. ASCII is a standardized, eight-bit code used by most computers
for interfacing. ASCII was developed by the American National Stan-
dards Institute (ANSI). It uses seven binary bits for information and the
eighth bit for parity purposes.

assembler A computer program that produces a machine language
program, which can then be directly executed by the computer.

110

I I Glossan,

assembly language A symbolic language that is machine-oriented
rather than problem-oriented. A program in an assembly language is
converted by an assembler to a machine language program. Symbols rep-
resenting storage locations are converted to numerical storage locations;
symbolic operation codes are converted to numeric operation codes.

asynchronous 1) Activities that do not have a regular time or clock
relationship. See synchronous. 2) A type of computer operation in
which a new instruction is initiated when the former instruction is com-
pleted. Thus, there is no regular time schedule, or clock, with respect to
instruction sequence. The current instruction must be complete before
the next is begun, regardless of the length of time the current instruction
takes to reach completion.

asynchronous communication A way of transmitting data serially from
one device to another, in which each transmitted character is preceded
by a start bit and followed by a stop bit. This is also called startistop trans-
mission.

backup 1) A second copy of data on a diskette or other medium, en-
suring recovery from loss or destruction of the original media 2) On-
site or remote equipment available to complete an operation in the event
of primary equipment failure.

BASIC Acronym for Beginner’s All-purpose Symbolic Instruction
Code. BASIC is a computer programming language developed at
Dartmouth College as an instructional tool in teaching fundamental
programming concepts. This language has since gained wide acceptance
as a time-sharing language and is considered one of the easiest program-
ming languages to learn.

batch processing A method of operating a computer so that a single
program or set of related programs must be completed before the next
type of program is begun.

baud A unit of measurement of data processing speed. The speed in
bauds is the number of signal elements per second. Because a signal ele-
ment can represent more than one bit, baud is not synonymous with bits
per second. Typical baud rates are 110,300, 1200,2400,4800, and 9600.

111

I / G W-BASIC Reference

binary 1) A characteristic or property involving a choice or condition
in which there are two possibilities. 2) A numbering system that uses 2
as its base instead of 10 (as in the decimal system). The binary system uses
only two digits, 0 and 1, in its written form. 3) A device whose design
uses only two possible states or levels to perform its functions. A com-
puter executes programs in binary form.

binary digit A quantity that is expressed in the binary digits of 0 and 1.

bit A contraction of binary digit. A bit can either be 0 or 1, and is the
smallest unit of information recognizable by a computer.

block An amount of storage space or data, of arbitrary length, usually
contiguous, and often composed of several similar records, all of which
are handled as a unit.

Boolean logic A field of mathematical analysis in which comparisons
are made. A programmed instruction can cause a comparison of two
fields of data and modify one of those fields or another field as a result of
comparison. This system was formulated by British mathematician
George Boole (1815-1864). Some Boolean operators are OR, AND,
NOT, XOR, EQV, and IMP.

boot A machine procedure that allows a system to begin operations at
the desired level by means of its own initiation. The first few instructions
are loaded into a computer from an input device. These instructions
allow the rest of the system to be loaded. The word boot is abbreviated
from the word bootstrap.

bps Abbreviation for bits per second.

buffer A temporary storage area from which data is transferred to or
from various devices.

built-in clock A real-time clock that lets your programs use the time of
day and date. Built into MS-DOS, it lets you set the timing of a program.
It can be used to keep a personal calendar, and it automatically measures
elapsed time.

byte An element of data composed of eight data bits plus a parity bit
and representing either one alphabetic or special character, two decimal
digits, or eight binary bits. Byte is also used to refer to a sequence of eight
binary digits handled as a unit. It is usually encoded in the ASCII format.

112

I I Glossary
~~

calculation A series of numbers and mathematical signs that, when
entered into a computer, is executed according to a series of instructions.

central processor (CPU) The heart of the computer system, where data
is manipulated and calculations are performed. The CPU contains a con-
trol unit to interpret and execute the program and an arithmetic-logic
unit to perform computations and six logical processes. It also routes in-
formation, controls input and output, and temporarily stores data.

chaining The use of a pointer in a record to indicate the address of
another record logically related to the first.

character Any single letter of the alphabet, numeral, punctuation mark,
or other symbol that a computer can read, write, and store. Character is
synonymous with the term byte.

COBOL Acronym for Common Business-Oriented Language, a com-
puter language suitable for writing complicated business applications
programs. It was developed by CODASYL, a committee representing
the U. S. Department of Defense, certain computer manufacturers, and
major users of data processing equipment. COBOL is designed to ex-
press data manipulations and processing problems in English narrative
form, in a precise and standard manner.

code 1) To write instructions for a computer. 2) To classify data ac-
cording to arbitrary tables. 3) To use a machine language. 4) To
program.

command A pulse, signal, word, or series of letters that tells a computer
to start, stop, or continue an operation in an instruction. Cotnntand is
often used incorrectly as a synonym for iiutructioit.

compatible A description of data, programs, or equipment that can be
used between different kinds of computers or equipment.

compiler A computer program that translates a program written in a
problem-oriented language into a program of instructions similar to, or
in, the language of the computer.

computer network A geographically dispersed configuration of com-
puter equipment connected by communication lines and capable of load
sharing, distributive processing, and automatic communication between
the computers within the network.

113

I I G W-BASIC Reference

concatenate To join together data sets, such as files, in a series to form
one data set, such as one new file. The term concatenate literally means
to link together. A concatenated data set is a collection of logically con-
nected data sets.

configuration In hardware, a group of interrelated devices that con-
stitute a system. In software, the total of the software modules and their
interrelationships.

constant A never-changing value or data item.

coprocessor A microprocessor device connected to a central
microprocessor that performs specialized computations (such as float-
ing-point arithmetic) much more efficiently than the CPU alone.

cursor A blinking line or box on a computer screen that indicates the
next location for data entry.

data A general term used to signify all the basic information elements
that can be produced or processed by a computer. See information.

data element The smallest named physical data unit.

data file A collection of related data records organized in a specific
manner. Data files contain computer records that hold information, as
opposed to holding data handling information or a program.

debug The process of checking the logic of a computer program to iso-
late and remove mistakes from the program or other software.

default An action or value that the computer automatically assumes un-
less a different instruction or value is given.

delimit To establish parameters; to set a minimum and a maximum.

delimiter A character that marks the beginning or end of a unit of data
on a storage medium. Commas, semicolons, periods, and spaces are used
as delimiters to separate and organize items of data.

detail file A data file composed of records having similar characteris-
tics but containing data which is relatively changeable by nature, such as
employee weekly payroll data. See also master file.

device A piece of hardware that can perform a specific function. A
printer is an example of a device.

114

I I Glossary --

diagnostic programs Special programs used to align equipment or iso-
late equipment malfunctions.

directory A table that gives the name, location, size, and the creation or
last revision date for each file on the storage media.

diskette A flat, flexible platter coated with magnetic material, enclosed
in a protective envelope, and used for storage of software and data.

disk operating system A collection of procedures and techniques that
enable the computer to operate using a disk drive system for data entry
and storage. Usually abbreviated as DOS.

DOS Acronym for disk operating system.

double-density A type of diskette that has twice the storage capacity of
standard single-density diskettes.

double-precision The use of two computer words to represent each
number. This technique allows the use of twice as many digits as are nor-
mally available and is used when extra precision is needed in calculations.

double-sided A term that refers to a diskette that can contain data on
both its surfaces.

drive A device that holds and manipulates magnetic media so that the
CPU can read data from or write data to the media.

end-of-file mark (EOF) A symbol or machine equivalent that indicates
that the last record of a file has been read.

erase To remove or replace magnetized spots from a storage medium.

error message An audible or visual indication of hardware or software
malfunction or of an illegal data-entry attempt.

execute To carry out an instruction or perform a routine.

exponent A symbol written above a factor and on the right, telling the
number of times the factor is repeated. In the example of A2, A is the
factor and 2 is the exponent. A2 means A times A (A x A).

extension A set of 1-3 characters that follows a filename. The extension
further defines or clarifies the filename. It is separated from the filename
by a period (.).

I I GW-BASIC Reference

field An area of a record that is allocated for a specific category of data.

file A collection of related data or programs that is treated as a unit by
the computer.

file protection The devices or procedures that prevent unintentional
erasure of data on a storage device such as a diskette.

file structure A conceptual representation of the way data values,
records, and files are related to each other. The structure usually implies
how the data is stored and how it must be processed.

filename The unique name, usually assigned by a user, that identifies
one file for all subsequent operations that use that file.

fixed disk A hard disk enclosed in a permanently sealed housing that
protects it from environmental interference. Used for data storage.

floating-point arithmetic A method of calculation in which the com-
puter or program automatically records and accounts for the location of
the radix point. The programmer need not consider the radix location.

floating-point routine A set of program instructions that permits a
floating-point mathematics operation in a computer lacking the feature
of automatically accounting for the radix point.

format A predetermined arrangement of data that structures the
storage of information on an external storage device.

function A computer action, as defined by a specific instruction. Some
GW-BASIC functions are COS, EOF, INSTR, LEFT$, and TAN.

function keys Specific keys on the keyboard that, when pressed, in-
struct the computer to perform a particular operation. The function of
the keys is determined by the applications program being used.

GIGO Acronym for Garbage In, Garbage Out. An informal term that
indicates sloppy data processing. Normally used to make the point that if
the input data is bad (garbage in) then the output data will also be bad
(garbage out).

global search Used in reference to a variable (character or command),
it causes the computer to locate all occurrences of that variable.

116

graphics A hardwarelsoftware ability to display objects in pictures,
rather than words, usually on a graphic (CRT) display terminal with line-
drawing capability and permitting interaction, such as the use of a light
pen.

hard copy A printed copy of computer output in a readable form, such
as reports, checks, or plotted graphs.

hardware The physical equipment that makes up a system.

hexadecimal A number system with a base, or radix, of 16. The symbols
used in this system are the decimal digits 0-9 and six additional digits
generally represented as A, B, C, D, E, and F.

hidden files Files that cannot be seen during normal directory searches.

hierarchical directories See tree-structured directories.

housekeeping functions Routine operations that must be performed
before the actual processing begins or after it is complete.

information Facts and knowledge derived from data. The computer
operates on and generates data. The meaning derived from the data is in-
formation. That is, information results from data; the two words are not
synonymous, although they are often used interchangeably.

interpreter A program that reads, translates, and executes a user’s
program, such as one written in the BASIC language, one line at a time.
A compiler, on the other hand, reads and translates the entire user’s
program before executing it.

input 1) The process or device involved in sending data to a computer.
2) Actual data being entered into a computer.

input/output A general term for devices that communicate with a com-
puter. Input/output is usually abbreviated as J/O.

instruction A program step that tells the computer what to do next. Zit-

structiort is often used incorrectly as a synonym for contntaitd.

integer A complete entity, having no fractional part. The whole or
natural number. For example, 65 is an integer; 65.1 is not.

integrated circuit A complete electronic circuit contained in a small
semiconductor component.

117

_ _ _____^

I l G W-BASIC Reference

interface An information interchange path that allows parts of a com-
puter, computers and external equipment (such as printers, monitors, or
modems) or two or more computers to communicate or interact.

I/O Acronym for iriyutloutput.

job A collection of tasks viewed by the computer as a unit.

K The symbol signifying the quantity 210, which is equal to 1024. K is
sometimes confused with the symbol k, (kilo) which is equal to 1000.

logarithm A logarithm of a given number is the value of the exponent
indicating the power required to raise a specified constant, known as the
base, to produce that given number. That is, if B is the base, N is the given
number, and L is the logarithm, then BL = N. Since 103 = 1000, the
logarithm to the base 10 of 1000 is 3.

loop A series of computer instructions that are executed repeatedly
until a desired result is obtained or a predetermined condition is met.
The ability to loop and reuse instructions eliminates repetitious instruc-
tions and is one of the most important attributes of stored programs.

M The symbol signifymg the quantity 1,000,000 (106). When used to
denote storage, it more precisely refers to 1,048,576 (220).

mantissa The fractional or decimal part of a logarithm of a number.
For example, the logarithm of 163 is 2.212. The mantissa is 0.212, and the
characteristic is 2.0. In floating-point numbers, the mantissa is the num-
ber part. For example, the number 24 can be written as 24,2 where 24 is
the mantissa and 2 is the exponent. The floating-point number is read as
.24 X 102, or 24.

master file A data file composed of records having similar characteris-
tics that rarely change. A good example of a master file would be an
employee name and address file that also contains social security num-
bers and hiring dates.

media The plural of medium.

medium The physical material on which data is recorded and stored.
Magnetic tape, punched cards, and diskettes are examples of media.

memory The high-speed work area in the computer where data can be
held, copied, and retrieved.

I J Glossaw

menu A list of choices from which an operator can select a task or
operation to be performed by the computer.

microprocessor A semiconductor central processing unit (CPU) in a
computer.

modem Acronym for modulator demodulator. A modem converts data
from a computer to analog signals that can be transmitted through
telephone lines, or converts the signals from telephone lines into a form
the computer can use.

MS-DOS Acronym for Microsoft Disk Operating System.

nested programs or subroutines A program or subroutine that is incor-
porated into a larger routine to permit ready execution or access of each
level of the routine. For example, nesting loops involves incorporating
one loop of instructions into another loop.

null Empty or having no members. This is in contrast to a blank or zero,
which indicates the presence of no information. For example, in the num-
ber 540, zero contains needed information.

numeric A reference to numerals as opposed to letters or other sym-
bols.

octal number system A representation of values or quantities with octal
numbers. The octal number system uses eight digits: 0,1,2,3,4,5,6, and
7, with each position in an octal numeral representing a power of 8. The
octal system is used in computing as a simple means of expressing binary
quantities.

operand A quantity or data item involved in an operation. An operand
is usually designated by the address portion of an instruction, but it can
also be a result, a parameter, or an indication of the name or location of
the next instruction to be executed.

operating system An organized group of computer instructions that
manages the overall operation of the computer.

operator A symbol indicating an operation and itself the subject of the
operation. It indicates the process that is being performed. For example,
+ is addition, - is subtraction, X is multiplication, and 1 is division.

-_
119

I I G W-BASIC Reference

option. An add-on device that expands a system’s capabilities.

output Computer results, or data that has been processed.

parallel output The method by which all bits of a binary word are trans-
mitted simultaneously.

parameter A variable that is given a value for a specific program or run.
A definable characteristic of an item, device, or system.

parity An extra-bit of code that is used to detect data errors in memory
by making the sum of the active bit in a data word either an odd or an
even number.

partition An area on a fmed disk set aside for a specific purpose, such
as a location for an operating system.

peripheral An external inputloutput or storage device.

pixel Acronym for picture element. A pixel is a single dot on a monitor
that can be addressed by a single bit.

port The entry channel to and from the central computer for connec-
tion of a communications line or other peripheral device.

power The functional area of a system that transforms an external
power source into internal DC supply voltage.

program A series of instructions or statements in a form acceptable to
a computer, designed to cause the computer to execute a series of opera-
tions. Computer programs include software such as operating systems,
assemblers, compilers, interpreters, data management systems, utility
programs, sort-merge programs, and maintenanceldiagnostic programs,
as well as application programs such as payroll, inventory control, and
engineering analysis programs.

prompt A character or series of characters that appears on the screen
to request input from the user.

RAM Acronym for random-access memory.

120

I I Glossan,

radian The natural unit of measure of the angle between two intersect-
ing half-lines on the angles from one half-line to another intersecting
half-line. It is the angle subtended by an arc of a circle equal in length to
the radius of the circle. As the circumference of a circle is equal to 2 P

times its radius, the number of radians in an angle of 360" or in a complete
turn is 2 P.

radix A number that is arbitrarily made the fundamental number of a
system of numbers; a base, Thus, 10 is the radix, or base, of the common
system of logarithms, and also of the decimal system of enumeration.

random-access memory The system's high-speed work area that
provides access to memory storage locations by using a system of vertical
and horizontal coordinates. The computer can write information into or
read information from the random-access memory. Random-access
memory is often called RAM.

raster unit On a graphic display screen, a raster itiiit is the horizontal or
vertical distance between two adjacent addressable points on the screen.

read-only memory A type of memory that contains permanent data or
instructions. The computer can read from but not write to the read-only
memory. Read-only memory is often called ROM.

real numbers An ordinary number, either rational or irrational; a num-
ber in which there is no imaginary part; a number generated from the
single unit, 1; any point in a continuum of natural numbers filled in with
all rationals and all irrationals and extended indefinitely, both positive
and negative.

real time 1) The actual time required to solve a problem. 2) The
process of solving a problem during the actual time that a related physi-
cal process takes place so that results can be used to guide the physical
process.

remote A term used to refer to devices that are located at sites away
from the central computer.

reverse video A display of characters on a background, opposite of the
usual display.

ROM Acronym for read-only inemoiy.

I I GW-BASIC Reference

Rs-232 A standard communications interface between a modem and
terminal devices that complies with EIA Standard RS-232.

serial output Sending only one bit at a time to and from interconnected
devices.

single-density The standard recording density of a diskette. Single-den-
sity diskettes can store approximately 3400 bits per inch (bpi).

single-precision value The number of words or storage positions used
to denote a number in a computer. Single-precision arithmetic is the use
of one word per number, double-precision arithmetic is the use of two
words per number, and so on. For variable-word-length computers,
precision is the number of digits used to denote a number. The higher the
precision, the greater the number of decimal places that can be carried.

single-sided A term used to describe a diskette that contains data on
one side only.

software A string of instructions that, when executed, direct the com-
puter to perform certain functions.

stack architecture An architecture wherein any portion of the external
memory can be used as a last-in, first-out stack to storehetrieve the con-
tents of the accumulator, the flags, or any of the data registers. Many
units contain a 16-bit stack pointer to control the addressing of this exter-
nal stack. One of the major advantages of the stack is that multiple-level
interrupts can be handled easily, since complete system status can be
saved when an interrupt occurs and then be restored after the interrupt.
Another major advantage is that almost unlimited subroutine nesting is
possible.

statement A high-level language instruction to the computer to per-
form some sequence of operations.

synchronous A type of computer operation in which the execution of
each instruction or each event is controlled by a clock signal: evenly
spaced pulses that enable the logic gates for the execution of each logic
step. A synchronous operation can cause time delays by causing waiting
for clock signals, although all other signals at a particular logic gate were
available. See asynchronous.

122

I I Glossary

switch. An instruction, added to a command, that designates a course of
action, other than default, for the command process to follow.

syntax Rules of statement structure in a programming language.

system A collection of hardware, software, and firmware that is inter-
connected to operate as a unit.

task A machine run; a program in execution.

toggle Alternation of function between two stable states.

track A specific area on a moving-storage medium, such as a diskette,
disk, or tape cartridge, that can be accessed by the drive heads.

tree-structured directory A file organization structure, consisting of
directories and subdirectories that, when diagrammed, resembles a tree.

truncation To end a computation according to a specified rule; for ex-
ample, to drop numbers at the end of a line instead of rounding them off,
or to drop characters at the end of a line when a file is copied.

upgrade To expand a system by installing options or using revised
software.

utility function Computer programs, dedicated to one particular task,
that help you use your computer. For example, FDISK is a utility function
for setting up partitions on the fmed disk.

variable A quantity that can assume any of a set of values as a result of
processing data.

volume label The name for the contents of a diskette or a partition on a
fxed disk.

word The largest unit of bits that the computer can handle in a single
operation.

write-protect notch A cut-out opening in the sealed envelope of a dis-
kette that, when covered, prevents writing or adding text to the diskette,
but allows information to be read from the diskette.

123

Tandy

GW-BASIC
User’s Reference

Contents

Introduction . 1
ABS Function . 2
ASC Function . 3
ATN Function . 4
AUTO Command . 5
BEEP Statement . 7
BLOAD Command . 8
BSAVE Command . 10
CALL Statement . 11
CDBL Function . 15
CHAIN Statement . 16
CHDIR Command . 18
CHR$ Function : . 19
CINT Function . 20
CIRCLE Statement . 21
CLEAR Command . 23
CLOSE Statement . 25
CLS Statement . 26
COLOR Statement . 28
COM(n) Statement . 31
COMMON Statement . 32
CONT Command . 33
COS Function . 34
CSNG Function . 35
CSRLIN Variable . 36
CVI, CVS, CVD Functions . 37
DATA Statements . 39
DATE$ Statement and Variable . 41
DEF FN Statement . 43
DEFINT/SNG/DBL/STR Statements 45
DEF SEG Statement . 47
DEF USR Statement . 49
DELETE Command . 51

1

GW-BASIC User’s Reference

DIM Statement . 52
DRAW Statement . 53
EDIT Command . 57
END Statement . 58
ENVIRON Statement . 59
ENVIRON$ Function . 61
EOF Function . 64
ERASE Statement . 65
ERDEV and ERDEV$ Variables . 66
ERR and ERL Variables . 67
ERROR Statement . 68
EXP Function . 70
EXTERR Function . 71
FIELD Statement . 72
FILES Command . 73
FIX Function . 75
FOR and NEXT Statements . 76
FREE Function . 79
GET Statement . 80
GET Statement (Graphics) . 81
GOSUB ... RETURN Statement . 83
GOT0 Statement . 85
HEX$ Function . 86
IF Statement . 87
INKEY$ Variable . 89
INP Function . 91
INPUT Statement . 92
INPUT# Statement . 95
INPUT$ Function . 96
INSTR Function . 98
INT Function . 100
IOCTL Statement . 101
IOCTL$ Function . 102
KEY Statement . 103
KEY(number) Statement . 106
KILL Command . 107
LEFT$ Function . 108
LEN Function . 109

. .

11

Contents

LET Statement . 110
LINE Statement . 111
LINE INPUT Statement . 115
LINE INPUT# Statement . 117
LIST Command . 119
LLIST Command . 121
LOAD Command . 122
LOC Function . 123
LOCATE Statement . 124
LOC Statement . 126
LOF Function . 128
LOG Function . 129
LPOS Function . 130
LPRINT and LPRINT USING Statements 131
LSET Statement . 132
MERGE Command . 133
MID$ Function . 134
MID$ Statement . 135
MKDIR Command . 136
MU$, MKS$. MKD$ Functions . 137
NAME Command . 138
NEW Command . 139
OCT$ Function . 140
ON Statement . 141
ON ERROR GOT0 Statement . 147
ON/GOSUB and ON/GOTO Statements 149
OPEN STATEMENT . 150
OPEN "COM Statement . 156
OPTION BASE Statement . 159
OUT Statement . 160
PAINT Statement . 161
PALETTE. PALETTE USING Statements 165
PCOPY Command . 169
PEEK Command . 170
FEN Function . 171
PEN Statement . 173
PLAY Statement . 174
PLAY Function . 177

...
111

GW-BASIC User’s Reference ..

PMAP Function (Graphics) . 178
POINT Function . 179
POKE Statement . 181

PSET Statement . 183
PRINT Statement . 185
PRINT USING Statement . 187
PRINT# and PRINT# USING Statements 192
PRESET Statement . 195
PUT Statement (Files) . 196
PUT Statement (Graphics) . 197
RANDOMIZE Statement . 200

REM Statement . 204
RENUM Command . 206
RESET Command . 208
RESTORE Statement . 209
RESUME Statement . 210
RETURN Statement . 211
RIGHT$ Function . 212
RMDIR Command . 213

RSET Statement . 215
RUN Command . 216
SAVE Command . 217
SCREEN Function . 218
SCREEN Statement . 219
SGN Function . 226
SHELL Statement . 227
SIN Function . 229
SOUND Statement . 230
SPACE$ Function . 233
SPC Function . 234
SQR Function . 235
STICK Function . 236
STOP Statement . 237
STR$ Function . 238
STRING Statement and Function 239

POS Function . 182

READ Statement . 202

RND Function . 214

iv

Contents

STRIG(number) Statement . 241
STRING$ Function . 242
SWAP Statement . 243
SYSTEM Command . 244
TAB Function . 245
TAN Function . 246
TIME$ Statement and Variable . 247
TIMER Function . 249
TRONRROFF Commands . 250
UNLOCK Statement . 251
USR Function . 254
VAL Function . 256
VARPTR Function . 257
VARPTR$ Function . 260
VIEW Statement . 261
VIEW PRINT Statement . 263
WAIT Statement . 264
WHILE-WEND Statement . 265
WIDTH Statement . 267
WINDOW Statement . 269
WRITE Statement . 272
WRITE# Statement . 273

. -- __i___l_

V

Tandy GW-BASIC User’s Reference

Introduction
This manual provides an alphabetical reference to all of GW-BASIC‘s
keywords (statements, functions, commands, and variables).

The name and type of each instruction appears at the top of the page, fol-
lowed by these subheadings:

Purpose: A statement telling the purpose of the instruction.

Syntax: The complete notation of the instruction, using op-
tion names to represent actual data and values you
might type. These option names appear in italics
and are explained in the “Cornrnent~:~~ section.

Additional information about the instruction, and
how GW-BASIC responds to it.

An illustration of the instruction as it might appear
in a program. In this case, example lines use real
values and data rather than option names.

For more information on using the references in this manual, see the
Taitdy GW-BASIC User’s Guide.

Comments:

Examples:

GW-BASIC User’s Reference

ABS Function

Purpose:
To return the absolute value of the expression number.

Syntax:

Comments:
number must be a numeric expression.

Examples:

ABS(number)

PRINT ABS(7*(-5))

This program line returns 35 as the result of the action.

ASC Function

Purpose:
To return a numeric value that is the ASCII code for the first character of
the specified string.

Syntax:
ASC(string)

Comments:
If string is null, GW-BASIC returns an Illegal Function Call error.

If string begins with an uppercase letter, GW-BASIC returns a value in
the range 65-90.

If stringbegins with a lowercase letter, GW-BASIC returns a value in the
range 97-122.

If string begins with 0-9, GW-BASIC returns a value in the range 48-57.

See the CHR$ function for ASCII-to-string conversion.

See Appendix B in the Taitdy GW-BASIC User's Guide for ASCII codes.

Examples:

10 STRING = "TEN"
20 PRINT ASC(STRING)

These program lines return 84. The value 84 is the ASCII code for the let-
ter T.

3

GW-BASIC User’s Refererice

ATN Function

Purpose:
To return the arctangent of rturttber, when riuritber is expressed in radians.

Syntax:

Comments:

ATN(number)

The result is in the range - ~ / 2 to d 2 .

The expression riuritber can be any numeric type. GW-BASIC performs
the evaluation of ATN in single precision unless you execute GW-BASIC
using the /d switch.

To convert from degrees to radians, multiply by d180.

Examples:

10 INPUT NUMBER
20 PRINT ATN(NUMBER)

If you run the program and enter 3 as NUMBER, this example prints the
arctangent of 3 radians (1.249046).

AUTO Comntand

Purpose:
To generate and increment line numbers automatically each time you
press JENTERI .
Syntax:

AUTO [line nzmzber] [,[increnzertt]]
AUTO. [,[incremwnt]]

Comments:
AUTO is useful for program entry because it makes typing line numbers
unnecessary.

AUTO begins numbering at line number and increments each sub-
sequent line number by the user-specified increment. The default for both
values is 10.

You can use the period (.) as a substitute for line itziiitber to indicate the
current line.

If you type a comma after line itumber but do not specify an irtcrement,
GW-BASIC uses the last increment specified in an AUTO command.

If AUTO generates a line number that is already in use, an asterisk ap-
pears after the number to warn that any input replaces the existing line.
However, pressing FETTW immediately after the asterisk saves the line
and generates the next line number.
Enter ET~(~B~K; or (]j(cl to terminate AUTO and cause
GW-BASIC to return to command level.

Note: GW-BASIC does not save the line you are editing when you
press -1 (BREAK] or r c w E1 .

5

GW-BASIC User’s Reference

Examples:

AUTO 100,50

Generates line numbers 100,150,200, and so on.

AUTO

Generates line numbers 10,20,30,40, and so on.

6

BEEP Statement

BEEP S t a t ~ ~ e ~ t

Purpose:
To sound the speaker at 800 Hz (800 cycles per second) for one-quarter
of a second.

Syntax:

Comments:
BEEP, pm?q[G7, and PRINT CHR$(7) have the same effect.

Examples:

BEEP

2340 IF COUNT>20 THEN BEEP

If count is out of range (greater than 20), the computer beeps.

7

GW-BASIC User’s Reference

Purpose:
To load an image file anywhere in user memory.

Syntax:
BLOADpatltnanie [,offset 3

Comments:
patlinante is a valid string expression containing the device and filename.

offset is a valid numeric expression in the range 0-65535. This is the offset
into the segment, declared by the last DEF SEG statement, where load-
ing is to start.

If you omit offset, the offset specified at BSAVE is assumed; that is, the
file is loaded into the same location it was saved from.

Note: BLOAD does not perform an address range check. There-
fore, it is possible to accidentally BLOAD anywhere in memory.
You must not BLOAD over the GW-BASIC stack space, a GW-
BASIC program, or the GW-BASIC variable area.

While BLOAD and BSAVE are useful for loading and saving machine
language programs, they are not restricted to them. The DEF SEG state-
ment lets you specify any segment as the source or target for BLOAD and
BSAVE. For example, this allows the video screen buffer to be read from
or written to the diskette. BLOAD and BSAVE are useful in saving and
displaying graphic images.

8

BLOAD Coritritaitd

Examples:

10 DEF SEG = &HB800
20 BLOAD"PICTURE",O

The DEF SEG statement in Line 10 points the segment at the screen
buffer.

The DEF SEG statement in Line 10 and the offset of 0 in Line 20 guaran-
tee that the correct address is used.

The BLOAD command in Line 20 loads the file named Picture into the
screen buffer.

Note: The BSAVE example in the next section illustrates how the
file named Picture is saved.

9

GW-BASIC User's Reference

BSAVE Command

Purpose:
To save portions of user memory on the specified device.

Syntax:

Comments:
pathnanze is a valid string expression containing the filename.

offset is a valid numeric expression in the range 0-65535. This is the offset
into the segment, declared by the last DEF SEG, where saving is to start.

length is a valid numeric expression in the range 0-65535, specifying the
length of the memory image to be saved.

If pathnante is less than one character, GW-BASIC issues a Bad File
Number error and terminates the load operation.

Execute a DEF SEG statement before the BSAVE. The last known DEF
SEG address is always used for the save.

You must use the DEF SEG statement to set up the segment address to
the start of the screen buffer. An offset of 0 and a length of 16384 tell
BSAVE to save the entire 16K screen buffer.

BSAVE pathnante , offset, lengtli

Examples:

10 DEF SEG = &HB800
20 BSAVE"PICTURE",O,16384

In Line 10, the DEF SEG statement points the segment at the screen
buffer.

The BSAVE command in Line 20 saves the screen buffer in the file
named Picture.

10

GlLL Statement

CALL Statement

Purpose:
To call an assembly (or machine) language subroutine.

Syntax:

Comments:
numvar is the starting point in memory of the subroutine being called as
an offset into the current segment.

variables are the variables or constants, separated by commas and
enclosed in parentheses, that CALL is to pass to the routine.

Use CALL to interface with assembly language programs unless YOU

must retain compatibility with previous version of GW-BASIC. Although
you can use USR, CALL is compatible with more languages, produces a
more readable source code, and can pass multiple arguments.

When GW-BASIC encounters the CALL statement it:
0 Pushes each parameter location in the variable onto the stack. The

parameter location is a 2-byte offset into GW-BASIC's data segment.
0 It pushes the return address code segment (CS) and the offset onto

the stack.
0 It uses the segment address given in the last DEF SEG statement and

the offset given in the variable name to transfer control to the user
routine.

The user routine now has control. You can reference parameters by
moving the stack pointer (SP) to the base pointer (BP) and adding a posi-
tive offset to BP.

The called routine might destroy the contents of any registers except the
segment registers.

The called program must know how many parameters were passed.
Parameters are referenced by adding a positive offset to BP, assuming
the called routine moved the current stack pointer into BP (that is, MOV
BP,SP).

CALL numvur [(variables)]

11

GW-BASIC User's Refererice

The called program must know the variable type for numeric parameters
passed.

The called routine must do a RET ~iziitther, where riurtther is the number
of parameters in the variable times 2. This is necessary in order to adjust
the stack to the point at the start of the calling sequcnce.

The system returns values to GW-BASIC by including in the argument
list the name of the variable that is to receive the result.

If the argument is a string, the parameter offset points to three bytes
called the string descriptor. Byte 0 of the string descriptor contains the
length of the string (0 to 255). Bytes 1 and 2, respectikely, are the lower
and upper eight bits of the string starting address in the string space.

If the argument is a string literal in the program, the string descriptor
points to program text. Be careful not to alter or destroy a program this
way. To avoid unpredictable results, add + "" to the string literal in the
program, as in

20 A$ = "BASIC" + ""
This forces the string litcral to be copied into the string space. Now GW-
BASIC can modified modify the string without affecting the program.

Note: You can alter strings with user routines but you must not
change their length. GW-BASIC cannot correctly erase strings if
their lengths are modified by external routine\.

For more information on thc CALL statement and USR function, see
Appendix C in the Tandv GWBASIC User's Giiide.

12

CALL Stateiiteitt

Examples:

100 DEF SEG = &H2000
110 ARK=O
120 CALL ARK(A,B$,C)

In this example, Line 100 sets the segment to hex 2000. The program sets
ARK to zero so that the call to ARK executes thc subroutine at location
& H2000.

The following sequence of 8086 Assembly Language demonstrates access
of the parameters passed and stored in variable C:

PUSH BP
MOV BP,SP
MOV BX,8[BP]
MOV CL,[BX]
MOV DX,l[BX]

; Gets current stack position in BP
; Gets address of B$ descriptor.
; Gets length of B$ in CL.
; Gets address of B$ text in DX.

MOV SI,lO[BP]
MOV DI,6[BP]
MOVSW
RET 6

; Gets address of A in SI.
; Gets pointer to C in DI.
; Stores variable A in C.
; Restores stack and returns.

MOVSW copies only two bytes. This is sufficient if Variables A and C are
integer. The program must copy four bytes if they arc single precision o r
eight bytes if they are double precision.

100 DEF EG = &H2000
110 CC=&H7FA
1 20 CALL ACC(A, B$, C)

GW-BASIC User’s Reference

In this previous example, Line 100 sets the segment to hex 2000. The ex-
ample adds the value of variable ACC into the address as the low word
after the DEF SEG value is shifted four bits to the left. (This is a function
of the microprocessor, not of GW-BASIC.) The program sets ACC to
&H7FA, so that the call to ACC executes the subroutine at the location
hex 2000:7FA (absolute address hex 207FA).

14

CDBL Function

Purpose:
To convert number to a double-precision number.

Syntax:

Comments:

CDBL(num ber)

number must be a numeric expression.

Examples:

10 A=454.67
20 PRINT A;CDBL(A)

These program lines returns two values, 454.67 and 454.6700134277344.
The value 454.6700134277344 is the double-precision version of the
single-precision value (454.67) stored in the variable named A.

The last 11 numbers in the double-precision number have no meaning in
this example, since A was previously defined to only two-decimal place
accuracy.

Note: See the CINT and CSNG functions for converting numbers
to integer and single precision, respectively.

15

GW-BASIC User's Reference

c te

Purpose:
To transfer control to the specified program and pass chain variables to
it from the current program.

Syntax:

Comments:

CHAIN [MERGElpatltnante [,[line](,[ALL][,DELETE range 111

MERGE overlays the current program with the called program.

Note: The called program must be an ASCII file (previously saved
with the a option) if it is to be merged. See the MERGE command.

pathname is the name of the program called to be chained to. GW-
BASIC assumes the .bas extension unless you specify another.

line is a line number or an expression that corresponds to a line number
in the called program. It is the starting point for execution of the called
program. For example, the following begins execution of PROGl at Line
1ooo:

10 CHAIN "PROG1 ", 1000

If you omit line, execution begins at the first line.

line is not affected by a RENUM command. However, the line numbers
in the specified range are affected by a RENUM command.

ALL specifies that every variable in the current program is chained to the
called program. For example:

20 CHAIN "PROG1",1000,ALL

If you omit ALL, the current program must contain a COMMON state-
ment to list the variables that are passed.

CHAIN executes a RESTORE before it runs the program that it is to be
chained to. The READ statement then gets the first item in the DATA
statement. Reading does not resume where it left off in the program that
is being chained.

16

CHAIN Statement

After GW-BASIC executes an overlay and no longer needs it, use the
DELETE command to remove the overlay in order to bring in a new
overlay.

The CHAIN statement with the MERGE command leaves the files open
and preserves the current option base setting.

If you omit the MERGE command, the OPTION BASE setting is
preserved and CHAIN preserves no variable types or user-defined func-
tions for use by the chained program. That is, any DEFINT, DEFSNG,
DEFDBL, DEFSTR, or DEF FN statement containing shared variables
must be restated in the chained program.

When using the MERGE command, place user-defined functions before
any CHAIN MERGE statements in the program. Otherwise, they are un-
defined after the merge is complete.

17

G W-BASIC User's Reference

CH Command

Purpose:
To change from one working directory to another.

Syntax:

Comments:
pathilaJne is a string expression of up to 63 characters.

To make Sales the working directory on Drive A and Inventory the work-
ing directory on Drive B (assume A is the default drive), type the follow-
ing commands:

CHDIR pathname

CHDl R "SALES"
CHDl R "B: I NVENTORY'

18

CHR$ Function

CHR$ Function

Purpose:
To convert an ASCII code to its equivalent character.

Syntax:

Comments:
number is a value in the range 0-255.

Normally, you use CHR$ to send a special character to the terminal or
printer. For example, you could send CHR$(7) to sound a beep through
the speaker as a preface to an error message, or you could send a form
feed, CHR$(12), to the printer.

See the ASC function for ASCII-to-numeric conversion.

ASCII codes are listed in Appendix B of the Tan@ GW-BASIC User's
Guide.

Examples:

Prints the ASCII character code 66, which is the uppercase letter B.

CHR$(number)

PRINT CHR$(66);

PRINT CHR$(13);

Prints a carriage return.

19

GW-BASIC User’s Reference

CINT Function

Purpose:
To round numbers with fractional portions to the next whole number or
integer.

Syntax:

Comments:
CINT(num ber)

If number is not in the range -32768-32767, an Overflow error occurs.

See the FIX and INT functions, both of which return integers.

Examples:

PRINT CINT(45.67)

Returns 46. CINT rounds 45.67 up to 46.

Note: See the CDBL and CSNG functions for converting numbers
to the double-precision and single-precision data types, respective-
ly.

CIRCLE Statement

CIRCLE Statement

Purpose:
To draw a circles, ellipses, and angles on the screen in the graphics mode.

Syntax:

Comments:
xcenter andycenter are the x and y coordinates of the center of the ellipse,
and radius is the radius (measured along the major axis) of the ellipse.
The quantities xcenter and ycenter can be expressions. The center at-
tributes can use either absolute or relative coordinates.

color specifies the ellipse color. Its value depends on the screen mode. In
the medium-resolution mode, the COLOR statement defines which
colors are selected. The ellipse is the same color as the background when
the program selects 0. The default for the medium-resolution mode is 3.
See the COLOR statement to learn to select foreground and background
colors in graphics mode.

In the high-resolution mode, 0 indicates black and 1 indicates white. The
default for the high resolution mode is 1.

The sturt and end angle parameters are radian arguments between - 2 * ~
and 2 * ~ which specify where the drawing of the ellipse is to begin and
end. If start or end is negative, the ellipse is connected to the center point
with a line, and the angles are treated as if they are positive. (Note that
this is different from adding 2 * ~ .)

aspect describes the ratio of the x radius to the y radius (x : y). The default
aspect ratio is 5:6 in medium resolution, and 512 in high resolution. This
gives a visual circle in either graphics mode, assuming a standard monitor
screen aspect ratio of 43. If the aspect ratio is less than 1, then the radius
is given in x-pixels. If it is greater than 1, the radius is given in y-pixels.

In many cases, an aspect ratio of 1 gives a better ellipse in the medium-
resolution mode. This also causes the ellipse to be drawn faster. The start
angle can be less than the end angle.

CIRCLE(xceit ter, y e n ter) , radius [, [color] [, [sturt] ,[end] [, aspect]]]

21

GW-BASIC User's Reference

Examples :

10 SCREEN1: CIRCLE(100,100), 50

Draws a circle of radius 50, centered at graphics points 1OOx and 1oOy.

1 ' This will draw 17 circles
10 CLS
20 SCREEN 1
30 FOR R=160 TO 0 STEP-10
40 CIRCLE (160,1OO),R,,,,5/18
50 NEXT

10 'This will draw 5 circles
20 GOTO 160
50 IF VERT GOTO 100
60 CIRCLE (X,Y),R,C ,,,. 07
70 FOR I = 1 TO 5
80 CIRCLE (X,Y),R,C,,,l*.2:NEXT I
90 IF VERT THEN RETURN
100 CIRCLE (X,Y),R,C,,,1.3
110 CIRCLE (X,Y),R,C,,,1.9
120 CIRCLE (X,Y),R,C,,,3.6
130 CIRCLE (X,Y),R,C,,,9.8
140 IF VERT GOTO 60
150 RETURN
160 CLS:SCREEN 1:COLOR 0,l :KEY OFF:VERT=O
170 X= 160:Y = 1OO:C = 1 :R =50:GOSUB 50
180 X = 3O:Y = 3O:C = 2:R = 30:GOSUB 50
190 X=30:Y=169:GOSUB 50
200 X = 289:Y = 3O:GOSUB 50
21 0 X = 289:Y = 169:GOSUB 50
220 LINE (30,30)-(289,169),1
230 LINE (30,169)-(289,30),1
240 LINE (30,169)-(289,30),1 ,B
250 Z$=INKEY$: IF Z$="" THEN 250

22

CLEAR Command

CLEAR Command

Purpose:
To set all numeric variables to zero and all string variables to null, and to
close all open files. Options set the end of memory and reserve the
amount of string and stack space available for use by GW-BASIC.

Syntax:

Comments:
expression1 is a memory location that, if specified, sets the maximum
number of bytes available for use by GW-BASIC.

expression2 sets aside stack space for GW-BASIC. The default is the pre-
vious stack space size. When you first execute GW-BASIC, the stack
space is set to either 512 bytes or one-eighth of the available memory,
whichever is smaller.

GW-BASIC allocates string space dynamically. An Out of String Space
error occurs only if there is no free memory left for GW-BASIC to use.

The CLEAR command:

CLEAR[, [expression 1] [, expression2 I]

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers
Turns off any sound
Resets sound to music foreground
Resets PEN to off
Resets STRIG to off
Disables ON ERROR trapping

23

GW-BASIC User’s Reference

Examples:

CLEAR

Zeros variables and nulls all strings.

CLEAR 32768

Zeros variables, nulls strings, protects memory above 32768, and does not
change the stack space.

CLEAR ,,2000

Zeros variables, nulls strings, allocates 2000 bytes for stack space, and
uses all available memory in the segment.

CLEAR ,32768,2000

Zeros variables, nulls strings, protects memory above 32768, and allo-
cates 2000 bytes for stack space.

24

CLOSE Statement

CLOSE Statement

Purpose:
To terminate input/output to a disk file or a device.

Syntax:

Comments:
file number is the number under which the file was opened.

The association between a particular file or device and file number ter-
minates upon execution of a CLOSE statement. You can reopen the file
or device using the same or a different file number. If you use a different
file number, you can reuse the terminated number for a new file or
device.

A CLOSE statement with no file number specified closes all open files
and devices.

A CLOSE statement sent to a file or device opened for sequential output
writes the final buffer of output to that file or device.

The END, NEW, RESET, SYSTEM, or RUN and LOAD statements
(without the r option) always close all files or devices automatically.
STOP does not close files.

Examples:

CLOSE [[#]jile nuntber [,[#]fire iiztniber I...]

250 CLOSE

Closes all open devices and files.

300 CLOSE 1,#2,#3

Closes all files and devices associated with file numbers 1,2, and 3.

25

GW-BASIC User’s Reference

CLS Statement

Purpose:
To clear the screen.

Syntax:

Comments:
If the graphics viewport is active, CLS clears only the viewport. If the
graphics viewport is inactive, CLS clears the text window.

If the screen is in alpha mode, CLS clears the active page to the current-
ly selected background color. See the SCREEN and COLOR statements.

If the screen is in graphics mode, CLS clears the entire screen buffer to
the background color.

As well, you can press lTiK-1 lHoME1 to clear the screen or you can by
changing the screen mode with the SCREEN function or the WIDTH
statement.

CLS returns the cursor to the upper left corner of the screen, and sets the
last point referenced to the center of the screen: 160,100 in medium
resolution, or 320,100 in high resolution.

If the program previously used the VIEW statement, CLS clears only the
last viewport specified.

CLS

26

CLS Statement

Examples:

1 CLS

Clears the screen.

27

GW-BASIC User’s Reference

COLOR Statement

Purpose:
To select display colors.

Syntax:
COLOR [foreground][,[background I [, border]]
COLOR [background][,[palette]]
COLOR [foreground][,[background]]

Comments:
COLOR lets you select screen foreground and background colors and, in
Screen Mode 0 only, a border color. In Screen Mode 1, you can select two
four-color palettes for use with graphics statements. The following table
describes syntaxes and effects that apply to the various screen modes:

Mode Effect

Screen Mode 0 Modifies the current default text foreground and
background colors, and the screen border.
foreground must be an integer expression in the
range 0-31. It determines foreground color in text
mode, which is the default color of text. You can
select sixteen colors (0-15). To select a blinking
color, add 16 to the color number. For example, a
blinking Color 7 is equal to 7 + 16, or 23. Thus, the
legal integer range for foreground is 0-31.

background must be an integer expression in the
range 0-7, and is the background color for each text
character. Blinking colors are not permitted. The
border color is an integer expression in the range 0-
15 and is the color GW-BASIC uses when drawing
the screen border. Blinking colors are not per-
mitted.

If you do not provide arguments for COLOR, the
default for background and border is black (Color 0) ,
The foreground default is as described in the
SCREEN statement reference pages.

28

COLOR Statement

Screen Mode 1 The COLOR statement has a unique syntax that in-
cludes apalette argument, which is an odd or even
integer expression. This argument determines the
set of display colors to use when displaying par-
ticular color numbers.

For hardware configurations that do not have an
Enhanced Graphics Adapter (EGA), the default
color settings for the palette parameter are
equivalent to the following:

COLOR ,O 'Same as the next three PALETTE
'statements
'1 = green, 2 = red, 3 = yellow

'Same as the next three PALETTE
'statements
'1 = cyan,2 = magenta,
'3 = high intensity white

COLOR , l

With the EGA, the default color settings for the
palette parameter are equivalent to the following:

COLOR ,O 'Same as the next three PALETTE
'statements

PALETTE 1,2 'Attribute 1 = Color 3 (green)

PALETTE 2,4 'Attribute 2 = Color 5 (red)

PALETTE 3,6 'Attribute 3 = Color 6 (brown)

COLOR ,1 'Same as the next three PALETTE
'statements

PALETTE 1,3 'Attribute 1 = Color 3 (cyan)

PALETTE 2,5 'Attribute 2 = Color 5 (magenta)

PALETTE 3,7 'Attribute 3 = Color 15 (white)

Note that a COLOR statement overrides previous
PALETTE statements.

No effect. An Illegal function call message results if
you use COLOR in this mode.

Screen Mode 2

29

GW-BASIC User's Reference

Screen Mode 7
through
Screen Mode 10

In these modes, you cannot specify a border color.
The graphics background is given by the background
color number, which must be in the valid range of
color numbers appropriate to the screen mode. See
the SCREEN statement reference pages for more
details. Theforeground color argument is the default
line drawing color. Arguments outside valid
numeric ranges result in Illegal function call errors.

You can set the foreground color to be the same as the background color,
however, this makes the displayed characters invisible. The default back-
ground color is black (color number 0) for all display hardware con-
figurations and all screen modes.

With the Enhanced graphics Adapter (EGA) installed, the PALETTE
statement gives you flexibility in assigning different display colors to the
actual color-number ranges for the foreground, background, and border
colors discussed above. See the PALETTE statement reference pages
for more details.

For more information, see CIRCLE, DRAW, LINE, PALETTE,
PAINT, PRESET, PSET, and SCREEN.

Examples:
The following examples show the effects of various color statements in
particular screen modes:

SCREEN 0
COLOR 1,2,3

SCREEN 1
COLOR 1,0
COLOR 2,l
SCREEN 7
COLOR 3 3
SCREEN 8
COLOR6,7

SCREEN 9
COLOR 1,2

'foreground = 1, background = 2, border = 3

'foreground = 1, even palette number
'foreground = 2, odd palette number

'foreground = 3, background = 5

'foreground = 6, background = 7

'foreground = 1, background = 2

COM(n) Statement

COM(n) Statement

Purpose:
To enable or disable trapping of communications activity to the specified
communications adapter .

Syntax:
COM(number)ON
COM(rurmber) OFF
COM(number) STOP

Comments:
number is the number of the communications adapter 1 or 2.

Execute a COM(number) ON statement before an ON COM(number)
statement to allow trapping. After COM(nurnber) ON, if you specify a
nonzero number in the ON COM(nurnber) statement, GW-BASIC
checks every new statement to see whether any characters have come in
the communications adapter.

With COM(nurnber) OFF, no trapping takes place, and all communica-
tions activity is lost.

With COM(nuntber) STOP, no trapping takes place. However, GW-
BASIC remembers any communication that takes place and it begins im-
mediate trapping when it executes COM(nunzber) ON.

31

GW-BASIC User's Reference

COMMON Statement

Purpose:
To pass variables to a chained program.

Syntax:

Comments:
variables are one or more variables, separated by commas, that you want
to pass to the chained program.

Use the COMMON statement in conjunction with the CHAIN state-
ment.

It is best to use COMMON statements at the beginning of a program but
they can appear in any location.

You can use any number of COMMON statements in a program, but YOU

cannot use the same variable in more than one COMMON statement. To
pass all variables using the CHAIN statement, use the ALL option, and
omit the COMMON statement.

To indicate that a variable is an array variable, place parentheses after
the variable name.

COMMON iTariables

Examples:

100 COMMON A, B, C, D(),G$
110 CHAIN "A:PROG3"

This example chains to program Prog3 on Disk Drive A:, and passes the
Array D - along with the variables A, B , C, and String G$- to Pro@.

32

CONT Cotnntand

CONT Command

Purpose:
To continue program execution after a break.

Syntax:

Comments:
Resumes program execution after '-I/-, STOP, or END halts
a program. Execution continues at the point at which the break happened.
If the break took place during an INPUT statement, execution continues
after the prompt is redisplayed.

CONT is useful in debugging, in that it lets you set breakpoints with the
STOP statement, modify variables using direct statements, continue
program execution, or use GOT0 to resume execution at a particular
line number.

If you modify a program line, CONT is invalid.

CONT

33

GW-BASIC User’s Reference

COS Function

Purpose:
To return the cosine of the range of x .

Syntax:
COS(x)

Comments:
x must be in radians. COS is the trigonometric cosine function. TO con-
vert from degrees to radians, multiply by d180.

BASIC calculates COS(x) in single precision unless you use the /d switch
when you execute GW-BASIC.

Examples:

10 x = 2*cos(.4)
20 PRINT X
RUN

1 3421 22

10 PI =3.141593
20 PRINT COS(PI)
30 DEGREES = 180
40 RADIANS = DEGREES*PI/180
50 PRINT COS(RADIANS)

RUN
-1
-1
OK

34

CSNG Function

CSNG Function

Purpose:
To convert number to a single-precision number.

Syntax:

Comments:
number must be a numeric expression. (See the CINT and CDBL func-
tions.)

Examples:

CSNG(number)

10 A# =975.3421222#
20 PRINT A#; CSNG(A#)

RUN
975.3421 222 975.3421

35

G W-BASIC User's Reference

Purpose:
To return the current line (row) position of the cursor.

Syntax:

Comments:
row is a numeric variable receiving the value returned. The value
returned is in the range 1-25.

The CSRLIN variable returns the vertical coordinate of the cursor on the
active page. (See the SCREEN statement.)

column = POS(0) returns the column location of the cursor. The value
returned is in the range 1-40 or 1-80, depending on the current screen
width. See the POS function.

row = CSRLIN

Examples :

10 ROW=CSRLlN
20 COLUMN = POS(0)
30 LOCATE 24,l
40 PRINT "HELLO'
50 LOCATE ROW,COLUMN

RUN
HELLO

The CSRLIN variable in Line 10 records the current row.

The POS function in Line 20 records the current column.

In Line 40, the PRINT statement displays the comment HELLO on the
24th line of the screen.

The LOCATE statement in Line 50 restores the position of the cursor to
the original row and column.

36

W, CVS, C W Functions

CVI, CVS, CVD Functions

Purpose:
To convert string values to numeric values.

Syntax:
CVI(2-byte string)
CVS(4byte string)
CVD(8-byte string)

Comments:
Your programs must convert strings from random-access disk files back
into numbers if they are to be arithmetically manipulated.

CVI converts a 2-byte string to an integer. MKI$ is its complement.

CVS converts a 4-byte string to a single-precision number. MKS$ is its
complement.

CVD converts an 8-byte string to a double-precision number. MKD$ is
its complement.

See M a $, MKS$, and MKD$.

Examples:

70 FIELD #1,4 AS N$, 12 AS B$...
80 GET #1
90 Y =CVS(N$)

Line 80 reads a field from File #1 (the field read is defined in Line 70),
and converts the first four bytes (N$) into a single-precision number as-
signed to the variable Y.

37

G W-BASIC User’s Reference

Since a single-precision number can contain as many as seven ASCII
characters (seven bytes), writing a file using MKS$ conversion, and read-
ing with the CVS conversion, lets you save as many as three bytes per
number recorded on the storage medium. You can save even more bytes
when double-precision numbers are required. MKD$ and CVD conver-
sions could be used in this case.

38

DATA Statement

DATA Statement

Purpose:
To store the numeric and string constants accessed by the program
READ statement(s).

Syntax:

Comments:

DATA constants

constants are numeric constants in any format (fmed point, floating-point,
or integer), separated by commas. You cannot include expressions in the
list.

Surround string constants in DATA statements with double quotation
marks only if they contain commas, colons, or significant leading or trail-
ing spaces. Otherwise, you do not need quotation marks.

DATA statements are not executable. You can place them anywhere in
the program. A DATA statement can contain as many constants as fit on
a line (separated by commas), and any number of DATA statements can
be used in a program.

READ statements access the DATA statements in order (by line num-
ber). The data contained therein can be thought of as one continuous list
of items, regardless of how many items are on a line or where the lines are
placed in the program. The variable type (numeric or string) in the
READ statement must agree with the corresponding constant in the
DATA statement, or a Type Mismatch error occurs.

You can reread DATA statements from the beginning by using the RE-
STORE statement.

For further information and examples, see the RESTORE statement and
the READ statement.

39

GW-BASIC User's Reference

Examples:

80 FOR I = 1 TO IO
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

The previous program segment reads the values from the D, T 1 state-
ments into Array A. After-execution, the value of A(l) is 3.08, and so on.
You can place the DATA statement (lines 110-120) anywhere in the
program. You can even place them ahead of the READ statement.

5 PRINT
10 PRINT "CITY','"STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,","COLORADO',80211
40 PRINT C$,S$,Z

RUN
CITY STATE ZIP
DENVER, COLORADO 8021 1

The previous program reads string and numeric data from the DATA
statement in Line 30.

40

DATE$ Statement and Variable

DA t a t e ~ ~ n t and

Purpose:
To set or retrieve the current date.

Syntax:
As a statement:

DATE$ = $3
As a variable:

V$ = DATE$

Comments:
v$ is a valid string literal or variable.

v$ can be any of the following formats when assigning the date,

mnt-dd-yy
mmlddlyy
mm-dd-yyyy
mmlddlyyyy

If v$ is not a valid string, a Type Mismatch error results. Previous values
are retained.

If any values are out of range or missing, GW-BASIC issues an Illegal
Function Call error. GW-BASIC retains any previous date.

BASIC gets the current date (as assigned when the operating system was
initialized) and assigns it to the string variable if DATE$ is the expression
in a LET or PRINT statement.

The current date is stored if DATE$ is the target of a string assignment.

With 1% = DATE$, DATE$ returns a 10-character string in the formmm-
dd-yyy. mm is the month (01-12), dd is the day (01-31), a n d m y is the
year (1980-2099).

41

GW-BASIC User’s Reference

Examples:

V$ = DATE$
OK
PRINT V$
01 -01 -1985

42

DEF FN Statement

DEF FN Statement

Purpose:
To define and name a function you create.

Syntax:

Comments:
name must be a legal variable name. This name, preceded by FN, be-
comes the name of the function.

aqpments list consists of those variable names in the function definition
that are to be replaced when the function is called. The items in the list
are separated by commas.

expression is an expression that performs the operation of the function. It
is limited to one statement.

In the DEF FN statement, arguments serve only to define the function;
they do not affect program variables that have the same name. A variable
name you use in a function definition might or might not appear in the ar-
gument. If it does, GW-BASIC supplies the value of the parameter when
it calls the function. Otherwise, GW-BASIC uses the current value of the
variable.

The variables in the argument represent, on a one-to-one basis, the argu-
ment variables or values that are to be given in the function call.

User-defined functions can be numeric or string. If you specify a type in
the function name, the value of the expression is forced to that type
before it is returned to the calling statement. If you specify a type in the
function name and the argument type does not match, a Type Mismatch
error occurs.

You can define a user-defined function more than once in a program by
repeating the DEF FN statement.

DEF FNname[qpments list] qression

43

GW-BASIC User’s Reference

You must execute a DEF FN statement before you can call the function
it defines. If you call a function before it has been defined, an Undefined
User Function error occurs.

DEF FN is illegal in the direct mode.

Recursive functions are not supported in the DEF FN statement.

Examples:

400 R = l : S = 2
410 DEF FNAB(X,Y) = X
420 T = FNAB(R,S)

3/Y * 2

In the previous example, Line 410 defines the user-defined function
FNAB. The function is called in Line 420. When executed, the variable T
contains the value R3 divided by S2 , or .25.

44

DE FINTIS NGIDBLIS TR Statements

Purpose:
To declare variable types as integer, single-precision, double-precision,
or string.

Syntax:

Comments:
type is INT (integer), SNG (single-precision number), DBL (double-
precision number), or STR (string of 0-255 characters).

letters are letters (separated by commas) or a range of letters of the al-
phabet.

A DEFtype statement declares that variable names beginning with the
letter(s) specifies that type of variable. However, a type declaration
character (%,!,#,$) always takes precedence over a DEFfype statement.

If no type declaration statements are encountered, GW-BASIC assumes
all variables are single-precision.

Examples:

DEFtype letters

10 DEFDBL L-P

In the prevlous example, all variables beginning with the letter L, M, N,
0, or P become double-precision variables.

10 DEFSTR A
20 A = "1 2044"

In the previous example, all variables beginning with the letter A become
string variables. The $ declaration is unnecessary in this example.

45

G W-BASIC User's Reference

10 DEFINT I-N,W-Z
20 W$ = "1 20#"

In the previous example, all variables beginning with the letter I, J, K, L,
M, N, W, X, Y, or Z become integer variables. W$ in Line 20 establishes
a string variable beginning with the letter W. However, the variable W
remains an integer elsewhere in the program.

46

DEF SEG Statement

DEI; SEG Statement

Purpose:
To assign the current segment address for reference by a subsequent
BLOAD, BSAVE, CALL, PEEK, POKE, or USR.

Syntax:
DEF SEG [address]

Comments:
address is a numeric expression in the range 0-65535.

BASIC saves the specified address for use as the segment required by the
BLOAD, BSAVE, PEEK, POKE, and CALL statements.

If you enter any value outside the address range (0-65535) GW-BASIC
returns an Illegal Function Call error. GW-BASIC retains the previous
value.

If you omit the address option, GW-BASIC sets the segment to be used to
its data segment (DS). This is the initial default value.

For a BLOAD, BSAVE, PEEK, POKE, or CALL statement, the value is
shifted left four bits to form the code segment address for the subsequent
call instruction. (This is done by the microprocessor, not by GW-
BASIC.) See the BLOAD, BSAVE, CALL, PEEK, and POKE state-
ments.

BASIC does not perform additional checking to assure that the resultant
segment address is valid.

47

G W-BASIC User's Reference

Examples:

10 DEF SEG = &HB800

Sets segment to screen buffer.

20 DEF SEG

Restores segment to GW-BASIC DS.

Note: DEF and SEG must be separated by a space. Otherwise,
GW-BASIC interprets the statement DEFSEG = 100 to mean "as-
sign the value 100 to the variable DEFSEG.

48

DEF USR Statement

DEF USR Statement

Purpose:
To specify the starting address of an assembly language subroutine to be
called from memory by the USR function.

Syntax:

Comments:
number can be any digit from 0 to 9. The digit corresponds to the USR
routine address being specified. If you omit number, GW-BASIC as-
sumes DEF USRO.

integer is the offset address of the USR routine. If more than 10 USR
routines are required, DEF USR[number] can appear in the program as
many times as necessary to redefine the USR[number] starting address.

Add the current segment value to the integer to get the starting address
of user routine.

When GW-BASIC calls an assembly language subroutine, it pauses and
transfers control to the assembly language program. When the execution
of the assembly language program is complete, the system returns control
the GW-BASIC program at the point of interruption.

DEF USR[number] =integer

Examples:

190 DEF SEG=O
200 DEF USRO=24000
21 0 X = USROW A 2/2.82)

Lines 190 and 200 set the absolute address.

49

G W-BASIC User’s Reference

Line 210 calls the USR routine located at that address, and passes the in-
teger value of the expression contained within the parentheses to the user
program (see USR).

Note: This statement provides compatibility with other GW-
BASIC implementations. However, you should use the more ver-
satile CALL statement if this downward compatibility is not
necessary.

50

DELETE Cotmiatid

DE c and

Purpose:
To delete program lines or groups of lines.

Syntax:
DELETE [littel]-[litze2]
DELETE littel

Comments:
lirtel is the first line to be deleted.

line2 is the last line to be deleted.

GW-BASIC always returns to command level after DELETE completes
execution. Unless you give at least one line number, an Illegal Function
Call error occurs.

You can use the period (.) to substitute for either line number to indicate
the current line.

Examples:

DELETE 40

Deletes Line 40.

DELETE 40-1 00

Deletes Lines 40 through 100, inclusively.

DELETE -40

Deletes all lines up to and including Line 40.

DELETE 40-

Deletes all lines from Line 40 to the end of the program.

GW-BASIC L!rer’s Reference

t

Purpose:
To specify the maximum values for array variable subscripts and allocate
storage accordingly.

Syntax:
DIM ~ ,an .ab le (subsc r i y t) [,~~~~ab le (~z~~scn .~~s)] . . .

Comments:
If you use an array variable name without a DIM statement, GW-BASIC
assumes the maximum value of its subscript(s) is 10. If you use a subscript
greater than the maximum specified, a Subscript out of range error OC-
curs.

The maximum number of dimensions for an array is 255.

The minimum value for a subscript is always 0 unless otherwise specified
with the OPTION BASE statement.

Once you dimension an array, you cannot redimension it within the
program without first executing a CLEAR or ERASE statement.

The DIM statement sets all the elements of the specified arrays to an in-
itial value of zero.

Examples:

10 DIM A(20)
20 FOR I = O TO 20
30 READ A(I)
40 NEXT I

The program lines read 21 DATA statements elsewhere in the program
and assigns their values to A(0) through A(20), sequentially and in-
clusively. If the A array is single precision (default accuracy) then Line 10
allocates 84 bytes of memory to this array (4 bytes times 21 elements).

52

DRA WStatentetit

Purpose:
To draw a figure.

Syntax:
DRAW string eywessioti

Comments:
The DRAW statement combines most of the capabilities of the other
graphics statements into an object definition language called Graphics
Macro Language (GML). A GML command is a single character within
a string, optionally followed by one or more arguments.

The DRAW statement is valid only in graphics mode.

Movement Commands: Each of the following movement commands
begins movement from the current graphics position. This is usually the
coordinate of the last graphics point plotted with another GML com-
mand, LINE, or PSET. The current position defaults to the center of the
screen (160,100 in medium rcsolution; 320,100 in high resolution) when
you run a program. Movement commands move for a distance of scale
factor *it , where the dcfault for t i is 1; thus they move one point if you
omit t i and GW-BASIC uses the default scale factor.

Command Moves

uti

Dtt
Lnt
R f t
Ef t
Flt
G l

Hn

UP
down
left
right
diagonally up and right
diagonally down and right
diagonally down and left
diagonally up and left

53

G W-BASIC User's Reference

The M command moves as specified by the following argument:

Move absolute or relative. If you precedex with a
f or -, GW-BASIC adds x and y to the current
graphics position, and connected to the current
position by a line. Otherwise, it draws a line to point
x,y from the current position.

The following prefix commands can precede any of the above movement
commands:

B

N

The following commands are also available:

Move, but plot no points.
Move, but return to original position when done.

An

TAU

Cn

Sit

Set angle i t . it can range from 0 to 3, where 0 is 0",
1 is 90", 2 is B O " , and 3 is 270". Figures rotated 90"
or 270" are scaled so that they appear the same size
as 0" or 180" on a monitor screen with the standard
aspect ratio of 43.
Turn angle i t degrees. it can be any value from
negative 360" to positive 360". If the value specified
byn is positive, it turns the angle counterclockwise.
If the value specified by n is negative, it turns the
angles clockwise.

Set color n . See the COLOR, PALETTE, and
SCREEN statements for discussions of valid
colors, numbers, and attributes.
Set scale factor. n can range from 1 to 255. n is
divided by 4 to derive the scale factor. The scale
factor is multiplied by the distances given with the
U, D, L, R, E, F, G, H, or relative M commands to
get the actual distance traveled. The default for S
is 4.

54

DRA W Stateentent

Xstring; variable Execute substring. This command executes a
second substring from a string, much like GOSUB.
One string executes another, which executes a
third, and so on.

string is a variable assigned to a string of movement
commands.

Ppaint, boiiitday Specifies the colors for a graphics figure and
creates a filled-in figure.

paint specifies what color you want the figure filled
in with.

boiindary specifies the border color (outline).

See the COLOR, PALETTE, and SCREEN
statements for discussions of valid colors, numbers,
and attributes.

You must specify values for both paint and
bounday when using P.

This command (Ppaiiit,boiiitday) does not paint
color tiling.

Numeric arguments can be constants such as "123"
or "=variable;", where variable is the name of a
variable.
When you use the second syntax, " = variable;", you
must use the semicolon. Otherwise, the semicolon
is optional between commands.

You can also specify variables using
VARPTR$(variable).

numeric arguments

55

GW-BASIC User's Reference

Examples:
To draw a box in medium resolution:

10 SCREEN 1
20 A=20
30 DRAW "U=A;R =A;D=A;L=A;"

The aspect ratio to draw a square on a standard screen is 4:3. TO draw a
96-pixel-wide square on a 640 x 200 pixel screen (Screen Mode 2), do the
following calculations:

Horizontal value = 96
Vertical value = 96"(200/640)*(4/3)

or

Verticalvalue = 40
Horizontal value = 40*(640/200)*(3/4)
Horizontal screen equals 4/3 of the vertical screen.

To draw a triangle in medium resolution:
10 CLS
20 SCREEN 1
30 PSET (60,125)
40 DRAW "E100; F100; L199"

Compiler Note: The " =variable;" is not supported by the BASIC
compiler. The only way to specify a variable when using the GW-
BASIC Compiler is to use VARPTR$(vun'uble).

-.

56

EDIT Continarid
~

E

Purpose:
To display a specified line and to position the cursor under the first digit
of the line number so that you can edit the line.

Syntax:
EDIT line
EDIT.

Comments:
line is the number of a line existing in the program.

A period (.) refers to the current line. The following command enters
EDIT at the current line:

EDIT.

When you enter a line, it becomes the current line.

The current line is always the last line referred to by an EDIT statement,
LIST command, or error message.

If line refers to a line that does not exist in the program, an Undefined
Line Number error occurs.

Examples:

EDIT 150

Displays Line 150 for editing.

57

GW-BASIC User’s Reference

END Statement

Purpose:
To terminate program execution, close all files, and return to the com-
mand level.

Syntax:
END

Comments:
You can place END statements anywhere in a program.

Unlike the STOP statement, END does not cause a Break in line max
message to be printed.

Because GW-BASIC always returns to command level after it executes a
program, you do not have to include an END statement at the end of a
program.

END closes all files.

Examples:

520 IF K1 >lo00 THEN END ELSE GOT0 20

Ends the program and returns to command level whenever the value of K
exceeds 1000.

58

ENVIRON Statement

N Statement

Purpose:
To allow you to modify parameters in GW-BASIC's environment string
table. This might be to change the path parameter for a child process, or
to pass parameters to a child by inventing a new environment parameter.
(See ENVIRON$, SHELL, and the MS-DOS utilities PATH command.)

Syntax:

Comments:
string is a valid string expression containing the new environment string
parameter.

string must be of the following form

ENVIRON string

pamid = t a t

wherepamid is the name of the parameter, such as PATH.

ENVIRON takes everything to the left of the first blank or equal sign as
thepamid; it takes everything following the blank or equal sign as text.
Therefore, you must separate panitid from text by an equal sign or by a
blank.

t a t is the new parameter text. If text is a null string or consists only of a
single semicolon, then ENVIRON removes the parameter (including
pamid =) from the environment string table and compresses the table.
text must not contain any embedded blanks.

Ifpamid does not exist, then ENVIRON adds string at the end of the en-
vironment string table.

Ifpamid does exist, ENVIRON deletes it, compresses the environment
string table, and adds the new string at the end.

59

GW-BASIC User's Reference

Examples:
Assuming the environment string table is empty, the following statement
creates a default path to the Root directory on Disk A:

ENVIRON "PATH =A:\"

If your work subdirectory is John, you can get DEBUG from the Root.

You can add a new parameter:
ENVIRON "COMSPEC = A:\COMMAND.COM"

The environment string table now contains
PATH = A:\;COMSPEC = A:\COMMAND.COM

You can change the path to a new value:
ENVIRON "PATH = A:\SALES;A:\ACCOUNTING"

You can append the path parameter by using the ENVIRON$ function
with the ENVIRON statement:

ENVIRON "PATH = " + ENVIRON$("PATH") + ";B:\SAMPLES"

Finally, delete the parameter COMSPEC:
ENVIRON "COMSPEC = ;"

The environment string table now contains
PATH = A:\SALES;A:\ACCOUNTING;B:\SAMPLES

60

E M R O N $ Function

E

Purpose:
To allow you to retrieve the specified environment string from the en-
vironment table.

Syntax:
v$ = ENVIRON$(pantizd)
V$ = ENWRON$(tttltp~n7~)

Comments:
pamiid is a valid string expression containing the parameter to search for.

nthparm is an integer expression in the range 1-255.

If you use a string argument, ENVIRON$ returns a string containing the
text followingpannid = from the environment string table.

If ENVIRON$ does not find pamiid, then it returns a null string.

If you use a numeric argument, ENVIRON$ returns a string containing
the nth parameter from the environment string table.

If there is no nth parameter, then ENVIRON$ returns a null string.

The ENVIRON$ function distinguishes between upper- and lower-case.

Examples:
The following lines:

10 ENVIRON "PATH =A:\SALES;A:\ACOUNTlNG;B:\MKT:"
'Create entry

20 PRINT ENVIRON$("PATH") 'Print entry

will print the following string:
A: \SALES; A: \ACCOUNT1 NG; B: \MKT

61

G W-BASIC User's Reference

The following line prints the first string in the environment:
PRINT ENVIRON$(l)

The following program saves the environment string table in an array so
that it can be modified for a child process. After the child process finishes
processing, the program restores the environment.

10 DIM ENVTBL$(lO) "

20 NPARMS= 1
30 WHILE LEN(ENVlRON$(NPARMS)) 0
40 ENVTBL$ (NPARMS) = ENVIRON$(NPARMS)
50 NPARMS= NPARMS + 1
60 WEND

72 WHILE LEN(ENVIRON$(l))O
73 A$ = MID$(ENVIRON$(1), 1, INSTR (ENVIRON$(1) ," = 'I))
74 ENVIRON A$+";"
75 WEND
90 ENVIRON "MYCHILDPARMl =SORT BY NAME"
100 ENVIRON "MYCHILDPARM2 = LIST BY NAME'

70 NPARMSz NPARMS-1

1000 SHELL "MYCH1LD"'RUNS "MYCHILD.EXE'
1 002 WHILE LEN (ENVI RON$(1))0
1003 A$ = MID$(ENVIRON$(l), 1 ,INSTR(ENVIRON$ (1),'I = 'I))
1004 ENVIRON A$ +";"
1005 WEND
1010 FOR I = 1 TO NPARMS
1020 ENVIRON ENVTBL$(I)
1030 NEXT I

The DIM statement in Line 10 assumes no more than 10 parameters are
to be accessed.

In Line 20, the initial number of parameters is established as 1.

62

EhTTRON$ Function

In Lines 30 through 70, a series of statements adjusts and corrects the
parameter numbers.

Line 71 deletes the present environment.

Lines 72 through 80 create a new environment. Line 74 deletes the string.

Lines 80 through 100 store the new environment.

Lines 1000 through 1030 repeat the procedure by deleting the present en-
vironment and restoring the parameters established in the first part of the
program.

G W-BASIC User's Reference

Purpose:
To return -1 (true) when the end of a sequential or a communications file
has been reached, or to return 0 if the end of file (EOF) has not been
found.

Syntax:

Comments:
If a program attempts a GET past the end of the file, EOF returns -1.
You can use this feature to find the size of a file using a binary search or
other algorithm. With communications files, a -1 indicates that the buffer
is empty.

Use EOF to test for end of file while inputting to avoid Input Past End
errors.

Examples:

v = EOF(file number)

10 OPEN "1",1 ,"DATA'
20 c=o
30 IF EOF(1) THEN 100
40 INPUT#l ,M(C)
50 C=C+l:GOTO 30
100 END

These lines read the contents of the file named Data into the M array
until the end of the file is reached; then, the program branches to Line
100.

64

ERASE Statement

Purpose:
To eliminate arrays from a program.

Syntax:

Comments:
ERASE list of array variables

You can redimension arrays after they are erased, or use the memory
space previously allocated to the array for other purposes.

If you attempt to redimension an array without first erasing it, an error
occurs.

Examples:

200 DIM B (250)

450 ERASE A,B
460 DIM B(3,4)

Arrays A and B are eliminated from the program. The B array is
redimensioned to a 3-column by 4-row array (12 elements), all elements
of which are set to zero values.

65

G W-BASIC User's Reference

ER

Purpose:
To return the actual value (ERDEV) of a device error and the name of
the device (ERDEV$) causing the error.

Syntax:
ERDEV
ERDEV$

Comments:
ERDEV contains the error code from interrupt 24H in the lower 8 bits.
Bits 8 to 15 from the attribute word in the device header block are
mapped directly into the upper 8 bits.

ERDEV$ contains the 8-byte character device name if the error was on a
character device. It contains the 2-byte block device name (A:, B:, etc.) if
the device is not a character device.

Examples:
Installed device driver Lpt2: caused a Printer out of paper error via in-
terrupt 24H.

ERDEV contains the error Number 9 in the lower 8 bits, while the upper
8 bits contain the upper byte of the device header word attributes.

ERDEV$ contains "LPT2: ".

66

ERR arid ERL Variables

Purpose:
To return the error code (ERR) and line number (ERL) associated with
an error.

Syntax:
v =ERR
v = ERL

Comments:
The variable ERR contains the error code for the last occurrence of an
error. All the error codes and their definitions are listed in Appendix A
of the Tandy GW-BASIC User’s Guide.
The variable ERL contains the line number of the line in which the error
was detected.

You would usually use the ERR and ERL variables in IF-THEN, ON
ERROR ... GOTO, or GOSUB statements to direct program flow in error
trapping.

If the statement that caused the error is a direct mode statement, ERL
contains 65535. To see whether an error occurred in a direct mode state-
ment, use a line of the following form:

IF 65535=ERL THEN ...
Otherwise, use

10 IF ERR=emr code THEN ... GOSUB 4OOO
20 IF ERL=line number THEN ... GOSUB 4010

Note: If the line number is not on the right side of the relational
operator, RENUM cannot renumber it.

Because ERL and ERR are reserved variables, neither can appear to the
left of the equal sign in a LET (assignment) statement.

67

GW-BASIC User’s Reference

Purpose:
To simulate the occurrence of an error or to allow you to define error
codes.

Syntax:

Comments:
The value of integer expression must be greater than 0 and less than 255.

If the value of integer expression equals an error code already in use by
GW-BASIC, the ERROR statement simulates the occurrence of that
error, and the corresponding error message is printed.

A user-defined error code must use a value greater than any used by the
GW-BASIC error codes. There are 76 GW-BASIC error codes at
present. It is preferable to use a code number high enough to remain
valid when more error codes are added to GW-BASIC.

User-defined error codes can be used in an error-trapping routine.

If an ERROR statement specifies a code for which no error message has
been defined, GW-BASIC responds with Unprintable Error.
If you execute an ERROR statement for which there is no error-trapping
routine, an error message prints and execution halts.

For a complete list of the error codes and messages already defined in
GW-BASIC, refer to AppendixA in the Tandy GW-BASIC User’s Guide.

ERROR integer expression

ERROR Statentent

Examples:
The following examples simulate Error 15 (the code for String too long):

LIST
10 s=10
20 T = 5
30 ERROR S+T
40 END
RUN
String too long in 30

Or, in direct mode:
Ok
ERROR 15 (you type this line)
String too long (GW-BASIC types this line)
The following example includes a user-defined error code mes-
sage.

110 ON ERROR GOT0 400
120 INPUT "WHAT IS YOUR 9ET';B
130 IF B>5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL=130 THEN RESUME 120

69

GW-BASIC User’s Reference

ction

Purpose:
To return e (the base of natural logarithms) to the power of number.

Syntax:
EXP(nurnber)

Comments:
number must be less than 88.02969.

If EXP overflows, an Overflow error appears; machine infinity with the
appropriate sign is supplied as the result, and execution continues.

EXP(nurnber) is calculated in single precision, unless you use the /d
switch when executing GW-BASIC.

Examples:

10 NUMBER = 5

RUN

20 PRINT EXP(NUM6ER-1)

54.5981 5

Prints the value of e to the 4th power.

70

EXTERR Function

E

Purpose:
To return extended error information.

Syntax:

Comments:

EXTERR(number)

EXTERR returns “extended error information provided by versions of
DOS 3.0 and greater. For versions of DOS earlier than 3.0, EXTERR al-
ways returns zero. The single integer argument must be in the range 0-3
as follows:

Value of number Return Value

Extended error code
Extended error class
Extended error suggested action
Extended error location

The vatues returned are not defined by GW-BASIC but by DOS. Refer to
the MS-DOS Programmer’s Reference (Version 3.0 or later) for a descrip-
tion of the values returned by the DOS extended error function.

BASIC retrieves and saves the extended error code each time ap-
propriate DOS functions are performed. Thus, when an EXTERR func-
tion call is made, these saved values are returned.

71

GW-BASIC User’s Reference

Purpose:
To allocate space for variables in a random file buffer.

Syntax:

Comments:
fire number is the number under which the file was opened.

width is the number of characters to be allocated to string variable.

stringvur is a string variable to be used for random file access.

You must execute a FIELD statement before you can:
0 get data out of a random buffer after a GET statement
0 enter data before a PUT statement

For example, the following line allocates the first 20 positions (bytes) in
the random file buffer to the string variable N$, the next 10 positions to
ID$, and the next 40 positions to ADD$:

FIELD [#]file number, width AS strittgvar [,width AS strilzgvar] ...

FIELD 1,20 AS N$, 10 AS ID$, 40 AS ADD$

FIELD only allocates space; it does not place any data in the random file
buffer.

The total number of bytes allocated in a FIELD statement must not ex-
ceed the record length specified when the file was opened. Otherwise, a
Field overflow error occurs. (The default record length is 128.)

You can execute any number of FIELD statements for the same file, and
all FIELD statements executed are in effect at the same time.

Note: Do not use a fielded variable name in an INPUT or LET
statement. Once a variable name is fielded, it points to the correct
place in the random file buffer. If a subsequent INPUT or LET
statement with that variable name is executed, the variable’s
pointer is moved to string space. See the LSET/RSET and GET
statements.

FILES Coinntand

Purpose:
To print the names of the files residing on the specified drive.

Syntax:
FILES [patlina~ne]

Comments:
If you omit pathname, the command lists all files in the current directory
of the selected drive.patl~name can contain question marks (?) to match
any character in the filename or extension. An asterisk (*) as the first
character of the filename or extension matches any file or any extension.

This syntax also displays the name of the directory and the number of
bytes in the file. When a tree-structured directory is used, two special
symbols also appear.

Subdirectories are denoted by DIR following the directory name.

Examples:

FILES
FILES "*.BAS"
FILES "6: *. *"
FILES "TEST?.BAS"

FILES now allows pathnames. The directory for the specified path is dis-
played. If an explicit path is not given, the current directory is assumed.

FILES IIACCTS\"

Lists all files in the directory named Accts. Include the backslash when
specifymg the directory named.

73

GW-BASIC User’s Reference

FILES “B:ACCTS*. PAY’

Lists all files in the directory named Accts that are on the diskette in
Drive B and have the extension of .pay.

74

FIX Function

FI etion

Purpose:
To truncate number to a whole number.

Syntax:

Comments:

FIX(nuntber)

FIX does not round off numbers, it simply eliminates the decimal point
and all characters to the right of the decimal point.

FIX(nuntber) is equivalent to SGN(x)*INT(ABS(x)). The major dif-
ference between FIX and INT is that FIX does not return the next lower
number for negative number.

FIX is useful in modulus arithmetic.

Examples:

PRINT FIX(58.75)
58

PRINT FIX(48.75)
-58

75

GW-BASIC User’s Reference

Purpose:
To execute a series of instructions a specified number of times in a loop.

Syntax:
FOR variable =x T o y [STEPz] .

NEXT [vuriable][,vuriable ...I
Comments:
vuriuble is used as a counter.

x, y, and z are numeric expressions.

STEP z specifies counter increment for each loop.

The first numeric expression, or x, is the initial value of the counter. The
second numeric expression, ory, is the final value of the counter.

BASIC executes program lines following the FOR statement until it en-
counters the NEXT statement. Then, it increments the counter by the
amount specified by STEP.

If you do not specify STEP, GW-BASIC assumes the increment is 1.

BASIC performs a check to see whether the value of the counter is now
greater thany. If it is not greater, GW-BASIC branches back to the state-
ment after the FOR statement, and the process is repeated. If it is
greater, GW-BASIC continues execution at the statement following the
NEXT statement. This is a FOR-NEXT loop.

BASIC skips the body of the loop if the initial value of the loop times the
sign of the step exceeds the final value times the sign of the step.

If STEP is negative, GW-BASIC sets the final value of the counter to be
less than the initial value. It decreases the counter each time through the
loop, and executes the loop until the counter is less than the final value.

76

FOR and NEXT Statements

Nested Loops: You can nest FOR-NEXT loops; that is, you can place a
FOR-NEXT loop within the context of another FOR-NEXT loop. When
loops are nested, each loop must have a unique variable name as its
counter.

The NEXT statement for the inside loop must appear before the NEXT
statement for the outside loop.

If nested loops have the same end point, you can use a single NEXT
statement for all of them.

You can omit the vun'uble(s) in the NEXT statement, in which case the
NEXT statement matches the most recent FOR statement.

If GW-BASIC encounters a NEXT statement before its corresponding
FOR statement, a NEXT without FOR error is issued and execution is
terminated.

Examples:
The following example prints integer values of the variable I% from 1 to
10 in steps of 2. For fastest execution, I is declared as an integer by the %
sign.

IO K=1O
20 FOR I % = 1 TO K STEP 2
30 PRINT I%

60 NEXT

RUN
1
3
5
7
9

In the following example, the loop does not execute because the initial
value of the loop exceeds the final value. Nothing is printed by this ex-
ample.

77

GW-BASIC User’s Reference

10 R=O
20 FOR S = l TO R
30 PRINT S
40 NEXT S

In the next example, the loop executes 10 times. The final value for the
loop variable is always set before the initial value is set.

10 s=5
20 FOR S = l TO S+5
30 PRINT S;
40 NEXT

RUN
1 2 3 4 5 6 7 8 9 10

78

FRE Fiutction

F ctio

Purpose:
To return the number of available bytes in allocated string memory.

Syntax:
FRE(x$)
FRE(x)

Comments:
Arguments (x$) and (x) are dummy arguments.

Before FRE (x$) returns the amount of space available in allocated string
memory, GW-BASIC initiates a “garbage collection” activity. Data in
string memory space is collected and reorganized, and unused portions
of fragmented strings are discarded to make room for new input.

If FRE is not used, GW-BASIC initiates an automatic garbage collection
activity when all string memory space is used up. GW-BASIC does not in-
itiate garbage collection until all free memory has been used. Garbage
collection might take 1 to 1 1/2 minutes.

FRE(“”), or any string, forces a garbage collection before returning the
number of free bytes. Therefore, using FRE(“”) periodically results in
shorter delays for each garbage collection.

You cannot use ~ C T K] IBREAK/ during this housecleaning process.

Examples:

PRINT FRE(0)

Your computer might return a different value.
14542

79

GW-BASIC User's Reference

Purpose:
TO read a record from a random disk file into a random buffer.

Syntax:
GET [#] fiZe number[, record]

Comments:
file number is the number under which the file was opened.

record is the number of the record, in the range 1-16,777,215.

If you omit record, GET reads into the buffer the next record (after the
last GET).

After a GET statement, use INPUT# and LINE INPUT# to read
characters from the random file buffer.

You can also use GET for communications files. record is the number of
bytes to be read from the communications buffer. record cannot exceed
the buffer length set in the OPEN COM(n) statement

Examples:

10 OPEN "R",l ,"A:VENOOR.FIL"
20 FIELD 1,30 AS VENDNAMES$,20 AS ADDR$,15 AS

CITY$
30 GET 1
40 PRINT VENDNAMES$,ADDR$,CITY$
50 CLOSE 1

This example opens the file Vendor51 for random access, with fields
defined in Line 20. In Line 30, the GET statement reads a record into the
file buffer. Line 40 displays the information from the record just read.
Line 50 closes the file.

80

GET Stateritent (Graphics)

Purpose:
To transfer graphics images from the screen.

Syntax:

Comments:
The PUT and GET statements are used to transfer graphics images to
and from the screen. PUT and GET make animation and high-speed ob-
ject motion possible in either graphics mode.

The GET statement transfers the screen image bounded by the rectangle
described by the specified points into the array. The rectangle is defined
the same way as the rectangle drawn by the LINE statement using the ,B
option.

The array is used only as a place to hold the image, and can be of any type
except string. It must be dimensioned large enough to hold the entire
image. The contents of the array after a GET are meaningless when inter-
preted directly (unless the array is of the type integer as shown below).

The storage format in the array is as follows:
0 2 bytes givenx dimension in bits
0 2 bytes given y dimension in bits
0 the array data itself

The data for each row of pixels is left-justified on a byte boundary. If less
than a multiple of eight bits is stored, the rest of the byte is filled out with
zeros. The required array size in bytes is

4 + I NT((x*bits per pixel + 7)/8) * y

GET (xI31)-(x232), array nante

See the SCREEN statement for bits-per-pixel values for different screen
modes.

81

GW-BASIC User's Reference

The number of bytes per element of an array are as follows:
0 2 for integer
0 4 for single-precision
0 8 for double-precision

The number of bytes required to get a 10 by 12 image into an integer array
is4+INT((10*2+7)/8)*12, or 40 bytes. An integer arraywith at least 20
elements is necessary.

If OPTION BASE equals zero, you can use an integer array to examine
the x and y dimensions and the data. The x dimension is in element 0 of
the array, and the y dimension is in element 1. Integers are stored low
byte first, then high byte, but data is transferred high byte first (leftmost),
then low byte.

It is possible to get an image in one mode and put it in another, although
the effect might be quite strange because of the way points are repre-
sented in each mode.

Examples:

10 CLS:SCREEN 1
20 PSET(130,120)
30 DRAW "U25;E7;R20;D32;L6;U12;L14"
40 DRAW "D12;L6':PSET(137,102)
50 DRAW "U4;E4;R8;D8;L12"
60 PSET(137,88)
70 DRAW "E4;R20;D32;G4':PAINT(139,87)
80 DIM A(500)
90 GET (1 25,130) -(1 70,80) ,A
100 FOR I =1 TO 10OO:NEXT I

120 FOR I = 1 TO 1000:NEXT
1 30 GET (1 25,130)-(1 70,80) ,A
140 FOR I = 1 TO 10OO:NEXT

11 0 PUT (20,20),A,PSET

150 PUT (220,13O),A,PRESET

82

GOSUB ... RETURN Statement

ETURN Statement

Purpose:
To branch to, and return from, a subroutine.

Syntax:
GOSUB line

RETURN[line]

Comments:
line is the first line number of the subroutine.

You can call a subroutine any number of times in a program, and you can
call a subroutine from within another subroutine. Such nesting of sub-
routines is limited only by available memory.

A RETURN statement in a subroutine causes GW-BASIC to return to
the statement following the most recent GOSUB statement. A sub-
routine can contain more than one RETURN statement, should logic
dictate a RETURN at different points in the subroutine.

Subroutines can appear anywhere in the program but must be readily dis-
tinguishable from the main program.

To prevent inadvertent entry, precede the subroutine by a STOP, END,
or GOT0 statement to direct program control around the subroutine.

83

GW-BASIC User's Reference

Examples:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE';
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN

RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

The END statement in Line 30 prevents re-execution of the subroutine.

84

GOTO Statement

GOTO statement

Purpose:
To branch unconditionally out of the normal program sequence to a
specified line number.

Syntax:

Comments:

GOTO line

line is any valid line number within the program.

If line is an executable statement, that statement and those following are
executed. If it is a nonexecutable statement, execution proceeds at the
first executable statement encountered after line.

Examples:

10 READ R
20 PRINT "R =";R;
30 A = 3.14*RA2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12

RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of data in 10

The Out of data advisory is generated when the program attempts to
read a fourth DATA statement (which does not exlst) in Line 60.

85

GW-BASIC User's Reference

HEX$ Function

Purpose:
To return a string that represents the hexadecimal value of the numeric
argument.

Syntax:

Comments:
HEX$ converts decimal values in the range -32768 to +65535 into a
hexadecimal string expression in the range 0 to FFFF.

Hexadecimal numbers are numbers to the base 16, rather than base 10
(decimal numbers). Appendices B and F in the Tandy GW-BASIC User's
Guide contain more information on hexadecimals and their equivalents.

BASIC rounds number to an integer before evaluating HEX$(nuntber).
See the OCT$ function for octal conversions.

If number is negative, HEX$ uses two's (binary) complement form.

Examples:

v$ = HEX$(nurnber)

10 CLS:INPUT "INPUT DECIMAL NUMBER";X
20 A$ = HEX$@)
30 PRINT X "DECIMAL IS "A$I HEXADECIMAL'

RUN
INPUT DECIMAL NUMBER? 32
32 DECIMAL IS 20 HEXADECIMAL

86

IF Statement

IF Statement

Purpose:
To make a decision regarding program flow based on the result returned
by an expression.

Syntax:
IF e.xpression[,] THENstatemenf(s)[,][ELSE stafenzenf(s) J
IFe.xpression[,] GOTO line number [[,I ELSE sfafetnenf(s)

Comments:
If the result of expression is nonzero (logical true), GW-BASIC executes
the THEN statement or the GOTO line number.

If the result of expression is zero (false), GW-BASIC ignores the THEN
statement or the GOTO line number. The ELSE line number, if present,
is executed. Otherwise, execution continues with the next executable
statement. A comma is allowed before THEN and ELSE.

You can follow THEN and ELSE by either a line number for branching
or one or more statements to be executed.

Always follow GOTO with a line number.

If the statement does not contain the same number of ELSE‘S and
THEN’S, GW-BASIC matches each ELSE with the closest unmatched
THEN. For example:

IF A = B THEN IF B = C THEN PRINT “A=C‘ ELSE PRINT
“A< >C“

Does not print A < > C when A < > B.

If you follow an IF-THEN statement by a line number in the direct mode,
GW-BASIC returns an Undefined line number error, unless a program
had previously entered a statement with the specified line number.

Because IF-THEN-ELSE is all one statement, the ELSE clause cannot
be on a separate line. All three clauses must be on one line.

87

GW-BASIC User's Reference

To Test Equality: When using IF to test equality for a value that is the
result of a floating-point computation, remember that the internal repre-
sentation of the value might not be exact. Therefore, test against the
range over which the accuracy of the value might vary.

For example, to test a computed variable A against the value 1.0, use the
following statement:

IF ABS (A-1.0) < .OE-6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less
than 1.OE-6.

Examples:
The following statement gets record number N, if N is not zero.

200 IF N THEN GET#l,N

In the following example, a test determines whether N is greater than 10
and less than 20. If N is within this range, DB is calculated and execution
branches to Line 300. If N is not within this range, execution continues
with Line 110.

100 IF(Nc20) and (N>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

The next statement causes printed output to go either to the terminal or
the line printer, depending on the value of a variable (IOFLAG). If
IOFLAG is zero, output goes to the line printer; otherwise, output goes
to the terminal.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

88

INKEY$ Variable

Purpose:
To return one character read from the keyboard.

Syntax:

Comments:
If no character is pending in the keyboard buffer, INKEY$ returns a null
string (length zero).

If several characters are pending, GW-BASIC returns only the first. The
string is one or two-characters in length.

BASIC uses two-character strings to return the extended codes
described in Appendix B of the Tandy GW-BASIC User’s Guide. The first
character of a two-character code is zero.

BASIC does not display any characters on the screen, and passes all
characters to the program except codes from the following keys:

v$ = INKEY$

pmq[BREAK]

(CTRLI

JCTRL//ALT]

/ X E E q

I NUM LOCK 1

-11 PRINT SCRN

I PRINT SCRN 1

a9

GW-BASIC User's Reference

Examples:

10
20
30
40

50
60

CLS: PRINT I' PRESS RETURN ''
TIMELIMIT% = 1000
GOSUB 1010
IF TIMEOUT% THEN PRINT "TOO LONG" ELSE PRINT
"GOOD SHOW'
PRINT RESPONSE$
END

1000 REM TIMED INPUT SUBROUTINE
101 0 RESPONSE$ = " "
1020 FOR N%=1 TO TIMELIMIT%
1030 A$=INKEY$:IF LEN(A$) = O THEN 1060
1040 IF ASC(A$) =13 THEN TIMEOUT%=O:RETURN
1050 RESPONSE$ = RESPONSE$ +A$
1060 NEXT N%
1070 TIMEOUT% = 1 :RETURN

When this program is executed, and if you press -1 before 1000
loops are completed, then GOOD SHOW is printed on the screen.
Otherwise, TOO LONG" is printed.

Since an INKEY$ statement scans the keyboard only once, place
INKEY$ statements within loops to provide adequate response times for
the operator.

INP Function

Purpose:
To return the byte read from machine port number.

Syntax:

Comments:
number represents a valid machine port number in the range 0-65535.

The INP function is one way in which a peripheral device can communi-
cate with a GW-BASIC program.

INP is the complementary function to the OUT statement.

Examples:

INP(nurnber)

100 A=INP(56)

Upon execution, variable A contains the value present on port 56. The
number returned is in the range 0-255, decimal.

The equivalent to the above statement in assembly language is:
MOV DX,56
IN AL,DX

91

GW-BASIC User's Reference

INPUT Statement

Purpose:
To prepare the program for input from the terminal during program ex-
ecution.

Syntax:
INPUT[;][prompt string;] list of variubles
INPUT[;][prompt string,] list of variables

Comments:
prompt string is a request for data to be supplied during program execu-
tion.

list of variables contains the variable(s) that stores the date in the prompt
string.

YOU must surround each data item in the prompt string by quotation
marks, followed by a semicolon or comma and the name of the variable to
which it is to be assigned. If you use more than one variable, you must
separate data items with commas.

The data entered is assigned to the variable list. The number of data
items supplied must be the same as the number of variables in the list.

The variable names in the list can be numeric or string variable names
(including subscripted variables). The type of each data item input must
agree with the type specified by the variable name.

The use of too many or too few data items, or the wrong type of values
(for example, numeric instead of string), causes the message ?Redo from
start to be displayed. No assignment of input values is made until an ac-
ceptable response is given.

You can use a comma instead of a semicolon after proinpt strillg to SUP-
press the question mark. For example, the following line prints the
prompt with no question mark:

INPUT "ENTER BIRTHDATE", B$

92

INPUT Statement

BASIC suppresses the carriage return if the prompt string is preceded by
a semicolon. During program execution, data on that line is displayed,
and data from the next PRINT statement is added to the line.

When GW-BASIC encounters an INPUT statement during program ex-
ecution, it halts the program, displays the prompt string, and waits for the
operator to type the requested data. Strings that input to an INPUT
statement need not be surrounded by quotation marks unless they con-
tain commas or leading or trailing blanks.

When you press JENTERI , program execution continues.

INPUT and LINE INPUT statements have built-in PRINT statements.
When GW-BASIC encounters an INPUT statement with a quoted string
during program execution, the quoted string is printed automatically.
(See the PRINT statement.)

The principal difference between the INPUT and LINE INPUT state-
ments is that LINE INPUT accepts special characters (such as commas)
within a string, without requiring quotes; the INPUT statement requires
quotes.

Examples:
The following program finds the square of a number:

10 INPUT X
20 PRINT X "SQUARED IS" X A 2
30 END

RUN
?

If you type a number (5) in response to the question mark the screen dis-
plays:

5 SQUARED IS 25

93

GW-BASIC User's Reference

The following program finds the area of a circle when the radius is
known:

10 PI=3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A=Pl*R"2
40 PRINT "THE AREA OF THE CIRCLE 1S";A
50 PRINT
60 GOT0 20

RUN
WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

Note that Line 20 in the above example makes use of the built-in PRINT
statement contained within INPUT.

94

INPUT# Statement

T# Statement

Purpose:
To read data items from a sequential file and assign them to program
variables.

Syntax:

Comments:

INPUT#file number, variable list

file number is the number used when the file was opened for input.

wariubfe list contains the variable names to assigned to items in the file.

The data items in the file appear in the same manner as they do if you
type data on the keyboard in response to an INPUT statement.

The variable type must match the type specified by the variable name.

With INPUT#, no question mark is printed, as it is with INPUT.

Numeric Values: For numeric values, GW-BASIC ignores leading spaces
and line feeds. It assumes the first character it encounters (not a space or
line feed) is the start of a number. The number terminates on a space,
carriage return, line feed, or comma.

Strings: If GW-BASIC is scanning the sequential data file for a string, it
ignores leading spaces and line feeds.

If the first character is a quotation mark ("), the string consists of all
characters read between the first quotation mark and the second. A
quoted string cannot contain a quotation mark as a character. The
second quotation mark always terminates the string.

If the first character of the string is not a quotation mark, the string ter-
minates on a comma, carriage return, line feed, or after 255 characters
have been read.

If the end of the file is reached when a numeric or string item is being
input, the item is terminated.

INPUT# can also be used with random files.

95

GW-BASIC User's Reference

INPUT$ Function

Purpose:
TO return a string of number characters read from the keyboard or from
fire number.

Syntax:

Comments:

INPUT$(number[,[#] Gle number)]

If you use the keyboard for input, characters do not appear on the screen.
All control characters (except JCTRL)mAK)) pass through. This key
sequence interrupts the execution of the INPUT$ function.

The INPUT$ function is preferred over the INPUT and LINE INPUT
statements for reading communications files because all ASCII charac-
ters can be significant in communications. INPUT is the least desirable
because input stops when a comma or carriage return is seen. LINE
INPUT terminates when a carriage return is seen.

INPUT$ allows all characters read to be assigned to a string. INPUT$
returns number characters from the file number or keyboard.

For more information about communications, refer to Appendix E in the
Tandy GW-BASIC User's Guide.

Examples:
The following example lists the contents of a sequential file in
hexadecimal.

10 OPEN"I", 1 ,"DATA'
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(l ,#l)));
40 GOT0 20
50 PRINT
60 END

INPUT$ Function

In the following example, the program pauses, awaiting a keyboard entry
of either P or S. Line 130 continues to loop back to Line 100 if the input
is other than P or S.

100 PRINT "TYPE P TO PROCEED OR S TO STOPi
I10 X$=INPUT$(I)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

97

GW-BASIC User's Reference

INSTR F ~ ~ c t i o n

Purpose:
To search for the first occurrence of string2 instringl, and return the posi-
tion at which the string is found.

Syntax:

Comments:
Optional offset number sets the position for starting the search. The
default value for number is 1.

number must be in the range 1-255. If number is out of range, an Illegal
Function Call error is returned.

If number equals zero, GW-BASIC returns an Illegal argument in h e
number error.

INSTR returns 0 if:
0 number > LEN(stringZ)
0 stringl is null
0 string2 cannot be found

If string2 is null, INSTR returns number.

stringl and string2 can be string variables, string expressions, or string
literals.

INSTR([num bery]string1pt.ing2)

Examples:

10 STRING1 ="ABCDEBXYZ"
20 STRING2="B"
30 PRINT INSTR(STRING1 ,STRING2);lNSTR(4,STRINGl,

STRING2)
RUN

2 6

98

INS TR Function

The interpreter searches the string "ABCDFBXYZ and finds the first
occurrence of the character B at position 2 in the string. It then starts
another search at position 4 (D) and finds the second match at position 6
(B). The last three characters are ignored, since all conditions set out in
Line 30 were satisfied.

GW-BASIC User’s Reference

INT Function

Purpose:
To truncate an expression to a whole number.

Syntax:

Comments:

INT(number)

Negative numbers return the next lowest number.

The FIX and CINT functions also return integer values.

Examples:

PRINT INT(98.89)
9a

PRINT INT(-12.11)
-1 3

100

IOCTL Statement

t

Purpose:
To allow GW-BASIC to send a "control data" string to a character
device driver any time after the driver has been opened.

Syntax:

Comments:
IOCTL[#]file number, string

file number is the file number open to the device driver.

string is a valid string expression containing characters that control the
device.

IOCTL commands are generally 2 to 3 characters and are followed by an
optional alphanumeric argument. An IOCTL string can be up to 255
bytes long, with commands within the string separated by semicolons.

Examples:
If a user had installed a driver to replace Lptl, and that driver was able to
set page length (the number of lines to print on a page before issuing a
form feed), then the following lines would open the new Lptl driver and
set the page length to 66 lines:

OPEN "LPT1:" FOR OUTPUT AS #1
IOCTL #1 ,"PL66'

The following statements open Lptl with an initial page length of 56 lines:
OPEN "\DEV\LPTl" FOR OUTPUT AS #1
IOCTL #1 ,"PL56'

101

GW-BASIC User’s Reference

Purpose:
TO allow GW-BASIC to read a “control data” string from an open
character device driver.

Syntax:
IOCTL$([#]file number)

Comments:
file number is the file number open to the device.

You generally use the IOCTL$ function to get acknowledgement that an
IOCTL statement succeeded or failed. You can also use it to get device
information, such as device width after an IOCTL statement requests it.

Examples:
10’GW is a possible command
20 ’for get device width
30 OPEN “\DEV\MYLPT’ AS#1
40 IOCTL#l ,“GW’
50 ’Save it in WID
60 WID =VAL(IOCTL$(#l))

102

KEY Statement

KEY S t a t ~ ~ ~ ~ t

Purpose:
To allow you to rapidly enter as many as 15 characters into a program
with one keystroke by redefining GW-BASIC special function keys.

Syntax:
KEY key number, string expression
KEY n,CHR$(hmode) + CHR$(scan co&)
KEY ON
KEY OFF
KEY LIST

Comments:
key number is the number of the key to be redefined. key number can be
in the range 1-10 or 15-20.

string expression is the key assignment. You can use any valid string of 1 to
15 characters. If a string is longer than 15 characters, KEY assigns only
the first 15. Constants must be enclosed in quotation marks.

scan code is the variable defining the key you want to trap. Appendix G in
the Tandy GW-BASIC User’s Guide lists the scan codes for the keyboard
keys.

hexcode is the hexadecimal code assigned to the key as shown below:

Key Hexcode

EXTENDED &H80
CAPS LOCK &H40
NUM LOCK &H20
ALT &H08
CTRL &H04
SHIFT &H01, &H02, &H03
Hexcodes can be added together, such as &H03, which is both shift keys.

103

GW-BASIC User's Reference

Initially, GW-BASIC assigns the function keys the following special func-
tions:

F1 LIST F2 RUNT
F3 LOAD" F4 SAVE"
F5 CONTt F6 ,"LPTl:t
F7 TRONT F8 TROFFT
F9 KEY F10 SCREENOOOt

Note: The T symbol indicates that you do not have to press JENTER/
after each of these keys has been pressed.

You can redefine any number of the function keys, When you press the
key, the data assigned to it is sent to the program.

KEY key number,"stnng eupression"
Assigns the string expression to the specified key.

KEY LIST

Lists all 10 key values on the screen. All 15 characters of each value are
displayed.

KEY ON
Displays the first six characters of the key values on the 25th line of the
screen. When the display width is set at 40, five of the 10 keys are dis-
played. When the width is set at 80, all 10 are displayed.

KEY OFF

Erases the key display from the 25th line, making that line available for
program use. KEY OFF does not disable the function keys.

If the value for key number is not in the range 1-10 or 15-20, an Illegal
function call error occurs. The previous KEY assignment is retained.

Assigning a null string (length 0) disables the key as a function key.

When a function key is redefined, the INKEY$ function returns one
character of the assigned string per invocation. If the function key is dis-
abled, INKEY$ returns a string of two characters: the first is binary zero;
the second is the key scan code.

104

KEY Statement

Examples:

10 KEY 1,11MENUii+CHR$(13)

Displays a menu selected by the operator each time Key 1 is pressed.

10 KEY OFF

Turns off the key display.

10 DATA KEY1 ,KEY2,KEY3,KEY4,KEY5
20 FOR N = l TO 5:READ SOFTKEYS$(N)
30 KEY N,SOFTKEYS$(I)
40 NEXT N
50 KEY ON

Displays new function keys on Line 25 of the screen.

20 KEY 1,""

Disables Function Key 1.

105

GW-BASIC User’s Reference

Purpose:
To initiate and terminate key capture in a GW-BASIC program.

Syntax:
KEY(number)ON
KEY(number) OFF
KEY(number) STOP

Comments:
number is a number from 1 to 20 that indicates which key is to be cap-
tured. Keys are numbered as follows:

Key Number Key

1-10
11 CURSOR UP
12 CURSOR LEFT
13 CURSOR RIGHT
14 CURSOR DOWN
15-20

Function keys F1 through F10

Keys defined in the following format:
KEY nuntber,CHR$(hexco~e) + CHR$(scun code)
(See the KEY statement):

Execute KEY(nuntber) ON to activate keystroke capture from function
keys or cursor control keys. When the KEY(ttzmzber) ON statement is ac-
tivated and enabled, GW-BASIC checks each new statement to see
whether you are pressing the specified key. If so, it performs a GOSUB
to the line number specified in the KEY(number) ON statement. A
KEY(number) ON statement must precede a KEY(nz4mber) statement.

When KEY(number) OFF is executed, no key capture occurs and
keystrokes are not retained. If KEY(nwnber) STOP executes, no key
capture occurs, but if a specified key is pressed, the keystroke is retained
so that keystroke capture occurs when a KEY(rtumber) ON is executed.

For further information on key trapping, see the ON KEY (number)
statement.

106

KILL Command

Purpose:
To delete a file from a diskette.

Syntax:

Comments:
filename can be a program file, sequential file, or random-access data
file.

Note: You must specify the filename's extension when using the
KILL command. Remember that files saved in GW-BASIC are
given the default extension .bas.

If a KILL command is given for a file that is currently open, a File already
open error occurs.

Examples:
The following command deletes the GW-BASIC file Data, and makes the
space available for reallocation to another file:

KILLfilename

200 KILL "DATA1 .BAS'

The following command deletes the GW-BASIC file Raining from the
subdirectory Dogs:

KILL "CATS\DOGS\RAI NING. BAS"

107

GW-BASIC User's Reference

Purpose:
To return the specified number of characters from the leftmost portion of
string.

Syntax:

Comments:
LEFl3(stnng, number)

number must be in the range 0-255. If number is greater than the length of
string, the entire string is returned. If number equals zero, the null string
(length zero) is returned. (See the MID$ and RIGHT$ substring func-
tions.)

Examples:

10 A$ = "BASIC'
20 B$ = LEFT$(A$,3)
30 PRINT B$

Displays the leftmost three characters, BAS.

108

LEN Function

LEN unction

Purpose:
To return the number of characters in string.

Syntax:

Comments:

LEN(string)

Nonprinting characters and blanks are counted.

Examples:
string is any string expression.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)

Displays 16. Note that the comma and space are included in the charac-
ter count of 16.

109

GW-BASIC User's Reference

LET State~ent

Purpose:
To assign the value of an expression to a variable.

Syntax:

Comments:

[LET] variable =expression

The word LET is optional. The equal sign is sufficient.

LET is seldom used. It is included in GW-BASIC to ensure compatibility
with previous versions of GW-BASIC that require it.

When using LET, remember that the type of the variable and the type of
the apressim must match. If they do not, a Type mismatch error occurs.

Examples:
The following examples give downward compatibility with an older sys-
tem. If this downward compatibility is not required, use the second ex-
ample; it requires less memory.

110 LET D=12
120 LET E = 12 2
130 LET F=12^4
140 LETSUM=D+E+F

110 D=12
120 E=12"2
130 F=12"4
140 SUM=D+E+F

110

LINE Statement

LINE State~ent

Purpose:
To draw lines and boxes on the screen.

Syntax:

Comments:

LINE [(xl, yl)]-(x2, y2) [,[attribzite][,b[f][, style]]

xl, y l andxl, y2 specify the end points of a line.

The resolution is determined by the screen mode set with the SCREEN
statement.

attribute specifies the color or intensity of the displayed pixel. (See the
COLOR and PALETTE statements.)

If you use the b option, GW-BASIC draws a box with the pointsxl, y l
andx2, y2 at opposite corners.

If you use the bf option, GW-BASIC draws a filled box (as ,b) and fills in
the interior with points.

Note: If you omit attribute, you must use two commas before b or
bf.

LINE supports the additional argument style. styZe is a 16-bit integer mask
used when putting pixels on the screen. Using such a mask is called Zine
styling.

Each time LINE stores a point on the screen, it uses the current circulat-
ing bit in style. If that bit is 0, LINE does not store the point. If the bit is a
1, a normal store is done. After each point, the next bit position in style is
selected.

Because a 0 bit in style does not clear out the old contents, you might wish
to draw a background line before a styled line, to force a known back-
ground.

Use styk only with normal lines and boxes. It is invalid for filled boxes.

If you use bf with the styk parameter, a Syntax error occurs.

111

GW-BASIC User’s Reference

If you use out-of-range values in the LINE statement, the coordinates
that are out of range are not visible on the screen. This is called line clip-
ping.

In the LINE syntax, the coordinate form STEP (x ofiset, y ofisset) is not
shown. However, you can use this form for any coordinate.

In a LINE statement, if the relative form is used on the second coor-
dinate, that coordinate is relative to the first coordinate.

After a LINE statement, the last referenced point isx2, y2.

The simplest form of LINE is:
LINE -(e, y2)

This example draws a line from the last point referenced to the point
x2,y2 in the foreground color.

Examples:
SCREEN DISP D = LINE (0,100)-(639,100)

Draws a horizontal line across the middle of the screen in high resolution
(Screen Mode 2).

SCREEN DISP D = LINE (160,O)-(160,199)

Draws a vertical line down the center of the screen in medium resolution
(Screen Mode l), or draws a one-quarterhhree-quarter dividing line in
high resolution (Screen Mode 2).

LINE (0,O)-(319,199)

Draws a diagonal line from the upper left corner to the lower right corner
in medium resolution, or draws from the upper left corner to the center
bottom of the screen in high resolution.

LINE (10,10)-(20,20),2

Draws a line in Color 2 if you previously selected medium resolution.
(See the COLOR statement.)

112

LINE Statement

Draws a line in Color 2 if you previously selected medium resolution.
(See the COLOR statement.)

10 CLS
20 LINE -(RND*319,RND*199),RND*4
30 GOTO 20

Draws lines forever, using the random attribute.

10 FOR X=O TO 319

30 NEXT
20 LINE (X,O)-(X,199),X AND 1

Draws an alternating pattern: line on, line off.

10 CLS
20 LI NE -(RN D"639, R ND* 1 99), R N D*2, BF
30 GOTO 20

Draws lines all over the screen.

LINE (O,0)-(100,175),,B

Draws a square in the upper left corner if you specified medium resolu-
tion.

LI NE (0,O) -(1 00,175), , BF

Draws the same square and fills it in.

LINE (O,0)-(100,175),2,BF

Draws the same filled square in magenta if you specified medium resolu-
tion.

LINE (0,0)-(100,35O),,B

Draws the same square if you specified high resolution.

113

GW-BASIC User’s Reference

400 SCREEN 1
41 0 LINE (1 60,100) - (1 60,199) I I I &H CCCC

Draws a dotted line down the center of the screen in medium resolution.

220 SCREEN 2
230 LINE(300,100)-(400,50),,B,&HAAAA

Draws a rectangle with a dotted line in high resolution.

LINE (0,0)-(160,100),3,,&HFFOO

Draws a dotted line from the upper left corner to the center of the screen.

114

LINE INPUTStatement

T t

Purpose:
To input an entire line (up to 255 characters) from the keyboard into a
string variable, ignoring delimiters.

Syntax:

Comments:
prompt string is a string literal, displayed on the screen, that allows user
input during program execution.

A question mark follows the printed prompt only if you include the ques-
tion mark in the prompt string.

string variable accepts all input from the end of the prompt to a carriage
return. Trailing blanks are ignored.

LINE INPUT is almost the same as the INPUT statement, except that it
accepts special characters (such as commas) in operator input during
program execution.

If a line feeacarriage return sequence (this order only) is encountered,
both characters are input and echoed. Data input continues. If LINE
INPUT is immediately followed by a semicolon, pressing -1 does
not move the cursor to the next line.

To terminate a LINE INPUT without entering one or more characters,
press /CTRLI(BREAKI. GW-BASIC returns to command level and
displays 0 k.
Typing CONT causes execution to resume at the LINE INPUT line.

LINE INPUT [;]lprompt string] string variable

115

GW-BASIC User’s Refererice

Examples:

100 LINE INPUT A$

Pauses program execution at Line 100. All keyboard characters that the
user types thereafter are input to string A$ until you press one of the fol-
lowing keys or key sequences:

lENTERj
lCTRLj p1

116

LINE INPUT# Statement

Purpose:
To read an entire line (up to 255 characters), without delimiters, from a
sequential disk file to a string variable.

Syntax:
LINE INPUT#file number, string variable

Comments:
file number is the number used to open the file.

string variable is the variable name to which you want the line assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage
return. If a line feed/carriage return sequence (this order only), is en-
countered, it is input.

LINE INPUT# is especially useful if each line of a data file has been
broken into fields, or if a GW-BASIC program saved in ASCII mode is
being read as data by another program.

117

GW-BASIC User's Reference

Examples:

10 OPEN "O',l ,"INFO'
20 LINE INPUT "CUSTOMER INFORMATION?";C$
30 PRINT#l, C$
40 CLOSE 1
50 OPEN "1",1 ,"INFO"
60 LINE INPUT#l, C$
70 PRINT C$
80 CLOSE 1

Displays:
CUSTOMER INFORMATION?

If you enter:
LINDA JONES 234,4 MEMPHIS

the program continues with:
LINDA JONES 234,4 MEMPHIS

118

LIST Coininand

Purpose:
To list all or part of the program currently in memory to the screen, a line
printer, or a file.

Syntax:
LIST [startrine][-endI~ize][~el.,ice]
LIST [s&tIine-][,device]

Comments:
Use sturthe-endline to specify a range of lines to list. Both numbers must
be valid line numbers in the range 0-65529.

If you omit the line range, the entire program is listed. If you include only
sturtline-, GW-BASIC lists the specified liae and all higher-numbered
lines. If you include only -endline, GW-BASIC lists lines from the begin-
ning of the program to the specified line.

You can substitute a period (.) for either line number to indicate the cur-
rent line.

device specifies a file or device (LPT1: for line printer or SCRN: for
screen) to which to list the lines. If you omit device, the lines are listed to
the screen.

LIST ,"LPTl:" lists the program to the line printer. This statement is
equivalent to LLIST.

You can interrupt any listing by pressing /CTRLIlEXEK.

119

GW-BASIC User’s Reference

Examples:

LIST

Lists all lines in the program.

LIST -20

Lists Lines 1-20.

LIST 10-20

Lists Lines 10-20.

LIST 20-

Lists Line 20 and all higher-numbered lines.

120

LLIST Command
-. _ _ _ _ ~

Purpose:
To list all or part of the program currently in memory to the line printer.

Syntax:
LLIST [startline][-endline]
LLIST [startline-]

Comments:
GW-BASIC always returns to command level after an LLIST is executed.
The line range options for LLIST are the same as for LIST.

Examples:
See the examples for the LIST statement.

121

G W-BASIC User's Reference

Purpose:
To load a file from diskette into memory.

Syntax:
LOADfilename[,r]

Comments:
filename is the filename used to save the file. If you omit the extension,
GW-BASIC assumes the extension .bas.

Before loading the designated file, LOAD closes all open files and
deletes all variables and program lines currently residing in memory.

The r option tells GW-BASIC to run the program after loading it and to
keep open all open data files.

Using the r option also lets you chain several programs (or segments of
the same program). Information can be passed between the programs
using the disk data files.

Examples:

LOAD "STRTRK',R

Loads the file Strtrk.bas and runs it, retaining all open files and variables
from a previous program intact.

122

LOC Function

Purpose:
To return the current position in the file.

Syntax:

Comments:
file number is the file number used to open the file.

When transmitting or receiving a file through a communication port,
LOC returns the number of characters in the input buffer waiting to be
read. The default size for the input buffer is 256 characters, but you can
change the size by using IC: option when loading GW-BASIC.

If the buffer contains more than 255 characters, LOC returns only 255.
As a string is limited to 255 characters, the limit on LOC alleviates the
need to test for the amount of data before reading it into a string. If fewer
than 255 characters remain in the buffer, then LOC returns the actual
count.

With random disk files, LOC returns the number of the record just read
or written with a GET or PUT statement.

With sequential files, LOC returns the number of 128-byte blocks read
from, or written to, the file since it was opened. When the sequential file
is opened for input, GW-BASIC initially reads the first sector of the file.
In this case, the LOC function returns the character 1 before any input is
allowed.

If the file was opened but no disk inputloutput was performed, LOC
returns 0.

Examples:

LOCcfile number)

200 IF LOC(1) >50 THEN STOP

The program stops when 51 records have been read or written since the
file was opened.

123

G W-BASIC User’s Reference

Purpose:
To move the cursor to the specified position on the active screen. Option-
al parameters cause the cursor to blink on and off and define the sfurf and
stop raster lines for the cursor. A raster line is the vertical or horizontal
distance between two adjacent, addressable points on your screen.

Syntax:
LOCATE [row][,[coluntn J[,[cztrsor][,[sturt] [, stop]] I]

Comments:
row is the screen line number, a numeric expression in the range 1-25.

column is the screen column number, a numeric expression in the range
1-40 or 1-80, depending on screen width.

cursor is a Boolean value indicating whether the cursor is visible. Use
zero to turn the cursor off (make it invisible). Use nonzero to turn it on.

s t a ~ is the cursor starting scan line. It is a numeric expression in the range

stop is the cursor stop scan line, a numeric expression in the range 0-31.

You can use LOCATE to,move the cursor to a position at which you want
subsequent PRINT statements to begin displaying characters. Optional-
ly, you can use it to start the cursor blinking on or off or to change the size
of the blinking cursor.

Any values entered outside of these ranges result in Illegal function call
errors. Previous values are retained.

To keep an existing LOCATE parameter the same, omit the parameter
from the statement and replace the parameter with a comma. If the
omitted parameter occurs at the end of the statement, do not type the
comma.

If you include start and exclude stop, the stop value becomes the start
value.

0-31.

124

LOCATE Statement

Examples:

10 LOCATE 1,l

Moves the cursor to the home position in the upper left corner.

20 LOCATE ,,1

Makes the cursor visible without moving it. Notice that the first two
parameters are not used. A comma is inserted for each omitted
parameter.

30 LOCATE ,,,7

Retains the cursor’s position, keeps its visibility the same, and causes the
cursor to appear at the bottom of the character starting and ending on
Scan Line 7.

40 LOCATE 5,1,1,0,7

Moves the cursor to Row 5, Column 1, and turns it on. The cursor covers
an entire character cell, starting at Scan Line 0 and ending at Scan Line
7.

125

GW-BASIC User's Reference

Purpose:
To restrict the access to all or part of a file opened by another process.
This is used in a workgroup (multi-device) environment.

Syntax:

Comments:
number is the number the program originally gave the file when it was
opened.

You can specify either one record (start record) or a range of records
(start record TO end record) to lock. If you specify a range, start record
must be less than or equal to end record.

The range of legal record numbers is 1 to z!~' -1. The limit on record size
is 32767 bytes.

If you omit start record, LOCK assumes Record 1.

If you omit end record, only the specified record is locked.

The following are valid variations of the LOCK statement:

LOCK [#]nzimber [,[start record] [TO end record]]

LOCK #number

LOCK #number, start record

LOCK #number, TO end record

locks the entire fi le
specified by nuniber.

locks only the specified
record.

locks Record 1 through
the specified record.

LOCK #ituntber, start record TO end record locks all records in the
range start record-end
record.

With a random-access file, you can lock the entire open file or a range of
records within the file. Thus, you can deny any other process (that has
opened the file) access to certain records.

126

LOCK Statement

With a sequential access file that is open for input or output, you can lock
only the entire file. If you specify a range of records, LOCK simply dis-
regards the range.

Execute the LOCK statement on a file (or records in a file) before at-
tempting to read or write to a file.

Caution:-Always use the UNLOCK statement to unlock the locked
filehecords before closing the file. Failure to do so can jeopardize future
access to that file in a workgroup environment.

Because you will probably want to lock fileshecords only for a short time,
we recommend using LOCK within short-term paired LOCWUNLOCK
statements.

Examples:
The following sequence demonstrates how to use LOCK and UNLOCK
statements:

LOCK #1,1 TO 4
LOCK#1,5TO8
UNLOCK #1,1 TO 4
UNLOCK #1,5 TO 8

The following example is illegal:
LOCK#l, 1 TO4
LOCK#1,5TO8
UNLOCK#l. 1 TO 8

127

GW-BASIC User's Reference

Purpose:
To return the length (number of bytes) allocated to a file.

Syntax:

Comments:
file number is the number used to open the tile.

With communications files, LOF returns the amount of free space in the
input buffers.

Examples:
The following sequence gets the last record of the random-access file
File.big, and assumes that the file was created with a default record
length of 128 bytes:

LOFfile number)

10 OPEN "R",l ,"FILE.BIG"
20 GET #l,LOF(1)/128

128

LOG Function

Purpose:
To return the natural logarithm of number.

Syntax:

Comments:

LOG(nurnber)

number must be a number greater than zero.

LOG(nurnber) is calculated in single precision, unless the /d switch is
used when GW-BASIC is executed.

Examples:

PRINT LOG(2)

Returns the value .6931471

PRINT LOG(1)

Returns the value 0.

129

GW-BASIC User’s Reference

Purpose:
To return the current position of the line printer print head in the line
printer buffer.

Syntax:

Comments:
LPOS does not necessarily give the physical position of the print head.

number is a dummy argument.

If the printer has less than the 132 characters-per-line capability, it might
issue internal line feeds and not inform the computer internal line printer
buffer. If this happens, the value returned by LPOS might not be correct.
LPOS simply counts the number of printable characters since the last line
feed was issued.

Examples:

LPOS(nuinber)

100 IF LPOS(X) >60 THEN LPRINT CHR$(13)

Causes a carriage return after the 60th character is printed on a line.

130

LPRlNT and LPRlNT USING Statements

ts

Purpose:
To print datu at the line printer. LPRINT USING lets you print the datu
using a specified format.

Syntax:
LPRINT [dutu[,dut a,...]]
LPRINT USING format; data[,dut a,...]

Comments:
data can be strings and/or numeric expressions or values. If you specify
more than one data item in the statement, use the same separators
described in PRINT.

format consists of one or more field specifier(s) or any alphanumeric
character. fomtat must be enclosed in quotation marks.

LPRINT and LPRINT USING are the same as PRINT and PRINT
USING, except that the output goes to the line printer. For more infor-
mation about string and numeric fields and the variables used in them,
see the PRINT and PRINT USING statements.

LPRINT and LPRINT USING assume that your printer allows a maxi-
mum of 80 characters per line. If your printer can print more than 80
characters per line, you can reset the number of characters that you can
print on each line. See the WIDTH statement for more information.

131

GW-BASIC User’s Reference

Purpose:
To move data from memory to a random file buffer, then left-justify it in
preparation for a PUT statement.

Syntax:

Comments:

LSETfield name =data

field name is a string variable defined in a FIELD statement.

Before using =ET, you must use FIELD to set up buffer fields.

T o convert numeric values to string values so that you can left-justify
them, see MU$, MKD$, and MKS$.

If the field is larger than the variable to which it is going, the data is left-
justified and the field is padded with blanks on the right. If the variable is
larger than the field, characters are truncated on the right.

LSET can also be used with a nonfielded string variable to left-justify or
right-justify a string in a given field.

Examples:

1 10 A$ = SPACE$(20)
120 RSET A$ = N$

Right-justifies the string N$ in a 20-character field. This can be valuable
for formatting printed output.

132

MERGE Command

Purpose:
To merge the lines from an ASCII program file into the program already
in memory.

Syntax:

Comments:
filename is a valid string expression containing the filename. If you omit
the filename extension, GW-BASIC assumes the extension .bas.

GW-BASIC searches the disk for the named program file. If it finds the
file, it merges that program's lines with the lines in memory. After the
MERGE command, the merged program resides in memory, and GW-
BASIC returns to the direct mode.

The program being merged must be in ASCII format (saved with the a
option to the SAVE command). If it is not, a Bad file mode error occurs,
and the program in memory remains unchanged.

If any line numbers in the disk file are the same as any in the memory
program, the disk file lines replace the corresponding lines in memory.

Examples:

MERGEfilename

MERGE "SU BRTN"

Merges the file Subrtn.bas with the program currently in memory,
provided Subrtn was previously saved in ASCII format. If any lines in
Subrtn are numbered the same as any lines in memory, the corresponding
memory lines are replaced by the lines from Subrtn.

133

G W-BASIC User's Reference

Purpose:
To return a substring of a string.

Syntax:

Comments:

MID $(string, start[,lengflz])

length is the number of characters to return. It must be in the range 0-255.

start specifies the position in the string from which to get the substring. It
must be in the range 1-255.

If you omit length, or if there are fewer than that number of characters to
the right of the start position, GW-BASIC returns the start character and
all characters to the right of it.

If start is greater than the number of characters in string, MID$ function
returns a null string.

If length equals 0, the MID$ function returns a null string.

If either start or length is out of range, an Illegal function call error is
returned.

For more information and examples, see the LEFT$ and RIGHT$ func-
tions.

Examples:

10 A$ = "GOOD"
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,8,8)

Line 30 combines GOOD (the A$ string) to EVENING (the string of
eight characters that begins at Position 8 in B$), and displays the result
(GOOD EVENING).

134

MID$ Statenient

Purpose:
To replace a portion of oldstring with newsfring.

Syntax:

Comments:
Both start and length are integer expressions.

oldstring and newsfring are string expressions.

The characters in oldstring, beginning at the start position, are replaced
by the characters in newstring.

length is an optional number specifymg the number of characters from
newstring that you want used in the replacement. If you omit length, the
entire newstring is used.

Whether or not you include length, the replacement of characters never
goes beyond the original length of oldstring.

MID$(oldstring, start[,length]) = newsting

Examples:

10 A$ = "KANSAS CITY, MO"
20 MID$(A$,14) ="KS"
30 PRINT A$

Line 20 overwrites MO in the A$ string with KS to display KANSAS
CITY, KS.

135

GW-BASIC User's Reference

Purpose:
To create a subdirectory.

Syntax:

Comments:

MKDIR patlznante

pathname is a string expression not exceeding 63 characters, identifying
the subdirectory to be created.

Examples:

MKDl R "C:SALES\JOHN"

Creates the subdirectory John within the directory named Sales.

136

MH$, M n $, MKD$ Functions

Purpose:
To convert numeric values to string values.

Syntax:
MKI$(integer qression)
MKS$(single-precision eupression)
MKD$(double-precision eupression)

Comments:
MKI$ converts an integer to a two-byte string.

MKS$ converts a single-precision number to a four-byte string.

MKD$ converts a double-precision number to an eight-byte string.

Any numeric value placed in a random file buffer with an LSET or RSET
statement must be converted to a string. (See CVI, CVS, CVD, for the
complementary functions.)

MKI$, MKS$, and MKD$ are different from STR$ because they change
the interpretations of the bytes, not the bytes themselves.

Examples:

WAMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$
1 10 LSET D$ = MKS$(AMT)
120 LSET N$ =A$
130 PUT #1

137

GW-BASIC User's Reference

Purpose:
To rename oldfilename as new filename.

Syntax:

Comments:
old filename must exist, and new firename must not exist. Otherwise, an
error results.

After a NAME command, the file exists on the same disk, in the same
disk location, with the new name.

Examples:

NAME old fileitante AS new filename

NAME "ACCTS" AS "LEDGER"

Renames the file Accts to Ledger. The file's contents and location on the
diskette remain unchanged.

138

NEW Coinmand

Purpose:
To delete the program currently in memory and clear all variables.

Syntax:

Comments:
Enter NEW at the command level to clear memory before entering a new
program. GW-BASIC always returns to command level after a NEW is
executed.

Examples:

NEW

NEW
Clears the current program from memory

980 PRINT "Do You Wish To Quit (Y/N)
990 ANS$ = INKEY$: IF ANS$ = "'THEN 990
1000 IF ANS$ ="Y' THEN NEW
101 0 IF ANS$ = "N" THEN 980
1020 GOT0 990

139

GW-BASIC User’s Reference

Purpose:
To convert a decimal value, iwntber, to an octal value.

Syntax:

Comments:
number is rounded to an integer before OCT$(nwnber) is evaluated.

This statement converts a decimal value in the range -32768 to + 65535 to
an octal string expression.

Octal numbers are numbers to the base 8 rather than base 10 (decimal
numbers).

See the HEX$ function for hexadecimal conversion.

Examples:

OCT$(number)

10 PRINT OCT$(18)

Returns 22, the octal equivalent of decimal 18.

140

ON Statement

ON COM(n), ON KEY(n), ON PEN, ON PLAY(n),
ON STRIG(n), and ON TIMER(n)
Purpose:
To cause program execution to branch to the specified line when the
specified event (such as input from the communications port, use of the
light pen, use of joysticks, or keypress of function or cursor control keys)
occurs.

Syntax:

Comments:

ON event GOSUB line

event can be COM, KEY, PEN, PLAY, STRIG, or TIMER.

line is the number of the program line to which execution branches. You
can disable trapping for events by setting line to 0.

Once you set trap line numbers, you can control event trapping itself with
the following syntax lines:

event ON If an event is on and you specify a nonzero line for the trap,
GW-BASIC checks, before executing each new statement,
to see whether the specified event has occurred. If it has,
GW-BASIC performs a GOSUB to the line specified in the
ON statement.

event OFF If an event is off, no trapping takes place. Even if the event
occurs, GW-BASIC does not remember it.

event STOP If an event is stopped, no trapping can take place. However,
if the event occurs, GW-BASIC remembers the event and
an immediate trap takes place when you execute event ON.

When a trap is made for a particular event, the trap automatically causes
a stop on that event. Thus, recursive traps can never take place.

The return from the trap routine automatically performs an ON unless an
explicit OFF was performed inside the trap routine.

141

GW-BASIC User’s Reference

The occurrence of an error trap automatically disables all trapping.

Trapping takes place only when GW-BASIC is executing a program.

The following are valid values for event:

COM(n) n is the number of the COM channel (1 or 2).

n is a function key number 1-20.
Numbers 1-10 correspond to function keys F1-F10.
Numbers 11-14 correspond to the cursor control
keys as follows:

11 = Cursor Up
12 = Cursor Left
Numbers 15-20 are user-defined keys.

KEY(n)

13 = Cursor Right
14 = Cursor Down

PEN

PLAY(n)

STRIG(n)

TIMER(n)

Because there is only one light pen, you do not
specify a number with PEN.

n is an integer expression in the range 1-32. Values
that are outside this range result in Illegal function
call errors.

n is 0,2,4, or 6 as follows:

0 = Left joystick, Button 1
2 = Right joystick, Button 1
4 = Left joystick, Button 2
6 = Right joystick, Button 2

n is a numeric expression in the range 1-86400. A
value outside this range results in an Illegal function
call error.

142

ON Statement

RETURN line This optional form of RETURN is primarily in-
tended for use with event trapping. Use it to return
from the trapping routine to a specific line in the
GW-BASIC program while still eliminating the
GOSUB entry that the trap created.

Use the nonlocal RETURN with care. Any other
GOSUB, WHILE, or FOR that is active at the
time of the trap remains active.

If the trap comes out of a subroutine, any attempt
to continue loops outside the subroutine results in
a NEXT without FOR error.

Special Notes About Each Type of Trap
COM Trapping: Typically, the COM trap routine reads an entire mes-
sage from the COM port before returning.

We do not recommend that you use the COM trap for single-character
messages. At high baud rates, the overhead of trapping and reading for
each individual character might cause the interrupt buffer for COM to
overflow.

KEY Trapping: Trappable keys 15-20 are defined by the following state-
ment:

KEY(number),CHR$[hex code] + CHR$[scan code]

number is an integer expression in the range 15-20, defining the key to be
trapped.

hex code is the mask for these latched keys:

[CAPS LOCK 1
[NUM LOCK]

/ALTI
jGTRLj
1 LEFT SHIFT 1
I RIGHT SHIFT]

143

GW-BASIC User's Reference

scan code is the number identifying one of the 83 keys to trap. Refer to
Appendix G in the Tandy GW-BASIC User's Guide for key scan codes.

To trap a key that is shifted, control-shifted, or alt-shifted, the ap-
propriate bit in hex code must be set. hex code values are:

Mask Hex Code Indicates that

CAPS LOCK &H40 CAPS LOCK is active
NUM LOCK &H20 NUM LOCK is active
ALT &H08 ALT is pressed
CTRL &H04 CTRL is pressed
LEFT SHIFT &H02 Left SHIFT is pressed
RIGHT S H I R &H01 Right SHIFT is pressed

To trap shifted keys, you can use the value &HO1, &H02, or &H03. The
left and right SHIFT keys are coupled when &H03 is used.

Refer to the KEY(n) statement for more information.

No type of trapping is activated when GW-BASIC is in direct mode.
Function keys resume their standard expansion meanings during input.

A key that causes a trap is not available for examination with the INPUT
or INKEY$ statements, so you must use a different trap routine for each
key that is to have a different function.

If mi-1 is trapped, the printer echo toggle is processed first.
Defining 'mlm as a key trap does not prevent characters from
echoing to the printer if 'iEFRiJlPRTsC1 is pressed.

Function keys 1-14 are predefined. Therefore, setting Scan Code 59-68,
72,75,77, or 80 has no effect.

PLAY(n) Trapping: A PLAY event trap is issued only when playing
background music (PLAYMB..). GW-BASIC does not issue PLAY
event music traps running in MUSIC foreground (default case or
PLAYMF..).

Choose conservative values for n. An O N PLAY(32).. statement will
cause event traps so often that there will be little time to execute the rest
of your program.

The ON PLAY(n) statement causes an event trap when the background
music queue goes from it to n-1 notes.

144

ON Statement

STRIG Trapping: Using STRIG(n) ON activates the interrupt routine
that checks the status of the joysticks. Downstrokes that cause trapping
do not set the STRIG(O), STRIG(2), STRIG(4), or STRIG(6) function.

TIMER(n) Trapping: An ON TIMER(n) event trapping statement is
used with applications needing an internal timer. The trap occurs when ?I

seconds have elapsed since the TIMER ON statement.

Examples:
The first example is a very simple terminal program:

10 REM "ON COM(n)" EXAMPLE
20 OPEN "COM1:9600,0,7' AS #1
30 ON COM(1) GOSUB 80
40 COM(1) ON
50 REM TRANSMIT CHARACTERS FROM KEYBOARD
60 A$=INKEY$:IF A$=""THEN 50
70 PRINT #1 ,A$;:GOTO 50
80 REM DISPLAY RECEIVE CHARACTERS
90 ALL=LOC(l):IF ALL< 1 THEN RETURN
100 B$= INPUT$(ALL,#l):PRINT B$;:RETURN

145

GW-BASIC User's Reference

You can use the following program lines to prevent lCTRLllBREAK] from
stopping execution or to prevent a system reset during a program:

10 KEY 15,CHR$(4) + CHR$(70) REM Trap CTRL-BREAK
20 KEY 16,CHR$(l2) +CHR$(83) REM Trap system reset
30 ON KEY(15) GOSUB 1000
40 ON KEY(16) GOSUB 2000
50 KEY(15) ON
60 KEY(16) ON

1000 PRINT "I'm sorry, I can't let you do that"
1010 RETURN
2000 ATTEMPS = ATTEMPS + 1
201 0 ON ATTEMPS GOT0 21 00,2200,2300,2400,2500
2100 PRINT "Mary had a little 1amb':RETURN
2200 PRINT "Its fleece was white as snow":RETURN
2300 PRINT "And everywhere that Mary went':RETURN
2400 PRINT "The lamb was sure to go":RETURN
2500 KEY(16) OFF REM Pressing the key once more
2510 RETURN REM ends the program ...

The following program displays the time of day on Line 1 every minute.
10 ON TIMER(60) GOSUB 10000
20 TIMER ON

10000 OLDROW = CSRLIN REM Saves the current row
10010 OLDCOL= POS(0) REM Saves the current column
10020 LOCATE 1,l :PRINT TIME$
10030 LOCATE OLDROW,OLDCOL REM Restores row and

column
10040 RETURN

146

ON ERROR GOTO Statement

ON

Purpose:
To enable error trapping and specify the first line of the error-handling
subroutine.

Syntax:

Comments:

ON ERROR GOTO line

When error-trapping is enabled, all errors that GW-BASIC detects,
including direct mode errors such as syntax errors, cause GW-BASIC to
branch to the starting line of the error subroutine.

GW-BASIC branches to the specified line. A RESUME statement
causes GW-BASIC to continue execution after the error.

If line does not exist, an Undefined line error results.

To disable error trapping, execute the following statement:
ON ERROR GOTO 0

Subsequent errors display an error message and halt execution.

An ON ERROR GOTO 0 statement in an error-trapping subroutine
causes GW-BASIC to stop and print the error message for the error that
caused the trap. We recommend that all error-trapping subroutines ex-
ecute an ON ERROR GOTO 0 if an error is encountered for which there
is no recovery action.

If an error occurs during execution of an error-handling subroutine, the
GW-BASIC error message is displayed and execution is terminated.
Error trapping does not occur within the error-handling subroutine.

147

GW-BASIC User’s Reference

Examples:

10 ON ERROR GOT0 1000

1000 A = ERR:B = ERL
1010 PRINT A,B
1020 RESUME NEXT

Line 1010 displays the type and location of the error on the screen. (See
the ERR and ERL variables.)

Line 1020 causes program execution to continue with the line following
the error.

148

ONIGOSUB and ONIGOTO Statements

ON/G

Purpose:
To branch to one of several specified line numbers, in accordance with
the value returned when expression is evaluated.

Syntax:
ON expression GOTO line numbers
ON expression GOSUB line numbers

Comments:
The particular line number branched to depends on the value returned
when the specified expression is evaluated. For example, if the value
returned is 3, the third line number listed is the destination of the branch.

If the value returned is a noninteger, GW-BASIC automatically rounds
the fractional portion to an integer before evaluating the number.

In the ONIGOSUB statement, each line number in the list must be the
first line of a subroutine.

If the value of expression is zero or greater than the number of items in the
list (but less than or equal to 255), GW-BASIC continues with the next
executable statement.

If the value of expression is negative or greater than 255, an IllegAl fUnC-
tion call error occurs.

Examples:

100 IF R <: 1 or R >4 THEN PRINT "ERR0R":END

Ends program execution if the integer value of R is less than 1 or greater
than 4.

200 ON R GOTO 150,300,320,3W

Causes the program to branch to Line 150 if R equals 1, to Line 300 if R
equals 2, to Line 320 if R equals 3, or to Line 390 if R equals 4. Program
execution continues from the line branched to.

149

GW-BASIC User’s Reference

Purpose:
To establish a path for input, output, or both, to a file or device.

Syntax:
OPEN mode,[#]file numberfilename[, record length]

OPEN filename [F 0 R mode][access] AS [#] file number
[LEN =record length]

Comments:
filename is the name of the file.

The first syntax is for sequential files. In this syntax, mode is a string ex-
pression with one of the following characters:

Expression Specifies

0 Sequential output mode

I Sequential input mode

R Random input/output mode

A Position to end of file

The second syntax is for random-access files. In this syntax, the FOR
mode clause determines your initial position in the file and the action to
be taken if the file does not exist. If you omit the FORmode clause, RAN-
DOM is assumed.

OPEN Stateineiit

The valid modes for random-access files are:

INPUT Positions to the beginning of the file. A File not found error
is given if the file does not exist.

OUTPUT Positions to the beginning of the file. If the file does not exist,
GW-BASIC creates it.

APPEND Positions to the end of the file. If the file does not exist,
GW-BASIC creates it.

RANDOM Specifies random input or output mode. With random I/O,
you can read or write records at any position in the file. If
the file is not found, GW-BASIC creates it.

mode must be a string constant. Do not enclose mode in quotation marks.

access can READ, WRITE, or READ WRITE.

file number is a number between 1 and the maximum number of files al-
lowed. The number associates an 1/0 buffer with a disk file or device.
This association exists until you execute a CLOSE or CLOSEfile number
statement.

record length is an integer expression in the range 1-32767 that sets the
record length to be used for random files. If omitted, record length
defaults to 128 bytes.

When you use record length with sequential-access files, the default is 128
bytes and record length cannot exceed the value specified by the /s: switch.

A disk file must be opened before any disk 1/0 operation can be per-
formed on that file. OPEN allocates a buffer for 1/0 to the file and deter-
mines the mode of access used with the buffer.

More than one file can be opened for input or random access at one time
with different file numbers. For example, the following statements are al-
lowed:

OPEN "B:TEMP" FOR INPUT AS #1
OPEN "B:TEMP" FOR INPUT AS #2

151

GW-BASIC User's Reference

However, a file can be opened only once for output or append. For ex-
ample, the following statements are illegal:

OPEN "TEMP" FOR OUTPUT AS #1
OPEN "TEMP" FOR OUTPUT AS #2

Note: Be sure to close all files before removing diskettes from the
disk drives. (See CLOSE and RESET.)

In place of afilenmne, you can specify any of the following devices in the
mode listed:

A:,B:,C: ...
KYBD:
SCRN
LPT1:
LPT2:
LPT3:
COM1:
COM2:

Drives A, B, C, and so on
Keyboard (input only)
Screen (output only)
Line Printer 1 (output only)
Line Printer 2 (output only)
Line Printer 3 (output only)
RS-232 Communications 1 (input, output, or random)
RS-232 Communications 2 (input, output, or random)

Disk files allow all modes.

When you open a disk tile for append, the file pointer is initially posi-
tioned to the end of the file. The record number is set to the last record
(LOF(nun2ber)llB). You can then use PRINT,WRITE, or PUT to ex-
tend the file. The program can position the pointer elsewhere in the file,
using a GET statement. If this is done, the mode changes to RANDOM
and the pointer moves to the record indicated.

Once the pointer is moved from the end of the file, it can be returned to
the end using the statement:

GET #number,, LOF(nunzber)/record length

Any value outside the given ranges results in an Illegal function call error.
The file is not opened.

Attempts to write to a file that is open for input only, result in Bad file
mode errors.

Attempts to write to a file that is opened for output only, result in Bad file
mode errors.

152

OPEN Statement

Opening a file for output or append fails if the file is already open in any
other mode.

Because you can refer to one file by different paths, it is nearly impossible
for GW-BASIC to know that it is the same file simply by looking at the
path. For this reason, GW-BASIC does not let you open for output or ap-
pend two files that have the same name and that exist on the same disk,
even if their paths are different. For example, if Mary is your working
directory, the following statements all refer to the same file:

OPEN "REPORT'
OPEN "\SALES\MARY\REPORT'
OPEN "..\MARY\REPORT'
OPEN "..\..\MARY\REPORT'

Any filename can be open under more than one file number at a time. Be-
cause each file number has a different buffer, several records from the
same file can be kept in memory for quick access. This allows different
modes to be used for different purposes or, for program clarity, different
file numbers to be used for different modes of access.

If you use the LEN =record length option, record length cannot exceed the
record length set by Is: when you loaded GW-BASIC.

In a network environment, the use of the OPEN statement is based on
two different sets of circumstances:
0 When you want to share devices for specific purposes by using the

OPEN statement to restrict file access to specific modes, such as:
INPUT, OUTPUT, APPEND, and the default (RANDOM).

0 When you restrict files by the implementation of an OPEN statement
that allows a process to specify locking to the successfully opened file.
The locking determines a guaranteed exclusivity range on that file by
the process while the OPEN statement is in effect.

153

GW-BASIC User’s Reference

lock can be:

SHARED “deny none” mode. Any process on any
machine can read from or write to the file.
However, the default mode is not allowed by
any of the modes, including SHARED.

LOCK READ

LOCK WRITE

“deny r e a d mode. Only the current process
can read the file. (The system grants LOCK
READ only if no other process already has
LOCK READ access to the file.) Another
process cannot open the file, if it is currently
open in default mode or with a read access.

“deny write” mode. Only the current process
can write to the file. (The system grants
LOCK WRITE access only if no other
process already has LOCK WRITE.) An
attempt by any other process to open the file
is unsuccessful if the file has been opened in
default mode or with a write access by another
process.

LOCK READ WRITE “deny all,” or “exclusive,” mode. Only the
current process can read from or write to the
file. (The system grants LOCK READ
WRITE only if no other process already has
LOCK READ, LOCK WRITE, or LOCK
READ WRITE access to the file.)

default “ c o m p a t i b i 1 it y ” m o d e, w he r e the
compatibility with other GW-BASICs is
understood. No access is specified. The file
can be opened any number of times by a
process, provided that the file is not opened
by another process. Other processes cannot
access the file while it is open under default
access. Therefore, it is functionally exclusive.

If an attempt is made to open a file already accessed by another process,
a Permission Denied error results. For example, this error occurs if a
process tries to use OPEN SHARED with a file on which another
process already has OPEN LOCK READ WRITE.

154

OPEN Statement

If an OPEN statement for a device fails because themode is incompatible
with network-installed sharing access, GW-BASIC generates a Path/File
Access Error. This error occurs, for example, if a process attempts to
open for output on a directory that has been shared for read only.

For more information about using files in a networking environment, see
the LOCK and UNLOCK statements.

Examples:

10 OPEN "1",2,"1NVEN"

Opens File 2, Inven, for sequential input.

155

G W-BASIC User's Reference

OPEN T O M Statement

Purpose:
To allocate a buffer to support RS-232 asynchronous communications
with other computers and peripheral devices in the same manner as
OPEN for disk files.

Syntax:
0 PEN "COM [clt unnel] : [speed][, pan'@][&tu], stop] [,r s] [,cs[n I]
[,ds[n]][,cd[n]][,l~ [, pel" AS [#]file number [LEN =nimber]

Comments:
channel can be 1 or 2 to select the communications channel to be opened.

speed is an integer specifying the transmit and receive rate in bits per
second (BPS). Valid speeds are 75, 110, 150, 300,600, 1200, 1800,2400,
4800, and 9600. The default is 300 bps.

purity is a one-character literal specifying the parity to be used when the
data is transmitted and received. Valid characters are:

S SPACE. Parity bit always transmitted and received as space
(0 bit).

M MARK. Parity bit always transmitted and received as mark
(1 bit).
ODD. Odd transmit parity; odd receive parity checking.

EVEN, Even transmit parity; even receive parity checking.

NONE. No transmit parity. No receive parity checking.

0

E

N

If you omitpurify, GW-BASIC assumes E (EVEN).

datu is an integer specifying the number of transmit and receive data bits.
Valid values are 4,5,6,7, and 8. The default is 7 bits.

Note: Specifying four data bits with no parity is illegal, as is specify-
ing eight data bits with parity.

156

OPEN ”COM Statement

stop is a literal integer expression returning a valid file number. Valid
values for the number of stop bits are 1 or 2. If you omit stop, 75 and 110
bps transmit two stop bits, and all other speeds transmit one stop bit.

file number is a number between 1 and the maximum number of files al-
lowed. A communications device can be opened to only one file number
at a time.

file number is associated with the file as long as the file is open and is used
to refer other COM I/O statements to the file.

Coding errors within the filename string result in Bad file name errors.
No indication is given as to which parameters are in error.

number is the maximum number of bytes that can be read from the com-
munications buffer when using the GET or PUT default of 128 bytes.

A Device timeout error occurs if “data set ready” (DSR) is not detected.

The rs, cs, ds, dc, If, and pe options affect the line signals as follows:

Option Function

RS suppresses RTS (request to send)
CSbI controls CTS (clear to send)
DWI controls DSR (data set ready)
CDbI controls CD (carrier detect)
LF sends a line feed at each return
PE enables parity checking

n is the number of milliseconds to wait (0-65535) for that signal before a
device timeout error occurs. The defaults are: 1000 for cs, 1000 for ds,
and 0 for cd. If you omit n, timeout is set to 0.

See Appendix E in the Taridy GW-BASIC User’s Guide for more informa-
tion about communications.

157

GW-BASIC User's Reference

Examples:

10 OPEN "COM1:" AS 1

Opens File 1 for communication, using all defaults (300 bps, even parity,
seven data bits, and one stop bit).

20 OPEN "COM1:2400" AS #2

Opens File 2 for communication at a rate of 2400 bps with even parity and
seven data bits.

10 OPEN "COM1:1200,N,8'AS #1

Opens File 1 for asynchronous I/O at 1200 bps. No parity is to be
produced or checked.

158

OPTION BASE Statement
~ l _ _ _ _ _ _ _ _ _ _ l _ _ ~ _ _ l l ~ _ l ~

Purpose:
To declare the minimum value for array subscripts.

Syntax:

Comments:
value can be 1 or 0. The default is 0.

If the statement OPTION BASE 1 is executed, the lowest value an array
subscript can have is 1.

OPTION BASE gives an error only if you change the base value. This al-
lows chained programs to have OPTION BASE statements as Iong as
value is not changed from its initial setting.

Note: You must code the OPTION BASE statement before you
can define or use any arrays (using the DIM statement). If YOU try
to change the value after any arrays are in use, an error results.

OPTION BASE value

159

GW-BASIC User’s Reference

OUT en

Purpose:
To send a data byte to a machine outputport.

Syntax:

Comments:
port is an integer in the range 0-65535.

data byte is an integer in the range 0-255.

OUT is complementary to the INP function.

OUTport@ta byte

Examples:

100 OUT 12345,225

Outputs the decimal value 225 to Port 12345. In assembly language, this
is equivalent to:

MOV DX, 12345
MOV AL,255
OUT DX,AL

160

PAINT Statement

PAINT t

Purpose:
To fill in a graphics figure with the selected attribute.

Syntax:

Comments:
The PAINT statement fills an arbitrary graphics figure of the specified
border attribute with the specified paint attribute.

paint attribute can be a numeric formula that specifies a valid color, or it
can be a string formula that specifies tiling, as described in the following
"Paint Tiling" section. If you omitpaint attribute, the standard foreground
attribute (3 or 1) is used. See the COLOR and PALETTE statements for
more information.

If not specified, border attribute defaults to paint attribute. PAINT must
start on a nonborder point. Otherwise, it has no effect.

PAINT can fill any figure, but painting jagged edges or very complex
figures can cause an Out of memory error. The CLEAR statement can
be used to increase the amount of stack space available.

If you specify points beyond the screen's limits, the points are not plotted.
No error occurs.

Paint Tiling: Paint tiling is similar to line styling. Like LINE, PAINT
looks at a tiling mask each time a point is put down on the screen.

Ifpaint attribute is a string formula, then tiling is performed.

The tile mask is always eight bits wide and can be 1-64 bytes long. Each
byte in the tile string masks eight bits along the x-axis when putting down
points. Each byte of the tile string is rotated as required to align along the
y-axis, such that:

tile byte inask =y MOD tile length

wherey is the position of the graphics cursor on the y-axis.

PAINT (x, y)[, paint attribute[, border attribute][, background athibute]]

161

GW-BASIC User’s Reference

tile length is the length, in bytes, of the tile string you define (1-64 bytes).

This is done so that the tile pattern is replicated uniformly over the entire
screen (as if PAINT (O,O).. were used).

x Increases +

I 7 Bit of Tile Byte

q y 8 7 6 5 4 3 2 1

0,O 0 0 0 0 0 0 0 0 TileByte 1
0,l 0 0 0 0 0 0 0 0 TileByte2
0,2 0 0 0 0 0 0 0 TileByte3
0,3 0 0 0 0 0 0 0 0 TileByte4
0,4 0 0 0 0 0 0 0 0 Tile Byte5.

. .

. *

. .
0,63 0 0 0 0 0 0 0 TileByte64

In low resolution graphics (320 x 200), the tile mask is eight bits wide and
can be a maximum of 64 bytes long.

In high resolution graphics (640 x 200), one bit of tile mask equals one
point on the screen. Therefore, GW-BASIC sets each position in the tile
mask with the bit value of 1. You can paint the screen with X’s using the
following statement:

PAINT (320,1OO),CHR$(&H81) + CHR$(&H42) + CHR$(&H24) +
CHR$(&H18) + CHR$(&H18) + CHR$(&H24) + CHR$(&H81)

162

PAINT Statement

This appears on the screen as:

x Increases +.
x,y 8 7 6 5 4 3 2 1

0,o e e
0,1 e e
0,2 e e
0,3 e.
034 e.
0,5 e e
0,6 e e
0,7 e e

CHR$(&H81)
CHR$(&H42)
CHR$(&H24)
CHR$(&H18)
CHR$(&H18)
CHR$(&H24)
CHR$(&H42)
CHR$(&H81)

Tile Byte 1
Tile Byte 2
Tile Byte 3
Tile Byte 4
Tile Byte 5
Tile Byte 6
Tile Byte 7
Tile Byte 8

In medium resolution (Screen Mode l), there are two bits per pixel. (See
the SCREEN statement.) Because of this, each byte of the tile pattern
describes only four pixels. In this case, every two bits of the tile byte
describes one of the four possible colors associated with each of the four
pixels to be put down.

The following chart shows the values for the given colors. Color 0 is the
set background color.
Palette 0 Palette 1 Binary Value

green
red
brown

cyan 01
magenta 10
high-intensity white 11

background attribute specifies the background tile pattern or color byte to
skip when checking for boundary termination. background attribute is a
string formula returning one character. When omitted, it defaults to
CHR$(O).

163

G W-BASIC User’s Reference

Occasionally, you might want to paint tile over an already painted area
that is the same color as two consecutive lines in the tile pattern. PAINT
quits when it encounters two consecutive lines of the same color as the
point being set. (The point is surrounded.) It is not possible to draw alter-
nating blue and red lines on a red background without backgrozatd at-
tribute. PAINT stops as soon as the first red pixel is drawn. By specifying
,red (CHR$(&HAA)) as the background attribute, you can draw the red
line over the red background.

Specifymg more than two consecutive bytes in the tile string that match
the background attribute results in an Illegal function call error.

Examples:

10 CLS
20 SCREEN 1
30 LINE (O,0)-(100,150),2,B
40 PAINT (50,50),1,2
50 LOCATE 20,l

Line 40 fills the box drawn in Line 30 with Color 1.

164

PALETTE, PALETTE USING Stateineiits

P

Purpose:
To change one or more of the colors in the palette.

Syntax:
PALETTE [affribute,color]
PALETTE USING array (in&)

Comments:
The PALETTE statements work only for systems equipped with the an
Enhanced Graphics Adapter (EGA).

A GW-BASIC palette contains a set of colors, with each color specified
by an attribute. Each attribute is paired with a display color. The display
color determines the actual color on the screen. It depends on both the
screen mode setting and the type of monitor.

PALETTE with no arguments sets the palette to a known initial setting.
This setting is the same as the setting when colors are first initialized.

If you specify arguments, color is displayed whenever attribute is specified
in any statement that specifies a color. Any color changes on the screen
occur immediately. Note that when graphics statements use color argu-
ments, they are actually referring to attributes and not actual colors.
PALETTE pairs attributes with actual colors.

For example, assume that the current palette consists of Colors 0, 1, 2,
and 3. The following DRAW statement

DRAW "C3L100"

Selects Attribute 3, and draws a line of 100 pixels using the color as-
sociated with the Attribute 3, in this case, also 3.

165

GW-BASIC User's Reference

If you execute this statement
PALETTE 3,2

Then, the color associated with Attribute 3 is changed to Color 2. All text
or graphics currently displayed using Attribute 3 instantaneously change
to Color 2. All text or graphics subsequently displayed with Attribute 3
will also be displayed in Color 2. The new palette of colors will contain
Colors 0,1,2, and 2.

With the USING option, all entries in the palette can be modified with
PALETTE statement. array is the name of an integer array. index
specifies the index of the first array element in array to use in setting your
palette. Each attribute in the palette is assigned a corresponding color
from this array.

The array must be dimensioned large enough to set all the palette entries
after index. For example, if you are assigning colors to all 16 attributes,
and the index of the first array element given in your PALETTE USING
statement is 5, then array must be dimensioned to hold at least 20 ele-
ments (since the number of elements from 5 to 20, inclusive, is 16):

DIM PAL%(20)

PALETTE USING PAL%(5)

If the color argument in an array entry is -1, the mapping for the as-
sociated attribute is not changed. All other negative numbers are illegal
values for color.

You can use the color argument in the COLOR statement to set the
default text color. (Remember that color arguments in other GW-BASIC
statements are actually what are called attributes in this discussion.) This
color argument specifies the way that text characters appear on the
screen. Under a common initial palette setting, points colored with the
attribute 0 appear as black on the screen. Using the PALETTE state-
ment, you can, for example, change the mapping of attribute 0 from black
to white.

Remember that a PALETTE statement executed without any para-
meters assigns all attributes their default colors.

166

PALETTE, PALETTE USING Statentents

The following table lists attribute and color ranges for various monitor
types and screen modes.

SCREEN Monitor Attribute Color
Mode Attached Adapter Range Range

0 Monochrome MTDA NA
Monochrome EGA 0-1.5,
Color/CGA NA 0-31,
Color/Enhanceda EGA 0-31

1 Color/CGA NA 0-3
Color/Enhanceda EGA 0-3

2 Color/CGA NA 0- 1
Color/Enhanceda EGA 0-1

7 Color/Enhanceda EGA 0-15
8 Color/Enhanceda EGA 0-15
9 Enhanceda E G A ~ 0-3

Enhanceda E G A ~ 0-15
10 Monochrome EGA 0-3

a EGM monitor
With 64K of EGA memoly.
With greater than 64K of EGA memoly.
Attributes 16-31 refer to blinking versions of Colors 0-15.

NA = Not Applicable.
CGA = Color Graphics Adapter.
EGA = Enhanced Graphics Adapter.
MTPA = Monochrome Text Display Adapter.

NA
0-2

0- 15

0-15

0-15
0-15
0-15
0-15
0-63
0-8

SCREEN Color and Attribute Ranges

See the SCREEN statement for the colors available for various SCREEN
mode, monitor, and graphics adapter combinations.

167

GW-BASIC User’s Reference

Examples:

PALETTE 0,2

Changes all points colored with Attribute 0 to Color 2.

PALETTE 0,-1

Does not modify the palette.

PALETTE USING A%(O)

Changes each palette entry. Since the array is initialized to zero when it is
first declared, all attributes are now mapped to display Color 0. The
screen will now appear as one color. However, it will still be possible to
execute GW-BASIC statements.

PALETTE

Sets each palette entry to its appropriate initial display color. Actual ini-
tial colors depend on your screen/hardware configuration.

168

PCOPY Command

PC

Purpose:
To copy one screen page to another in all screen modes.

Syntax:

Comments:

PCOPY source page, target page

source page is an integer expression in the range 0-n, where n is deter-
mined by the current video memory size and the size per page for the cur-
rent screen mode.

target page has the same requirements as sourcepage.

For more information, see CLEAR and SCREEN.

Examples:

PCOPY 1,2

Copies the contents of Page 1 to Page 2.

169

GW-BASIC User’s Reference

PEEK ~ u n c t ~ o n

Purpose:
To read a byte from a specified niemory location.

Syntax:

Comments:

PEEK(memory locution)

The value returned is an integer in the range 0-255.

memory location musk be in the range 0-65535.

The DEF SEG statement last executed determines the absolute address
that is peeked into.

PEEK is the complementary function of the POKE statement.

Examples:

10 A = PEEK(&HSAOO)

Causes GW-BASIC to return the value of the byte stored in the assigned
hex offset memory location 5AOO (23040 decimal) and store it in the vari-
able A.

170

PEN Function

PEN F u ~ c t i ~

Purpose:
To read the light pen’s coordinates.

Syntax:

Comments:
You must execute a PEN ON statment before executing the PEN func-
tion. If you do not, an Illegal function call error occurs.

x is the numeric variable receiving the PEN value.

number is an integer in the range 0-9 that tells GW-BASIC what to
return. Values 0-5 return x, y coordinates corresponding to the current
screen mode. Values 6-9 return the character row or column position.

niiitiber can be:

0

1

x = P(nurnber)

Returns -1 if the pen button has been pressed since the last
poll. Returns 0 if not.

Returns thex-coordinate (horizontal) at which the pen was last
activated. The range is 0-319 for medium resolution and 0-639
for high resolution.

Returns the y-coordinate (vertical) at which the pen was last
activated. The range is 0-199.

Returns -1 if the pen button is being pressed. Returns 0 if the
button is up.

Returns the last known valid x-coordinate. The range is 0-319
for medium resolution and 0-639 for high resolution.

Returns the last known valid y-coordinate. The range is 0-199.
Returns the character row position at which the pen was last
activated. The range is 1-24.

Returns the character column position at which the pen was
last activated. The range is 1-40 or 1-80, depending on the
screen width.

2

3

4

5

6

7

171

GW-BASIC User’s Reference

8 Returns the last known valid character row. The range is 1-24.

9 Returns the last known valid character column position. The
range is 1-40 or 1-80, depending on the screen width.

When the pen is in the border area of the screen, the values returned are
inaccurate.

Examples:

50 PEN ON
60 FOR I = 1 to 500
70 X=PEN(O):Xl =PEN(3)
80 Print X,X1
90 NEXT
100 PEN OFF

Returns values indicating whether the pen button has been pressed since
the last poll and whether it is currently being pressed.

172

PEN Statement

PE t

Purpose:
To read the light pen.

Syntax:
PEN ON
PEN OFF
PEN STOP

Comments:
PEN ON enables the PEN read function.

PEN OFF disables the PEN read function.

PEN STOP disables trapping. It remembers the event so that immediate
trapping occurs when PEN ON is executed.

To speed execution, turn off the pen for programs that don’t use it.

173

GW-BASIC User’s Reference

Purpose:
To play the music specified by string.

Syntax:

Comments:
string is a string expression (surrounded by quotation marks) consisting
of one or more of the following music commands:

A-G The letters A-G are musical notes. An optional number sign
(#) or plus sign (+) following a letter produces a sharp. A
minus sign produces a flat. You can only specify sharp or flat
notes that correspond to the black keys on a piano. The letters
A, C, D, F, and G can be followed by a plus sign because they
are followed by black keys on a piano. The letters A, B, D, E,
and G can be followed by a minus sign because they are
preceded by black keys on a piano.

Sets the length of the notes that follow. n can be in the range
1-64. Some common lengths are:

PLAY string

L(n)

1 indicates a whole note.
2 indicates a half note.
4 indicates a quarter note.
8 indicates an eigth note.
16 indicates a sixteenth note.

To change the length for only one note, place n immediately
after the note, omitting the L. For example, A16 is equivalent
to L16A.

Sets the current octave (0-6). Each octave starts with C and
ends with B. Octave 3 starts with middle C. The default is
Octave 4.

Plays the note n in the next higher octave.

O(n)

Pn

174

PLAY Statement

MF

MB

MN

ML
MS

Plays note n. This option provides an alternative to specifying
the letter and octave of the note. Here you specify the note by
number (1-84). (There are 84 notes in the seven octaves.)
Specifying 0 causes a rest.

Causes a pause. n can be in the range 1-64. It has the same
meaning as n with the L option.
Tempo. This option sets the number of quarter notes in a
minute. n can be in the range 32-255. The default is 120, a
moderate tempo.

Plays the note as a dotted note. GW-BASIC plays the note 3/2
as long as the period determined by L (length) times T
(tempo). If you use multiple periods after a note, the playing
time is scaled accordingly. For example, A with one period
(A.) causes the note A to play one-and-a-half times the playing
time determined byL (length of the note) times T (the tempo).
Two periods placed after A (A..) cause the note to play 9/4
times as long. An Awith three periods (A ...) plays 27/8 as long.

Periods can also be used after a P to increase the length of the
pause as described above.

Music foreground. GW-BASIC runs the PLAY and SOUND
statements in the foreground. This means that each note or
sound starts only after the previous note or sound finishes. If
you omit MF and MB, GW-BASIC assumes MF.

Music background. GW-BASIC runs the PLAY and SOUND
statements in the background. This means that each note or
sound is placed in a buffer, allowing the GW-BASIC program
to continue execution while music plays in the background. As
many as 32 notes and/or rests can play in the background at
one time.

Music normal. Each note plays seven-eighths of the duration
set by L (length).

Music legato. Each note plays the full duration set by L.
Music staccato. Each note plays three-quarters of the duration
set by L.

175

G W-BASIC User's Reference

Xstring; Executes a substring, where string is a variable assigned to a
string of PLAY commands. The X command lets you execute
a second substring from a string, much like GOSUB. You can
have one string execute another, which executes a third, and
so on. string is a string variable in your program that contains
the substring you want to execute. string can contain an X
command to execute another substring. The semicolon after
the string name is required.

Because of the slow clock interrupt rate, some notes might
not play at higher tempos, for example, 1.64 at T255. These
notehemp0 combinations must be determined through ex-
perimentation.

A greater-than symbol preceding the note n plays the note in
the next higher octave.

A less-than symbol preceding the note n plays the note in the
next lower octave.

> n

< n

Note: Numeric arguments follow the same syntax described under
the DRAW statement.

n as an argument can be a constant, or it can be a variable with an equal
sign (= vuriuble) in front of it. A semicolon is required after the variable
and also after the variable in Xstring.

Examples:

10 PLAY "C4F .C8F8.C16F8.G16A2F2"
20 INPUT "CAN YOU NAME THAT TUNE ";A$
40 IF A$ = "THE EYES OF TEXAS' THEN GOT0 50 ELSE PRINT

"TRY AGAIN":GOTO 10
50 PRINT "THAT'S RIGHT!"

176

PLAY Function

PLAY ~ u n ~ ~ i o

Purpose:
To return the number of notes currently in the background music queue.

Syntax:
PLAY(number)

Comments:
number is a dummy argument. It can be any value.

The PLAY function returns 0 when in music foreground mode.

The maximum number of notes returned is 32.

Examples:

10 ' when 4 notes are left in
20 ' queue play another tune
30 PLAY "MBABCDABCDABCD"
40 IF PLAY (0) = 4 THEN 200

200 PLAY "MBCDEFCDEF'

177

GW-BASIC User’s Reference

Purpose:
To return the physical or world coordinate for a specified coordinate.

Syntax:

Comments:

number = PMAP (eqression, action)

This function is valid for graphics modes only.

number is the physical coordinate of the point that is to be mapped.

apression is an x- or y-coordinate represented by a numeric variable or
expression. If experssioiz is a physical coordinate, it must be within the
limits of the screen. If expression is a world coordinate, it can be any
single-precision floating point value.

action is one of the following:

0

1

2

3

maps logical expressions to physical x
maps logical expressions to physical y
maps physical expressions to logical x

maps physical expressions to logical y
Use PMAP with WINDOW and VIEW to translate coordinates.

178

POINT Function

Purpose:
To return the color or attribute value of a point on the screen, or to return
the current physical or world (logical) coordinates.

Syntax:
P O I W ~ , Y)
POINT(acti0n)

Comments:
POINT (x, y) lets you examine the color or attribute value of pointx, y.

x is the horizontal coordinate of the point. y is the vertical coordinate.

If you specify a point that is out of range, GW-BASIC returns a -1.

To retrieve the current graphics coordinates, specify onlyx ory.

See the COLOR and PALETTE statements for valid color and attribute
values.

POINT (action) lets you return the current physical or world (logical)
coordinates. action is one of the following:

0 Returns the current physical x-coordinate (horizontal).
1 Returns the current physical y-coordinate (vertical).

2 Returns the current world x-coordinate if WINDOW is active.
Otherwise, returns the current physical x-coordinate, as in 0 above.

3 Returns the current world y-coordinate if WINDOW is active.
Otherwise, returns the current physical y-coordinate, as in 1 above.

179

GW-BASIC User’s Reference

Examples:

10 SCREEN 1
20FORC=OTO3
30 PSET (10,1O),C
40 IF POINT(10,lO) < >C THEN PRINT “BROKEN BASIC!”
50 NEXT C

The following inverts the current state of a point:
10 SCREEN 2
20 IF POINT(I,I) c >O THEN PRESET(I,I) ELSE PSET(I,I)

The following also inverts a point.
20 PSET (l,l),1-POlNT(l,l)

180

POKE Statement

POKE Statement

Purpose:

Syntax:

Comments:
Both memory location and data byte must be integers.

memory location is the offset address of the memory location to be poked.
The DEF SEG statement last executed determines the address. GW-
BASIC does not check any offsets that are specified. memory location
must be in the range 0-65535.

data byte must be in the range 0-255.

POKE is the complementary function of PEEK. The argument to PEEK
is an address from which a byte is to be read.

POKE and PEEK can increase data storage efficiency and help in load-
ing assembly language subroutines and passing arguments and results to
and from assembly language subroutines.

Examples:

To write (poke) data byte into memory location.

POKE memory location, data byte

20 POKE &H5AOO,&HFF

Places the decimal value 255 (&HFF) into the hex offset location (23040
decimal). See the PEEK function example.

181

GW-BASIC User’s Reference

Purpose:
To return the current column position of the cursor.

Syntax:

Comments:
The leftmost position is 1.

nuntber is a dummy argument.

Examples:

POS(number)

10 CLS
20 WIDTH 80
30 A$ = INKEY$:IF A$ =““THEN GOTO 30 ELSE PRINT A$;
40 IF POS(X) > 10 THEN PRINT CHR$(13);
50 GOTO 30

Causes a carriage return after the tenth character is printed on each line
of the screen.

182

PSET Statement

PSET Statement

Purpose:
To display (PSET) a point at a specified location in graphics mode. To
clear a point, see PRESET.

Syntax:

Comments:

PSET [STEP] (x, y)[,color]

x is the horizontal coordinate of the p0int.y is the vertical coordinate.

color is the color of the point.

Specify absolute coordinates, or use the STEP option to specify relative
coordinates. STEP indicates that xand y are offsets relative to the last
point referenced. For example:

STEP(10,lO)

Coordinate values can be beyond the edge of the screen. However, values
outside the integer range -32768 to 32767 cause an Overflow error.

The upper left corner is always (0,O). The lower left corner is (0,199) in
both high and medium resolution.

See the COLOR and PALETTE statements for more information.

If color is greater than 3, an Illegal function call error is returned.

183

GW-BASIC User’s Reference

Examples:

10 CLS
20 SCREEN 1
30 FOR I=OTO 100
40 PSET (1 , l)
50 NEXT
60 LOCATE 14,l

Draws a diagonal line from (0,O) to (100,100).

40FOR1=100TOOSTEP-1
50 PSET(I,I),O
60 NEXT I

Clears out the line by setting each point to 0.

\
184

PRINT Statement

Purpose:
Prints numeric or string data on the display.

Syntax:

Comments:
You can substitute a question mark for the word PRINT when using the
GW-BASIC program editor.

data is any numeric or string constant or variable. If you omit data, GW-
BASIC prints a blank line. If you specify more than one data item in the
statement, separate the items with commas, semicolons, or spaces. String
constants must be enclosed in quotation marks.

For more information about strings, see the STRING$ function.

Print Positions: GW-BASIC divides each line into 14 print zones of 14
positions each. The position of each data item is determined by the
punctuation preceding it:

PRINT data[,data, ...I

Separator Print Position

f Immediately after last data item

Beginning of next tab zone
space(s) Immediately after data item
9

If you place a comma, a semicolon, or an SPC or TAB function following
the last data item, the next PRINT statement begins printing on the same
line, accordingly spaced. If you do not include such trailing punctuation
or an SPC or TAB function, GW-BASIC places the cursor at the begin-
ning of the next line.

If GW-BASIC tries to print a string longer than can fit on the current
line, it moves to the next line and prints the string. If you print exactly 40
or 80 characters (depending on the screen width set by the WIDTH state-
ment), two lines are skipped unless the PRINT statement ends in with a
semicolon.

185

G W-BASIC User's Reference

GW-BASIC prints all numbers with a trailing blank and all positive num-
bers with a leading blank. Negative numbers are preceded by a minus (-)
sign. Single-precision numbers are represented with seven or fewer digits
in a fmed-point or integer format.

See the LPRINT and LPRINT USING statements for information on
sending data to be printed on a printer.

Examples:

10 X$= STRING$(10,45)
20 PRINT X$"MONTHLY REPORT' X$

Displays:
---_------ MONTHLY REPORT----------

The value 45 is the decimal equivalent of the ASCII symbol for the minus
sign (-1.

PRINT USING Statement

INT U state me^^

Purpose:
To print datu on the screen, using a specified fonnat.

Syntax:

Comments:
format consists of one or more field specifier(s) or any alphanumeric
character.fonnut must be enclosed in quotation marks.

datu can be string and/or numeric value(s). If you specify more than one
data item in the statement, use the same separators described in PRINT.

Specifiers for String Fields
I prints only the first charcter in the string.

\spaces\ prints 2 + n characters, where n is the number of spaces
between the slashes. For example, if you type the backslashes
without any spaces, GW-BASIC prints two characters; with
one space, GW-BASIC prints three characters. If the string is
longer than the field, the extra characters are ignored. If the
field is longer than the string, the string is left-justified in the
field and padded with spaces on the right.

10 A$ = "LOOK':B$ = "OUT'
30 PRINT USING "!";A$;B$
40 PRINT USING"\ \";A$;B$
50 PRINT USING"\ \";A$;B$;"!!"

PRINT USING fomut~utu[~uta , .. .]

Displays:

LOOKOUT
LOOK OUT!!

187

GW-BASIC User's Reference

& Specifies a variable length string field. When the field is
specified with &, the string is output exactly as input.

10 A$ = "LOOK': B$ = "OUT1
20 PRINT USING "!";A$
30 PRINT USING "&";B$

Displays:

LOUT

Specifiers for Numeric Fields: You can use the following special charac-
ters to format the numeric field:

Use number signs to indicate the number of digit positions you
want to be printed. GW-BASIC prints one digit for each
number sign. It rounds numbers as necessary.
GW-BASIC fills as many digit positions as you indicate. If the
number to be printed has fewer digits than specified in the
format, the number is right-justified (preceded by spaces) in
the field.

You can insert a decimal point at any position in the field. If
the format string specifies that a digit is to precede the
decimal point, GW-BASIC always prints that digit (0, if
necessary).

PRINT USING "##. ##"; .78

GW-BASIC prints: 0.78

PRINT US1 NG "###.##";987.654

GW-BASIC prints: 987.65

PRINT USING "##.##" ;10.2,5.3,66.78!3,.234

GW-BASIC prints: 10.20 5.30 66.79 0.23

In the last example, three spaces are inserted at the end of the
format string to separate the printed values on the line.

188

PRINT USING Statement

+ A plus sign typed at the beginning or end of the format string
causes GW-BASIC to print the sign (plus or minus) of the
number.

PRINT USING" + ##.##Ii;-68.95,2.4,55.6,-9

GW-BASIC prints: -68.95 + 2.40 + 55.60 -0.90
A plus sign typed at the end of the format string causes
GW-BASIC to print a negative sign following negative
numbers.

PRINT USING"##.##-";-68.95,22.449,-7.01

GW-BASIC prints: 68.95 22.45 7.01 -
** Two asterisks typed at the beginning of the format string cause

GW-BASIC to fill leading spaces in the numeric field with
asterisks. The two asterisks count as digit positions.

PRINT US1 NG 'I** #. #"; 1 2.39, -0.9,765.1

GW-BASIC prints: *12.4* -09765.1

A double dollar sign at the beginning of the format string
causes BASIC to print a dollar sign to the immediate left of
the number. The $$ specifies two more digit positions, one of
which is the dollar sign. The exponential format cannot be used
with $$. Negative numbers can be used only if the minus sign
trails to the right.

GW-BASIC prints: $456.78

The **$ at the beginning of a format string combines the
effects of ** and $$. Leading spaces are filled with asterisks,
and a dollar sign is printed before the number. **$ specifies
three more digit positions, one of which is the dollar sign.

$$

PRINT US1 NG 'I$$###. ##";456.78

**$

PRINT USING "**$##.##";2.34
GW-BASIC prints: ***$2.34

189

GW-BASIC User's Reference

7 A comma to the left of the decimal point in a formatting
string causes GW-BASIC to print a comma to the left of
every third digit left of the decimal point. A comma at the
end of the format string prints as part of the string.

PRINT USING "####.##";1234.5

GW-BASIC prints: 1234.50

Four carets placed after the digit position characters specify
exponential format. The four carets allow space for
GW-BASIC to print E +nn (indicating exponential format).
You can specify any decimal point position. The significant
digits are left-justified, and the exponent is adjusted. Unless
you specify a leading plus sign (or a trailing plus sign or minus
sign), GW-BASIC uses one digit position to the left of the
decimal point to print a space or a minus sign.

A A A A

PRINT USING 'I##.## A A A A 'I. ,234.56

GW-BASIC prints: 2.35E +02

PRINT USING ".#### A A A ;888888

GW-BASIC prints: .8889E + 06

PRINT USING 'I+.##,, A A A". ,123

GW-BASIC prints: + .12E + 03

Note that the comma is not used as a delimiter with the ex-
ponential format.

An underscore in the format string causes GW-BASIC to
output the next character as a literal character. If you want a
literal underscore, use ''-" in the string.

-

PRINT USING '1_!##.##-!";12.34

GW-BASIC prints: ! 12.34!

PRINT USING Statement

If the number to be printed is larger than the specified
numeric field, GW-BASIC prints a percent sign (%) in front
of the number. If rounding causes the number to exceed the
field, a percent sign is printed in front of the rounded number.
For example:

PRINT USING "##.##";11 1.22

GW-BASIC prints: %111.22

PRINT USING ".##"';.999

GW-BASIC prints: %1 .OO

If the number of digits specified exceeds 24, an Illegal func-
tion call error results.

191

G W-BASIC User's Reference

RINT# and PRINT# USING stat^^^

Purpose:
To write data to a sequential disk file.

Syntax:

Comments:
fire number is the number used when the file was opened for output.

format consists of the formatting characters described in the PRINT
USING statement.

data consists of the numeric and/or string expressions to be written to the
tile.

Double quotation marks are used as delimiters for numeric and/or string
expressions. The first double quotation mark opens the line for input.
The second double quotation mark closes it.

To print data as input, enclose it in quotation marks. If you omit the
quotation marks, GW-BASIC prints the value assigned to the expression.
If no value is assigned, GW-BASIC assumes 3. The quotation marks do
not appear on the screen. For example:

PRINT#jile number, [USING fonnat;] data [, d a t ~ .. .]

10 PRINT#l ,A

Prints 0.

10 A = 2 6
20 PRINT#l ,A

Prints 6.

10 A = 2 6
20 PRINT#l ,"A1

Prints A.

192

PRINT# and PRINT# USING Statements

If double quotation marks are required in a string, use CHR$(34) (the
ASCII character for quotation marks). For example:

100 PRINT#l ,"He said,"Hello", I think1

Prints He said, 0, I think because GW-BASIC assigns the value 0 the
variable "Hello."

100 PRINT#l, "He said, "CHR$(34)
"Hello,"CHR$(34) I' I think."

Prints He said, "Hello," I think.

If a string contains commas, semicolons, or significant leading blanks,
enclose the string in quotation marks. The following example inputs
"CAMERA" to A$ and "AUTOMATIC 93604-1" to B$:

10 A$="CAMERA,AUTOMATIC":B$ = "93604-1"
20 PRINT#l ,A$;B
30 INPUT#l ,A$,B$

To separate these strings properly, write double quotation marks, using
CHR$(34). For example:

40 PRINT#l ,CHR$(34);A$;CHR$(34);CHR$(34);B$; CHR$(34)

The PRINT# statement can be used with the USING option to control
the format of the disk file. For example:

"CAM ERA, AUTOMATI C""93604- 1 "

PRINT#l ,USING"$$###.##.";J;K;L

PRINT# does not compress data on the diskette. It writes it to the disk-
ette exactly as it would write it to the screen. For this reason, be sure to
delimit the data on the diskette so that it is input correctly from the disk-
ette.

Use semicolons as shown to separate numeric data items:
PRINT#l ,A;B;C;X;Y;Z

If you use commas as delimiters between strings, the extra blanks inserted
between print fields are also written to the diskette. Commas have no ef-
fect, however, if used with the exponential format.

193

GW-BASIC User's Reference

Use explicit delimiters, such as semicolons, to separate string data items
so that they are formatted correctly on the diskette. For example, avoid

10 A$ = "CAMERA":B$ = "93604-1 "
20 PRINT#l ,A$,%

The preceding program lines do not input the strings separately, SO they
yield the diskette image of:

CAMERA93604- 1

To correct the problem, use:
20 PRINT#l ,A$;",";B$

The new line gives a diskette image of:
CAMERA,93604-1

Which can be read back into two string variables.

194

PRESET Statement

t

Purpose:
To clear a point at a specified location in graphics mode. To set a point,
see PSET.

Syntax:

Comments:
x is the horizontal coordinate of the point. y is the vertical coordinate.

color is the color of the point.

Specify absolute coordinates, or use the STEP option to specify relative
coordinates. STEP indicates that xand y are offsets relative to the last
point referenced. For example:

PRESET [STEP] (x, y)[,color]

STEP(10,lO)

Coordinate values can be beyond the edge of the screen. However, values
outside the integer range -32768 to 32767 cause an Overflow error.

The upper left corner is always (0,O). The lower left corner is (0,199) in
both high and medium resolution.

See the COLOR and PALETTE statements for more information.

If color is greater than 3, an Illegal function call error is returned.

195

GW-BASIC User's Reference

PUT Statement (Files)

Purpose:
To write a record from a random buffer to a random disk file.

Syntax:

Comments:
fire number is the number used to open the file.

record number specifies the record to write. If you omit it, GW-BASIC
uses the next available record number (after the last PUT). The largest
possiblerecor~nuntber is 2 32 -1. This allows large files with short records.
The smallest possible record number is 1.

You can use the PRINT#, PRINT# USING, LSET, RSET, or WRITE#
statements to put characters in the random file buffer before using a PUT
statement.

In the case of WRITE#, GW-BASIC pads the buffer with spaces up to a
carriage return.

Any attempt to read or write past the end of the buffer causes a Field
overflow error.

PUT can be used for communications files. Here, record number is the
number of bytes written to the file. record number must be less than or
equal to length of the buffer set in OPEN "COM(n).

PUT[#lfile nuntbeflpcord nuntber]

1%

PUT Statement (Graphics)

Purpose:
To transfer an image stored in an array to the screen.

Syntax:

Comments:
The -GET and PUT graphics statements make possible animation and
high-speed object motion in graphics modes. GET transfers the screen
image described by specified points of the rectangle into the array. PUT
transfers the image stored in the array onto the screen.

x andy are the coordinates of the upper left corner of the image to be
transferred. An Illegal function call error results if the image to be trans-
ferred is too large to fit onto the screen.

action sets the type of interaction between the transferred image and the
image already on the screen. It can be PSET, PRESET, AND, OR, or
XOR. If you omit action, GW-BASIC assumes XOR.
0 PSET transfers the data to the screen exactly as it was stored in the

0 PRESET produces an inverse image (black on white) on the screen.
0 AND transfers the image over an existing image. The result is a logi-

cal AND of the array and the image on the screen. If no image exists
on the screen, AND does not transfer the array image.

0 OR superimposes the image on the existing image. The result is a logi-
cal OR of the array and the image on the screen.

0 XOR is especially useful for animation. It causes the points on the
screen to be inverted where a point exists in the array image. This be-
havior is exactly like that of the cursor. When you put an image against
a complex background twice, the background is restored unchanged.
Thus, you can move an object without obliterating the background.

For more information about effects within the different modes, see the
COLOR, PALETTE, and SCREEN statements.

PUT& y), amy[, action]

array.

197

GW-BASIC User’s Reference

Animation of an object is usually performed as follows:

1. Put the object(s) on the screen.

2. Recalculate the new position of the object(s).

3. Put the object(s) on the screen a second time at the old location(s) to
remove the old image(s).

4. Repeat Step 1, putting the object(s) at the new location(s).

Animation performed in the preceeding manner leaves the background
unchanged. You can cut down flicker by minimizing the time between
Steps 4 and 1 and by ensuring enough time between Steps 1 and 3. If YOU
are animating more than one object, process every object at the same
time, one step at a time.

If preserving the background is not important, you can use PSET instead
of XOR as the action.

When you first get the image, leave a border around it as large as or
larger than the maximum distance the object will move. When you move
the object, the border effectively erases any points. This method might be
faster than the XOR method described above because only one PUT is
required to move an object. However, the image to be put must be larger
than the existing image.

198

PUT Statement (Graphics)

Examples:

10 CLS:SCREEN 1
20 PSET (130,120)
30 DRAW "U25;E7;R20;D32;L6;U12;L14'
40 DRAW "D12;L6':PSET(137,102)
50 DRAW "U4;E4;R8;D8;L12'
60 PSET (137,88)
70 DRAW "E4;R20;D32;G4":PAINT (131,119)
80 DIM A (500)
90 GET (1 25,130)-(170,80) ,A
100 FOR I = 1 TO 1000:NEXT I
110 PUT (20,20),A,PSET
120 FOR I = 1 TO 1000:NEXT I

140 FOR I = 1 TO 1000:NEXT I
150 PUT (220,13O),A,PRESET

130 GET (125,130)-(170,80),A

GW-BASIC User’s Reference

at t

Purpose:
To reseed the random number generator.

Syntax:
RANDOMIZE [vaZue]
RANDOMIZE TIMER

Comments:
value can a numeric value in the range -32768 to 32767, or an expression
or numeric formula returning a value in that range. If you omit vahie,
GW-BASIC suspends program execution and asks for a value by display-
ing:

Random number seed (32768 to 32767)?
RANDOMIZE [vahie] does not force floating-point values to integer.

If you do not reseed the random number generator, RND returns the
same sequence of random numbers each time the program runs.

To change the sequence of random numbers every time the program
runs, place a RANDOMIZE statement at the beginning of the program,
and change vahie with each run. (See the RND function.)

To get a new random seed without prompting, use the numeric TIMER
function as follows:

RANDOMIZE TIMER

200

RANDOMIZE Statement

Examples:
The internal clock can be set at intervals:

10 RANDOMIZE TIMER
2OFORl=l to5
30 PRINT RND;
40 NEXT I
RUN
.88598 .484668 S86328 .119426 .709225
Ok
RUN
303506 .162462 .929364 .292443 .322921
Ok

The internal clock can be used for random number seed:
5 N = VAL(MlD$(TlME$,7,2)) 'get seconds for seed
10 RANDOMIZE N 'install number
20 PRINT N 'print seconds
30 PRINT RND

RUN
36
.2466638
OK
RUN
37
.6530511
OK
RUN
38
5.943847E + 02
OK
RUN
40
.8722131

OK

'print random number generated

GW-BASIC User’s Reference

Purpose:
To read values from a DATA statement and assign them to variables.

Syntax:
READ variable[,variable, ...I

Comments:
READ statements assign values from the DATA statement on a one-to-
one basis. The first time the program executes READ, it assigns the first
variable the first value in the first DATA statement; the second time, it
assigns the second value to the second variable; and so on.

READ statement variables can be numeric or string. They must agree in
type with the values read. If they do not, GW-BASIC returns a Syntax
error.

A single READ statement can access one or more DATA statements, or
several READ statements can access one DATA statement. If a program
contains multiple DATA statements, GW-BASIC reads the statements
in the order in which they appear in the program.

If the number of variables in the list is greater than the number of ele-
ments in the DATA statement(s), GW-BASIC returns an Out of data
error. If the number of variables is less than the number of elements, sub-
sequent READ statements begin reading data at the first unread ele-
ment. If there are no subsequent READ statements, GW-BASIC ignores
the extra data.

To reread DATA statements from the start, use the RESTORE state-
ment.

202

READ Statement

Examples:
The following program segment reads the values from the DATA state-
ments into Array A. After execution, the value of A(l) is 3.08, the value
of A(2) is 5.19, the value of A(3) is 3.12, and so on. The DATA statement
(Lines 110-120) can be placed anywhere in the program.

80FORI= lTOlO
90 READ A(I)
100 NEXT I
110 DATA3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

The following program reads string and numeric data from the DATA
statement in Line 30.:

5 PRINT
10 PRINT "CITY','"STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,","COLORAD0",80211
40 PRINT C$,S$,Z

The program displays:
CITY STATE ZIP
DENVER,COLORADO 8021 1

203

GW-BASIC User's Reference

Purpose:
To allow you to insert remarks (comments) in a program.

Syntax:
REM[comment]
'[co~ni~tent]

Comments:
The keyword REM instructs the computer to ignore everything up to the
next line number or the end of the program. This lets you insert com-
ments in your program. When you list the program, GW-BASIC lists the
REM statement, including the comment, without executing the REM
statement.

You can substitute an apostrophe (') as an abbreviation for REM.

You can use a GOT0 or GOSUB to branch to a REM statement, and ex-
ecution continues with the first executable statement following the REM.
However, execution is faster if you skip the REM statement and branch
to the next executable statement instead.

To add a remark to the end of a program line, precede the remark with
an apostrophe. (Do not use REM in this case.)

Note: Do not use REM in a DATA statement. The program inter-
prets it as legal data.

204

REM Statement

Examples:

120 REM CALCULATE AVERAGE VELOCITY
130FORI=lTO20
440 SUM =SUM + V(I)
450 NEXT I

or

129 FOR I = 1 TO 20 'CALCULATED AVERAGE VELOCITY
130 SUM =SUM +V(I)
140 NEXT I

205

GW-BASIC User’s Reference

Purpose:
To renumber the program currently in memory.

Syntax:
RENUM[new line],[old line][, increment]]

Comments:
new line is the first line number for the new sequence. The default is 10.

old line is the program line renumbering begins. The default is the first
line.

increment is the increment for the new sequence. The default is 10.

RENUM also changes all line number references following ELSE,
GOTO, GOSUB, THEN, ON/GOTO, ON/GOSUB, RESTORE,
RESUME, and ERL as needed. If a nonexistent line number appears
after one of these statements, GW-BASIC returns Undefined linex iny,
where x is the undefined line number and y is the number of the line in
which the reference appears. RENUM does not change x but might
change y.
You cannot use RENUM to reorder program lines. For example, if a
program has Lines 10, 20, and 30, RENUM 15,30 is illegal because it
would place Line 30 before Line 20. Also, RENUM cannot create line
numbers greater than 65529. If you attempt to do this, GW-BASIC
returns an Illegal function call error and leaves the program unchanged.

206

RENUM Comniand

Examples:

RENUM

Renumbers the entire program, using an increment of 10. The first new
line number is 10.

RENUM 300,,50

Renumbers the entire program, using an increment of 50. The first new
line number is 300.

RENUM 1000,900,20

Renumbers from Line 900 through the end of the program, using an in-
crement of 20. The first new line number is 1000.

207

GW-BASIC User’s Reference

RESET C o m ~ a n

Purpose:
To close all disk files and write the directory information to a disk.

Syntax:

Comments:
RESET closes all open files on all disks and writes the directory track to
every disk with open files.

RESET

208

RESTORE Statement

RES

Purpose:

Syntax:

Comments:
If you specify line, the next READ statement accesses the first item in the
specified DATA statement.

If you omit line, the next READ statement accesses the first item in the
first DATA statement.

Examples:

To allow DATA statements to be reread from a specified h e .

RESTORE[line]

10 READ A,B,C,
20 RESTORE
30 READ D,E,F
40 DATA 57,68,79

Assigns the value 57 to Variable A and D, 68 to Variable B and E, and SO

on.

GW-BASIC User's Reference

Purpose:
To continue program execution after an error-recovery procedure.

Syntax:
RESUME
RESUME 0
RESUME NEXT
RESUME line

Comments:
Select the syntax according to where you want execution to resume:
0 RESUME or RESUME 0-to resume at the statement that caused

0 RESUME NEXT - to resume at the statement immediately following

0 RESUME line- to resume at the specified h e

A RESUME statement that is not in an error-trapping routine causes
GW-BASIC to display a RESUME without error message.

Examples:

the error

the one that caused an error

10 ON ERROR GOT0 900

900 IF (ERR = 230)AND(ERL= 90) THEN PRINT "TRY
AGAl N" : RESUME 80

If an error occurs after execution of Line 10, the program performs the
error-recovery procedure in Line 900 and then continues execution at
Line 80.

210

RETURN Statement

N ent

Purpose:
To return from a subroutine.

Syntax:

Comments:

RETURN [line]

RETURN without line causes GW-BASIC to branch from the sub-
routine back to the statement following the most recent GOSUB state-
ment.

A subroutine can contain more than one RETURN statement to return
from different points in the subroutine.

RETURN line is primarily useful with event trapping. It sends the event-
trapping routine back to line while still eliminating the GOSUB entry that
the trap created.

When you trap a particular event, the trap automatically causes a STOP
on that event so that recursive traps never take place. The return from the
trap routine automatically performs an O N unless you specify OFF inside
the trap routine.

Use caution when specifying line with RETURN. Any GOSUB, WHILE,
or FOR statement active at the time of the trap remains active.

211

GW-BASIC User's Refereiice

RIGHT$ Function

Purpose:
To return the specified itumber of characters from the far right portion of
string.

Syntax:

Comments:
number is an integer in the range 1-255.

If number is equal to or greater than the length of string, RIGHT$ returns
string. If number equals zero, GW-BASIC returns the null string (length
zero). (See the MID$ and LEFT$ functions.)

Examples:

RIGHT$(shing, number)

10 A$ = "DISK BASIC'
20 PRINT RIGHT$(A$,5)

Displays BASIC, the rightmost five characters in A$.

212

RMDIR Command

DTR ~ornrnan~

Purpose:
To delete the subdirectory specified bypathname.

Syntax:
RMDIR pathname

Comments:
pathname is a string expression, not exceeding 63 characters, identifying
the subdirectory to be removed from its parent.

The subdirectory to be deleted must be empty of all files except "." and
"..". Otherwise, GW-BASIC returns a Path filelaccess error.

Examples:
Referring to the sample directory structure illustrated in CHDIR, the fol-
lowing command deletes the subdirectory Report:

RMDIR "SALES\JOHN\REPORT"

213

GW-BASIC User’s Reference

RND ~ u n ~ t i o ~

Purpose:
To return a random number in the range 0-1.

Syntax:

Comments:
GW-BASIC uses the current seed when generating a random number
and produces the same sequence of random numbers each time the
program runs unless you reseed the random number generator. (See the
RANDOMIZE statement.)

If number is 0, RND repeats the last number.

If you omit number, or if number is greater than 0, RND returns the next
random number in the sequence.

If number is negative, RND starts the sequence of random numbers at the
beginning.

To get a random number in the range 0-n, use the following formula:

RND [(nunt ber)]

INT(RND*(n + 1))

The random number generator can be seeded by using a negative value
for number.

Examples:

10FORI= lTO5
20 PRINT INT(RND*101);
30 NEXT

Generates five pseudo random numbers in the range 0-100:

533031 51 5

214

RSE T Statement

Purpose:
To move data from memory to a random file buffer and justify it to the
right in preparation for a PUT statement.

Syntax:

Comments:
field name is a string variable defined in a FIELD statement.

This statement is similar to LSET. The only difference is that RSET
right-justifies data in the buffer.

Before using RSET, you must use FIELD to set up buffer fields.

See LSET for details.

RSETfield name =data

GW-BASIC User's Reference

Purpose:
To execute the program currently in memory or to load a file from the
diskette into memory and run it.

Syntax:
RUN [line][,r]
RUN 'Ifilename"[,r]

Comments:
RUN or RUN [line] runs the program currently in memory. If you specify
line, execution begins on that line. Otherwise, execution begins at the
lowest line number. If there is no program in memory, GW-BASIC
returns to the command level.

RUN "filename" runs the spe ified disk file. GW-BASIC closes all open
files and deletes the curre$ contents of memory before loading the
specified file into memory and executing it.

The r option keeps all data files open.

Executing the RUN command turns off any sound that is currently run-
ning and resets PLAY to music foreground. It also resets the PEN and
STRIG statements to OFF.

Examples:

1

RUN "NEWFIL",R

Runs Newfil without closing data files.

216

SAVE Corninand

S

Purpose:
To save the specified file on disk.

Syntax:
SAVE "jiIenaitte"[,a]
SAVE "fZenaine"[,p]

Comments:
filename is a standard filename, enclosed in quotation marks. Iffileitaine
already exists, GW-BASIC writes over the existing file. If you omit
filenante, GW-BASIC uses the extension .bas.

The a option saves the file in ASCII format. If you omit this option, GW-
BASIC saves the file in a compressed binary format. ASCII format takes
more space on the disk, but some GW-BASIC disk access commands
(such as MERGE) and some MS-DOS commands (such as TYPE) re-
quire an ASCII format file.

The p option protects the file by saving it in an encoded binary format.
When you later run or load a protected file, any attempt to list or edit it
fails. If you use the p option, first make an additional copy under another
name or on another disk to let you make future program changes.

Examples:

SAVE "COM2",A

Saves the file Com2.bas in the ASCII format.

SAVE "PROG",P

Saves the file Prog.bas in binary format, and protects access.

217

GW-BASIC User's Reference
". -

SCREEN Functio

Purpose:
To return the ASCII code (0-255) for the character at the specified TOW

(line) and column on the screen.

Syntax:

Comments:
x = SCREEN(row, colunvt[,z])

x is a numeric variable to receive the ASCII code returned.

row is a valid numeric expression in the range 1-25.

column is a valid numeric expression in the range 1-40 or 1-80, depending
upon screen width setting. See the WIDTH statement.

z is a valid numeric expression with a true (non-zero) or false (zero)
value. It can be used only in text mode.

SCREEN stores the ordinal of the character at the specified coordinates
in the numeric variable. In text mode, if you specify the optional
parameter z and it is true (nonzero), GW-BASIC returns the color at-
tribute for the character. (See the COLOR statement.)

If you enter an out-of-range value, GW-BASIC returns an Illegal fUnC-
tion call error. You can refer to Row 25 only if you have used KEY OFF
to turn off the function key display.

Examples:

100 X=SCREEN (10,lO)

Returns the ASCII code of the character at 10,lO in X. If the character is
A, X is 65.

11OX= SCREEN (l , l , l)

Returns the color attribute of the character in the upper left corner of the
screen.

218

SCREEN Statement

Purpose:
To set the specifications for the display screen.

Syntax:

Comments:
SCREEN allows you to select a screen mode appropriate for a particular
display-hardware configuration. Supported hardware configurations and
screen modes are described below.

Monochrome Monitor- Screen Mode 0: You can connect a monochrome
display adapter only to a monochrome display. Programs written for this
configuration must be in text mode (Screen Mode 0).

CGA with Color Monitor- Screen Modes 0, 1, and 2: Typically, you pair
the Color Graphics Adapter (CGA) with a color monitor. This hardware
configuration permits running of text mode (Mode 0) and both medium-
resolution (Mode 1) and high-resolution (Mode 2) graphics programs.

EGA with Color Mpnitor- Screen Modes 0,1,2,7, and 8: Screen Modes
0,1,2,7, and 8 let you to use a color monitor connected to an Enhanced
Graphics Adapter (EGA). If EGA switches are set for CGA com-
patibility, programs written for Modes 1 and 2 run just as with the CGA.
Modes 7 and 8 are similar to Modes 1 and 2, except that they permit a a
wider range of colors.

EGA with Enhanced Color Monitor- Modes 0, I, 2,7, and 8: With the
EGA enhanced display configuration, Modes 0,1,2,7, and 8 are virtual-
ly identical to their EGA/color monitor counterparts. Two possible dif-
ferences are:
0 In Screen Mode 0, the border color cannot be the same as for the

EGAkolor monitor because the border cannot be set on an Enhanced
Color Display when it is in 640 x 350 text mode.

0 The quality of the text is better on the Enhanced Color Display (an 8
x 14 character box for an Enhanced Color Display vs. an 8 x 8 charac-
ter box for a color monitor).

SCREEN [ntode] [,[colo.switcli]][,[apage]l[,[vpage]]

219

GW-BASIC User’s Reference

EGA with Enhanced Display- Screen Mode 9: Screen Mode 9 takes full
advantage of all the capabilities of the Enhanced Color Display. It allows
the highest resolution possible for the EGA/Enhanced Color Display
configuration. Programs written for Mode 9 do not work for any other
hardware configuration.

EGA with Monochrome Display- Screen Mode 1 0 In Screen Mode 10,
you can use a monochrome monitor to display very high resolution
monochrome graphics. Programs written for Mode 10 do not work for
any other hardware configuration.

Arguments: mode is an integer expression that specifies the screen mode:
0, 1, 2, 7, 8, 9, or 10. All other values are illegal. The specific mode
depends primarily on the hardware that you intend the program to run
on, as described above.

The various screen modes are described in detail in the following infor-
mation.

Screen Mode 0
0 Text mode only
0 Either 40 x 25 or 80 x 25 text format with character-box size of 8 x 8 or

0 Assignment of 16 colors to either of two attributes
0 Assignment of 16 colors to any of 16 attributes (with EGA)

Screen Mode 1
0 320 x 200 pixel medium-resolution graphics
0 80 x 25 text format with character-box size of 8 x 8
0 Assignment of 16 colors to any of four attributes
0 Supports both EGA and CGA
0 Two bits per pixel

Screen Mode 2
0 640 x 200 pixel high-resolution graphics
0 40 x 25 text format with character-box size of 8 x 8
0 Assignment of 16 colors to either of two attributes
0 Supports both EGA and CGA
0 One bit per pixel

8 x 14 with EGA

220

SCREEN Statement

Screen Mode 7
0 320 x 200 pixel medium-resolution graphics
0 40 x 25 text format with character-box size of 8 x 8
0 Two, four, or eight memory pages with 64K, 128K, or 256K bytes of

memory, respectively, installed on the EGA
0 Assignment of any of 16 colors to 16 attributes
0 EGA required

Four bits per pixel

Screen Mode 8
0 640 x 200 pixel high-resolution graphics
0 80 x 25 text format with character-box size of 8 x 8
0 One, two, or four memory pages with 64K, 128K, or 256K bytes of

memory, respectively, installed on the EGA
0 Assignment of any of 16 colors to 16 attributes
0 EGA required
0 Four bits per pixel

Screen Mode 9
0 640 x 350 pixel enhanced-resolution graphics
0 80 x 25 text format with character-box size of 8 x 14
0 Assignment of either 64 colors to 16 attributes (more than 64K of EGA

0 Two display pages if 256K of EGA memory installed
0 EGA required
0 Two bits per pixel (64K EGA memory) or four bits per pixel (more

Screen Mode 10
0 640 x 350 enhanced-resolution graphics
0 80 x 25 text format with character-box size of 8 x 14
0 Two display pages if 256K of EGA memory installed
0 Assignment of up to nine pseudo-colors to four attributes; refer to the

following tables
0 EGA required
0 Two bits per pixel

memory) or 16 colors to four attributes (64K of EGA memory)

than 64K EGA memory)

221

G W-BASIC User's Reference
-.~_l_l.____

The default attributes for Screen Mode 10 are:

Attribute
Value

Displayed
Pseudo-Color

Off
On, normal intensity
Blink
On, high intensity

The default colors for Screen Mode 10 are:

Color
Value

Displayed
Pseudo-Color

Off
Blink, off to on
Blink, off to high intensity
Blink, on to off
On
Blink, on to high intensity
Blink, high intensity to off
Blink, high intensity to on
High intensity

For both composite monitors and TVs, colorswitclz is a numeric expres-
sion that is either true (non-zero) or false (zero). A value of zero disables
color and permits display of black and white images only. A non-zero
value permits color. The meaning of colorswitch is inverted in Screen
Mode 0.

For hardware configurations that include an EGA and enough memory
to support multiple-screen pages, the upuge and vp'yage options are avail-
able. These options determine the active and visual niemory pages. The
active page is the area in memory in which graphics statements are writ-
ten. The visual page is the area of memory that is displayed on the screen.

You can perform animation by alternating the display of graphics pages.
The goal is to display the visual page with completed graphics output,
while executing graphics statements in one or more active pages.

222

SCREEN Statement

GW-BASIC displays a page only when graphics output to that page is
complete. Thus, the following program fragment is typical:

SCREEN 7,,1,2 'work in Page 1, show Page 2

'Graphics output to Page 1
'while viewing Page 2

'work in Page 2, show Page 1 SCREEN 7,,2,1

'Graphics output to Page 2
'while viewing Page 1

The number of pages available depends on the screen mode and the
amount of available memory:

0

1
2
7

8

9

10

-

Attribute Color EGA Page
Mode Resolution Range Range Memory Pages Size

40-column text NA 0-& NA 1 2K
SO-column text NA O-lSb
320 x 200 0-3a 0-3
640 x 200 0- la 0- 1
320 x 200 0-15 0-15

640 x 200 0-15 0-15

640 x 350 0-3 0-15
0-15 0-63
0-15 0-63

640 x 350 0-3 0-8

NA
NA
NA
64K
128K
256K
64K
128K
256K
64K
128K
256K
128K
256K

1
1
1
2
4
8
1
2
4
1
1
2
1
2

4K
16K
16K
32K

64K

64K
128K

128K

~

P Attributes applicable onlywith EGA.
> Numbers in the range 16-31 are blinking versions of Colors 0-15.

Screen Mode Specifications

223

G W-BASIC User's Reference

Attributes and Colors: For various screen modes and display hardware
configurations, different attribute and color settings exist. (See the
PALETTE statement for a discussion of attribute and color numbers.)
The following table summarizes the majority of these attribute and color
configurations:

Attributes for Mode

1.9 2 0.7.8.9a Number" Color Number'' Color

Color Display Monochrome Display

0 0 0
1
2
3
4
5
6
7
8
9

10
1 11

12
2 13

14
3 1 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Black
Blue
Green
Cyan
Red
Magenta
Brown
White
Gray
Light Blue

Light Green
Light Cyan
Light Red
Light Magenta
Yellow
High-intensity
White

0 Off
(Underlined)c
Onc
OnC
Onc
OnC
OnC
OnC
Off
High intensity
(underlined)
High intensity
High intensity
High intensity
High intensity
High intensity
Off

a With EGA memovgreater than 64K
Only for Mode 0 (monochrome)
Off when used for background

Default Attributes for Screen Modes

224

SCREEN Statement

The following table lists the default foreground colors for the various
modes:

Default Default
Foreground Attribute Foreground Color

Screen Color/Exta Monochrome Color/Exta Monochrome
mode Display Display Display Display

0 7 7 7 1
1 3 NA 15 NA
2 1 NA 15 NA
7 15 NA 15 NA
8 15 NA 15 NA
9 3b NA 63 NA
10 NA 3 NA 8

a = an Enhanced Color Monitor
b15 if greater than 64K of EGA memory
NA = Not applicable

L

Default Foreground Colors

225

G W-BASIC User's Reference

t io

Purpose:
To return the sign of number.

Syntax:

Comments:

SGN(nunzber)

number is any numeric expression.

If izunzber is positive, SGN returns 1.

If number is 0, SGN returns 0.

If number is negative, SGN returns -1.

Examples:

10 INPUT "Enter value",>(
20 ON SGN(X) +2 GOT0 100,200,300

GW-BASIC branches to Line 100 if X is negative, Line 200 if X is 0, and
Line 300 if X is positive.

226

SHELL Statement

Purpose:
To load and execute another program or batch file. When the program
finishes, control returns to the GW-BASIC program, at the statement fol-
lowing the SHELL statement. The GW-BASIC manual refers to a
program executed under control of GW-BASIC as a childprocess.

Syntax:

Comments:

SHELL [string]

string is a valid string expression containing the name of the child process
and (optionally) command arguments.

The program name in string can have any extension that is supported by
MS-DOS’s Command.com. If you omit the extension, Command.com
looks for a .com file, then an .exe file and finally, a .bat file. If it doesn’t
find such a file, SHELL issues a File not found error.

COMMAND attempts to processes any text that is separated from the
program name by at least one blank space as program parameters.

GW-BASIC remains in memory while the child process is running. When
the child process finishes, GW-BASIC continues at the statement follow-
ing the SHELL statement.

SHELL with no string returns you to MS-DOS. From there you can now
do anything that COMMAND allows. When ready to return to GW-
BASIC, type the MS-DOS command EXIT.

GW-BASIC User's Reference

Examples:

SHELL

Transfers control to Command.com. You can execute MS-DOS com-
mands such as:

DIR
TIME

and then type EXIT to return to GW-BASIC.

Write some data to be sorted, use SHELL SORT to sort it, then read the
sorted data to write a report.

10 OPEN "SORTIN.DAT' FOR OUTPUT AS #1
20 'Write data to be sorted

1000 CLOSE 1
1010 SHELL "SORT e SORTIN.DAT > SORTOUT.DAT'
1020 OPEN "SORTOUT.DAT' FOR INPUT AS #1
1030 'Process the sorted data

228

SIN Function
~I --

Purpose:
To calculate the trigonometric sine of number, in radians.

Syntax:

Comments:
SIN(nuntber)

SIN(number) is calculated in single precision unless you use the /d switch
when loading GW-BASIC.

You can obtain SIN(nunzber) when number is in degrees, by using
SIN(number*~/l80).

Examples:

PRINT SIN(1.5)

Displays .9974951, the sine of 1.5 radians (single precision).

229

GW-BASIC User’s Reference

Purpose:
To generate sound through the speaker.

Syntax:
SOUND frequency, duration

Comments:
frequency is the desired frequency in hertz (cycles per second). It is a
numeric expression in the range 37-32767.

duration is the duration in clock ticks. Clock ticks occur 18.2 times per
second. duration must be a numeric expression in the range 0-65535.

Duration values below .022 produce an infinite sound until you or the
program execute the next SOUND or PLAY statement.

To turn off any active SOUND statement, set duration to 0. If GW-
BASIC is not running a SOUND statement, a duration of 0 has no effect.

GW-BASIC executes the sound in the foreground or background,
depending on PLAY statement.

230

SOUND Statement -__-

The following table shows the frequency you specify to generate a note in
an octave adjacent to middle C:

Note Frequency Note Frequency

C
D
E
F
G
A
B
C
D
E
F
G
A
B

130.810
146.830
164.810
174.610
196.000
220.000
246.940
261.630
293.660
329.630
349.230
392.000
440.000
493.880

Ca
D
E
F
G
A
B
C
D
E
F
G
A
B

523.250
587.330
659.260
698.460
783.990
880.000
987.770
1046.500
1174.700
1318.500
1396.900
1568.000
1760.000
1975.500

aMiddle C

Relationship of Notes and Frequencies

By doubling or halving the frequency, you can estimate the coinciding
note values for the preceding or following octave.

To produce periods of silence, use:
SOUND 32767,durarion

There are 1092 clock ticks per minute. To calculate the duration of one
beat, divide the number beats per minute into 1092..

231

GW-BASIC User’s Reference

The following table shows the number of clock ticks for some typical tem-
pos:

Tempo Notation Minute Beat
Beats per Ticks per

very slow Larghissimo
Largo
Larghetto
Grave
Lento
Adagio

slow Adagietto
Andante

medium Andantino
Moderato

fast Allegretto
Allegro
Vivace
Veloce
Presto

very fast Prestissimo

40-66 27.3-18.2
60-66 18.2-16.55

66-76 16.55-14.37

76-108 14.37- 10.11

108-120 10.11-9.1

120-168 9.1-6.5

168-208 6.5-5.25

Examples:

2500 SOUND RND*1000+37,2
2600 GOT0 2500

Creates random sounds of short duration.

232

SPACE$ Function

Purpose:
To return a string of number spaces.

Syntax:
SPACE$(number)

Comments:
number is rounded to an integer and must be in the range 0-255. (See the
SPC function.)

Examples:

10FORN=lTO5
20 X$ = SPACE$(N)
30 PRINT X$;N
40 NEXT N

This program displays:
1
2
3
4
5

Line 20 adds one space for each loop execution.

GW-BASIC User's Reference

Purpose:
To skip a specified number of spaces in a PRINT or LPRINT statement.

Syntax:

Comments:

SPC(number)

number must be in the range 0-255.

If number is greater than the defined width of the printer or the screen,
GW-BASIC uses number modulo width. (See "Integer Division and
Modulus Arithmetic" in Chapter 6 of the Taiidy GW-BASIC User's
Guide.

A semicolon is assumed to follow the SPC(number) command.

You can use SPC only with PRINT, LPRINT, and PRINT#. (See also
the SPACE$ function.)

Examples:

PRINT "OVER" SPC(15) "THERE"

Displays:
OVER THERE

234

SQR Fiuiction
-

Purpose:
Returns the square root of number.

Syntax:

Comments:
number must be greater than or equal to 0.

GW-BASIC returns the result as a single-precision number unless YOU
specified the Id switch when loading GW-BASIC.

Examples:

SQR(nurnber)

10 FOR X= 10 TO 25 STEP 5
20 PRINT X; SQR(X)
30 NEXT

This program displays:
10 3.162278
15 3.872984
20 4.472136
25 5

235

GW-BASIC User’s Reference

Purpose:
To return the horizontal and vertical coordinates of two joysticks.

Syntax:
x = STICK(action)

Comments:
x is a numeric variable for storing the result.

action can be one of the following:

0 returns the horizontal (x) coordinate for the left joystick; also
stores the x and y values for both joysticks so that you can
perform the remaining three actions

returns the vertical (y) coordinate for the left joystick

returns the horizontal coordinate for the right joystick
returns the vertical coordinate for the right joystick

1

2

3

236

STOP Statement

Purpose:
To terminate program execution and return to the command level.

Syntax:
STOP

Comments:
You can use STOP statements anywhere in a program to terminate ex-
ecution. When GW-BASIC encounters a STOP statement, it displays:

Break in line nnnnn

where nnnnn is the line number that contains the STOP.

Use the CONT command to continue execution.

Unlike the END statement, STOP does not close files.

Examples:

10 INPUT A,B,C
20 K=AA2*5.3:L=BA3/.26
30 STOP
40 M=C*K+lOO:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.76923
Ok

CONT
115.9
Ok

237

GW-BASIC User’s Reference

io

Purpose:
T o convert number to a string.

Syntax:
STR$(number)

Comments:
STR$ is the complementary function to VAL.

If number is positive, STR$ places a blank before the string. If number is
negative, STR$ places a minus sign (-) before the string.

While arithmetic operations can be performed on rzimtber, only string
functions and operations can be performed on the string.

Examples:

5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER”;N
20 ON LEN(STR$(N)) GOSUB 30,40,50

Branches to various subroutines, depending on the number of characters
you type before you press m.

238

STRIG Statement and Function

ST t a ~ e ~ e n t a ct ion

Purpose:
To return the status of the joystick buttons.

Syntax:
As a statement:

STRIG ON
STRIG OFF

As a function:

x = STRIG(number)

Comments:
x is a numeric variable for storing the result.

number is a valid numeric expression in the range 0-7:

0

1

returns -1 if Trigger 1 on the left joystick has been pressed and
released since the last STRIG(0) statement; returns 0, if not.

returns -1 if Trigger 1 on the left joystick is currently pressed;
returns 0, if not.

2 returns -1 if Trigger 1 on the right joystick has been pressed
and released since the last STRIG(2) statement; returns 0, if
not.

returns -1 if Trigger 1 on the right joystick is currently pressed;
returns 0, if not.

3

4

5

returns -1 if Trigger 2 on the left joystick has been pressed and
released since the last STRIG(4) statement; returns 0 if not.

returns -1 if Trigger 2 on the left joystick is currently pressed;
returns 0, if not.

239

G W-BASIC User’s Reference

6 returns -1 if Trigger 2 on the right joystick has been pressed
and released since the last STRIG(6) statement; returns 0 if
not.

returns -1 if Trigger 2 on the right joystick is currently pressed;
returns 0, if not.

STRIG ON must be executed before any STRIG(mnrber) function call
can be made. Once STRIG ON is executed, GW-BASIC checks before
each statement to see whether a button has been pressed.

7

240

S TRIGtii uni ber Statement

Purpose:
To allow the use of a joystick by enabling or disabling the trapping of its
buttons.

Syntax:
STRIG(number) ON
STRIG(number) OFF
STRIG(number) STOP

Comments:
number is 0,2,4, or 6, corresponding to the joystick button:

0
2

4

6

Trigger 1 on the left joystick

Trigger 1 on the right joystick

Trigger 2 on the left joystick

Trigger 2 on the right joystick

Examples:

STRIG(number) ON

Enables trapping of the joystick buttons. After this statement executes,
GW-BASIC checks to see whether the specified button has been pressed
before executing further statements.

STRIG(number) OFF

Disables GW-BASIC from checking the state of the specified button.

STRIG(number) STOP
Disables trapping of the specified button with the ON STRIG(number)
statement. Any pressings are remembered so that trapping can take place
once it is re-enabled.

241

GW-BASIC User's Reference

cti

Purpose:
To create a string with a length of nuinber characters in which all the
characters have ASCII code ckaracter, or in which all the characters are
the same as the first character of string

Appendix B in the Tandy GW-BASIC User's Guide lists ASCII character
codes.

Syntax:
STRING$ (number, character)
STRING$(nuntber, string)

Comments:
STRING$ is also useful for printing top and bottom borders on the
screen or the printer.

number and character are integer expressions in the range 0-255.

Examples:

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT' X$

Uses 45, the decimal equivalent of ASCII symbol for a hyphen, to display:
___------- MONTHLY REPORT----------
Ok

242

SWAP Statement

S tate~ent

Purpose:
To exchange the values of two variables.

Syntax:
SWAP variablel, variable2

Comments:
You can swap variables of any type (integer, single precision, double
precision, or string) as long as the two variables are of the same type. If
they are not, GW-BASIC returns a Type mismatch error.

Examples:

10 A$ ="ONE ":B$ = "ALL 'IC$ = "FOR "
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$

Line 30 swaps the values in the A$ and B$ strings so that the program dis-
plays:

ONE FOR ALL
ALL FOR ONE

243

GW-BASIC User’s Reference

Purpose:
To return to MS-DOS.

Syntax:

Comments:

SYSTEM

Before you enter SYSTEM, be certain you save the current program.
Otherwise, the program is lost.

The SYSTEM command closes all the files before it returns to MS-DOS.
If you enter GW-BASIC through a batch file in MS-DOS, the SYSTEM
command returns you to the batch file, which continues executing at the
point from which it left off.

Examples:

SYSTEM

Returns you to the MS-DOS system prompt.

244

TAB Function

cti

Purpose:
Spaces to position number on the screen.

Syntax:

Comments:
You can use TAB only in PRINT, LPRINT, and PRINT# statements.
(See the SPC function.)

number must be in the range 1-255.

If the current print position is already beyond space number, TAB goes to
that position on the next line.

The leftmost position is 1. The rightmost position is the screen width.

If the TAB function is at the end of a list of data items, GW-BASIC does
not return the cursor to the next line. (It acts as if a semicolon follows the
TAB function.)

TAB(number)

Examples:

10 PRINT "NAME" TAB(25) "AMOUNT': PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25.00"

These program lines display:
NAME AMOUNT
G. T. JONES $25.00

245

GW-BASIC User’s Reference

TAN Function

Purpose:
T o calculate the trigonometric tangent of number, in radians.

Syntax:

Comments:
GW-BASIC returns the result as a single-precision number unless YOU
use /d when loading GW-BASIC.

If TAN overflows, it displays the Overflow error message, and execution
continues.

T o obtain the tangent of number when number is in degrees, use
TAN(number*dl80).

Examples:

TAN (number)

1OY = TAN(X)

Stores the value of the tangent of X radians in Y

246

TIME$ Statentent and Variable

TIME$ Statement and Variable

Purpose:
To set or retrieve the current time.

Syntax:
As a statement:

TIME$ = string
As a variable:

string = TIME$

Comments:
string is a valid string literal or variable that lets you set the hours (I t h) ,
hours and minutes (Izhmm), or hours, minutes, and seconds (hhmm:ss).

GW-BASIC uses a 24-hour clock. For example, you need to specify
201500 for 8:15 p.m.

hh sets the hour (0-23). Minutes and seconds default to 00.

hh:ntm sets the hour and minutes (0-59). Seconds default to 00.

hh:mnt:ss sets the hour, minutes, and seconds (0-59).

If string is not a valid string, a Type mismatch error results.

Although you can omit leading zeros in each of the values, you must in-
clude at least one digit of the preceding value. For example, you can type
1:5 to set the time to 1:05 a.m. However, :5 is invalid. Similarly, to set the
time to a half hour past midnight, use 0:30, not :30.

If any of the values is out of range, GW-BASIC issues an Illegal function
call error and retains the previous time.

If TIME$ is the target of a string assignment, GW-BASIC stores the cur-
rent time.

If TIME$ is the expression in a LET or PRINT statement, GW-BASIC
retrieves it and assigns it to the string variable .

247

GW-BASIC User's Reference

If string = TIME$, TIME$ returns an eight-character string in the form
hl1:mnt:ss.

Examples:

TIME$ = "08:OO"

Sets the time as 8:OO a.m.

PRINT TIME$

Displays the current time.

10 KEY 0FF:SCREEN 0:WIDTH 8O:CLS
20 LOCATE 253
30 PRINT DATE$,TIME$;
40 SEC =VAL(MID$(TIME$,7,2))
50 IF SEC = SSEC THEN 20 ELSE SSEC = SEC
60 IF SEC=O THEN 1010
70 IF SEC=30THEN 1020
80 IF SEC<57 THEN 20
1000 SOUND 1000,2:GOTO 20
1010 SOUND 2000,8:GOTO 20
1020 SOUND 400,4:GOTO 20

Displays the current date and time on the 25th line of the screen and
generates sound on the minute and half-minute.

248

TIMER Function

Purpose:
To return the number of seconds elapsed since midnight or the last sys-
tem reset.

Syntax:

Comments:
GW-BASIC always returns the seconds as a single-precision floating-
point number.

Fractions of seconds are calculated to the nearest degree possible.

elapsed time =TIMER

249

G W-BASIC User’s Refererice

Purpose:
To trace the execution of program statements.

Syntax:
TRON
TROW

Comments:
As an aid in debugging, the TRON (trace on) command enables a trace
flag that prints the number of each program line as the line executes. It
displays the number enclosed in square brackets. TRON can be executed
in either the direct or indirect mode.

To disable the trace flag, either use TROFF or execute a NEW com-
mand.

Examples:

TRON
Ok
10 K=1O
20FORJ= lTO2
30L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
RUN

[50] [60] [30] [40] 2 20 30
[10][20][30][40] 1 10 20

TROFF
Ok

250

UNLOCK Statement

Purpose:
To release locks that have been applied to an opened file in a workgoup,
or network, environment.

Syntax:

Comments:
UNLOCK [#]file number [,[start record] [TO end recordl]

file number is the number originally assigned to the file by the program.

You can specify either one record (start record) or a range of records
(start record TO end record) to unlock. If you specify a range, start record
must be less than or equal to end record.

The range of legal record numbers is 1 to 232 -1. The limit on record size
is 32767 bytes.

If you omit start record, UNLOCK assumes Record 1.

If you omit end record, command unlocks only the specified record.

251

GW-BASIC User’s Reference

The following are valid variations of the UNLOCK statement:

UNLOCK #file number

Unlocks the entire file specified byfire number.

UNLOCK #file number, start record

Unlocks only the specified record.

UNLOCK #file number, TO end record

Unlocks Record 1 through the specified record.

UNLOCK #file number, s?art record TO end record

Unlocks all records in the range start record-end record.

Always unlock the locked file or record range before closing the file.
Failure to do so can jeopardize future access to that file in a workgroup
environment.

In the case of files opened in RANDOM mode, the range of records
specified must match exactly the range given in the LOCK statement.

If GW-BASIC cannot grant a syntactatically correct UNLOCK request,
the Permission denied message appears. The UNLOCK statement must
match exactly the paired LOCK statement.

Because you will probably want to lock fileshecords only for a short time,
we recommend using LOCK within short-term paired LOCWUNLOCK
statements.

1 JNLOCK Statentent

Examples:
The following sequence demonstrates how the LOCWUNLOCK state-
ments should be used:

LOCK#l, 1 TO4
LOCK#1,5TO8
UNLOCK #1,1 TO 4
UNLOCK #1,5 TO 8

The following example is illegal:
LOCK #1,1 TO 4
LOCK #1,5 TO 8
UNLOCK #1,1 TO 8

253

GW-BASIC User’s Reference

USR Function

Purpose:
TO call an assembly language subroutine and pass argument to that sub-
routine.

Syntax:

Comments:
Although the CALL statement is recommended for calling assembly lan-
guage subroutines, you can also use the USR function. See Appendix C
in the Tandy GW-BASIC User’s Guide for a comparison of CALL and
USR and for a detailed discussion of calling assembly language sub-
routines.

number specifies the USR routine being called. It can be any number in
the range 0-9. (USR lets you call as many as ten assembly language sub-
routines and then continue execution of your GW-BASIC program.) If
you omit number, GW-BASIC assumes 0. (See DEF USR for the rules
governing number).

argument can be any numeric or string expression.

Before you can execute a USR function, you must define the USR call
offset in a corresponding DEF USR statement. This offset and the cur-
rently active DEF SEG segment address determine the starting address
of the subroutine.

If you require more than ten user routines, you can redefine the value(s)
of DEF USR for the other starting addresses as many times as needed.

If you use a segment other than the default segment (BASIC data seg-
ment, DS), you must execute a DEF SEG statement prior to a USR call.
This ensures that the code segment points to the subroutine being called.

The segment address given in the DEF SEG statement determines the
starting segment of the subroutine.

v = USR[number](argunzent)

254

USR Function

The type (numeric or string) of the variable receiving the function call
must be consistent with the argument passed. If no argument is required
by the assembly language routine, you must supply a dummy argument.

255

GW-BASIC User's Reference

Purpose:
Returns the numerical value of string.

Syntax:
VAL(soing)

Comments:
The VAL function also strips leading blanks, tabs, and line feeds from
string. For example, the following line returns -3:

VAL(" -3")

VAL is the complement to the STR$ function (for numeric-to-string con-
version).

If the first character of string is not numeric, VAL returns 0.

Examples:

10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$) <90000 OR VAL(ZIP$) >96699 THEN

PRINT NAME$ TAB(25) "OUT OF STATE'

PRINT NAME$ TAB(25) "LONG BEACH"
30 IF VAL(ZIP$) > =90801 AND VAL(ZIP$) < =go815 THEN

Searches for zip codes in the specified ranges to determine whether they
are in Long Beach or are "out of state."

256

VARPTR Function

Purpose:
To return the address in memory of variable or the file control block
(FCB).

Syntax:
VARPTR(variable)
VARPTR(#file JlUJ7lbCr)

Comments:
Use VARPTR to obtain the address of a variable or array SO you can pass
it to an assembly language subroutine.

You can pass a function call in the form:
VARPTR (A(0))

To pass an array and return the lowest-addressed element of the array to
the routine.

The addresses of the arrays change whenever you assign a new simple
variable, so be sure to assign all simple variables before calling VARPTR
for an array.

VARPTR (#file number) returns the starting address of the GW-BASIC
file control block assigned tofile iiimiber.

VARPTR (variable) returns the address of the first byte of data iden-
tified with Variable.

You must assign a value to variable before executing VARPTR. Other-
wise, an Illegal function call error results.

You can use any type (numeric, string, or array) variable. The address
returned is an integer in the range 32767 to -32768. If VARPTR returns a
negative address, add it to 65536 to obtain the actual address.

257

GW-BASIC User’s Reference

Add the offsets in the following table to the address returned by
VARPTR for a file control block to obtain information about the file:

Offsets to FCB Information

Off-
set: Length: Name: Description:

0 1

1

1 38
39 2

41 1

42 1
43 3
4 6 1

47 1
4 8 1
49 1

Mode

FCB
CURLOC

ORNOFS

NMLOFS

DEVICE

WIDTH
POS
FLAGS

The mode in which the file was opened:
1 Input only
2 Output only
4 Random I/O
16 Append only
32 Internal use
64 Future use
128 Internal use

Disk file control block.
For sequential files, the number of
sectors read or written.
For random-access files, the number of
the last record read or written + 1.
Number of bytes in sector when read or
written.
Number of bytes left in INPUT buffer.
Reserved for future expansion.
Device number:

0-9 Disk drives A: through J:
255 KYBD:
254 SCRN:
253 LPT1:

251 COM1:
250 COM2
249 LPT2
248 LPT3:

252 CAS1:

Device width.
Position in buffer for PRINT.
For internal use during BLOADIBSAVE.
Not used for data files.

258

VARPTR Function

Off-
set: Length: Name: Description:

50 1

51 128

179 2

181 2
183 2
185 1
186 2

188 n

Examples:

OUTPOS

BUFFER

VRECL

PHYREC
LOGREC

OUTPOS

FIELD

* * *

Output position used during tab
expansion.
Physical data buffer. Used to transfer
data between DOS and BASIC. Use this
offset to examine data in sequential
I/O mode.
Variable length record size; set by length
in OPEN statement. The default is 128.
Current physical record number.
Current logical record number.
Future use.
For disk files only; the output position
for PRINT, INPUT, and WRITE.
Actual FIELD data buffer. Size is
determined by S: switch. VRECL bytes
are transferred between BUFFER and
FIELD on 1/0 operations. Use this offset
to examine file data in random I/O mode.

Offsets to FCB Information

100 X=VARPTR(Y)

Stores in the variable X an address that points to the storage space as-
signed to the variable Y.

10 OPEN "DATA.FIL' AS #I
20 FCBADR = VARPTR(#l)
30 DATADR = FCBADR + 188
M A $ = PEEK(DATADR)

In Line 20, FCBADR contains the start of the FCB.

In Line 30, DATADR contains the address of the data buffer.

In Line 40, A$ contains the first byte in the data buffer.

259

GW-BASIC User's Reference

Purpose:

Syntax:

Comments:

To return a character form of the offset of vuriable in memory.

VARPTR$(van'able)

variable is the name of a variable that exists in the program.

Note: The addresses of the arrays change whenever you assign a
new simple variable, so be sure to assign all simple variables before
calling VARPTR for an array.

VARPTR$ returns a three-byte string:

Byte 0 contains one of the following variable types:

2 integer

3 string
4 single precision

8 double precision

Byte 1 contains the least significant byte of the 8086 address format.

Byte 2 contains the most significant byte of the 8086 address format.

Examples:

100 X = USR(VARPTR$(Y))

The following line uses the PLAY subcommand X, plus the contents of
A$, as the argument for PLAY:

10 PLAY "Xi + VARPTR$(A$)

VTE W Statement

Purpose:
To create a viewport that redefines the screen parameters. This defined
area, a window, becomes the only area in which you can draw graphics.

Syntax:

Comments:
RUN or VIEW with no options defines the entire screen as the viewport.

x l andyl are the upper left coordinates of the viewport.

x2 andy2 are the lower right coordinates of the viewport.

color is the color with which to fill the viewport.

border is an integer expression that specifies the color for the boundary
line around the viewport (assuming that there is enough space for the
line). If you omit border, no border is drawn.

All coordinates must be within the limitations of the screen. GW-BASIC
sorts thex andy coordinate pairs, placing the smallest values first.

If you omit SCREEN, points are plotted relative to the viewpoint, that is,
GW-BASIC addsxl andyl tox and y before plotting the point.

It is possible to have a varied number of pairs ofx and y. The only restric-
tion is that x l cannot equalx2 and y l cannot equaly2.

If you include SCREEN, points are plotted absolutely (relative to Point
0,O). Only points in the current viewpoint are plotted.

When using VIEW, the CLS statement clears only the current viewport.
To clear the entire screen, use VIEW to disable the viewports; then, use
CLS to clear the screen. CLS does not move the cursor to home.
Use r C i F i - i] m l to send the cursor home and clear the screen.

VIEW [[SCREEN][(xl, yl)-(x2, y2) [,[color] [,[border]]]]]

~

261

GW-BASIC User’s Reference

Examples:

VIEW (10,10)-(200,10O)

Defines a viewport such that the statement PSET(O,O),3 would set a point
at the physical screen location 10,lO.

VIEW SCREEN (10,lO)-(200,100)

Defines a viewport such that the point designated by the statement
PSET(0,0),3 would not appear because 0,O is outside the viewport.
PSET(10,10),3 is within the viewport, however.

262

W E W PRINT Statement

VIE T t

Purpose:
To set the boundaries of the screen text window.

Syntax:

Comments:
Once you execute VIEW PRINT, all statements and functions that nor-
mally function within the text viewport (for example, CLS, LOCATE,
PRINT, and SCREEN) function within the new text screen parameters.

The screen editor also limits functions such as scroll and cursor move-
ment to the text window.

VIEW PRINT without top line TO bottom line initializes the whole
screen area (Lines 1-24) as the text window. By default, Line 25 is not
used.

For more information, see VIEW.

VIEW PRINT [top line TO bottom line]

Examples:

VIEW PRINT 1 to 15

Defines the first 15 lines of the display as the text viewport.

263

~ - _ ~ _ l l l -

GW-BASIC User’s Reference -

Purpose:
TO suspend program execution until the specified machine input port
develops a specified bit pattern.

Syntax:

Comments:
port represents a valid machine port in the range 0-65535.

number1 and number2 are integer expressions in the range of 0-255.
GW-BASIC reads the data atport and XORs it with nunzber2, if given. If
you omit nurnber2, GW-BASIC XORs the data with zero. It then ANDs
the result with nunzberl.

If the result is zero, GW-BASIC loops back and reads the data at the port
again to check for the specified pattern. If the result is nonzero, execution
continues with the next statement.

When executed, the WAIT statement tests Byte number1 for set bits. If
any bit is set, the program continues with the next statement in the
program. WAIT does not wait for an entire pattern of bits to appear, but
only for one of them to occur.

It is possible to enter an infinite loop with the WAIT statement. To exit
the loop, press I C T R L l l m l or reset the system.

Examples:

WAITport, nuntberl[, rzumber2]

100 WAIT 32,2

Suspends machine operation until Port 32 receives 2 (Bit 2 is 1) as input.

264

W I L E - WEND Sf afeittertt
_____-I- -

Purpose:
To execute a series of statements in a loop as long as a given condition is
true.

Syntax:
WHILE expressioit

[loop statements]

WEND

Comments:
expression is any numeric or string expression, usually making logical or
relational comparisons.

If expression is true (non-zero), GW-BASIC executes the loop sfateiiierifs
until it encounters a WEND statement. GW-BASIC then returns to the
WHILE statement and checks expression. If eqressioit is still true, the
process is repeated. If it is not true, execution resumes with the statement
following the WEND statement.

You can nest WHILE and WEND loops to any level. Each WEND
matches the most recent WHILE.

An unmatched WHILE statement causes a WHILE without WEND error.
An unmatched WEND statement causes a WEND without WHILE error.

GW-BASIC User's Reference

Examples:

90 'BUBBLE SORT ARRAY A$
100 FLIPS = 1
110 WHILE FLIPS
115 FLIPS=O

130 IF A$(N) >A$(N + 1) THEN SWAP A$(N),A$(N + 1):FLIPS = 1
140 NEXT N
150 WEND

120 FOR N = 1 TO J-1

The program sorts the elements in A$. It continues until there are no ele-
ments to swap in Line 130. At this time, FLIPS = 0 and the WHILE con-
dition is no longer true. Program control then drops to LINE 150.

266

W D TH Statement

WIDTH State~ent

Purpose:
To set the printed line width, in number of characters, for the screen and
printer.

Syntax:
WIDTH size
WIDTHfire number, size
WIDTH "device", size

Comments:
size, an integer in the range 0-255, is the new width.

file number is the number of the open file.

device is a valid string expression identifying the device. Valid devices are
SCRN:, LPTl:, LPT2:, LPT3:, COMl:, and COM2.

Changing Screen Width To change the screen width, use either of the
following:

WIDTH size
WIDTH "SCRN.", size

Only a 40- or 80-character column width is allowed.

See the SCREEN statement for more information.

Changing the screen mode affects the screen width only if you are moving
between Screen Mode 2 and Screen Mode 1 or 0.

Note: Changing the screen width clears the screen and sets the bor-
der screen color to black.

Changing the Printer Width: The following WIDTH statement is used as
a deferred width assignment for the printer. This statement stores the
new width value without actually changing the current width setting:

WIDTH "LPTl:", size

267

GW-BASIC User's Reference

A statement of the following form recognizes this stored width value:

OPEN "LpT1:" FOR OUTPUT AS itzintber

and uses it while the file is open:

WIDTHfile number, sire

If the file is open to LPTl:, the printer width immediately changes to the
new size. This allows you to change the width at will while the file is open.
This form of WIDTH has meaning only for LPT1:. After outputting the
indicated number of characters from the open file, GW-BASIC inserts
the carriage return at the end of the line and wraps the output, if the
width is less than the length of the record.

Valid widths for the printer are 1-255.

Specifying WIDTH 255 for the printer (LPT1:) enables line wrapping.
This has the effect of infinite width.

Any value entered outside of the indicated ranges results in an Illegal
function call error. GW-BASIC retains the previous value.

Using the WIDTH statement on a communications file causes a carriage
return to be sent after the number of characters specified by size. It does
not alter either the receive or transmit buffer.

Examples:

10 WIDTH "LPT1:",75
20 OPEN "LPT1:" FOR OUTPUT AS #1

6020 WIDTH #1,40

Line 10 stores a printer width of 75 characters per line.

Line 20 opens file #1 to the printer and sets the width to 75 for sub-
sequent PRINT #1, ... statements.

Line 6020 changes the current printer width to 40 characters per line.

268

W N D O W Statervteiit

Purpose:
To redefine the coordinates of the viewport so that you can draw objects
that are not restricted by the physical coordinate range.

Syntax:
WINDOW [[SCREEN](xl, yl)-(~2, y2)]

Comments:
xl and y l are single-precision, floating-point numbers representing the
upper left world coordinates.

x2 and y2 are single-precision, floating-point numbers representing the
lower right world coordinates.

The world coordinates define the space that graphics statements map
into the physical coordinate space. For example, using WINDOW to
redefine world coordinates, you can cause an object to extend beyond a
viewport or to fill only a small portion of the same viewport.

The VIEW statement defines physical coordinate space. It defaults to the
entire screen.

The window is the rectangular region in the world coordinate space. It al-
lows zoom and pan and lets you draw lines, graphics, and objects in space
not bounded by the logical limits of the screen. When you use WINDOW,
GW-BASIC converts the world coordinates into the appropriate physical
coordinates for subsequent display within screen space.

If you omit SCREEN, WINDOW inverts the y coordinates on sub-
sequent graphics statements. This makes XI, y l the lower left point and
xl, y2 the upper right point, allowing you to view the screen in true Car-
tesian coordinates.

If you include SCREEN, WINDOW does not invert they coordinates.

xl, y l is the upper left point, andx2, y2 is the lower right point.

GW-BASIC User's Reference

The WINDOW statement sorts the x andy pairs into ascending order:
WINDOW (50,50)-(10,lO)

becomes:
WINDOW (10,lO)-(5050)

WINDOW (-2,2)-(2,-2)

becomes:
WINDOW (-2,-2)-(2,2)

x l cannot equalx2, and y l cannot equaly2.

WINDOW with no options disables previous WINDOW statements.

Examples:
If you type:

NEW
SCREEN 2

the screen uses the standard coordinate attributes as follows:

0,199 639,199

270

I Y
increases

WNDO W Statement

If you type:
WINDOW (-1 ,-1)-(1 , I)

the screen uses the Cartesian coordinates as defined in the following
illustration:

J .
-1,l

-1,-1 LL
If you type:

-

WINDOW SCREEN (-1 ,-1)-(1,l)

the screen uses the non-inverted coordinates as defined in the following
illustration:

1 ,-1 0 3 1 1 ,-1

ydecreases

1 y decreases

1 ,-1 1 , 1

RUN, SCREEN, and WINDOW with no options disable any WINDOW
definitions and return the screen to its normal physical coordinates.

271

00

GW-BASIC User's Reference

t

Purpose:
To output data to the screen.

Syntax:

Comments:

WRITE[data] [data] [. . .]

data is the list of numeric and/or string expressions, separated by commas
or semicolons, to be output on the screen. If you omit data, GW-BASIC
outputs a blank line.

The main difference between WRITE and PRINT is that WRITE inserts
commas between displayed items and delimits strings with quotation
marks. WRITE inserts a carriage return/line feed following the last item
in the list.

WRITE outputs numeric values using the same format as PRINT except
that it does not precede positive numbers with blank spaces.

Examples:

10 A = 80:B = 9O:C$ = "THAT'S ALL"
20 WRITE A,B,C$

Displays:
80, 90,"THAT'S ALL'

272

W T E # Statement

Purpose:
To write data to a sequential file.

Syntax:

Comments:
fire number is the number used to open the file for output.

list of expressions is a list of string and/or numeric expressions, separated
by commas or semicolons, to be output to the file.

The WRITE# and PRINT# statements differ in that WRITE# inserts
commas between the data items and uses quotation marks to delimit
strings. Therefore, you do not need to include explicit delimiters with
WRITE#. Another difference is that WRITE# does not put a blank in
front of a positive number.

WRITE# inserts a carriage returdline feed sequence after the last item
in the list.

WRITE #fie number, list of eqressioits

Examples:

A$ = 'CAMERA': B$ = "93604-1"
WRITE#l ,A$,B$

Writes the following image to disk:
"CAMERA', "93604-1"

A subsequent INPUT$ statement, such as the following, inputs
"CAMERA to A$ and "93604-1" to B$:

INPUT#l ,A$,B$

273

Index

Introduction: Since the commands, functions, state-
ments, and variables in the GW-BASIC User’s
Reference appear in alphabetical order, they are not
listed in this index. However, they are listed in the GW-
BASIC User’s Reference Contents pages. You can also
locate them by looking in the index under the function
they are related to, such as graphics, strings, and so on.

Please note: Page references for the GW-BASIC User’s
Guide appear in normal Roman type; page references
for the GW-BASIC User’s Reference appear in
boldface Roman type.

A

absolute value, returning with

addition (+) operator, 17,53
AND logical operator, 56
angles, creating, with CIRCLE,

animation. See graphics
arctangent of expressions,

arithmetic operators

ABS, 2

21

returning with ATN, 4

algebraic and BASIC
expressions, 53

chart of, 17,53
integer division and modulus

arithmetic, 54

arithmetic operators (Continued)
order of precedence, 53
overflow and division by

zero, 54-55
array variables, 49
arrays

addresses, returning with

erasing, with ERASE, 65
maximum values for (DIM),

52
minimum values for

subscripts (OPTION
BASE), 159

arrow keys, 21
ASCII codes, 69-73

VARPTR, 257-259

ASC function and, 3
converting to characters, with

CHR$, 19

275

Index

ASCII codes (Continued)
returning value of, with

SCREEN, 218
ASCII format, saving files in,

217
assembly language programs, 77.

See also programs

with CALL, 11-14,79-82

loading with BLOAD, 8,78
memory allocation, 77-78
programs calling, 85-88
saving with BSAVE, 8
starting address for (DEF

calling subroutines

with USR, 83-85,254

USR), 49

See communications
asynchronous communications.

B

BACKSPACE key, 21,23,24
.BAS extension, 7-8
BASIC programming,

BASIC programs, converting to

BASICA, loading GW-BASIC
with, 6

bibliography for BASIC
programming, 3

binary format, saving files in,
217

block size, maximum, 9
boxes and lines, drawing, with

bibliography for, 3

GW-BASIC, 89-90

LINE, 111-114

buffer, random file

FIELD, 72
allocating space for, with

C

calculations
? for entering, 17
distinguished from programs,

performing, in direct mode,
19

17
calling assembly language

subroutines
with CALL, 11-14,79-82
with USR, 83-85,254

IOCTL$ function and, 102
IOCTL statement and, 101

ASCII character codes,

converting ASCII codes to,
with CHR$, 19

extended codes, 74-75
returning, with INKEY$,

INKEY$ variable and, 89-90
recognized by GW-BASIC,

returning ASCII code for,
with SCREEN, 218

type declaration characters,
48

child process, 227
circles, creating, 21-22

character device drivers

characters. See also strings

69-73

89-90

107-108

276

Index

clearing
display screen, with CLS,

memory, with NEW, 23,139
points, with PRESET, 183
variables, with CLEAR, 23

with CLEAR, 23
with END, 58
with RESET, 208

26

closing files

colon (:), separating

colors. See also graphics
statements with, 14

attributes and color ranges

changing, with PALETTE
for monitors, 167,224

and PALETTE USING,
165-168

displaying a point, with

examining, with POINT, 179
foreground colors, for

screen modes, 225
PAINT statement and,

screen modes for, 28-30
selecting, with COLOR,

COM trapping, with ON, 143
command level, definition, 7
command line

PSET, 194

163-164

28-30

examples, 9-10
filename parameter, 7-8
parameter sequence for, 7
< stdin parameter, 8
> stdout parameter, 8
switches in, 8-10

commands
definition, 12
program file commands, 31

IC switch and, 9
allocating buffer, with OPEN

"COM, 156-158
COM trapping, 143
COM(n) statement and, 31
errors, 92-93
GET and PUT statements,

INPUT$ function, 93
input/output functions, 92
input/output statements, 91
opening files, 91
reading files, with INPUT$

TTY sample program, 97-99

statement and, 87-88

communications

94-96

function, 96

conditional results, IF

constants
definition, 45
numeric constants, 46-47
reading, with DATA, 39-40
string constants, 45
type conversion, 51-52

with CONT, 33
with RESUME, 210

continuing programs

conventions, notational, 2
correcting errors, 23
cosine, calculating, 34
CTRL-[, 27
CTRL-],26
CTRL-6,26
CTRL--, 25
CTRL-\, 26

~ "l_____

277

Index

CTRL-B, 25
CTRL-BACKSPACE, 26
CTRL-BREAK, 10,25
CTRL-C, 25
CTRL-E, 24,26
CTRL-END, 24,26
CTRL-ENTER, 14,27
CTRL-F, 25
CTRL-G, 27
CTRL-H, 23,25
CTRL-HOME, 27
CTRL-I,B
CTRL-J, 27
CTRL-K, 27
CTRL-L, 27
CTRL-LEFT ARROW, 25
CTRL-M, 27
CTRL-N, 27
CTRL-NUM LOCK, 28
CTRL-PRINT SCRN, 28
CTRL-R, 27
CTRL-RIGHT ARROW, 25
CTRL-S, 28
CTRL-Z, 10-11
cursor

finding current position
with CSRLIN, 36
with LOC, 123

moving, with LOCATE,

positioning, with POS, 182
124-125

cursor keys, 21

D

data buffer, number of bytes
for, 8

data files
overview, 32
random access files, 37-43
sequential files, 32-36

from communications files,

from keyboard

data input

with INPUT$, 96

with INPUT$, %
with LINE INPUT, 115

from sequential files
with INPUT#, 95
with LINE INPUT#, 117

from terminal, with INPUT,
92-94

DATA statements
reading, with READ, 202-203
rereading, with RESTORE,

209

with DATE$, 41
date, setting and retrieving,

decimal numbers
converting to hexadecimal

converting to octal numbers,
numbers, 86

140
degrees, converting to radians,

4
DEL key, 21,23,24,26
deleting

files, with KILL, 31,107
lines, with DELETE, 51
programs, with NEW, 23,139

IOCTL$ function and, 102
IOCTL statement and, 101

device drivers, character

device errors, finding with
ERDEV and ERDEV$,
66

278

Index

devices
communicating with, via INP,

91
opening input/output to,

with OPEN, 150-157
saving memory on, with

BSAVE, 10
terminating input/output to,

with CLOSE, 25

examples of using, 17-18

changing, with CHDIR, 18
creating, with MKDIR, 136
removing, with RMDIR, 213
writing directory

direct mode of operation, 7

directories

information, with RESET,
208

display screen
arguments, 220
attributes and color ranges

for, 167,224
CGA with color monitor, 219
clearing, with CLS, 26
creating viewports, with

default attributes, screen

default foreground colors,

EGA with color monitor, 219
EGA with enhanced color

EGA with enhanced display,

EGA with monochrome

line width, setting, with

VIEW, 261

mode 10,222

225

monitor, 219

220

display, 220

WIDTH, 267-268

display screen (Continued)
monochrome monitors, 219
printing, 28
redefining coordinates, with

screen modes
WINDOW, 269-271

for colors, 28-30
for hardware, 220-221

screen pages, 222-223
setting boundaries, with

VIEW PRINT, 263
division (/) operator, 17,53
division by zero, 54-55
double-precision number,

converting numeric
expression to, 15

constants, 47
type conversion, 52

double-precision results, /d
switch and, 9

double-precision variables,
declaring, with DEFDBL,
45

double-precision numeric

DOWN ARROW, 25
drawing. See graphics

E

editing lines, 57
correcting errors, 23
ENTER, for saving edited

lines, 24
keys for, 21,23
methods for, 20,24
truncating lines with CTRL-

END, 24

279

ellipses, creating, with

END key, 27
end of file, finding, 64
ENTER key, 27

CIRCLE, 21

as end of statements, 14
saving edited lines with, 24

modifjmg, with ENVIRON,

retrieving strings from,

environment string table

59-60

with ENVIRON$, 61-63
equality (=) operator, 55,59
EQV logical operator, 56
errors

communications errors,

correcting, 23
device errors, finding with

92-93

ERDEV and ERDEV$,
66

error codes and messages,

error trapping, 147
extended error information

(EXTERR), 71
returning error codes with

ERR and ERL, 67
simulating and defining,

with ERROR, 68-69

61-67

ESC key, 23,27
event trapping, with ON, 141-

valid values for, 142
execution of programs. See

programs
exiting to MS-DOS, 15
exponentiation, 70

A operator, 53

146

expressions
assigning value to variable,

definition, 52
truncating to whole numbers,

with INT, 100
type conversion, 51

extended characters, INKEY$

extended codes, 74-75

with LET, 110

variable and, 89-90

F

FAC, 84
FCB. See File Control Block
File Control Block (FCB)

number of bytes for, 8
returning addresses with

VARPTR, 257-259
filename parameter, command

files
line, 7-8

closing
with CLEAR, 23

with RESET, 208
communications, reading

with INPUT$, 96
current position, finding

with LOC, 123
data files, 32
deleting, with KILL, 31,

end of file, finding, with

input/output, establishing,

with END, 58

107

(EOF), 64

150-155

Index

files (Continued)

LOF, 128
length, determining with

loading, with LOAD, 31,122
locking, with LOCK, 126-127
merging, with MERGE, 31,

printing names of, with

random access files, 37-43
reading records from, with

renaming, with NAME, 138
saving, 22

sequential, 32-36

133

FILES, 73

GET, 80

with SAVE, 217

reading, with INPUT#,
95

writing data to, with
WRITE#, 273

setting maximum number of

space allocation for, 8
terminating input/output to,

with CLOSE, 25
types of, 31
unlocking, with UNLOCK,

open files, 8

251-253
fixed-point numeric constant, 46
floating-point accumulator

(FAC), 84
floating-point division (/)

operator, 53
floating point numeric

constant, 46
type conversion, 52

FOR-NEXT loops, converting
from BASIC to
GW-BASIC, 89-90

formatted printing, with PRINT

function keys, 19,21 See also
USING, 186-190

keys; special keys

104
default assignments for, 21,

definition, 29
examples, 20
KEY trapping, 143
redefining, 29

functional operators, 58
functions

with KEY, 103-105

communications I/O
functions, 92

numeric functions, 12
string functions, 13
user-defined, 13

defining and naming, with
DEF FN, 43-44

G

garbage collection, with FRE,

GML (Graphics Macro

graphics. See also colors;

79

Language), 53

display screen
animation, with GET and

boxes and lines, drawing,
with LINE, 111-114

CIRCLE statement and, 21-
22

clearing a point, with
PRESET, 183

PUT, 81-82,197-199

281

Index

graphics (Continued)
coordinate mapping, with

coordinates, retrieving with

displaying a point, with

DRAW statement and, 53-56
filling, with PAINT, 161-164
loading images, with

saving images, with BSAVE,

transferring images

PMAP, 178

POINT, 179

PSET, 183

BLOAD, 8

8

with GET, 81-82
with PUT, 197

windows, creating with
VIEW, 261

Graphics Macro Language, 53
greater than (2) operator, 55,

59
greater than or equal to (> =)

operator, 55,59
GW-BASIC, converting BASIC

programs to, 89-90

H

hexadecimal equivalents, 101-

hexadecimal numbers, converting
decimal values

hexadecimal numeric constant,

HOMEkey,27

103

to, 86

46

I

images. See graphics
IMP logical operator, 56
indirect mode of operation, 7

examples of using, 18-19
inequality (< >) operator, 55,

input. See data input
inputJoutput

59

OPEN statement for, 150-157
terminating, with CLOSE, 25

INS key, 21,24,27-28
integer division and modulus

arithmetic, 54
integer numeric constant, 46
integer variables, declaring,

with DEFINT, 45

J

joysticks
coordinates, returning with

STICK, 236
status of buttons,

returning, with STRIG,
239-240

STRIG trapping, 145
trapping buttons, with

STRIG(number), 241

K

key capture, with KEY(number),

key scan codes, 105-106
106

282

- Index

KEY trapping, with ON, 143-144

keyboard buffer, reading, with

keys. See also function keys;
special keys

cursor keys, 21
editing keys, 23
summary chart of editing

keys, 21

INKEY$, 89-90

CTRL-Z,10-11

keywords, definition, 11-12

L

LEFT ARROW, 26
left-justifymg data, with

LSET, 132
length of files, determining

with LOF, 128
less than (<) operator, 55,59
less than or equal to (< =)

operator, 55,59
light pen

reading, with PEN statement,
173

reading coordinates, with
PEN function, 171-172

line format, 13,14 See also
statements

CTRL-ENTER, for wrapping
lines, 14

ENTER, for ending lines, 14
line numbers, 14
wrapping of lines, 14

lines
branching

with GOTO, 85
with ON/GOSUB, 149
with ON/GOTO, 149

deleting, with DELETE, 51
editing, with EDIT, 57
inputting, with LINE INPUT,

numbering, with AUTO

renumbering, with RENUM,

sequential file input, with

lines and boxes, drawing, with

loading

115

command, 5

206

LINE INPUT#, 117

LINE, 111-114

assembly language programs,
with BLOAD, 8,78

files, with LOAD, 31,122
graphic images, with

BLOAD, 8

with BASICA, 6
GW-BASIC, 5

locking files
with LOCK, 126-127
with OPEN, 153-155

logarithms, calculating, 129
logical operators

chart of, 56-57
definition, 56
example, 58
type conversion, 51
uses for, 57

283

Zndex

loops
FOR and NEXT statements

WHILE-WEND statement
and, 76-78

and, 265

M

machine language programs. See
assembly language
programs

masks, tile. See tile mask
masks for printing. See

formatted printing
MAT functions, converting from

BASIC to GW-BASIC,
89-90

memory
assembly language

subroutines allocation,
77-78

clearing, with NEW, 23, 139
garbage collection, with

highest location, setting, 9
reading, with PEEK, 170
requirements, for storing

saving on devices, with

writing to, with POKE, 181

FRE, 79

variables, 50

BSAVE, 10

merging program files, 31,133
messages and error codes,

MOD operator, 54
61-67

modes of operation. See direct
mode of operation;
indirect mode of
operation

modifying program lines. See
editing lines

modulus arithmetic, 54
monitors. See display screen
movement commands, for DRAW
statement, 53-55
MS-DOS. See operating system
multiple assignments or

statements, converting
from BASIC to
GW-BASIC, 89-90

multiplication (:&) operator,
17,53

music. See also sound
generation

PLAY function and, 177
PLAY statement and, 174-

PLAY trapping, 144
176

N

NAME command, 31-32
negation (-) operator, 53
nested loops, FOR and NEXT

networks
statements and, 77

LOCK statement and, 126-

OPEN statement and, 153-

UNLOCK statement and,

127

155

251-253
NOT logical operator, 56

284

Index

notational conventions, 2
NTF values, 83
number type flag (NTF values),

numbers
83

cosine calculation, 34
decimal

converting to hexadecimal
(HEX$), 86

converting to octal
(OCT$), 140

double-precision, converting

logarithm calculation, 129
rounding, with CINT, 20
sign of, returning (SGN),

sine calculation, 229
single-precision, converting

(CSNG), 35
square root calculation,

235
strings, converting (CVI,

CVS, CVD), 37
tangent calculation, 246
truncating

(CDBL), 15

226

with FIX, 75
with INT, 100

numeric constants
reading, with DATA, 39-40
single- and double-precision

form, 47
types of, 46

numeric functions, definition,

numeric variables, setting to
12

zero, with CLEAR, 23

0

octal numbers, converting from
decimal values (OCT$),
140

octal numeric constant, 46
Ok prompt, 7
operating system

requirements, 1
returning to, 15

with SYSTEM, 244
operators

arithmetic operators, 17,
53-55

definition, 52
functional, 58
logical, 56-58
relational, 55
string, 59-60

OR logical operator, 56
output. See input/output
output ports, sending data

bytes to, 160
overflow and division by zero,

54-55
overlays

MERGE command and,

transferring control to,
16-17

with CHAIN, 16-17

P

pages, copying, with PCOPY,

painting graphics. See

palette. See colors

169

graphics

285

Index

parameters, sequence of, in

pen. See light pen
PLAY trapping, 144. See also

music
points. See graphics
ports

command line, 7

INP function and, 91
sending data bytes to, 160
WAIT statement and, 264

print head, current position of

printing
(LPOS), 130

to line printer, with LPRINT
and LPRINT USING, 131

line width, setting, with

programs
WIDTH, 267-268

with LIST, 19,119
with LLIST, 121

with PRINT, 184
with PRINT USING,

with WRITE, 272
screen, printing, 28
to sequential files, with

on the screen

186-190

PRINT# and PRINT#
USING, 191-193

spacing
with SPC, 234
with TAB, 245

program file commands, 31
programs. See also assembly

language programs;
subroutines

branching
with ON, 141-146
with GOTO, 85

programs (Coiitiiiiied)
with ON/GOTO, 149
with ON/GOTO, 149

with CONT, 33
with RESUME, 210

deleting, with NEW, 23,139
distinguished from

calculations, 19
executing

another program, with

with RUN, 18,19,31,

continuing

SHELL, 227

216
flow of, controlled with IF,

listing
87-88

with LIST, 19,119
with LLIST, 121

merging, 133
passing variables to, with

printing
COMMON, 32

with LIST, 19,119
with LLIST, 121

WAIT, 264

with END, 58
with STOP, 237

tracing execution, with
TRON/TROFF, 250

transferring control to,
with CHAIN and

suspending execution, with

terminating

MERGE, 16-17
Q
question mark (?), for entering

calculations, 17

286

Index

R RS-232 port. See
communications

radians, converting from
degrees, 4

random access files
accessing, 39-43
creating, 37-38
modes for opening, 151

random file buffer, allocating

random numbers
space, with FIELD, 72

getting, with RND, 214
reseeding with

RAMDOMIZE, 200-201
reading values from DATA

statements
with READ, 202-203
rereading, with RESTORE,

209
records

maximum length, 8
reading, with GET, 80
writing to random disk file,

with PUT, 196
redirection of input and

relational operators, 55
remarks, inserting with REM,

renaming files, with NAME, 138
reserved words, See keywords
RETURN, event trapping and,

RIGHT ARROW, 26,B
right-justifying data, with

RSET, 215
rounding numbers, with CINT,

20

output, 10-11

204

143

S

saving
assembly language programs,

with BSAVE, 8
files, with SAVE, 22,31,217
images, with BSAVE, 8
memory on devices, with

BSAVE, 10
scan codes, key, 105-106
screen. See display screen
screen pages

copying, with PCOPY, 169
managing, with SCREEN,

222-223
segments, assigning current

address, with DEF SEG,
41

sequential files
accessing, 35
adding data to, 36
creating, 32-34
modes for opening, 150
writing data to, with

WRITE#, 273
serial communications. See

communications
sharing files. See locking

files
SHIFT-PRINT SCRN, 28
single-precision numbers,

converting numeric
expression to, 35

287

Index

single-precision numeric

single-precision variables,
constants, 47

declaring, with DEFSNG,
45

music
sound generation, 230. See also

chart of frequencies, 231
clock ticks for tempos, 232
sounding the speaker, with

BEEP, 7
spaces

adding, with SPACE$, 233
skipping

with SPC, 234
with TAB, 245

special keys
BACKSPACE, 21,24,25
CTRL-[, 27
CTRL-1, 26
CTRL-6,26
CTRL--, 25
CTRL-\, 26
CTRL-B, 25
CTRL-BACKSPACE, 26
CTRL-BREAK, 10,25
CTRL-C, 25
CTRL-E, 24,26
CTRL-END, 24,26
CTRL-ENTER, 14,27
CTRL-F, 25
CTRL-G, 27
CTRL-H, 23,25
CTRL-HOME, 27
CTRL-I, 28
CTRL-J, 27
CTRL-K, 27
CTRL-L, 27
CTRL-LEFT ARROW, 25

special keys (Continued)
CTRL-M, 27
CTRL-N, 27
CTRL-NUM LOCK, 28
CTRL-PRINT SCRN, 28
CTRL-R, 27
CTRL-RIGHT ARROW, 25

DEL, 21,23,24,26
DOWN ARROW, 25
END, 27
ENTER, 14,24,27
ESC, 23,27
HOME, 27

LEFT ARROW, 26
RIGHT ARROW, 2.6,28
SHIFT-PRINT SCRN, 28
TAB, 28
UP ARROW, 26

CTRL-S, 28

INS, 21,24,27-28

square roots, calculating, 235
stacks, CALL statement and,

starting GW-BASIC, 5 See

statements. See also line

definition, 12, 13
more than one per line, 14
processing of, 14-15
< stdin parameter, command

line, 8
> stdout parameter,

command line, 8

79-82

loading GW-BASIC

format

stopping. See terminating
STRIG trapping, 145. See also

joysticks

288

Indm
I_

string constants, 45

string functions, definition, 13
string memory, garbage

string operators, 59-60
string variables

reading, with DATA, 39-40

collection, with FRE, 79

allocating space for, with

declaring, with DEFSTR, 45
setting to null, with CLEAR,

FIELD, 72

23
strings. See also characters

adding spaces, with SPACE$,

ASCII codes for, 3
counting characters in, with

creating, with STRING$, 242
dimensions, converting from

233

LEN, 109

BASIC to GW-BASIC,
89-90

leftmost portion, returning
with LEFT$, 108

numbers, converting to
strings, with STR$, 238

numeric values
converting to, with M a $,

MKS$, MKD$, 137
returning, with VAL, 256

replacing, with MID$, 135
rightmost portion, returning

with RIGHT$, 212

searching for, with INSTR,

substrings, returning, with

strings (Continued)

98

MID$, 134

subdirectories. See
directories

subroutines. See also assembly
language programs;
programs

calling assembly language
subroutines, 11-14

GOSUB and RETURN
statements for, 83-84

returning from, with
RETURN, 211

substrings, returning, with
MID$, 134

subtraction (-) operator, 17,53
switches

IC, 9
fd, 9
if, 8
ti, 8
/m, 9
i s , 8

system requirements, 1

T

TAB key, 28
tabs, setting, 245
terminating

inputjoutput, with CLOSE,
25

programs
with END, 58

tile mask, PAINT statement
with STOP, 237

161-164

~

289

Index

time V
counting seconds, with

setting or retrieving, with
TIMER, 249 variables

TIME$, 247-248
TIMER trapping, 145
tracing execution of statements

trapping events, with ON,
(TRON/TROFF), 250

141-146
COM trapping, 143
KEY trapping, 143-144
PLAY trapping, 144
STRIG trapping, 145
TIMER trapping, 145
valid value for, 142

TTY sample communication
program, 97-99

type conversion, 51-52
type declaration characters,

48

U

unlocking files, with UNLOCK,

addresses, returning, with
VARPTR, 257-259

allocating space for, with
FIELD, 72

array variables, 49
assigning value from

expressions, with LET,
110

character form of offset,
VARPTR$ and, 260

clearing, 23
declaring types, with

DEFINT/SNG/DBL/
STR, 45

definition, 13,47
exchanging values, with

SWAP, 243
memory requirements for, 50
names, 48
passing to chained programs,

with COMMON, 32
type declaration characters,

48
251-253 viewports

UP ARROW, 26
user-defined functions redefining coordinates, with

creating, with VIEW, 261

defining and naming, with WINDOW, 269-271
DEF FN, 43-44 setting boundaries, with

definition, 13 VIEW PRINT, 263

-~
290

Index

W

windows
creating, with VIEW, 261
redefining coordinates, with

setting boundaries, with
WINDOW, 269-271

VIEW PRINT, 263

directories
working directories. See

X

XOR logical operator, 56

z
zero, division by, 54-55

291

	Tandy GW-BASIC User's Guide
	User's Guide
	Contents
	1 Welcome to GW-BASIC
	Systems Requirements
	Preliminaries
	Notational Conventions
	Organization of This Manual

	Bibliography

	2 Getting Started With GW-BASIC
	Loading GW-BASIC
	Loading BASIC with BASICA
	Modes of Operation
	Direct Mode
	Indirect Mode

	The GW-BASIC Command Line Format
	Redirection of Standard Input and Output

	GW-BASIC Statements Functions Commands and Variables
	Keywords
	Commands
	Statements
	Functions
	Numeric Functions
	String Functions

	Variables

	Line Format
	Returning to MS-DOS

	3 Reviewing and Practicing GW-BASIC
	Example for the Direct Mode
	Examples for the Indirect Mode
	Function Keys
	Editing Lines
	Saving Your Program File

	4 The GW-BASIC Screen Editor
	Editing Lines in New Files
	Editing Lines in Saved Files
	Editing the Information in a Program Line

	Special Keys
	Function Keys

	5 Creating and Using Files
	Program File Commands
	Data Files
	Creating a Sequential File
	Accessing a Sequential File
	Adding Data to a Sequential File

	Random Access Files
	Accessing a Random Access File

	6 Constants Variables Expressions and Operators
	Constants
	Single- and Double-Precision Form for Numeric Constants

	Variables
	Variable Names and Declarations
	Array Variables
	Memory Space Requirements for Variable Storage

	Type Conversion
	Expressions and Operators
	Arithmetic Operators
	Integer Division and Modulus Arithmetic
	Overflow and Division by Zero

	Relational Operators
	Logical Operators
	Functional Operators
	String Operators

	Appendices
	A Error Codes and Messages
	B ASCII Character Codes
	C Assembly Language (Machine Code) Subroutines
	D Converting BASIC PROGRAMS to GW-BASIC
	E Communications
	F Hexadecimal Equivalents
	G Key Scan Codes
	H Characters Recognized by GW-BASIC
	I Glossary

	Tandy GW-BASIC User's Reference
	Contents
	Introduction
	ABS Function
	ASC Function
	ATN Function
	AUTO Command
	BEEP Statement
	BLOAD Command
	BSAVE Command
	CALL Statement
	CDBL Function
	CHAIN Statement
	CHDIR Command
	CHR$ Function
	CINT Function
	CIRCLE Statement
	CLEAR Command
	CLOSE Statement
	CLS Statement
	COLOR Statement
	COM(n) Statement
	COMMON Statement
	CONT Command
	COS Function
	CSNG Function
	CSRLIN Variable
	CVI, CVS, CVD Functions
	DATA Statements
	DATE$ Statement and Variable
	DEF FN Statement
	DEFINT/SNG/DBL/STR Statements
	DEF SEG Statement
	DEF USR Statement
	DELETE Command
	DIM Statement
	DRAW Statement
	EDIT Command
	END Statement
	ENVIRON Statement
	ENVIRON$ Function
	EOF Function
	ERASE Statement
	ERDEV and ERDEV$ Variables
	ERR and ERL Variables
	ERROR Statement
	EXP Function
	EXTERR Function
	FIELD Statement
	FILES Command
	FIX Function
	FOR and NEXT Statements
	FREE Function
	GET Statement
	GET Statement (Graphics)
	GOSUB...RETURN Statement
	GOTO Statement
	HEX$ Function
	IF Statement
	INKEY$ Variable
	INP Function
	INPUT Statement
	INPUT# Statement
	INPUT$ Function
	INSTR Function
	INT Function
	IOCTL Statement
	IOCTL$ Function
	KEY Statement
	KEY(number) Statement
	KILL Command
	LEFT$ Function
	LEN Function
	LET Statement
	LINE Statement
	LINE INPUT Statement
	LINE INPUT# Statement
	LIST Command
	LLIST Command
	LOAD Command
	LOC Function
	LOCATE Statement
	LOC Statement
	LOF Function
	LOG Function
	LPOS Function
	LPRINT and LPRINT USING Statements
	LSET Statement
	MERGE Command
	MID$ Function
	MID$ Statement
	MKDIR Command
	MKI$, MKS$, MKD$ Functions
	NAME Command
	NEW Command
	OCT$ Function
	ON Statement
	ON ERROR GOTO Statement
	ON/GOSUB and ON/GOTO Statements
	OPEN STATEMENT
	OPEN "COM Statement
	OPTION BASE Statement
	OUT Statement
	PAINT Statement
	PALETTE, PALETTE USING Statements
	PCOPY Command
	PEEK Command
	PEN Function
	PEN Statement
	PLAY Statement
	PLAY Function
	PMAP Function (Graphics)
	POINT Function
	POKE Statement
	POS Function
	PSET Statement
	PRINT Statement
	PRINT USING Statement
	PRINT# and PRINT# USING Statements
	PRESET Statement
	PUT Statement (Files)
	PUT Statement (Graphics)
	RANDOMIZE Statement
	READ Statement
	REM Statement
	RENUM Command
	RESET Command
	RESTORE Statement
	RESUME Statement
	RETURN Statement
	RIGHT$ Function
	RMDIR Command
	RND Function
	RSET Statement
	RUN Command
	SAVE Command
	SCREEN Function
	SCREEN Statement
	SGN Function
	SHELL Statement
	SIN Function
	SOUND Statement
	SPACE$ Function
	SPC Function
	SQR Function
	STICK Function
	STOP Statement
	STR$ Function
	STRING Statement and Function
	STRIG(number) Statement
	STRING$ Function
	SWAP Statement
	SYSTEM Command
	TAB Function
	TAN Function
	TIME$ Statement and Variable
	TIMER Function
	TRON/TROFF Commands
	UNLOCK Statement
	USR Function
	VAL Function
	VARPTR Function
	VARPTR$ Function
	VIEW Statement
	VIEW PRINT Statement
	WAIT Statement
	WHILE-WEND Statement
	WIDTH Statement
	WINDOW Statement
	WRITE Statement
	WRITE# Statement

	Index

