
Cat. NO. 25-41 03

Tandy 3000

BASIC
Reference Manual

TANDP

TERMS AND CDNDlTlOhtS OF SALE AND LICENSE OF TANDY COMPUTER EDUlPMEhT AND

STORES Ah0 RADIO SHACK FRANCHISEES OR DEALERS AT THEIR ALTHORIZED LOCATIONS
SOFTWARE PURCHASED FROM RADIO SHACK COMPANY.OWNE0 COMPUTER CENTERS RETAIL

I.

11.

111.

IV.

V.

VI.

LIMITED WARRANTY
CUSTOMER OBLIGATIONS
A. CUSTOMER assumes full responsibility that this computer hardware purchased (the "Equipment"), and any

copies of software included ,with the E uipment, or licensed se aratel (the ''Software") meets the specifications,
ca aci

8. C&T&ER assume; full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

LIMITED WARRANTIES AN0 CONOITIONS OF SALE
A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document, received upon

purchase of the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. This warranty Is only appllcable
to purchasas ot Tandy Equlpment by the oriplnal customer from Radio Shack company-owned computer
cantem, nta l l rtomr, and Radio Shack fnmhlreas and daalan at thalr authorized bcatlonr. The warranty is
void if the Equipment or Software has been subjected to impro er or abnormal use. If a manufacturing defect is
discovered during the stated warranty period, the defective fquipment must be returned to a Radio Shack
Computer Center a Radio Shack retail store a participating Radio Shack franchisee or a participatin Radio Shack
dealer for repair.'along with a copy of the sales document or lease agreement. The original CUSTDMbl'S sole and
exclusive remedy in the event of a defect is limited to the correction of the defect b re air. replacement, or
refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SthCthas no obligation to
re lace or re ir expendable items.

8. RID10 S H A g makes no warranty as to the design, capability. capacity, or suitability for use of the Software,
exce t as rovided in this paragraph. Software is licensed on an "AS IS" basis, without warranty. The original
CUSfOMEth exclusive remedy, in the event of a Software manufacturing defect, is [ts repair or replacement
within thir (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. $e defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no emplo ee. agent, franchisee, dealer or other person is authorized to give any
warranties of an nature on behalf of {ADIO SHACK.

0. EXCEPT AS PJOVIOEO HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AN0 ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION
TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

LIMITATION OF LIABILITY
A. EXCEPT AS PROVIDE0 HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER

OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSEO OR
ALLEGE0 TO BE CAUSEO DIRECTLY OR INDIRECTLY BY "EPUIPMENT" OR "SOFTWARE' SOLO, LEASED,
LICENSE0 OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEPUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE "EPUIPMENT" OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEOUENTIAL DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE."
NOTWITHSTANDING THE ABOVE LIMITATIONS AN0 WARRANTIES, RADIO SHACKS LIABILITY HEREUNDER FOR
DAMAGES INCURREO BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR "EPUIPMENT" OR "SOFTWARE" INVOLVED.
RADIO SHACK shall not be liable for any damages caused by delay in deliverino or furnishing EauiDment and/or

capabilities versatility and o h requirements of CUgTOMEb

8. - . .
Software.

C. No action arisin out of an claimed breach of this Warranty or transactions under this Warranty may be brought
more than two ?2) ears a h the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales dbcument for the Equipment or So9are. whkhever first occurs.

0. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer,
subject to the following provisions:
A. Except as othelwise provided in this Software License, applicable co yright laws shall apply to the Software.
8. Title to the medium on which the Software is recorded (cassette anJor diskette) or stored (ROM) is transferred to

CUSTOMER, but not title to the Software.
C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled

to be for use on a multiuser or network system, or one copy of this software is purchased for each node or
terminal on which Software is to be used simultaneously.

0 . CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer
and as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the
Software.

E. CUSTOMER is permitted to make additional, copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software. CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
cop of the Software for each one sold or distributed. The provisions of this Software License shall also be
appicable to third parties receiving copies of the Software from CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.
APPLICABILITY OF WARRANTY
A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a

sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equi ment to a third party for lease to CUSTOMER.

8. The limitations of lability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS
The warranties granted herein give the original CUSTOMER specific legal rights, and the orlplnal CUSTOMER may
have other rights which vary from state to state 6/86

TANDY 3000
BASIC

REFERENCE
MANUAL

GW TM -BASIC Software: Copyright 1983, 1984, 1985 Microsoft
Corporation. Licensed to Tandy Corporation. All Rights Re-
served.

MS-DOS@ Software: Copyright 1981, 1985 Microsoft Corpora-
tion. Licensed to Tandy Corporation. All Rights Reserved.

Compatibility Software Copyright 1985. Phoenix Software Asso-
ciates Ltd. All Rights Reserved.

BASIC Reference Manual: Copyright 1985, 1986 Tandy Corpora-
tion. All Rights Reserved.

MS-DOS and Microsoft are registered trademarks of Microsoft
Corporation.

GW is a trademark of Microsoft Corporation.

Tandy is a registered trademark of Tandy Corporation.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in the preparation of
this manual to assure its accuracy, Tandy Corporation assumes
no liability resulting from any errors in or omissions from this
manual, or from the use of the information contained herein.

10 9 8 7 6 5 4 3 2 1

Contents

Introduction to BASIC 1
About this Manual 1
Notations . 1
Terms . 2

3
Disk Files ... 3

Pathnames 4
Directory Paths 4
Names 5
Wildcards 5

Device Names 6

7
7
8

11

13
LoadingBASIC 13
Typing the Program 13
Saving the Program on Disk 14
Loading the Program into Memory 14

Chapter 4 / General Information 17
Editing ... 17
Sample Editing Session 18
Special Keys 20
The [ALTJ Key 22
The [pRTSC] Key 22

Chapter 5 / Basic Concepts 23
Elements of a Program 23
Data .. 24
Constants ... 26
Variables .. 27
Declaring Numeric Constants and Variables 27

Numeric Constants 28
Numeric Variables 28

Chapter 1 / About BASIC for MS-DOS

Chapter 2 / Loading BASIC
Loading BASIC via BASICA
Options for Loading BASIC
Redirection of Input and Output

Chapter 3 / Sample Session

Numeric Precision Conversion 29
Manipulating Data 31

Arithmetic Operators 31
String Operator 32
Relational Operators 32
Logical Operators 34
Hierarchy of Operators 36
Functions 37

Chapter 6 / Arrays 39
Types of Arrays 42
Defining Arrays 43

45
Sequential Access Files 45

Creating a Sequential Access File 45
Updating a Sequential Access File 47

Direct Access Files 48
Creating a Direct Access File 49
Accessing a Direct Access File 50

Chapter 8 / Displaying Text and Graphics 53

Chapter 7 / Disk Files

Graphics Capability 53
Color ... 53

Colors in Mode 0 54
Colors in Mode 1 55
Colors in Mode 2 55

Resolution ... 56
Text Width .. 57
Video Memory 58
Summary ... 58
Specifying Coordinates 59

Chapter 9 / Introduction to BASIC Keywords . . 61
Format for Chapter 10 61
Terms Used in Chapter 10 62
Statements .. 63
Functions ... 68

Chapter 10 / BASIC Keywords 71

Chapter 11 / Technical Information 317
Interfacing With Assembly-Language Routines 317

Memory Allocation Outside BASIC’s Work Area . . . 317
Memory Allocation Inside BASIC’s Work Area 317
Converting Subroutines 320
CALL Statement . 321
CALLS Statement 323
USR Function 323

How Variables are Stored 325
Accessing String Variables 326
File Control Block 326
User Installed Devices 329
Information for Creating Child Processes 329

Chapter 12 / BASIC Error Codes and

Appendix A / BASIC Reserved Words

Appendix B / Keyboard and Character Code

Messages . 331

and Derived Functions 339

Charts .. 343
Keyboard ASCII/Scan Codes 343
ASCII Character Codes 346

Appendix C / Video Display Worksheet 353

Appendix D / Extended Codes 355

Index . 357

INTRODUCTION TO BASIC

bout
This manual describes BASIC for MS-DOS. It is a reference man-
ual, not a tutorial. We assume you already know BASIC and are us-
ing this manual to locate information quickly. If you do not know
BASIC, check your local bookstore for books for the novice
programmer.

tio
The following notations are used throughout this manual:

CAPITALS

italics

Material that you must enter exactly as it
appears.

Items within command lines for which you must
supply words, letters, characters, or values from
a set of acceptable entries. Elsewhere, italics are
used for technical terms.

Items preceding the ellipsis may be repeated.

Items enclosed in brackets are optional.

nnnn is a hexadecimal number.

nnnnn is an octal number.

A key on your keyboard.

A blank character (ASCII code 32). For example,
in

two spaces are between BASIC and PROG.

. . . (ellipsis)

[I
&Hnnnn

&Onnnnn

[TGiii-]
16

BASICbBPROG

1

Introduction to BASIC

Terms
The following terms are used in this manual:

parameters

arguments

syntax

buffer An area in memory that BASIC uses to create
and access a disk file. A buffer is represented by
a number in the range 1 to 15. Once you use a
buffer to create a file, you cannot use it to create
or access any other files; you must first close the
file. You may only access an open file with the
buffer used to open it.
Information you supply to specify how a com-
mand is to operate.

Expressions you supply for a function t o
evaluate.

A command with its parameter(s1, or a function
with its argument(s). This shows the format to
use for entering a keyword in a program line.

2

Chapter 1

ABOUT BASIC FOR MS-DOS

BASIC for MS-DOS@ is an interpreter. This means that, when
you run a program, BASIC looks at one statement at a time and
executes it before going to the next statement.

BASIC also lets you take advantage of many MS-DOS features,
such as:

0 Multilevel directories
0 Faster running programs
0 Expanded graphics capabilities

Disk Files
BASIC uses the MS-DOS multilevel directory structure on disk.
A formatted disk has a main directory called the root directory
which is represented by the backslash (\ I . The root directory
can contain both files and second-level directories. , ROOT DIRiCTORY (\> ,

Letters

JIM A DEBRA LABOR PARTS

I
Reports Cost Usage

This illustration demonstrates how a typical system for a sales
and service company might be set up. The root directory con-
tains two second-level directories: SALES and SERVICE. The
root directory also contains a file called Letters.

3

Chapter 11 About BASIC for MS-DOS

Pathnames
BASIC lets you specify pathnames to access disk files just as
MS-DOS does. A pathname is enclosed in quotation marks and
may be a maximum of 63 characters. It contains the following
information:

“[d: I [path] filename[.extl”

The drive is specified by d: and may be either A, B, C, or D. If
you omit d:, BASIC uses the current drive.

Path gives the directory path for filename. The directory names
are separated by a backslash (\ >. If you omit path, BASIC uses
the current directory.

Filenume specifies the name of the file being accessed. Filenames
are 1 to 8 characters long. If a filename is more than 8 charac-
ters, BASIC truncates it to 8 characters.

Ext is an optional extension to the filename. Use extensions to
help distinguish types of files. Extensions are always preceded
by a period (.> and are 1 to 3 characters long. If you omit the ex-
tension, BASIC assumes .bas. Here are some common extensions:

.bas for BASIC programs

.txt for ASCII text

.dat for Data files

. obj for Object code

.re1 for Relocatable code

.src for Source code

Some commands, such as CHDIR, MKDIR and RMDIR, require
you to specify a directory instead of a file. In such cases, the
pathname does not include a filename.

4

Chapter 11 About BASIC for MS-DOS

Names
Directory names and filenames must conform to MS-DOS con-
ventions. They may contain any of the following characters:

0 uppercase letters (A-Z)
0 lowercase letters (a-z)
0 decimal digits (0-9)

In addition, they may contain the following special characters:

$ & # % () - @ { } - ‘ ! ’ * -

An entire pathname may contain a maximum of 63 characters.

Some sample filenames are:

Prog.bas Report Telephonsls

Some sample directory names are:

MEMOS LETTERS EMPLOYEE

In the command lines in this manual, directory names are in
uppercase letters, and filenames are in lowercase letters. This
lets you easily distinguish a directory name from a filename. (In
copy, filenames begin with an uppercase letter so that they
“jump out” from the other words on the page.) But, remember,
you can type in whichever combination of uppercase and/or low-
ercase is easiest.

Wildcards
BASIC follows MS-DOS usage of wildcard notations when search-
ing for directories or filenames. The wildcard notations are:

? indicates that any character can occupy that position.
* indicates that any character can occupy that position or the

remaining positions in the filename or extension.

For example, if you specify this filename:

Data?tst. txt

BASIC might find these files:

Dat‘altst.txt
Data3tst.txt

5

Chuxlter 11 About BASIC for MS-DOS

If you specify this filename:

Data*.txt

BASIC finds those files and might also find these:

Data.txt
Datatst.txt
Datal.txt

Device Names
BASIC uses device identifiers (dev:) to indicate a physical device
to be used for communication. These names, which must be en-
closed in quotation marks, are:

KYBD:
SCRN:
LPT1:
COMn:

You can open any of these devices just as you would a disk file.

keyboard. Use for input only.
screen. Use for output only.
printer. Use for output only.
RS232 Communications Channel 1 or 2. Use for input
or output.

Chapter 2

LOADING BASIC

Your MS-DOS/BASIC diskette contains both the BASIC Interpreter
and the operating system required to run it. Before using BASIC,
make a backup of this diskette by following the instructions in your
MS-DOS Handbook. Then, start up MS-DOS from Drive A as de-
scribed in the Handbook.

If your system contains Drive C (the hard disk system drive), you
have the option of running MS-DOS and BASIC from that drive. Fol-
low the instructions in the Handbook to copy the software to the
drive, and restart your system under hard disk control.

When MS-DOS displays its system prompt (CI> for floppy disk con-
trol or C> for hard disk control), you can load BASIC by typing
one of two commands.

BCISIC (-1
immediately loads BASIC into the computer’s memory.

BFlSICCI [ENTER]

loads the small loader program BASICA.COM, which in turn
loads BASIC. This alternate method of loading BASIC is dis-
cussed in detail in the section “Loading BASIC via BASICA.”

Once you load BASIC, a paragraph of copyright information ap-
pears on your screen, followed by BASIC’s prompt:

O k

At this point, you can begin using BASIC. The next chapter pro-
vides a sample session on loading BASIC and using some of its
capabilities. If you don’t want to use any of BASIC’s other op-
tions for loading, go ahead to the next chapter.

Loading BASIC via
Some computers require you to type BASICCI [ENTER] to load
BASIC. To increase compatibility with such computers, your
computer also accepts the BASICA command. When you enter
the command, the computer executes the program BASICA.COM,
which in turn loads BASIC.

Chapter 21 Loading BASIC

In addition to compatibility, other advantages of loading BASIC
via BASICA are as follows:

BASIC is loaded at a different memory location than it would
be otherwise. This feature lets you run a few BASIC programs
that make use of certain memory locations that BASIC would
otherwise have occupied.

0 You can gain space on your program or system diskette be-
cause you can store the BASIC.EXE file on a separate disk.

The only limitations imposed by BASICA are:

0 The /I option switch (discussed below) is always on.

The communications buffer size is limited to 40K bytes if the

After you type BASICA m, BASICA.COM searches the cur-
rent directory for the file BASIC.EXE. If it finds BASIC.EXE,
BASICA.COM loads it and passes control to it.

If BASICA.COM does not find BASIC.EXE, it asks you to replace
your program disk with a disk that contains the file. Place a
disk containing BASIC.EXE in any drive, and press m. The
program searches all drives, beginning with the current drive,
until it finds BASIC.EXE or until you press [CTRL] IT].
After finding BASIC.EXE, the program asks you to re-insert
your program disk if you removed it. Put the disk back in the
drive, and press (ENTER). The program transfers control to BASIC.

system has 1 RS232 card or 20K bytes if it has 2 cards.

Options for Loading BASIC
When you load BASIC, you can also specify a set of options,
which includes:

BASIC [pathnume][<input-fib] [>[>]output-fib] [/F:# of fibs]
[Akhighest memry locatwn,mimum block sizel[/C:buffer size1
[/S:record lengthl[/DI[/I]

If you load BASIC by typing B A S I C A m, the /I switch is al-
ways invoked. Other than that, you have the same options, re-
gardless of how you load BASIC.

Pathnume specifies a program to run immediately after BASIC is
started.

8

Chapter 21 Loading BASIC

<Input-file tells BASIC to receive input from input-file instead
of the usual standard input (the keyboard). This option must fol-
low pathnume and precede all other options in the command line.
Redirection of input and output is discussed later in this
chapter.

>[>IOutput-file redirects BASIC’s output to output-file instead
of the standard output (video display). If you specify 1 greater-
than sign, output file is overwritten. If you use 2 greater-than
signs, it is appended. This option must follow input file (if given)
and precede all other options in the command line. Redirection of
input and output is discussed later in this chapter.

IF: specifies the maximum number of data files that may be
open at any one time. If you specify the /F: option, you must also
specify the /I option. If you omit this option, the number of files
defaults to three. The number of open files that MS-DOS sup-
ports depends on the value given for the FILES= command in
the CONFIG.SYS file. We recommend that you set FILES = 10
for BASIC. BASIC automatically reserves 4 files for internal use.
This leaves 6 for BASIC file I/O; thus /F:6 is the maximum sup-
ported by MS-DOS when FILES= command is set to 10 in the
CONFIG.SYS file.

Each file you specify may use a maximum 190 bytes of memory.
Sequential access files always use 190 bytes of memory. The
amount of memory a direct access file uses depends on the
record size set with the /S: option. Each direct access file uses 62
bytes of memory for the file control block, plus the record size.
For example, if you specify a record size of 50 with the /S:
switch, the file uses 112 bytes.

/S: specifies the maximum record size for direct access files. If
you use the /S: option, you also must specify the /I option. If you
omit the /S: option, BASIC assumes 128 bytes.

/C: specifies the size of the receive buffer for each RS232 commu-
nications channel present in the system. The maximum amount
you can specify depends on the number of RS232 cards present
in the system and on the method used to load BASIC.

9

Chapter 21 Loading BASIC

Loading Method
Number
of Ports Buffer Size

BASIC
BASIC
BASICA
BASICA

64K bytes
32K bytes
40K bytes
20K bvtes

If you omit the /C: option, BASIC allocates 256 bytes for each re-
ceive buffer. The transmit buffer is always 128 bytes.

/M: sets the amount of memory space for BASIC to use by speci-
fying the highest memory location available. Omit this option
unless you plan to call assembly-language subroutines. BASIC
can only allocate 64K bytes of memory. If you omit this option,
the system allocates all 64K bytes of memory to BASIC.

If you plan to load assembly-language programs above BASIC's
memory space, specify the optional marximum block size parame-
ter to preserve space for both BASIC and your programs. Specify
the value for marximum block size in blocks of 16 bytes. If you
omit this parameter, 4096 blocks are used (16 * 4096 = 65536).
This is the same amount reserved for BASIC; therefore, none is
preserved for your routines. Specifying /M:32000,2048 allocates
a maximum of 32768 bytes; BASIC uses the lower 32000 bytes.
This leaves 768 bytes for your routines.

The maximum block size option is necessary if you plan to use
the SHELL statement. If you do not preserve the memory space,
COMMAND loads on top of your assembly-language routines
when the SHELL statement executes.

/I tells BASIC not to dynamically allocate space during file oper-
ations. If you use the /F' or /S switches, then you must specify /I.
If you omit /I, BASIC dynamically allocates space. If you load
BASIC via BASICA, /I is always invoked.

/ D tells BASIC to load the Double Precision Transcendental
math package into memory. This lets BASIC routines return
double precision values. This package remains resident until you
exit BASIC.

10

Chapter 21 Loading BASIC

Examples
BASIC debits

initializes BASIC to 3 data files with all memory available.
BASIC then loads and runs the program Debits.

BASIC payroll /F:5

initializes BASIC to 5 data files with all memory available.
BASIC then loads and runs the program Payroll.

BASIC / M : 2 1 0 0 0

initializes BASIC to 3 data files and sets the highest memory lo-
cation to be used by BASIC at 21000, the first 21000 bytes of
BASIC’s data segment.

BASIC budget /D

initializes BASIC to 3 data files with all memory available.
BASIC loads and uses the Double Precision Transcendental math
package.

Redirection of Input and Output

BASIC lets you redirect input and output. The syntax to redirec-
tion is:

BASIC [pathmmel [<input-file1 [>[>loutput-filel

You can redirect standard input, normally from the keyboard, to
the file input-file.

Standard output, normally to the video display, can be redi-
rected to the file output-file. If output-file already exists, it is ov-
erwritten. You can, however, append the output-file t o the
existing file by using the append notation: >>output-file. If out-
put-file does not exist, it is created.

The following BASIC statements use standard input:

INPUT
INPUT$

LINE INPUT
INKEY$

The BASIC statements PRINT and WRITE access standard
output .
Error messages are sent both to the standard output and to the
redirected output.

11

Chapter 21 Loading BASIC

Examples
BASIC daily >daily.out

initializes BASIC and runs the program Daily. Redirects all out-
put, normally sent to the screen, to the file Daily.out.

BASIC daily <daily.in

initializes BASIC and executes the program Daily. Daily re-
ceives all input, normally entered through the keyboard from
the file Daily.in.

BASIC sample <tstdata.in >tstdata.out

initializes BASIC and executes the program Sample. Sample re-
ceives input from Tstdata.in and sends output to Tstdata.out.

BASIC payroll <week25 >>ytdtotal

initializes BASIC and executes the program Payroll. Payroll re-
ceives input from the file Week25. The output is appended to the
file Ytdtotal.

Hints for redirection of input and output:

0 File input from the KYBD: device st i l l reads from the

0 File output to the SCRN: device still outputs to the screen.

0 BASIC s t i l l t r a p s keys when you use the ON KEY0
statement.

0 [X] f i E K] tells BASIC to close all open files, then issue the
message Break i n 1 ine mxx to standard output. Control re-
turns to MS-DOS.

Redirected input continues until BASIC receives a [WK]EJ.
This condition can be tested by the EOFO function. If the in-
put file is not terminated by a (CTRL]p) or a BASIC file input
statement tries to read past the end-of-file, BASIC closes any
open files and issues the message Read pa 5 t end to standard
output. Control returns to MS-DOS.

The printer echo key combination ((CTRLIIPRT]), which nor-
mally causes all output on the display to be echoed on LPTl:,
will not work if you redirect standard output.

keyboard.

12

Chapter 3

SAMPLE SESSION

The easiest way to learn how BASIC operates is to write and run
a program. This chapter provides sample statements and instruc-
tions to help familiarize you with the way BASIC works.

The main steps in running a program are:

1. Loading BASIC
2. Typing the program
3. Running the program
4. Saving the program
5. Loading the program into memory

IC
For this sample, load BASIC by typing:

B A S I C [ENTER]

Type in the sample program below. After typing each line, check
it for any mistakes. If there are no mistakes, press I. If you
make a mistake, use the r;7 key to move the cursor to the mis-
take and retype the rest of the line to correct the mistake.

1 0 A b = " W I L L I A M SHAKESPEARE WROTE
15 B$="THE MERCHANT OF VENICE' '
20 P R I N T A b ; E$ [m]

Check your program again. If you find a mistake, enter the line
number and type the line again. The newly typed line replaces
the old line.

It does not matter if you enter Line 15 after Line 20; BASIC still
reads and executes Line 15 before "looking" at Line 20. BASIC
always reads program lines in numerical order.

Tell BASIC to execute this program by typing:
RUN [ENTER)

Your screen should display:
W I L L I A M SHAKESPEARE WROTE THE MERCHANT OF V E N I C E

13

Chapter 31 Sample Session

BASIC has powerful special keys that let you correct mistakes
without retyping the entire line. These commands are discussed
in Chapter 4, "General Information."

Saving the Program on Disk
You can save any BASIC program on disk by assigning it a path-
num. The pathname tells BASIC on which disk and directory
you want to save the file and the name of the file. The pathname
must be enclosed in quotation marks. Pathnames must conform
to the conventions discussed in Chapter 1, "About BASIC for

For example, to save the program we just wrote on Drive B, in
the directory BOOKS with the filename Author.bas, use the fol-
lowing command:

MS-DOS."

SCIVE "B:\BOOKS\author. baa" (-1
Notice that BOOKS is located in the root directory since it is
preceded by the root symbol (\ 1.
You can also save the file with this command:

SCIVE "author .wil"

which saves the program as Author.wi1 in the current directory
on the MS-DOS current drive.

It takes a few seconds for the computer to find a place on the
disk to store a program and to copy the program from memory
to the disk. When the program is saved on the disk, BASIC dis-
plays its prompt C 0 k) .

Loading the Program Into Memory
If, after writing or running other programs, you want to use this
program again, you must load it back into memory from disk.

For example, to load the program Author.bas from the directory
BOOKS, type:

LORD "B:\BOOKS\author. b a s " , R [ENTERI

The R option tells BASIC to run the program after loading it.

14

Chapter 31 Sample Session

LOAD " a u t h o r .wil"

loads the file Author.wi1 from the current directory on the cur-
rent drive.

Another way to load and run a program is to type:
RUN "pa thname"

RUN automatically loads and runs the program specified by
pathname.

The SAVE, LOAD, and RUN commands are discussed in more
detail in Chapter 10.

15

Chapter 4

GENERAL INFORMATION

When BASIC displays the O k prompt, you can type in program
lines or commands. If you want BASIC to read what you type in,
you must press [ENTER] at the end of the line.

A single line can be a maximum of 255 visible characters. Visi-
ble characters are those that take up a space on the display.

Since 255 characters cannot fit on one line of the display, BASIC
moves the extra characters to the next line. This is called wrap-
around.

BASIC looks at the first character of a line. If it is a digit,
BASIC stores the line in memory as a program line. For exam-
ple, if you type:

1 0 P R I N T "THE T I M E I S 'I T I M E S [ENTERI

BASIC takes this as a program line and stores it in memory. It
does not execute the line until you type RUN and press [ENTER].

If the first character is not a digit, BASIC tries to execute the
line as a command. For example, if you type:

M I L E S = 1 3 3 : G A L L O N = 1 1 : M P G = P l I L E S / G A L L O N IENTER]

BASIC immediately executes this line as a command. After it is
executed, the statement no longer exists in memory, but the val-
ues of the variables MILES, GALLON, and MPG are stored in
memory.

This BASIC capability lets you use the computer as a calculator
for quick computations that do not require an entire program.

itin
BASIC lets you correct errors in . program and command lines
quickly and efficiently without retyping entire lines.

You can use the special keys defined at the end of this chapter to
make corrections or changes at any time. To correct a line, sim-
ply use the arrow keys to position the cursor on the line you
want to alter. After you make changes to the line, press lENTERl to
store the changes.

17

Chapter 41 General Information

When modifying program lines, you can edit specific lines by
typing:

ED I T line number [ENTER]

If the line number you specify does not exist, BASIC returns an
Undefined line number error.

You can also specify the current program line by using a period
(.) instead of a line number:

EDIT . [ENTERJ

The current line is the last line entered, the last line altered, or
a line in which an error has occurred. Notice that you must type
a space before the period; otherwise, BASIC displays a Syntax
e r r o r message.

BASIC automatically enters EDIT when a syntax error occurs
when executing a program. It displays the line that contains the
error and waits for you to make corrections.

Sample Editing Session
This sample session shows how you can easily edit lines in
BASIC. Even though the sample is a BASIC program, you can
use the same procedure for command lines. All special keys used
in this session are described at the end of this chapter.

To begin the sample session, type the following line and press m:
188 PRINT "This is our example line."

Now use the ITJ to position the cursor on Line 100.

Use the to move across the line to the T in Th i 5 . Type low-
ercase (TJ and then =. Remember, none of the changes you
make to a program line are recorded until you press (ENTER.

Type L 1 ST 1 8 8 and press IENTERl t o see that BASIC has stored
your change in memory. BASIC displays:

108 PRINT "this i5 our e x a m p l e line."

Notice that you can make simple changes by typing over the old
material.

18

Chapter 41 General Information

Now, position the cursor over Line 100 again. Press [END] and
then use to position the cursor on the second set of quotation
marks. Press [lNsERTJ and type:

W e inserted the second sentence.

Use the LIST command again to see the new statement that is
stored in memory.

Now use the EDIT command to edit Line 100. Type:
EDIT . [ENTER]

Remember, the period (.) tells BASIC to edit the current line.
Don’t forget to type a space before the period.

Using [TAel and m, position the cursor on the i in inserted.
Hold down [CTRL] and press [END]. BASIC deletes all the characters
you have inserted except We and the blank space.

Press [BACKSPACE) to delete the space.

Hold down [CTRL] and press to position the cursor on the pre-
ceding word. Press [DELETE) twice to delete We. Press [lNsERT] and
then

Press [ENTER] to record the changes. You can use the LIST com-
mand to see the new line.

Use the EDIT command again, this time with the line number.
Type:

to put the quotation mark at the end of the statement.

EDIT 100 (ENTER]

Using r;l, position the cursor on the P in PRINT. Press the
space bar to change the P to a blank.

Press [CTRLJ while pressing FJ to position the cursor on the t in
t h i 5. Press

Instead of pressing (ENTER) after you make the changes, press m. Use the LIST command. Notice that BASIC did not record
your changes because you pressed IEscJ instead of m. The
(ESCJ key tells BASIC to erase the line and not to make any
changes to the line.

Now you have used most of the special keys in the editor. If you
still do not feel comfortable with them, go through the sample
session again.

to change the lowercase t to a capital T.

19

Chapter 41 General Information

If you feel confident that you understand the editor, read on to
learn about some special keys that make it easier and faster to
change lines anywhere on the screen.

The following keys perform special functions in BASIC for enter-
ing and editing lines. To use some of these keys you must press
and hold down the [CTRL] key while pressing the second key. For
example, when you use [CTRLIW] to backspace, hold down the (CTRL]
key and press at the same time.

(BACKSPACE] or
[CTRLIrn]

Description
switches to all uppercase or uppercase/
lowercase mode.

changes the current character to a blank
and advances the cursor 1 position to the
right.

backspaces the cursor, erasing the first
character to the left. All characters to
the right move left 1 position. Use this to
correct typing errors before you press
(ENTER].

interrupts line entry and starts over with
a new line. Any changes previously made
to the line are not saved.

ends the current line. BASIC reads the
line.

erases the entire line from the screen,
but not from memory.

clears the screen and positions the cursor
at the first position in Row 1.

deletes the character at the cursor posi-
tion and moves all remaining characters
to the left 1 position.

turns the insert mode on if it is off, or off
if it is on. The insert mode lets you add
new characters to the line at the cursor
position.

20

Chapter 41 General Information

[HOME] or [CTRL][T]

[END] or (CTRL]I-T]

LXIW] or [CTRLIIT]

(TAB] or [CTRLIrj

moves the cursor to the first position in
Row 1.

moves the cursor to the end of the line.

deletes all characters from the current
cursor position to the end of the line.

advances the cursor to the next tab posi-
tion. Tab positions are set at every 8
characters.

moves the cursor 1 position to the left.

moves the cursor 1 position to the right.

moves the cursor up 1 row to the charac-
ter above the current cursor position.

or (CTRLIIT]
El

or [CTRL][T]

or
(CTRL,n

moves the cursor down 1 row to the char-
acter below the current cursor position.

[CTRLJF) or
(CTRLIIT]

moves the cursor to its left and to the
first character in the preceding word,
which is the first character preceded by a
blank.

moves the cursor to its right and to the
first character in the next word, which is
the first character preceded by a blank.

rings the bell at the terminal.

issues a linefeed. This moves the cursor
to the next line of the display without ex-
ecuting or storing the line.

The following special keys act differently while BASIC is execut-
ing programs or commands:

[CTRLIlmmTiEiT] pauses execution. Press any key to
continue .

[CTRLllTZiiic] terminates execution and returns you to
BASIC’s prompt.

[ENTER] or [CTRLlm] signifies the end of data entry. When a
BASIC program or command prompts you
to enter data, press IENTER] to end the
response.

(CTRLJIY] or
[XlFJ

[CTRLJIT]

(Kl[TJ

21

Chapter 41 General Information

The
The [ALT] key provides a quick and easy way to type certain
BASIC keywords. These keywords are associated with alphabetic
characters (A-Z).

To enter these keywords, press and hold down the [ALT] key while
pressing the desired letter. BASIC inserts the keyword at the
current cursor position. The keywords and their associated let-
ters are listed below.

A AUTO N NEXT
B BSAVE 0 OPEN
C COLOR P PRINT
D DELETE Q (none)
E ELSE R RUN
F FOR S SCREEN
G GOT0 T THEN
H HEX$ U USING
I INPUT V VAL
J (none) W WIDTH
K KEY X XOR
L LOCATE Y (none)
M MOTOR* Z (none)

*MOTOR is a reserved word, but is not recognized in this imple-
mentation of BASIC.

The KGY
Pressing [X Z i T l W] dumps the current text content of the
screen to the line printer LPT1:.

(CTRLIlTFiTE] is the line printer echo key, which acts as a toggle
switch. If the echo is off, pressing [CTRLI-] once causes all
characters sent to the screen to also be sent to the line printer
LPT1:. Pressing (CTRLI[PRTSC] a second time turns off this echo
feature.

22

Chapter 5

BASIC CONCEPTS

This chapter describes the different ways BASIC handles and
manipulates data. By understanding how BASIC does this, you
can build more efficient programs.

Elements of a Program
A program is a group of instructions that performs a certain
task. It is made up of 1 or more numbered lines.

Each line can contain a maximum of 255 visible characters. Of
the 255 characters, BASIC automatically reserves 1 space for
each digit in the line number and another space for the space fol-
lowing the line number. If you enter more than 255 visible char-
acters, BASIC truncates the line.

Here is a sample program line:
1 0 P R I N T " o n e "

A line number is always the first element of a program line. In
BASIC line numbers must be in the range 0 to 65529. In the
sample program line, the line number is I 8 .

A BASIC statement follows the line number. A statement tells
BASIC to perform a specific operation. In the sample program
line, the statement is PR I NT "one" . This statement tells BASIC
to print, or display, the word o n e on the screen.

You can have more than 1 statement on a program line by plac-
ing a colon between each statement. For example:

2 0 FOR X = 1 TO 5 : P R I N T " o n e " : N E X T X

This program line has 3 statements. They are:

1. FOR X = 1 TO 5
2. PRINT " o n e "
3. NEXT X

You can add explanations, or remarks, to your program lines. A
remark is preceded by a single quotation mark to separate it
from the statements. Here is a program line with a remark:

2 0 FOR X = 1 TO 5 : P R I N T " o n e " : N E X T X ' l o o p

23

Chapter 51 Basic Concepts

ata
Datu is information on which BASIC performs its operations.
Data can be numbers, characters, or symbols. BASIC classifies
data into two groups: string and numeric.

String data is a sequence of ASCII characters, graphics or non-
ASCII symbols. A string can be a maximum of 255 characters.
If the string is entered on a program or command line, it must
be enclosed in quotation marks. (See “Constants” later in this
section.) If the string is entered in response to a prompt, it is not
enclosed in quotation marks. BASIC does not evaluate string
data; it simply stores it for the program to use or manipulate.

Hint: ASCII stands for American Standard Code for
Information Interchange. In ASCII, each character has
a unique number that represents it. This is necessary
since computers understand and process only numbers.

Here are some sample strings:

“JIM” “MAIN STREET” “255 CENTRAL AVE”
“25 dollars” “$250” “2 + 4”

Notice that numbers can be in a string. Remember, BASIC does
not evaluate strings. Type the following line at BASIC’s prompt:

P R I N T “ 2 + 4’’

BASIC does not add 2 and 4. It obeys the command PRINT and
displays 2 + 4 on your screen.

Strings use 3 bytes of memory plus the number of characters in
the string. For example, the string “CATS” takes up 7 bytes of
memory: 4 for the string plus 3.

Numeric data consists of positive and negative numbers. BASIC
divides numeric data into 5 groups: integer, single precision,
double precision, hexadecimal, and octal.

Integers are whole numbers in the range -32768 to +32767 that
do not contain a decimal point. For example:

1 3200 -2 500 -12345

Integers use the least amount of memory (2 bytes). Therefore,
BASIC can access them fastest.

Chapter 51 Basic Concepts

Single precision numbers can be a maximum of 7 digits and may
have a decimal point. Single precision numbers must be in the
range to Sample single precision numbers are:

10.001 -200034 123.4567

If a single precision number is more than 7 digits, BASIC dis-
plays the number in scientific notation, or exponential format, in
the E form. For example:

1.74E 6.9838 1043-7

BASIC stores a single precision number in 4 bytes of memory.

Double precision numbers can include a maximum of 16 digits
and may have a decimal point. Double precision numbers have
the same range as single precision numbers. Sample double pre-
cision numbers are:

1010234567 -8.7777651010
If a double precision number is more than 16 digits, BASIC dis-
plays the number in scientific notation, or exponential format, in
the D form. For example:

8.00100708D12 -6.7765499824D16

BASIC stores double precision numbers in 8 bytes of memory. Al-
though double precision numbers consume more memory, they
are the most exact.

Hexadecimal numbers are the hexadecimal representation of dec-
imal numbers. They contain 1 to 4 digits and are preceded by
&H. The hexadecimal numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, and F. Here are some hexadecimal numbers and
their decimal equivalents:

Hex Decimal

&H76 118
&H02FF 767
&HFF 255

BASIC stores hexadecimal numbers as integers.

25

Chapter 51 Basic Concepts

Octal numbers are the octal representation of decimal numbers.
They contain 1 to 6 digits and are preceded by &O or &. Al-
though only the & is required, we recommend that you use &O
for clarity in your programs. The octal numbers are 0, 1, 2, 3, 4,
5, 6, and 7. Here are some octal numbers and their decimal
equivalents:

Octal

&7 7
8.~0123 83
8~0000456 302

De c i m a 1

BASIC stores octal numbers as integers.

Constants
Constants are values input to a program that are not subject to
change. Constants can be either string or numeric data (integer,
single or double precision, hexadecimal, or octal).

Numeric data that will not change can be represented as either
a string or numeric constant. If you use punctuation in the num-
ber, it must be a string constant. For example:

PRINT " $ 2 5 0 , 0 8 0 "

When BASIC encounters a data constant in a statement, BASIC
must determine how to store it:

If the value is enclosed in quotation marks, BASIC stores it
as a string.

If the value is not enclosed in quotation marks, BASIC
stores it as an integer or a single precision or a double pre-
cision number, according to the requirements described in
the previous section. The section, "Declaring Numeric Con-
stants and Variables," describes ways to override BASIC's
classification of constants.

BASIC evaluates numeric constants in program lines as soon as
you enter the line. It does not wait until you run the program. If
any numbers are out of range for their type, BASIC returns an
error message immediately.

26

Chapter 51 Basic Concepts

Here are some examples of constants:
P R I N T "NAME","ADDRESS","C ITY" , "STATE"

This h e contains 4 string constants: NAME, ADDRESS, C I T Y , and
STATE. These values will not change. Every time BASIC executes
this statement, the same 4 words are printed.

P R I N T "1 0 0 0 PLUS" ; 2 0 0 0 ; "EQUALS" ;3000

The 1 0 0 0 is a string constant, the 2 0 0 0 and the 3 0 0 0 are nu-
meric constants.

'Variables
Variables are symbolic names for a value in a BASIC program. A
variable name can be a maximum of 40 characters and must be-
gin with a letter (A-Z).

Note: You cannot use any of the reserved words listed
in Appendix A as variable names. However, reserved
words may be imbedded in a variable name.

The following are examples of variable names:

A A1 ADDRESS ADDRESS.OLD
L L2 LEN2 LENGTH

The 2 types of variables are string and numeric. BASIC initially
classifies all variables as single precision with a value of zero
(0). (The next section describes how to declare variables as
string, integer, or double precision variables.)

The following examples assign a value to a variable.
L E T A = 1 2 3 4 5
FI = 6 0 1 . 4 3 2
BALANCE = 338.92

BASIC automatically stores all the above examples as single pre-
cision numbers. Chapter 10, "BASIC Keywords," describes more
ways to assign values to variables.

Declaring Numeric Constants and Variables
BASIC lets you override its automatic classification of numeric
constants and variables.

27

Chapter 51 Basic Concepts

Numeric Constants
To change the way BASIC stores a numeric constant, add one of
the following symbols to the end of the number. If BASIC must
shorten a number to meet the new requirements, it rounds the
number.

! declares a single precision number. For example, BASIC
stores the number 12.345678901234! as a single precision
number: 12.34568.

declares the number a single precision exponential number.
For example, BASIC stores the number 1.2E5 as a single
precision number: 120000.

declares a double precision number. For example, BASIC
stores the number 1.5# as a double precision number: 1.5.
BASIC does not expand constants when declaring them dou-
ble precision.

declares the number a double precision exponential number.
For example, BASIC stores the number 1.2D2 as a double
precision number: 120.

See the next section on converting numbers for important infor-
mation on converting from numbers to another precision.

E

D

Numeric Variables
BASIC initially classifies all numeric variables as single preci-
sion. You can declare variables as other than single precision in
2 ways:

Append a symbol to the variable name:

% declares an integer variable. BASIC stores the value of
the variable as an integer. I%, FT%, and COUNTER%
are samples of integer-declared variables.

declares a single precision variable. BASIC stores the
value of the variable as a single precision number. F!,
NM!, and BALANCE! are samples of variables declared
as single precision.

!

28

Chapter 51 Basic Concepts

declares a double precision variable. BASIC stores the
value of the variable as a double precision number. S#,
AD#, and YTDTOTAL# are samples of variables de-
clared as double precision.

declares a string variable. The value of the variable must
be enclosed in double quotes. A$, WRD$, and CITY$ are
samples of variables declared as string variables.

Note: Any variable name can represent 4 different
variables. For example, A5%, A5!, A5#, and A5$ are
all valid and distinct variable names.

$

Use the following BASIC statements:

DEFINT
DEFSNG

Defines specified variableb) as integer.
Defines specified variableb) as single precision.
(Since BASIC initially classifies all variables as
single precision, you need to use DEFSNG only if
one of the other DEF statements is used.)
Defines specified variable(s) as double precision.
Defines specified variable(s) as string.

DEFDBL
DEFSTR

Chapter 10 describes these BASIC statements fully.

recision Conversion
Your program may ask BASIC to convert numeric data from one
precision to another. The following section describes this
procedure.

When converting single/double precision to integers, BASIC
rounds the fractional portion of the number, if any. For example:

A% = 32766.7
A% = -123.4567

BASIC stores as 32767
BASIC stores as -123

When converting integers to single/double precision, BASIC ap-
pends a decimal point and zeroes to the right of the original
value. For example:

A# = 32767
A! = -1234

BASIC stores as 32767.00000000000
BASIC stores as -1234.000

29

Chapter 51 Basic Concepts

When converting double to single precision, BASIC rounds the
number to 7 significant digits. For example:

A! = 1.2345678901234567
A! = 1.3333333333333333

BASIC stores as 1.234568
BASIC stores as 1.333333

When converting single to double precision, BASIC adds trailing
zeroes to the right of the original value. If the original value has
an exact binary representation in single precision format, the re-
sulting value is accurate. For example:

A# = 1.5 BASIC stores as 1.50000000000000

However, if a number does not have an exact binary representa-
tion, the conversion creates an erroneous value. For example:

A# = 1.3 BASIC stores as 1.299999952316284

You should not use such conversions in your program because
most fractional numbers do not have exact binary representa-
tions. You can avoid this by forcing the constant to be double pre-
cision, such as:

A# = 1.3# or A# = 1.3D
which BASIC stores as 1.3.

If you must convert from single to double precision, the following
programs show a special technique.

Type and run the following program:
1 0 A ! = 1 . 3
2 0 A # = CI !
3 0 P R I N T A #

BASIC prints 1 . 2 9 9 9 9 9 9 5 2 3 1 6 2 8 4

Now type and run this program:
1 0 A ! = 1 . 3
2 0 A # = VCILCSTRtCA!))
3 0 P R I N T CIA

30

Chapter 51 Basic Concepts

BASIC prints 1 . 3 . Converting the single precision number to a
string before converting it to a double precision value causes
BASIC to store the value accurately.

Note: BASIC cannot automatically convert numeric
data to string data or vice versa. This results in a
Type m i 5 m a t c h error. Use the VAL and STR$ func-
tions to accomplish this kind of conversion.

Manipulating Data
BASIC uses expressions as a way to manipulate data. An expres-
sion is 2 or more pieces of data connected by operators.

An operator is a symbol or a word that signifies some action to
be performed on the specified data. Each data item is called an
operand.

An expression might look like this:

operand1 operator operand2
6 + 2

A few operators allow only one operand, for example:

operator operand
5

Expressions must be used in a BASIC statement, such as:
F I = 6 + 2
PRINT - 5

BASIC has four types of operators:

Arithmetic
String
Relational
Logical

used for numeric data only.
used for string data only.
used for both numeric and string data.
used for numeric data only.

Arithmetic Operators
Arithmetic operators perform operations on numeric data. Both
operands must be numeric. When BASIC evaluates the expres-
sion, all operands are converted to the same degree of precision,
that of the most precise operand. The result of the arithmetic op-
eration is also returned to this degree of precision.

31

Chapter 51 Basic Concepts

The arithmetic operators are listed below. They are in order of
precedence, that is, the order in which BASIC executes them if 1
or more operators are in the same statement.

A

-

*, 1

\

MOD

+, -

Exponentiation. Calculates the power of a
number. For example, 2^3 is 8 (2 to the power
of 3 is the same as 2*2*2).

Negation or Unary Minus. Makes a number
negative. For example, -10 is "negative ten."

Multiplication, Division. For example, 3.3 is 9,
and 1015 is 2.

Integer Division. BASIC rounds both operands
to integers and truncates the result to an in-
teger. Integer division is faster than standard
division. For example, 10\4 is 2.

Modulus Arithmetic. BASIC performs integer
division as described above and returns the
remainder as an integer value. For example, 10
MOD 3 results in 1.

Addition, Subtraction. For example, 2 + 9 is 11,
and 15-8 is 7.

String Operator
The string operator is the plus sign (+ I . It appends one string to
another. All operands must be strings, and the resulting value is
1 string. For example:

I, + '1 P R I N T "APR I L
FLOWERS, I'

SHOWERS + "BR I NG" M A Y

prints A P R I L SHOWERS B R I N G M A Y FLOWERS.

Relational Operators
Relational operators compare 2 pieces of numeric data or 2 pieces
of string data. The result of the comparison is either true or
false. If the relationship is true, BASIC returns -1. If the rela-
tionship is false, BASIC returns 0 (zero).

32

Chapter 51 Basic Concepts

The relational operators are, in order of precedence:
- -

<
Equal. Both operands are equal.

Less Than. The first operand is less
than or precedes the second operand.

Greater Than. The first operand is
greater than or follows the second
operand.

Inequality. The operands a re not
equal.

< = or = < Less Than or Equal To. The first oper-
and is less than (precedes) or is equal
to the second operand.

>= or => Greater Than or Equal To. The first
operand is greater than (follows) or is
equal to the second operand.

Relational operators are usually used within an IF/THEN state-
ment. For example:

>

>< or <>

I F A = 1 THEN P R I N T "CORRECT"

BASIC looks at the value in variable A. If the value is equal to
1, BASIC prints the word CORRECT.

If arithmetic and relational operators are combined in the same
expression, BASIC evaluates the arithmetic operations first. For
example:

I F X * Y / 2 < = 1 5 P R I N T "AVERAGE SCORE"

BASIC performs the arithmetic operation X*Y/2 and then com-
pares the result with 15.

When relational operators are used with strings, BASIC
compares the strings character by character. When it finds 2
characters that do not match, it checks to see which character
has the lower value ASCII code. The character with the lower
ASCII code comes before the word with the higher ASCII value
in an alphabetical listing, just as one word comes before another
in a dictionary.

Chapter 51 Basic Concepts

Consider these examples:
< "B" I 1 A .I

BASIC compares the ASCII value of the 2 strings. The ASCII
value for A is 65, and the ASCII value for B is 66. Since 65 is
less than 66, BASIC returns a -1. BASIC displays the result if
you type P R I N T and the expression, for example, P R I N T
IIF)ll>llBll

" C 0 DE 'I > " C 0 0 L "

This is false. The first 2 characters of the strings match. How-
ever, the third character does not. BASIC then compares the AS-
CII codes. The ASCII code for D is 68 and the code for 0 is 79.
Since 79 is not less than 68, BASIC returns a 0.

"TRAIL" < "TRA I LER"

This is true. If BASIC reaches the end of one string before find-
ing 2 characters that don't match, the shorter string is consid-
ered the less of the two strings (lower in precedence). Therefore,
TRA I L is the lesser of the two strings.

Also note that leading blanks are significant in string compari-
sons. Therefore, " A" comes before "A" because the ASCII code
for blank is 32 and the ASCII code for A is 65.

Logical Operators
Logical operators, or Boolean operators, make logical comparisons
of numeric values. The logical operators are NOT, AND, OR,
XOR, EQV, and IMP. They take a set of true/false values, usu-
ally from relational expressions, and return a true or false re-
sult.

34

Chapter 51 Basic Concepts

The following table describes the result for each logical operator
given the described true/false values.

Operator

NOT

AND

OR

XOR

EQV

IMP

Meaning of
Operation

The result is the oppo-
site of the operand.

When both values are
true, the result is
true. Otherwise, the
result is false.

When both values
are false, the
result is false.
Otherwise, the
result is true.

When one of the
values is true, the
result is true.
Otherwise, the
result is false.

When both values
are true or both
values are false,
the result is true.

The result is true
unless the first
value is true and
the second value is
false.

First
Operand

1
0

1
1
0
0

1
1
0
0

1
1
0
0

1
1
0
0

1
1
0
0

Second
Operand

1
0
1
0

1
0
1
0

1
0
1
0

1
0
1
0

1
0
1
0

Result

0
1

1
0
0
0

1
1
1
0

0
1
1
0

1
0
0
1

1
0
1
1

Normally, logical operators are used in IF/THEN statements. For
example :

I F A = 1 OR C = 2 THEN P R I N T X

BASIC prints the variable X if 1 relational expression is true or
if both are true. If both are false, BASIC does not print the vari-
able x.

I F S$ = "TEXAS" AND C $ = "AUSTIN" THEN P R I N T Z $

BASIC prints the value of Z$ if S$ contains the word TEXAS
and C$ contains the word AUSTIN.

35

Chapter 51 Basic Concepts

You may also use logical operators to make bit comparisons of 2
numeric expressions. In this case, BASIC does a bit-by-bit com-
parison of the 2 values, according to predefined rules for the spe-
cific operator. Note that the operands are converted to integer
type, stored internally as 16-bit, two’s complement numbers.
This information is important when doing bit comparisons.

Hierarchy of Operators
BASIC uses a predefined hierarchy when performing operations
on expressions with multiple operators. This list shows the oper-
ators in the order that BASIC would perform the operations in a
statement. Remember, BASIC evaluates statements from left to
right. Operators with the same level of hierarchy are shown on
the same line.

A

unary -
* I
\
MOD
+ -
< > = <= >= <>
NOT
AND
OR XOR
EQV
IMP

Consider this expression:

X * X + 5^2.8

BASIC evaluates 5 to the 2.8 power first, then multiplies X*X,
and finally adds the 2 values.

You can change the order of the hierarchy by adding parentheses
to an expression. BASIC always evaluates the expressions inside
the parentheses before evaluating the rest of the expression.
Look at this expression:

X (X + 5)^2.8

BASIC evaluates the expression (X + 5) first and raises that
value to the 2.8 power before performing the multiplication.

36

Chapter 51 Basic Concepts

If an expression contains multiple parentheses, BASIC evaluates
the innermost parentheses first.

Functions
A function is a built-in sequence of operations that BASIC per-
forms on data. BASIC always performs functions first when eval-
uating a statement.

Numeric functions, such as ABS, SQR, and COS, perform prede-
fined operations on numeric data.

String functions, such as MID$, VAL$, and LEN$, perform oper-
ations on string data.

Functions are described in Chapter 10.

37

Chapter 6

Grocery
Expense

ARRAYS

Gas Clothes
Expense Expense

An array is a group of related data values stored consecutively
in memory. The entire group of data values is referred to by one
variable name. Each data value is called an element of the array.
A subscript is an integer used to refer to each element of the ar-
ray. For example, an array named A may contain 3 elements re-
ferred to as:

A(1) A(2) A(3)

This is a 1-dimensional array, because elements are arranged in
a single row and only one subscript is used to an element. For
example, A(1) holds your grocery expense.

39

Chapter 61 Arrays

This program creates a 1-dimensional array:
5 C L S : O P T I O N BASE 1
1 0 DATA GROCERY,GAS,CLOTHES
2 0 D I M A < 3)
3 0 FOR C = 1 TO 3
4 0 READ NAMES$
5 0 P R I N T "ENTER THE "NAMES$" EXPENSE I N DOLLCIRS"
6 0 I N P U T A < C)
7 0 NEXT C

The DIM statement in Line 10 reserves space in memory for an
array named A with 3 elements. As you enter the expenses, the
grocery expense is stored in A(1), the gas expense in A(2) and
the clothes expense in A(3).

Add these lines to the program to print the contents of Array A:
1 0 0 RESTORE
1 1 0 FOR C = 1 TO 3
1 2 0 READ NAMES$
1 3 0 P R 1 N T : P R I N T NAMES$ 'I = I' A < C)
1 4 0 NEXT C

Use RUN to see the results of this program.

You can add more dimensions to the array such as storing the
expenses by weeks.

Col 1 Col 2 Col 3
Grocery Gas Clothes

Row 1
Week 1

Row 2
Week 2

Row 3
Week 3

Row 4
Week 4

A(3,2) =
Gas expense
for Week 3

40

Chapter 61 Arrays

This is a 2-dimensional array. Each element is referred to by 2
subscripts:

A(row ,column)

For example, A(3,2) points to the third week's gas expense.

To make a 2-dimensional array from the earlier program, add
the following lines:

2 5 FOR R = 1 TO 4:RESTORE
7 5 NEXT R
1 0 5 FOR R = 1 TO 4:RESTORE
1 5 0 NEXT R

and change these lines:
2 0
5 0

6 0
7 0
1 0 0
1 3 0

1 4 0

Run this

D I M A C 4 , 3) : W = 1
P R I N T "ENTER THE " ;NAMES$;" EXPENSES I N DOL-
LARS FOR WEEK NO: "W
I N P U T A (R , C)
NEXT C : W = W + 1
RESTORE: W = 1
P R 1 N T : P R I N T NAMES$;" EXPENSE FOR WEEK
NO: I ' ; W ; " = " ; A (R , C)
NEXT C : W = W + 1

, program and see how it works. We simply added an-
other subscript to the original array. Now instead of referring to
an element by a row number only, we refer to it by both a row
and column number.

You can add yet another dimension, or subscript, to the array by
adding these lines:

22 FOR P = 1 TO 2 : RESTORE
7 8 W = 1 : NEXT P
1 0 2 FOR P = 1 TO 2 : RESTORE
1 6 0 W = 1 :NEXT P

and changing these lines:
2 0
5 0

6 0
7 5
1 0 0
1 3 0

1 5 0

D I M A < 2 , 4 , 3) : W = 1 : M = 1
P R I N T "ENTER THE ";NAMES$;" EXPENSE I N DOL-
LARS FOR WEEK NO: ' ' ; W ; ' ' OF MONTH N O : I I ;M
I N P U T A(P ,R ,C)
NEXT R : M = M + 1
RESTORE: W = 1 : M = 1
P R 1 N T : P R I N T NAMES$;" EXPENSE FOR WEEK

NEXT R : M = M + 1
NO: " ; W ; " OF MONTH NO: ";PI;" = " ;A (P ,R ,C)

Run the program to see how it works.

41

ChaDter 61 Arravs

Row 1
Week 1

Row 2
A(l,Z,l) =

Grocery Exp.
for Wk 1

Week 2 of Month 1

Row 3
Week 3

Row 4
Week 4

Col 1 Col 2 Col 3
Grocery Gas Clothes

Imagine the third dimension as an entirely new page. Here, you
refer to an element in the array by using 3 subscripts:

A(page, row, column)

For example, in A(1,2,1), the first subscript (1) stands for the
month. The second subscript (2) stands for the week and the
third subscript (1) stands for the Grocery category. So A(1,2,1)
contains the Grocery expense for the second week of the first
month.

Types of Arrays
Arrays may be of any type: string, integer, single precision, or
double precision. You can have a maximum of 255 dimemiofis in
your array and a maximum of 32,767 elements in each dimen-
sion.

42

Chapter 61 Arrays

The amount of memory that an array occupies is equal to the
number of bytes it takes to store that type of variable times the
number of elements. For example, if you have a double precision
array of 30 elements, it occupies 240 bytes of memory. Remem-
ber, double precision numbers are stored in 8 bytes of memory.

Defining Arrays
You can define arrays in your BASIC program by placing a DIM
statement at the beginning of your program or by setting the
value of an element in the program. For example:

A < 5) = 3 0 0

automatically creates an array named A containing 6 elements
and assigns element A(5) the value 300. Use this method only if
your array contains fewer than 11 elements (0-10). If your array
contains more than 11 elements, you must use the DIM
statement.

Use a DIM statement to reserve space in memory for each ele-
ment of the array. For example:

DIM C#<99)

creates Array C and reserves memory space for 100 double preci-
sion elements.

See the DIM statement in Chapter 10 for more information on
creating arrays.

43

Chapter 7

DISK FILES

You may want to store data on disk for future use. To do this,
you need to store the data in a file. A file is an organized collec-
tion of related data. It may contain a mailing list, a personnel
record, or almost any kind of information.

You access this information in records. A record is a small por-
tion of data from the disk file such as a name and address in a
mailing list file. A record is the largest block of information that
you can address with a single command.

With BASIC you can create and access 2 types of files: sequen-
tial access or direct access.

With sequential access files, you can access data only in the
same order as it was originally stored. To read from or write to a
particular section in the file, you must first read through all the
records in the file from the beginning until you get to the de-
sired record.

Data is stored in a sequential access file as ASCII characters.
Therefore, it is ideal for storing free-form data without wasting
space between data items. However, it is limited in flexibility
and speed.

The statements and functions used with sequential files are:

WRITE # LOG EOF OPEN
PRINT# INPUT# LOF CLOSE
PRINT USING # LINE INPUT#

These statements and functions are discussed in more detail in
Chapter 10.

Creating a Sequential Access File
1. To create the file, open it in Output mode (with the letter 0)

and assign it a buffer number in the range 1 to 15. Use either
form of the OPEN statement:

OPEN "O", 1 , " l i 5 t . d a t "
OPEN " l i 5 t . d a t " FOR OUTPUT A S 1

45

Chapter 71 Disk Files

Either of the preceding examples opens a sequential output
file named List.dat and gives Buffer 1 access to this file.

2. To input data from the keyboard into 1 or more program vari-
ables, use either INPUT or LINE INPUT. For example:

L I N E I N P U T , "NAME? 'I; N $

inputs data from the keyboard and stores it in variable N$.

3. To write data to the file, use the WRITE# statement. (You
also can use PRINT#, but be sure you delimit the data.) For
example:

WRITE# 1 , N$

writes variable N$ to the file, using Buffer 1 (the buffer used
to open the file). Remember that data must go through a
buffer before it can be written to a file.

4. To ensure that all the data has been written to the file, use
the CLOSE statement. For example:

CLOSE 1

closes access to the file that uses Buffer 1 (the same buffer
used to open the file).

Sample Program
1 0 OPEN "O", 1 , " l i 5 t . d a t "
2 0 L I N E I N P U T "ENTER A NAME O R 'DONE' TO END

30 I F NO = "DONE" THEN 6 0
4 0 WRITE# 1 , NO
5 0 P R I N T : GOT0 20
60 CLOSE 1

";NO

The file List.dat stores the data you input through the aid of
the program, not the program itself. To save the program
above, you must assign it a name. Use the SAVE command as
described in Chapter 3. For example, enter S A V E " p a y -
r o l l . b a 5 " .

Every time you modify a program, you must save it again
(you can use the same name); otherwise, the original pro-
gram remains on disk, without your latest corrections.

46

Chapter 71 Disk Files

5. To access data in the file, reopen it, this time in the Input
mode with the letter I. For example:

OPEN " l i 5 t . d a t " FOR I N P U T A S 1

opens the file named List.dat for sequential input, using
Buffer 1.

6. To read data from the file and assign it to program variables,
use either INPUT# or LINE INPUT#. For example:

I N P U T # 1 , NO

reads a string item into N$, using Buffer 1 (the buffer used
when the file was opened).

L I N E I N P U T # 1 , NO

reads an entire line of data into N$, using Buffer 1.

Sample Program
1 0 OPEN "I" 1 , " l i s t . d a t "
2 0 I F EOFCl; , THEN 1 0 0
3 0 I N P U T # l , NO
4 0 P R I N T NO
5 0 GOT0 2 0
1 0 0 CLOSE 1

Updating a Sequential Access File
1. To add data to the file, open it in Append mode with the let-

ter A. For example:
OPEN " A " , 1 , " l i s t . d a t "

opens the file List.dat so that it can be extended. The data
you enter is appended to the file List.dat.

2. To enter new data to the file, follow the same procedure as for
entering data in the Output mode.

The following program illustrates this technique. It builds
upon the file previously created.

Note: Read through the entire program first. If you
encounter BASIC keywords that are unfamiliar to you,
refer to Chapter 10 for their definitions.

47

Chapter 71 Disk Files

Sample Program
1 0 OPEN " A " , 1 , " l i 5 t . d a t "
2 0 L I N E I N P U T "TYPE A NEW NAME O R PRESS <N> 'I;

3 0 I F N t = 'IN" THEN 6 0
4 0 WRITE# 1 , N$
50 GOTO 20
6 0 CLOSE 1

N t

If you want the program to print on your display the informa-
tion stored in the updated file, add the following lines:

7 0 OPEN " l i 5 t . d a t " FOR I N P U T AS 1
8 0 I F E O F C I) THEN 2 0 0
9 0 I N P U T # 1 , N t
1 0 0 P R I N T N t
1 1 0 GOTO 8 0
2 0 0 CLOSE 1

After you have run this program, save it. For example, enter
SAVE " p a y r o l l 2 . b a 5 " to save the program under a different
name than the previous program.

With a direct access file, you can access data anywhere within
the file. It is not necessary to read through all the information,
as with a sequential access file, because in a direct access file
you can access each record of information individually by its
number.

More program steps are required to create and access direct ac-
cess files, but they are more flexible and easier to update than
sequential access files.

BASIC allocates space for records in numeric order. That is, if
the first record you write to the file is number 200, BASIC allo-
cates space for records 0 through 199 before storing record 200
in the file.

The maximum number of logical records is 16,777,215. Each
record may contain a minimum of 1 and and a maximum of
32768 bytes.

48

Chapter 71 Disk Files

The statements and functions used with direct access files are:

OPEN FIELD LSET/RSET
CLOSE GET PUT
MKD$ MKI$ MKS$
CVD CVI cvs
LOC LOF

These statements and functions are discussed in more detail in
Chapter 10.

Creating a Direct Access File
1. To create the file, open it for random access in Random mode

("R,). For example:
OPEN "R" , 1 , "listing.dat", 32

opens the file named Listing.dat, gives Buffer 1 direct access
to the file, and sets the record length to 32 bytes. (If you omit
the record length, the default is 128 bytes.) Remember that
data is passed to and from the disk in records.

2. Use the FIELD statement to allocate space in the buffer for
the variables that will be written to the file. This is neces-
sary because you must place the entire record into the buffer
before putting it into the disk file. For example:

FIELD 1 , 2 0 AS N F , 4 A S CIt,8 A S PF

allocates the first 20 positions in Buffer 1 to string variable
N$, the next 4 positions to A$, and the next 8 positions to P$.
The variables N$, A$, and P$ are now field names.

3. To move data into the buffer, use the LSET statement. Nu-
meric values must be converted to strings when placed in the
buffer. To do this, use the make functions: MKI$ to make an
integer value into a string, MKS$ for a single precision value,
and MKD$ for a double precision value. For example:

LSET N $ = X $
L S E T A$=MKS$<AMT)

4. To write data from the buffer to a record (within a direct ac-
cess disk file), use the PUT statement. For example:

P U T 1 , CODE%

49

Chapter 71 Disk Files

This statement writes the data from Buffer 1 to a record with
the number CODE%. (The percentage sign at the end of a
variable specifies that it is an integer variable.)

The following program writes information to a direct access
file:

1 0 OPEN "R", 1 , " l i 5 t i n g . d a t " , 3 2
2 0 F I E L D 1 , 2 0 AS NS, 4 AS A $, 8 AS P $
3 0 I N P U T " 2 - D I G I T CODE, 0 TO END"; CODEX
4 0 I F CODEX = 0 THEN 1 3 0
5 0 I N P U T "NAME"; X $
6 0 I N P U T "AMOUNT"; ANT
7 0 I N P U T "PHONE"; T E L t
8 0 L S E T NS = X S
9 0 L S E T A S = MKSSCAMT)
1 0 0 L S E T PS = T E L S
1 1 0 PUT 1 , CODEX
1 2 0 GOT0 3 0
1 3 0 CLOSE 1

The 2-digit code that you enter in Line 30 becomes a record
number. That record number stores the name(& amountb),
and phone number(s) you enter when Lines 50, 60, and 70 are
executed. The record is written to the file when BASIC exe-
cutes the PUT statement in Line 110.

After typing this program, save it and run it. Then, enter the
following data:

2 - D I G I T CODE, 0 TO END? 2 0 [ENTER]

2 - D I G I T CODE, 0 TO END? 0 (ENTER]

BASIC stores SMITH, 34.55, and 567-9000 in Record 20 of
file Listing.dat.

Accessing a Direct Access File

1. Open the file in Random mode:
OPEN " R " , 1 , " l i s t i n g . d a t " , 3 2

2. Use the FIELD statement to allocate space in the buffer for
the variables that will be read from the file. For example:

F I E L D 1 , 2 0 AS NS, 4 AS A $, 8 AS P $

50

Chapter 71 Disk Files

3. Before you use the GET statement to read the record, you can
check to see if the record is in your file. Set a variable in
your program equal to the record size you used in the OPEN
statement. LOF returns the length of the file in bytes. The to-
tal number of bytes in the file divided by the record size is
equal to the largest record number in the file. An attempt to
access a record number greater than the largest record num-
ber in the file results in an I n p u t pa 5 t end error.

For example:
RECSIZE = 32
IF CODEX > CLOF(1) / RECSIZEX) THEN 1000

4. Use the GET statement to read the desired record from a di-
rect disk file into a buffer. For example:

GET 1, CODES:

gets the record numbered CODE% and reads it into Buffer 1.

5. Convert string values back to numbers using the corwert func-
tions: CVI for integers, CVS for single precision values, and
CVD for double precision values. For example:

PRINT NS
PRINT CVS<ClS)

The program may now access the data in the buffer.

The following program accesses the direct access file List-
ing.dat (created with the previous program). When BASIC ex-
ecutes Line 3 0 , enter any valid record number from
Listing.dat. This program prints the contents of that record.

10 OPEN "R", 1, "listing.dat", 3 2
2 0 FIELD 1,20 A S NS,4 A S A $, 8 A S PS
30 RECSIZEX = 32
40 INPUT "2-DIGIT CODE, 0 TO END"; CODEX
50 IF CODEX = 0 OR CODEX > <LOF<I)/RECSIZEX) THEN

1000
6 0 GET XI , CODEX
70 PRINT NS
8 0 PRINT USING " S t # . # # " ; CVS<ClS)
9 0 PRINT PS: PRINT
100 GOT0 40
1000 CLOSE 1

51

Chapter 71 Disk Files

After typing this program, save it and run it. When BASIC
asks you to enter a 2-digit code, enter 20 (the record created
through the previous program). Your display should show:

2-DIGIT CODE, 0 TO END? 20
SM I TH
$34.55
567-9000

To update Listing.dat, simply use LOAD to load the previous
program (the one that created Listing.dat) and run it.

52

Chapter 8

DISPLAYING TEXT AND GRAPHICS

Interpreter BASIC includes many commands that let you display
text and graphics images in black and white and in color.

Before using these commands, you must first use the SCREEN
statement to select 1 of 3 screen modes, numbered 0-2. In mak-
ing your selection, consider all the attributes affected by the
screen mode:

0 The ability of the screen to display both graphics and text or
only text.

0 The available colors.

The size of the screen in points (resolution) for the graphics
modes.

0 The number of characters per line (text width).

0 The number of pages of video memory for the screen display.

This chapter discusses the above screen mode attributes in de-
tail, and then provides a summary of each mode’s attributes.
The last section, “Specifying Coordinates,” describes how to tell
BASIC where on the screen to display graphics images. It is ap-
propriate only if you are in a mode that supports graphics.

Screen Mode 0 is the text-only mode. When you use it, you can-
not display graphics.

Screen Modes 1 and 2 are the graphics modes. With them, you
can display both text and graphics at the same time.

obr
Although Screen Mode 0 limits you to text display, it lets you
use a wide range of colors. You can make each character any of
16 colors.

Screen Mode 1 is the 4-color graphics mode. It has 2 sets (pal-
ettes) of 4 colors each. At any given time, you can select either
palette for your text and graphics.

53

Chapter 8 I Displaying Text and Graphics

Both Modes 0 and 1 start with a black background and a white
foreground. To activate color, provide the appropriate value for
the burst parameter when you select the screen mode. (See the
SCREEN statement in Chapter 10.) After activating color, you
can change colors by specifying the desired colors with the ap-
propriate numbers. The color numbers and the commands you
need vary with the screen modes. They are described in the fol-
lowing sections.

Screen Mode 2 is the black-and-white graphics mode. The back-
ground is black, and the foreground is white. Although you can-
not swap the foreground and background colors, you can achieve
much the same result by drawing a new background in white,
and then drawing on that background in black. (See “Colors in
Mode 2,” below, for more information on how to do this.)

Colors in Mode 0

In Screen Mode 0, the following 16 colors are available at all
times for your text characters:

Number Color

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

black
blue
green
cyan
red
magenta
brown
white
gray
light blue
light green
light cyan
light red
light magenta
yellow
high-intensity white

As stated earlier, the foreground is initially white and the back-
ground is black. The border, the group of points forming the pe-
rimeter of the screen, is also initially black. So, it is invisible. To
see the border, change either i t s color or the color of the
background.

54

Chapter 8 I Displaying Text and Graphics

Once you activate color, you can change colors whenever you
want-even from one character to another. To change colors, use
the COLOFUText statement as described in Chapter 10. The
colors available for various parts of the screen are:

Foreground Any of the 16 colors, in either non-blinking
mode (0-15) or blinking mode (16-31). To fig-
ure the number for a blinking color, add 16 to
the number given in the preceding table.

Background Any of Colors 0-7.

Border Any of Colors 0-15.

Colors in Mode 1
In Screen Mode 1, either of 2 palettes is available at any time for
your graphics displays:

Number Color in Palette 0 Color in Palette 1

(starts as black)
current background color current background color
(starts as black)

1 green cyan
2 red magenta
3 brown high-intensity white

Once you activate color, you can select a palette and change pal-
ettes as often as you wish. To do so, use the COLOFUGraphics
statement as described in Chapter 10. Use the COLOFUGraphics
statement to change the background color, as well. (The back-
ground can be any of the 16 colors listed earlier for Screen Mode
0.)

To select a particular color within the current palette, you
specify the color’s number when you enter the statement that ac-
tually draws the image. See the DRAW, CIRCLE, and LINE
statements in Chapter 10 as examples.

Colors in Mode 2
In Screen Mode 2, the available colors are:

Number Color

0
1

black
white

55

Chapter 8 I Displaying Text and Graphics

The background is black, and the foreground is white. If you
want to simulate a white background, you can either “white-
wash‘’ the screen (using the PAINT statement) or draw a box
and fill it in (using the LINE statement). Simply specify Color 1
when you enter the PAINT or LINE statement.

Note: Remember that you are simulating a white
background. The true background color for Screen
Mode 2 is always black, and the true foreground color
is always white. Keep this in mind when you use
statements such as PSET, in which BASIC uses the
foreground color if you do not specify the color.

See Chapter 10 for information on LINE, PAINT, DRAW, CIR-
CLE, and other statements that you can use to create graphics
images in Screen Mode 2.

The number of points on a graphics mode screen is the resolu-
tion. The greater the number of points, the sharper the image.
The 2 resolutions are:

Medium resolution 320 x 200 available in Screen Mode 1
High resolution 640 x 200 available in Screen Mode 2

The horizontal length (the length of the x axis) is given first, fol-
lowed by the vertical length (y axis).

Notice that there are fewer vertical points than horizontal points.
The vertical points are farther apart, and it takes fewer of them
to make an inch.

Therefore, when you want to draw a square, for instance, you
need more points on the horizontal sides of the square. How
many more? That depends on the aspect ratio, the comparison of
points per inch vertically to horizontally.

56

Chapter 8 I Displaying Text and Graphics

With a Tandy CM-1 Color Monitor, the aspect ratio for Screen
Mode 1 is 5/7. For Screen Mode 2, it is 5/14. If you use a differ-
ent monitor, the aspect ratio might be different. Use this formula
to calculate it:

number of number of
vertical points horizontal points

height of height of

Note: The viewing area is the portion of the screen on
which you can draw images. Initially, it is the same
size as the screen. If you wish, you can make i t
smaller using the VIEW statement. When measuring
the viewing area, use any unit (inches, centimeters,
millimeters, and so on), but be sure to use the same
unit for both the height and width.

When drawing graphics, also keep in mind that the number of
points per inch varies between the 2 graphics screen modes.
Therefore, an image drawn in Screen Mode 1 looks different if
drawn with the same coordinates in Screen Mode 2 (and vice
versa). (For more information on coordinates, see “Specifying
Coordinates.”

aspect ratio = in the viewing area + in the viewing area

the viewing area the viewing area

In Screen Mode 0, you can have either 40 or 80 characters per
line. In 40-character width, the characters appear double-sized.
To change the width, use the WIDTH statement.

Screen Mode 1 uses 40 characters per line. Screen Mode 2 uses
80. Do not try to change the width to 80 while in Screen Mode 1
or to 40 while in Screen Mode 2. If you do, WIDTH forces the
screen into the other screen mode, changing the colors and the
resolution.

57

Chapter 8 I Displaying Text and Graphics

Video Memory
Regardless of the screen mode, BASIC sets aside 16K bytes of
memory for video display use. In Screen Mode 0, it splits this
amount into 4 pages if the screen width is 80 or into 8 pages if
the width is 40. You can store information on one page while dis-
playing another. To do this, specify the active and display pages
when you enter the SCREEN statement. (See Chapter 10.)

Summary
For ease of reference, here is a summary of each screen mode
and its attributes:

Screen Mode 0

Graphics Capability: No
Resolution: Not applicable
Color Set: 16 colors
Text Width: 40 or 80
Video Page Size:

Max. No. of Pages:

2048 bytes if width = 40
4096 bytes if width = 80
8 if width = 40
4 if width = 80

Screen Mode 1

Graphics Capability: Yes
Resolution: 320 x 200
Aspect Ratio: 517
Color Set: 4 (2 palettes)
Text Width: 40
Video Page Size: 16384 bytes
Max. No. of Pages: 1

Screen Mode 2

Graphics Capability: Yes
Resolution: 640 x 200
Aspect Ratio: 5/14
Color Set: black and white
Text Width: 80
Video Page Size: 16384 bytes
Max. No. of Pages: 1

58

Chapter 8 I Displaying l2xt and Graphics

Specifying Coordinates
To draw an image on the screen, you must tell BASIC where on
the screen to put the image. For example, when using the LINE
statement to draw a line, you need to specify the starting and
ending points of the line. You do this by specifying the horizontal
and vertical coordinates of the points.

The horizontal coordinate is also called the x-coordinate, or x.
The vertical coordinate is the y-coordinate, or y . Always list x
before y when referring to a point.

Unless you use the WINDOW statement to change them, the co-
ordinates for the graphics modes are as follows:

Screen Mode 1
(0,0) (319,0)
(0,l) (319,l)
(0,2) (319,2)

...

...

...
(0,197). (319,197)
(0,198). (319,198)
(0,199). (319,199)

Screen Mode 2

(0,0) (639,0)
(0,l) (639,l)
(0,2) (639,2)

...

...

...
(0,197). (639,197)
(0,198). (639,198)
(0,199). (639,199)

The coordinates shown above are absolute coordinates. Some
commands allow you to refer to a point relative to the current
point on the screen (the last point referenced). In that case, you
specify the number of points from the current point. The coordi-
nates you specify are relative coordinates.

59

Chapter 8 I Displaying Text and Graphics

As an example, if you use the CIRCLE statement to draw a cir-
cle, the last point referenced is the center of the circle. If you
then execute a LINE statement, using relative coordinates of
(0,0) as the starting point, BASIC starts the line at the center of
the circle.

You can use positive or negative values as relative coordinates.
If you specify a negative value, BASIC subtracts it from the co-
ordinate of the last point referenced. If you specify a positive
value, BASIC adds i t t o the coordinate of the last point
referenced.

60

Chapter 9

INTRODUCTION TO BASIC KEYWORDS

BASIC is made up of keywords. These keywords instruct the
computer to perform certain operations.

Chapter 10 describes all of BASIC’s keywords. This chapter ex-
plains the format used in Chapter 10. It also gives a quick sum-
mary of all of BASIC’s keywords.

Format for Chapter 10

Keyword
Statement
Function

Syntax

Brief definition of keyword.

Detailed definition of keyword and any parameters or argu-
ments for that keyword.

Example(s)

Sample Program(s)

This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords require certain parame-
ters or arguments and others do not.

Some keywords are followed by defining words that explain how
to use the command. The defining words are:

Communications used with RS-232 communications
Graphics must be in a graphics screen mode

(Mode 1 or 2)
Trap used for event trapping

There are more, but they should be self-explanatory.

Some keywords have sample programs that further explain their
use or illustrate useful applications that may not be readily ap-
parent.

61

Chapter 9 I Introduction to BASIC Keywords

Important Note: BASIC for MS-DOS requires that
keywords be delimited by spaces. This means that you
must leave a space between a keyword and any vari-
ables, constants, or other keywords. The only excep-
tions to this rule are characters that are shown as
part of the syntax of the keyword.

For example, if you type:
DELETE. lENTERl

BASIC returns a S y n t a x e r r o r . You must leave a
blank space between the word DE L E TE and the period.

Terms Used in Chapter 10
line

integer

string

number

A numeric expression that identifies a
BASIC program line. Each line has a
number in the range 0 to 65529.

Any integer expression. It may consist of
an integer or of several integers joined by
operators. Integers are whole numbers
and may be in the range -32768 to 32767
unless otherwise specified.

Any string expression. It may consist of a
string, several strings joined by opera-
tors, or a string variable. A string is a
sequence of characters that is to be taken
verbatim.

Any numeric expression. It may consist of
a number, several numbers joined by op-
erators, or a numeric variable.

dummy number
or dummy string

A number (or string) used in an expres-
sion to meet syntactic requirements, but
the value of which is insignificant.

62

Chavter 9 I Introduction to BASIC Kevwords

Statements
A statement tells the computer to perform some operation. The
following is a brief description of all BASIC statements:

Statement Description

AUTO
BEEP

BLOAD
BSAVE
CALL
CALLS
CHAIN

CHDIR
CIRCLE/Graphics
CLEAR

CLOSE
CLS
COLOR/Gr aphics

COLOR/Text

COMiTrap
COMMON
CONT
DATA

DEFDBL
DEF FN

DEFINT
DEF SEG
DEFSNG
DEFSTR
DEF USR

DELETE
DIM
DRAW/Graphics

automatically generates line numbers.
produces a sound from the computer
speaker.
loads a memory image file from disk.
saves a memory image file to disk.
calls an assembly-language subroutine.
calls an MS-FORTRAN subroutine.
loads another program and passes vari-
ables to that program.
changes the current directory.
draws an ellipse on the screen.
frees memory for data without erasing
the program in memory.
closes access to a disk file.
clears the screen.
selects background and palette for Screen
Mode 1.
selects foreground, background, and bor-
der display colors for Screen Mode 0.
enables communications event trapping.
passes variables to a chained program.
continues program execution.
stores data in your program so that you
can access it with a READ statement.
defines variables as double precision.
defines a function according to your
specifications.
defines variables as integers.
defines the current segment address.
defines variables as single precision.
defines variables as strings.
defines the offset of the entry point for
USR routines.
removes program lines from memory.
defines the dimensions of an array.
draws images on the screen.

63

Chapter 9 I Introduction to BASIC Keywords

Statement Description

EDIT
END
ENVIRON

ERASE
ERL

ERR
ERROR
FIELD
FILES

FOR/NE XT
GET

GET/Graphics

GOSUB

GOT0

IF/THEN/ELSE

INPUT
INPUT#

INPUT$

IOCTL
KEY

KEY/Trap
KILL
LCOPY

LET

LINE/Graphics
LINE INPUT
LINE INPUT#

edits program lines.
ends a program.
modifies BASIC’s Environment String
Table.
erases an array.
returns the number of the line in which
an error occurred.
returns an error code after an error.
simulates the specified error.
organizes a direct access buffer.
displays names of files and directories on
a disk.
establishes a program loop.
gets a record from a direct access file or
transfers a specific number of bytes from
a communications file.
transfers graphics images from the
screen to memory.
t r ans fe r s program control t o a
subroutine.
transfers program control to the specified
line.
evaluates an expression and performs an
operation if conditions are met.
accepts data from the keyboard.
accepts data from a sequential access de-
vice or file.
accepts data from the keyboard or a se-
quential access file.
sends control data to a device driver.
assigns or displays the current function-
key soft values.
enables key-event trapping.
deletes a disk file.
copies all text data on the screen to the
printer.
assigns a value to a variable. (The key-
word LET may be omitted.)
draws a line on the display.
accepts an entire line from the keyboard.
accepts an entire line from a sequential
access file.

Chapter 9 I Introduction to BASIC Keywords

Statement DescriDtion

LIST
LLIST
LOAD
LOCATE
LOCK

LPRINT
LPRINT USING

LSET

MERGE

MID$
MKDIR
NAME
NEW
ON COM GOSUB

ONERRORGOTO
ONIGOSUB

ONIGOTO

ON KEY0 GOSUB

ON PEN GOSUB

ON PLAY0 GOSUB

ON STRIGO GOSUB

ON TIMER0 GOSUB

OPEN
OPEN “COM
OPTION BASE

OUT

lists a program to the display or printer.
prints a program on the printer.
loads a program from disk.
positions the cursor on the screen.
prohibits access by other processes to all
or part of an opened file.
prints data at the printer.
prints data at the printer in a specified
format.
moves data (and left-justifies it) to a field
in a direct access file buffer.
merges a disk program with a resident
program.
replaces a portion of a string.
creates a directory.
renames a disk file.
erases a program from RAM.
branches to a subroutine when activity
occurs on the communications channel.
sets up an error-trapping routine.
evaluates an expression and branches to
a subroutine.
evaluates an expression and branches to
another program line.
branches to a subroutine when a specific
key is pressed.
branches to a subroutine when the light
pen is activated.
branches to a subroutine when music
buffer contains fewer than the specified
number of notes.
branches to a subroutine when a joystick
button is pressed.
branches t o a subroutine when timer
equals the specified number.
opens a disk file.
opens a communications file.
declares the minimum value for array
subscripts.
sends a byte to a machine output port.

65

Chapter 9 I Introduction to BASIC Keywords

Statement Description

PAINT/Graphics

PEN/Trap
PLAY
PLAY/Trap

POKE
PRESET/Graphics

PRINT
PRINT USING

PRINT#
PRINT# USING

PSET/Graphics

PUT/Communications

PUT/Graphics

RANDOMIZE
READ

REM
RENUM
RESET
RESTORE
RESUME

RETURN

RMDIR
RSET

RUN
SAVE
SCREEN

fills in an area of the screen with a se-
lected color.
controls light pen event trapping
plays musical notes.
controls background music event
trapping.
writes a byte into a memory location.
draws a point in color at a specified posi-
tion on the screen.
lists data to the display.
lists data to the display in a specific
format.
writes data to a sequential access file.
writes data to a sequential access file us-
ing the specified format.
draws a point on the screen at a specified
position.
puts a record into a direct access file or
transfers a number of bytes to a commu-
nications file.
transfers graphics images from the mem-
ory to the screen.
reseeds the random number generator.
reads data stored in the DATA statement
and assigns it to a variable.
inserts a remark line in a program.
renumbers a program.
closes all open files on all drives.
restores the DATA pointer.
resumes program execution after an er-
ror-handling routine.
returns from a subroutine to the calling
program.
removes a directory.
moves data (and right-justifies it) to a
field in a direct access file buffer.
executes a program.
saves a program on disk.
sets the screen attributes (text, medium-
or high-resolution) to be used by subse-
quent statements.

Chupter 9 I Introduction to BASIC Keywords

Statement Description

SHELL

SOUND

STOP
STRIG
STRIG/Trap
SWAP
SYSTEM
TIME RPTrap
TROFF
TRON
UNLOCK

VIE W/Graphics
VIEW PRINT

WAIT

WHILE ... WEND

WIDTH

WINDOW

WRITE
WRITE#

loads and executes another program as a
child process.
generates a specific tone for a specified
length of time.
stops program execution.
enables the STRIG function.
controls joystick event trapping.
exchanges the values of variables.
returns to MS-DOS.
controls timer event trapping.
turns off the tracer.
turns on the tracer.
allows access by other processes to all or
part of an opened file.
redefines the screen parameters.
creates a text viewport to redefine screen
parameters.
suspends program execution while moni-
toring the s ta tus of a machine input
port.
executes statements in a loop as long as
a given condition is true.
sets the number of characters per line for
the screen or printer.
changes the physicial coordinates of the
screen.
prints data on the display.
writes data to a sequential file.

67

Chapter 9 I Introduction to BASIC Keywords

A function is a built-in subroutine. You may only use it as part
of a statement. Most BASIC functions return numeric or string
data.

Function Description

ABS
ASC
ATN
CDBL
CHR$
CINT
cos
CSNG
CSRLIN

CVD

CVI

cvs
DATE$
ENVIRON$

EOF

ERDEV
ERDEV$

EXP

FIX
FRE

HEX$

INKEY$
INP
INSTR
INT

returns the absolute value of a number
returns the ASCII code of a character.
returns the arctangent of a number.
converts a number to double precision.
returns the character of an ASCII code.
converts a number to an integer.
returns the cosine of a number.
converts a number to single precision.
returns the current row position of the
cursor.
restores data from a direct access disk
file to double precision.
restores data from a direct access disk
file to integer.
restores data from a direct access disk
file to single precision.
sets the date or returns the current date.
returns a string from BASIC’s Environ-
ment String Table.
checks for end-of-file or an empty commu-
nications input queue.
returns the value of a device error.
returns the name of a device for device
error.
r e t u r n s t h e n a t u r a l exponent of a
number.
truncates to a whole number.
returns the number of bytes in memory
not being used.
converts a decimal value to a hexadeci-
mal string.
returns the keyboard character.
returns the byte read from a port.
searches for a specified string.
returns the integer value of a number.

68

Chapter 9 I Introduction to BASIC Keywords

Function

IOCTL$
LEFT$
LEN
LOG

LOF

LOG

LPOS

MID$
MKD$

MKI$

MKS$

OCT$

PEEK
PEN
PLAY

PMAP
POINT

POS

RIGHT$
RND
SCREEN

SGN
SIN
SPACE$

Description

returns control data from a device driver.
returns the left portion of a string.
returns the length of the string.
returns the current disk file record num-
ber or the number of characters in a com-
munications input queue.
returns the total number of bytes in a
disk file or the amount of free space in a
communications file input queue.
r e tu rns the n a t u r a l logarithm of a
number.
returns the position of the print head in
the printer buffer.
returns the midportion of a string.
converts a double precision value to a
string for writing it to a direct access
file.
converts an integer value to a string for
writing it to a direct access disk file.
converts a single precision number to a
string for writing it to a direct access
file.
converts a decimal value t o a n octal
string.
returns a byte from a memory location.
returns the coordinates of the light pen.
returns the number of notes in the music
buffer.
returns the physical or world coordinates.
returns either the color of a point or cur-
rent coordinates.
returns the cursor column position on the
display.
returns the right portion of a string.
returns a random number.
returns the ASCII code for the character
stored a t a specific position on the
screen.
determines the sign of a number.
returns the sine of a number.
returns a string of spaces.

Chapter 9 I Introduction to BASIC Keywords

Function Description

SPC
SQR
STICK
STR$
STRIG
STRING$
TAB

TAN
TIME$
TIMER

USR
VAL
VARPTR
VARPTR$

prints spaces to the display.
returns the square root of a number.
returns the coordinates of the joysticks.
converts a number to a string.
returns the status of the joystick buttons.
returns a string of characters.
positions the video cursor or the print
head at a specified position.
returns the tangent of a number.
sets the time or returns the current time.
returns the number of seconds since
midnight.
calls an assembly language subroutine.
returns the numeric value of a string.
returns an offset for a variable or buffer.
returns character form of memory ad-
dress of a variable.

70

Chapter 10

BASIC KEYWORDS

Function

ABS(number)

Computes the absolute value of number.

A number's absolute value is its magnitude without regard to
its sign. Absolute values are always positive or zero.

Example

prints 66, the absolute value of -66.

P R I N T A B S (- 6 6)

X = ABSCY)

computes the absolute value of Y and assigns it t o X.

Sample Program

1 0 0 I N P U T "WHAT'S THE TEMPERATURE OUTSIDE?
(DEGREES F)";TEMP
1 1 0 I F TEMP < 0 THEN P R I N T "THAT'S" ABSCTEMP)
"BELOW ZERO! ERR! " : END
1 2 0 I F TEMP = 0 THEN P R I N T "ZERO DEGREES! M I T E
COLD!" : END
1 3 0 P R I N T TEMP "DEGREES ABOVE ZERO! BALMY! " : END

71

Chapter 10 I BASIC Keywords

A n

Returns the ASCII code for the first character of string.

ASC returns the value as a decimal number. If string is null, an
Illegal function call erroroccurs.

Ex ample
P R I N T FlSC("A")

prints 65, the ASCII code for A.

Sample Program
You can use ASC to be sure a program is receiving proper input.
Suppose you want to write a program that requires the user to
input hexadecimal digits (0-9, A-F). To be sure that only those
characters are input, and all other characters are excluded, you
can insert the following routine.

1 0 0 I N P U T "ENTER A HEXADECIMAL VALUE";N$
1 1 0 A = ASC<N$) 'get A S C I I code
1 2 0 I F A > 4 7 FlND A < 5 8 O R A > 6 4 AND A < 7 1 T H E N P R I N T
' a O K . " : GOTO 1 0 0
1 3 0 P R I N T "VALUE NOT O K . " : GOTO 1 0 0

Chapter 10 / BASIC Keywords

ATN(num ber)

Computes the arctangent of number in radians.

ATN returns the angle whose tangent is number. Number must
be given in radians.

Unless you specified the ID switch when starting up BASIC,
BASIC returns the result as a single precision number.

To convert this value to degrees, use ATN(number 180/PI),
where PI equals 3.141593.

Example

prints the arctangent of 7, which is 1 .428899.

PRINT ATN(71

X = ATN(Y/3) 5 7 . 2 9 5 7 8

computes the arctangent of Y/3 in degrees and assigns the value
to x.

73

Chapter 10 I BASIC Keywords

AUTO Statement

AUTO [line][,increment]

Automatically generates a line number each time you press
[ENTER) when typing a program.

Line is the line number with which you want BASIC to start
numbering. To start numbering with the current line number,
specify a period (.> as line. If you omit line, BASIC starts with
Line 10.

Increment is the increment for BASIC to use to generate the sub-
sequent line numbers. You must precede increment with a comma
(,I. If you want BASIC to use the increment of the last AUTO
statement, type the comma but omit increment. If you omit incre-
ment and the comma, BASIC uses 10. If you omit line but
include increment, BASIC begins numbering with Line 0.

If BASIC generates a line number that already exists in mem-
ory, it displays an asterisk after the number. To save the exist-
ing line, press [ENTERI immediately after the asterisk. AUTO then
generates the next line number.

To turn off AUTO, press [CTRL) or [CTRL) m. The current
line is canceled, and BASIC returns to command level.

Examples

generates line numbers beginning with Line 10 using incre-
ments of 10. For example, 10, 20, 30

CIUTO

CIUTO 1 0 0 , 5 8

generates line numbers beginning with Line 100 using incre-
ments of 50. For example, 100, 150, 200

AUTO 7 0 0 ,

generates line numbers beginning with Line 700 using the
increment of the last AUTO statement, in this case 50. For
example, 700, 750, 800

14

Chapter 10 I BASIC Keywords

Statement

BEEP

Produces a sound at 800 Hz for 1/4 second from the computer’s
speaker.

Using the BEEP statement is the same as typing PRINT
CHR$(7).

Example

warns the operator with a beep if the variable X is out of range,
that is, greater than 20.

I F X > 20 THEN BEEP

Chapter 10 I BASIC Keywords

t

BLOAD pathname[,offset]

Loads a memory image file into memory. See BSAVE.

A memory image file is a byte-for-byte copy of what was origi-
nally in memory. See BSAVE for information about saving mem-
ory image files.

Pathnume is a standard file specification as defined in Chapter
1.

Offset is an integer in the range 0 to 65535. Offset is the num-
ber of bytes into the current segment where BASIC loads the
image. If you omit offset, BASIC uses the offset specified when
the file was saved with BSAVE.

If you specify offset, BASIC assumes you want to BLOAD at an
address other than the one given when the program was saved
and uses the current segment address as set by the last DEF
SEG statement. Unless you want to load the file into BASIC’s
data segment, you must execute the DEF SEG statement before
the BLOAD statement.

If you used the IM: switch when you loaded BASIC, specify that
address as the offset.

If you specify an offset without using a DEF SEG statement or
the IM: switch, BASIC loads the file at that offset from BASIC’s
data segment, destroying BASIC’s workspace.

Note: BLOAD does not perform an address range
check. It is possible to load a file anywhere in mem-
ory. Therefore, you must be careful not to load over
BASIC or over the operating system.

See the section “Interfacing With Assembly-Language Subrou-
tines” in Chapter 11 for more information on loading assembly-
language programs.

You may specify any segment as the target or source for BLOAD
or BSAVE. This is a useful way to save and redisplay screen
images by saving from or loading to the screen buffer.

76

Chapter 10 I BASIC Keywords

Sample Programs
Program 1

1 0 'SAVE A 5 0 b y t e i m a g e o f m e m o r y
2 0 DEF SEG = 6H10
3 0 FOR I = 2 5 6 t o 3 0 6
40 VLUE = PEEK (1)
5 0 L P R I N T "AT ADDRESS # ' ; I ; "WE HAVE A VALUE

6 0 NEXT I
7 0 BSAVE " p r o g l " , 8 , 5 0
8 0 P R I N T "Now Run P r o g r a m 2 t o v e r i f y t h a t t h e

OF ";VLUE

c o n t e n t 5 s a v e d i n t h e f i l e PROGI m a t c h t h o s e
i n t h e p r i n t o u t p r o d u c e d b y t h i 3 p r o g r a m . "

Program 2

i t
1 0 ' L o a d a 5 0 b y t e f i l e i n t o m e m o r y a n d v e r i f y

2 0 DEF SEG = C H l 0
3 0 BLOAD " p r o g l . b a s " , 0
4 0 FOR I = 2 5 6 t o 3 0 6
5 0 VALUE = P E E K C I)
6 0 L P R I N T "AT ADDRESS # ' ; I ; " t h e l o a d e d v a l u e

i s " ;VALUE
7 0 NEXT I

Program 1 saves a memory image file, and Program 2 reloads
that file and prints it.

77

Chuwter 10 I BASIC Keywords

Statement

BSAVE pathname,offset,length

Saves the contents of an area of memory as a disk file.

Pathmme is a standard file specification as defined in Chapter
1.

Offset is an integer in the range 0 to 65535. Offset is the num-
ber of bytes into the current segment where BASIC starts sav-
ing.

Length is an integer in the range 1 to 65535. This is the length
in bytes of the memory image file to be saved.

You must specify pathname, offset, and length. If you omit any of
them, BASIC returns an error and terminates the save.

A memory image file is a byte-for-byte copy of what is in mem-
ory. The BSAVE statement lets you save data or programs as
memory image files on disk. BSAVE is often used for saving
assembly language programs, but you can also use it to save
data, programs written in other languages, or screen images.

When you load BASIC, the data segment (DS) register is set to
the address of BASIC’s workspace. You must execute a DEF SEG
statement before executing BSAVE, unless you used the IM:
switch when you loaded BASIC. Without the DEF SEG state-
ment or the IM: switch, BASIC’s workspace could be destroyed.

Sample Program
See BLOAD.

78

Chapter 10 I BASIC Keywords

CALL Statement

CALL variable [(parameter list)]

Transfers program control to an assembly-language subroutine
stored at variable.

Variable contains the offset into the current segment where the
subroutine starts in memory. Variable may not be an array vari-
able. The offset must be on a 16-byte boundary.

Parameter list contains the variables that are passed to the
external subroutine. The number, type, and length of the param-
eters being passed must match with the parameters expected by
the assembly-language subroutine.

If you omit parameter l is t , BASIC executes an 8086 CALL
instruction. Your assembly-language subroutine should return
with a simple RET instruction.

When you execute a CALL statement, BASIC transfers control to
the subroutine through the address given in the last DEF SEG
statement and the segment offset specified by variable. See the
section “Interfacing With Assembly-Language Subroutines” in
Chapter 11 for more details.

Example
1 0 0 I=45 : J = 1 0 0 : K = 55
1 1 0 r n y r o u t = 6 H 0 0 0 0
1 2 0 DEF SEG = 6 H 1 7 0 0
1 3 0 CALL m y r o u t C I , J , K)

The subroutine, Myrout, begins at offset 0 in the segment that
begins at 1700. The values of I, J, and K are passed to the
routine.

79

Chapter 10 I BASIC Keywords

t

CALLS variables [(parameter list)]

Transfers program control to a routine written in MS'"-FOR-
TRAN. CALLS works just like the CALL statement, except that
CALLS passes arguments as segmented addresses.

CALLS uses the address given in most recently executed DEF
SEG statement to locate the routine being called.

80

Chapter 10 I BASIC Keywords

Converts number to double precision.

This function may be useful if you want to force an operation t o
be performed in double precision, even though the operands are
single precision or integers.

Sample Program
2 1 0 A = 4 5 4 . 6 7
2 2 0 P R I N T A , CDBLCA)

When run, this program prints the following:
4 5 4 . 6 7 4 5 4 . 6 7 0 0 1 3 4 2 7 7 3 4 4

81

Chapter 10 I BASIC Keywords

CHAIN ~tatement

CHAIN [MERGE] pathname [,[,line] [,ALL]
[,DELETE line-line]]

Lets the current program load and execute another program
named pathname.

Pathname is a standard file specification as defined in Chapter
1. It specifies the program you want to chain. The program must
have been previously saved in ASCII format. See SAVE.

Line is either a line number or a variable containing a line num-
ber that specifies where BASIC is to begin execution in the
chained program. Line is always preceded by a comma (,). If you
plan to use the ALL or DELETE options and do not specify a
line number, you must specify a comma for line. This keeps
BASIC from evaluating ALL and DELETE as variables. If you
omit line, BASIC begins execution at the first program line of
the chained program.

The ALL option tells BASIC to pass every variable in the cur-
rent program to the chained program. If you omit ALL, the cur-
rent program must contain a COMMON statement t o pass
variables to the chained program. If chained programs chain
subsequent programs and pass variables, each new program
must contain either the ALL option or the COMMON statement.

The MERGE option overlays the lines of the chained program
with the current program. See the MERGE statement to under-
stand how BASIC overlays (merges) program lines.

The DELETE option deletes lines in the overlay so that you can
merge in a new overlay.

Examples

loads Prog2, chains it to the program currently in memory, and
begins executing it.

CHFl I N " p r o g 2 "

CHFlIN " ~ u b p r o g . b a ~ " , ,FlLL

loads, chains and executes Subprog.bas. The values of all the
variables in the current program are passed to Subprog.bas.

82

Chapter 10 I BASIC Keywords

Sample Program 1
1 0 REM T H I S PROGRAM DEMONSTRATES C H A I N I N G U S I N G

2 0 REM SAVE T H I S MODULE ON D I S K A S "PROG1.BAS"

3 0 D I M A$C2) ,B$(2)
4 0 COMMON A $ O , B $ O
5 0 A $ < I) = " V A R I A B L E S I N COMMON MUST B E ASSIGNED 'I

6 0 A $ < 2) = " V A L U E S BEFORE C H A I N 1 NG"
7 0 Bt (1 1 B$ (2 1 ='1 '1

8 0 C H A I N " p r o g 2 . b a s "
9 0 P R I N T : P R I N T B $ (1) : P R I N T : P R I N T B $ < 2) :

1 0 0 END

COMMON TO PASS V A R I A B L E S .

U S I N G THE A O P T I O N .

P R I N T

Save this program as Progl.bas, using the A option (Enter: SAVE
" p r o g l . b a 5 " , A). Enter NEW, and then enter the following
program.

1 0 REM THE STATEMENT " D I M A$C2) ,B$<2) " MAY ONLY

2 0 REM HENCE, I T DOES NOT APPEAR I N T H I S MODULE.
3 0 REM SAVE T H I S MODULE ON THE D I S K AS

4 0 COMMON A $ O , B $ O
5 0 P R I N T : P R I N T A $ (l) ; A $ (2)
6 0 B $ (l) = " N O T E HOW THE O P T I O N OF S P E C I F Y I N G A

S T A R T I N G L I N E NUMBER"
7 0 B$(2)="WHEN C H A I N I N G AVOIDS THE D I M E N S I O N

STATEMENT I N 'PROGI ' . 'I
8 0 C H A I N " p r o g l . b a s " , 9 0
9 0 END

B E EXECUTED ONCE.

"PROG2.BAS" U S I N G THE A O P T I O N .

Save this program as ProgB.bas, using the A option. Load
Progl.bas and run it. Your screen should display:

V A R I A B L E S I N COMMON MUST B E ASSIGNED VALUES
BEFORE C H A I N I N G .

NOTE HOW THE O P T I O N OF S P E C I F Y I N G A S T A R T I N G
L I N E NUMBER

WHEN C H A I N I N G A V O I D S THE D I M E N S I O N STATEMENT I N
'PROGI ' .

83

Chapter 10 I BASIC Keywords

Sample Program 2

Enter NEW and this program:
10 REM T H I S PROGRAM DEMONSTRATES C H A I N I N G U S I N G

20 AS="MAINPROG.BA5"
3 0 C H A I N MERGE "overlayl", 1000, ALL
4 0 END

THE MERGE AND ALL OPTIONS.

Save this program as Mainprog.bas, using the A option. Enter
NEW, and then type:

1000 P R I N T A S ; " HAS CHAINED TO OVERLAY1 .BAS."
101 0 A S = "overlayl .bas"
1020 BS = "overlay2.ba5"
1030 C H A I N MERGE "overlay2.ba5", 1000, ALL,

1040 END
DELETE 1020 - 1040

Save this program as Overlayl.bas, using the A option. Enter
NEW, and then these lines:

1000 P R I N T A $; 'I HFIS CHf i INED TO ";BO;"."
1010 END

Save this program as Overlay2.bas, using the A option. Load
Mainprog.bas and run it. Your screen should display:

MAINPR0G.BAS HAS CHAINED TO OVERLAY1.BAS.
0 V E R L A Y I . B A S HAS CHAINED TO 0VERLAYE.BAS.

Hints:
The CHAIN statement with the MERGE option leaves the
files open and preserves the current OPTION BASE setting.

The CHAIN statement without the MERGE option does not
preserve variable types or user-defined functions for use by the
chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statements containing shared variables
must be restated in the chained program.

0 When using the MERGE option, place user-defined functions
before any CHAIN MERGE statements in the program. Oth-
erwise, the user-defined functions will be undefined after the
merge is complete.

CHAIN automatically executes a RESTORE before running
the chained program. The next READ statement starts at the
first item of the first DATA statement.

84

Chapter 10 1 BASIC Keywords

CHDIR pathname

Changes the current directory.

Pathnume is a standard directory specification as defined in
Chapter 1.

Examples
CHDIR "E: \ACCTS\RECVBLE"

changes the currect directory on Drive B to ACCTS \ RECVBLE.
C HD I R 'I \ R E C 0 R DS "

changes the directory on the current drive to RECORDS.
CHDIR ". . "

changes the current directory to the parent directory of the cur-
rent directory.

85

Chapter 10 I BASIC Keywords

CHR$

CHR$(code)

Returns the character corresponding to any ASCII or control
code.

CHR$ is the inverse of the ASC function. It is commonly used to
send a special character to the display.

See Appendix B for a list of ASCII codes.

Example

prints the character corresponding to ASCII code 35, which is Y .

P R I N T C H R $ (3 5)

Sample Program
The following program lets you investigate the effect of printing
ASCII codes on the display.

1 0 0 CLS
1 1 0 I N P U T "TYPE I N THE CODE"; C
1 2 0 P R I N T "CHR$<CODE)= " ;CHR$(C)
1 3 0 GOT0 1 1 0

86

Chapter 10 I BASIC Keywords

CINT Function

C INT(number)

Converts number to integer representation.

Number must be in the range -32768 to 32767.

CINT rounds the fractional portion of number to make it an
integer.

See also FIX and INT, which also return integer values.

Examples
P R I N T C I N T (1 .56)

prints 2.

P R I N T C I N T C - 1 .67)

prints - 2.

87

Chapter 10 I BASIC Keywords

t

C I R C L E [STEP] (x,y) ,radius [,coZor [,s tart ,end
[,aspect1 11

Draws an ellipse on the screen with the specified center and
radius.

(x,y) specify the coordinates for the center of the circle. x: is the
horizontal coordinate and y is the vertical coordinate.

Color indicates the color of the ellipse and must be a valid num-
ber in the current color set.

The STEP option tells BASIC that the (x,y) coordinates are rela-
tive to the last point referenced.

The possible ranges for x, y , and color depend upon the current
screen mode as defined in Chapter 8, “Displaying Text and
Graphics. ”

Radius is the major axis of the ellipse.

Start and end are the beginning and ending angles in radians
and must be in the range -6.283186 t o 6.283186, or -2 PI to
2 * PI, where PI equals 3.141593. If you specify a negative start
or end angle, the ellipse is connected to the center point with a
line, and the angles are treated as if they were positive.

Aspect is the ratio of the x-radius to the y-radius in terms of
coordinates. If aspect is less than 1, radius is the x-radius and is
measured in points in the horizontal direction. If aspect is
greater than 1, radius is the y-radius and is measured in points
in the vertical direction. If you omit aspect, BASIC uses the
defaults for the current screen mode as defined in Chapter 8.
When you use the default, BASIC draws a circle.

88

Chapter 10 I BASIC Keywords

To draw an ellipse that is wider than it is high, use an aspect
ratio that is less than the default value for that screen mode.
The smaller the aspect ratio you specify, the wider and shorter
the ellipse. For example, in Screen Mode 1, an aspect ratio of 1/2
gives you an ellipse like this:

To draw an ellipse that is higher than it is wide, use an aspect
ratio that is larger than the default value for that screen mode.
The larger the aspect ratio that you use, the taller and thinner
the ellipse. For example, in Screen Mode 1, an aspect ratio of 716
draws an ellipse like this:

89

Chapter 10 I BASIC Ke.ywords

See Chapter 8 for more information on aspect ratio and specify-
ing coordinates.

Examples
10 SCREEN 1
20 C I R C L E (150,100),50

draws a circle with the center at point 150,100 and a radius of
50.

Sample Program
10 SCREEN 1
20 FOR I = 0 TO 3
30 CLS
40 C I R C L E (150,100),50,I
50 P A I N T (150,100),1
6 0 FOR Q=l TO 3 0 0 : N E X T Q
70 NEXT I
8 0 SCREEN 0

90

Chapter 10 I BASIC Keywords

CLEAR Statement

CLEAR [,menwry location] [,stack space]

Frees memory for data without erasing the program currently in
memory. CLEAR erases all arrays, sets numeric variables to
zero and string variables to null, and erases any information set
using a DEF statement, such as DEF SEG and DEF FN.
CLEAR also turns off the SOUND, PEN, and STRIG functions
and resets the music background.

Since CLEAR initializes all variables, place it near the begin-
ning of your program, before any variables have been defined
and before any DEF statements.

Memory location must be an integer. It specifies the highest
memory location available for BASIC. The default is the current
top of memory as specified with the /M: switch when BASIC was
loaded. This option is useful if you will be loading an assembly-
language subroutine, because it prevents BASIC from using that
memory area.

Stack space also must be an integer. This sets aside memory for
temporarily storing internal data and addresses during subrou-
tine calls and during FOWNEXT loops. If you omit stack space,
BASIC sets aside 768 bytes or one-eighth of the memory avail-
able, whichever is smaller. BASIC displays an O u t o f memory
error if stack space for program execution is insufficient.

Note: BASIC allocates string space dynamically.
BASIC displays an n u t o f s t r i n g space error if no
free memory is left for BASIC.

Examples

clears all variables and closes all files.

C L E A R

C L E F I R , 4 5 0 0 0

clears all variables and closes all files; then makes 45000 the
highest address BASIC may use to run your programs.

91

Chapter 10 I BASIC Keywords

C L E C I R , 6 1 0 0 0 , 3 0 0

clears all variables and closes all files; then makes 61000 the
highest address BASIC may use to run your programs, and allo-
cates 300 bytes for stack space.

92

Chapter 10 I BASIC Keywords

CLOSE [buffer,. . .I

Closes access to a disk file.

Buffer is the number assigned to the file when you opened it. If
you omit buffer, BASIC closes all open files.

This command terminates access to a file through the specified
buffer. If buffer has not been assigned by an OPEN statement,
then CLOSE buffer has no effect.

Do not remove a disk that contains an open file. Close the file
first, because the last records might not have been written yet.
Closing the file writes the data, if i t hasn’t already been
written.

Note that CLEAR, END, NEW, RESET, and SYSTEM automat-
ically close all files when executed.

See also OPEN and Chapter 7, “Disk Files.”

Examples

terminates the file assignments to Buffers 1, 2, and 8. You can
now assign these buffers to other files with OPEN statements.

C L O S E 1 , 2 , 8

C L O S E FIRST% + COUNT%

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

93

Chapter 10 I BASIC Keywords

CLS Statement

CLS

Clears the screen and returns the cursor to the home position.
Home is Row 0, Column 0, or in other words, the upper left cor-
ner of the screen.

If a viewport is active, CLS clears only the active viewport. To
clear the entire screen, you must use VIEW to redefine the
entire screen before using CLS.

Changing the screen mode with SCREEN or changing the width
with WIDTH automatically clears the screen. You can also clear
the screen by typing ICTRLIF] or (C r R L l l ~] .

Sample Program
540 CLS
550 F O R I = 1 TO 2 4
560 PRINT STRINGSC79,33)
570 NEXT I
580 GOT0 5 4 0

Chapter 10 I BASIC fiywords

COLOR/Graphics Statement

COLOR [background] [, [palettell

Selects the background color and the palette for Screen Mode 1.

Background specifies the color of the background. It can be any
integer in the range 0 to 15. The available colors are:

Number Color

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

black
blue
green
cyan
red
magenta
brown
white
gray
light blue
light green
light cyan
light red
light magenta
yellow
high-intensity white

Notes: In the graphics modes, the background
includes the points that would form the border if you
were in the text-only mode.

Screen Mode 1 is referred to as the 4-color mode
because of the number of foreground colors you can
display at a given time. The name has nothing to do
with the colors available for the background.

Palette specifies the palette to use for the foreground colors. It
can be either 0 for Palette 0, or 1 for Palette 1. Here is a list of
each palette’s colors:

95

Chapter 10 I BASIC Ke.ywords

Color in
Number Palette 0

Color in
Palette 1

0

1 green cyan
2 red magenta
3 brown high-intensity white

If you omit either background or palette, BASIC continues to use
the current value for that particular parameter. If you omit both
parameters, BASIC returns an error.

current background color current background color
(starts as black) (starts as black)

Examples

sets the background to light blue and selects Palette 0.

10 COLOR 9, 0

20 COLOR ,I

selects Palette 1, without changing the background.

Sample Programs
5 SCREEN 1
10 COLOR 12,l
20 L I N E (0,0) - (319,199),1

Line 10 selects a light red background and Palette 1. Line 20
draws a cyan diagonal line on the display.

5 SCREEN 1
10 COLOR 3,0
20 L I N E <0,0) - (319,199)

Line 10 selects a cyan background and Palette 0. Line 20 draws
a brown diagonal line on the video display. If you select Palette 1
in Line 10, Line 20 draws a white diagonal line.

96

Chapter 10 I BASIC Keywords

t

Selects the display colors for the foreground, background, and
border for displaying in text mode. To be in text mode, you must
have selected Screen Mode 0 with the SCREEN statement.

Foreground is an integer in the range 0 to 31, specifying the
foreground color and whether or not it is blinking.

Number

Non-Blinking
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Blinking
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Color
black
blue
green
cyan
red
magenta
brown
white
gray
light blue
light green
light cyan
light red
light magenta
yellow
high-intensity white

Background is an integer in the range 0 to 7, specifying the
background color. (See the preceding table.)

Note: If you set foreground the same as background,
the characters are invisible.

Border is an integer in the range 0 to 15, specifying the border
color. (See the preceding table.)

If you omit any parameter, BASIC continues to use the current
value for that particular parameter. If you omit all parameters,
BASIC returns an error.

97

Chapter 10 I BASIC Kqwords

Examples

selects black characters on a white background.

C O L O R 0 , 7

C O L O R 1 , 0

selects blue characters on a black background.
C O L O R 4 , 0

selects red characters on a black background.

98

Chapter 10 I BASIC Keywords

COM Statement

COM(channe1) action

Turns on, turns off, or temporarily halts the trapping of activity
on the specified communications channel.

Channel selects Communications Channel 1 or 2 .

Action may be any of the following:

ON enables communications trapping.
OFF disables communications trapping.
STOP temporarily suspends communications trapping.

Use the COM statement in a communications trap routine with
the ON COMO GOSUB statement to detect when characters
have come into the communications channel.

The COM() ON statement turns on the trap. BASIC checks after
every program statement to see if a character has come into the
communications channel. If so, BASIC transfers program control
t o the line number specified in the ON COMO GOSUB
statement.

The COM() STOP statement temporarily halts communications
trapping. If activity occurs on the communications channel,
BASIC does not transfer program control to the ON COM()
GOSUB statement until you turn on communications trapping
again by executing a COM() ON statement. BASIC remembers
that activity took place and branches to the subroutine immedi-
ately after communications trapping is turned on again.

The COM() OFF statement turns off communications activity
trapping. BASIC does not remember if activity took place when
communications trapping is turned on again.

We recommend that your trap routine read the entire message
from the communications port. Do not use a COM trap to trap a
single character message because the amount of time required
to trap and read every character can cause the communications
buffer to overflow.

99

Chapter 10 I BASIC Keywords

See ON COM() GOSUB for more information about communica-
tions trapping.

Example
10 COMCl 1 ON
2 0 P R I N T "NO A C T I V I T Y "
3 0 ON COM(1 > GOSUB 100
4 0 GOT0 20

100 P R I N T "YOU ARE R E C E I V I N G DATA"

200 RETURN

Line 10 turns on a communications trap on Channel 1. If char-
acters are received on the communications channel, program
control transfers to the subroutine beginning at Line 100. If
there is no activity on the communications channel, Line 20
prints a message, and Line 40 keeps the program in a loop until
there is activity on the communications channel.

100

Chapter 10 I BASIC Kevwords

COMMON uariabZe[,variabZe,. ..I

Reserves space for variables so that they can be passed to a
chained program.

Both programs in the chain should contain a COMMON state-
ment. COMMON may appear anywhere in a program, but we
recommend using it at the beginning.

The same variable cannot appear in more than one COMMON
statement in a single program. The size and order of the vari-
ables must be the same in the programs being chained. To spec-
ify array variables, append "0" to the variable name. If you are
passing all variables, use CHAIN with the ALL option and omit
the COMMON statement.

Note: Array variables used in a COMMON statement
must have been declared in a DIM statement.

See the CHAIN statement for more information on passing
variables.

Example
90 DIM DC50)
100 COMMON A , E, C, D 0 , G F
1 1 0 CHAIN '@prog3" , 1 0

Line 100 reserves space for variables A, B, C, D, and G$ so that
they can be passed to the CHAIN command in Line 110.

101

Chapter 10 I BASIC Keywords

CONT Statement

CONT

Resumes program execution.

You may only use CONT if the program has been stopped by
[CTRLl IBREAK] or the execution of a STOP or an END statement.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or
change these values. Then type CONT (ENTERI to continue execution
with the new variable values.

You cannot use CONT after editing your program lines or other-
wise changing your program. CONT is also invalid after execu-
tion has ended normally.

See the STOP statement to terminate execution and the GOT0
statement to begin execution at a specific line number.

Example
1 0 I N P U T "ENTER 3 NUMBERS a,b,c";A, B, C
2 0 K = A ^ 2
3 0 L = B n 3 / . 2 6
4 0 STOP
5 0 M = C + 4 0 * K + 1 0 0 : P R I N T M

Run this program. BASIC prompts for 3 numbers. Type:
1 , 2 , 3 [ENTER]

The computer displays B r e a k i n 40. You can now enter a
BASIC statement as a command. For example:

P R I N T L (ENTER)

displays 3 0 . 7 6 9 2 3 . You can also change the value of A, B, or C.
For example, to change the value of C, type:

c = 4

Now type:
CONT [ENTER]

and BASIC displays 1 4 4.

102

Chapter 10 I BASIC Keywords

cos Fume tion

COS(num ber)

Computes the cosine of number.

COS returns the angle (in radians) whose sine is number.

Number must be given in radians. If number is in degrees, you
can convert it to radians by using COS(number PI/180), where
PI equals 3.141593.

BASIC always returns the result as a single precision number
unless you specified the /D switch when starting up BASIC.

Examples

prints the arithmetic (not trigonometric) difference of the 2
cosines.

PRINT COSC5.8) - COSC85 . 4 2)

Y = C O S C X .0174533)

stores in Y the cosine of X, if X is an angle in degrees.

103

Chapter 10 I BASIC Keywords

C SNG(num ber)

Converts number to single precision.

BASIC rounds the number when converting it to single precision.

Example

prints .1453885

PRINT CSNGC.1453885509)

Sample Program
280 V X = 876.2345678X
290 PRINT V#, CSNG<V#)

When run, this program prints:
876.2345678 876.2346

104

Chapter 10 I BASIC Keywords

~~~~~~0~ SRLLN 

CSRLIN 

Returns the current row position of the cursor. 

See the POS function to return the current column position and 
the LOCATE statement to  set the row and column positions. 

Example 
1 0  PRINT "This i 5  Line": 
20 PRINT CSRLIN 

105 



Chapter 10 I BASIC Kvwords 

CVD, CVI, CVS Function 

CVD(8-  byte string) 
CVI(2-byte string) 
CVS(4-byte string) 

Converts string values to  numeric values. 

These functions restore data to numeric form after it is read 
from the disk. Typically, the data has been read by a GET state- 
ment and is stored in a direct access file buffer. 

CVD converts an 8-byte string to a double precision number. 

CVS converts a 4-byte string to a single precision number. 

CVI converts a 2-byte string to an integer. 

CVD, CVI, and CVS are the inverse of MKD$, MKI$, and 
MKS$, respectively. 

Examples 

assigns the numeric value of GROSSPAY$ to the double precision 
variable A#. 

A #  = CVDCGROSSPAYO) 

Sample Program 
This program reads from the file Test.dat, which is created in 
the sample program for the MKD$, MKI$, and MKS$ functions. 

1428 OPEN "R" ,  1, "test.dat", 14 
1430 FIELD 1, 2 FIS 110, 4 A S  120, 8 AS I30 
1440 GET 1 
1450 PRINT CVICIlF), CVSCIEO), CVDC130) 
1460 CLOSE 

BASIC prints 3000, 3000.1 and 3000.00001. 

Note: GET without a record number tells BASIC to 
get the first record from the file or the record follow- 
ing the last record accessed. 

106 



Chaater 10 I BASIC Keywords 

DATA Statement 

DATA constant [,constant, ... I 

Stores numeric and string constants to be accessed by a READ 
statement. 

This statement may contain as many constants (separated by 
commas) as can fit on a line (a maximum of 255 characters 
including the word DATA, commas, and spaces). 

DATA statements may appear anywhere that is convenient in a 
program. BASIC reads DATA statements sequentially, starting 
with the first constant in the first DATA statement and ending 
with the last item in the last DATA statement. 

String constants containing delimiters, such as leading or trail- 
ing blanks, colons, or commas, must be enclosed in double quota- 
tion marks when used in DATA statements. 

The data types in a DATA statement must match with the vari- 
able types in the corresponding READ statement, otherwise, 
BASIC displays a Syntax e r r o r .  

Note that numeric expressions are not allowed in a DATA state- 
ment. 

To reread DATA s ta tements  from the  beginning, use a 
RESTORE statement before the next READ statement. 



Chapter 10 I BASIC Keywords 

Examples 
DATA NEW Y O R K ,  CHICAGO, LOS ANGELES, 
P H I L A D E L P H I A ,  D E T R O I T  

stores 5 string data items. Quotation marks are not needed since 
the strings contain no delimiters and the leading blanks are not 
significant. 

DATA 2 . 7 2 ,  3 . 1 4 ,  0 . 0 1 7 4 5 ,  5 7 . 2 9 5 7 8  

stores 4 numeric data items. 
DATA " S M I T H ,  T .  H . ' I ,  38, "THORN, J .  R . ' I ,  4 1  

stores both types of constants. Quotation marks are required 
around the first and third items because they contain commas. 

Sample Program 
1 0  P R I N T  " C I T Y " ,  "STATE",  " Z I P "  
2 0  READ C O , S f , Z  
3 0  DATA "DENVER,", COLORADO, 8 0 2 1  1 
4 0  P R I N T  C F , S O , Z  

This program reads string and numeric data from the DATA 
statement in Line 30. 

108 



Chapter 10 I BASIC Keywords 

unction 

DATE$[ = string] 

Sets the date or retrieves the current date. 

String is a literal, enclosed in quotation marks, that sets the 
current date by assigning a value to DATE$. If you omit string, 
BASIC retrieves the current date. 

Setting the Date 
BASIC uses the same dates as MS-DOS, January 1, 1980 to 
December 31, 2099. You may use either a slash or a hyphen to 
separate the month, day, and year. You may use any of the fol- 
lowing forms to set the current date: 

mmlddlyy mmJddJYYYY 
mm-dd-yy mm-dd-YYYY 

The month (mm) may be any number 01-12. 
The day (dd) may be any number 01-31. 
The year (ru or yyyy) may be 01-99 or 1980-2099. 

You may omit leading zeroes for the month and day. If you only 
supply 2 digits for the year, BASIC precedes these digits with 
19. 

Retrieving the Date 
Regardless of the form you use to  set the date, BASIC retrieves 
the date in the following form: 

mm-dd- y y y y 

The month and day are always returned as 2 digits, BASIC 
inserts zeroes as necessary. 

109 



Chapter 10 I BASIC Keywords 

Examples 
DATES = ~ / 6 / a 4 1 1  
DATES = "9/6/1984" 
DATES = "9-6-84" 
DATES "9-6-1984" 

All the above set the current date as 09-06-1984. 
PRINT DATES 

prints the current system date. 
CURDATES = DATES 

assigns the  value of the  current date t o  the  variable 
CURDATE$. 

110 



Chapter 10 I BASIC Keywords 

DEFDBLIINTISNGISTR Statement 

DEFDBL Zetter[,Zetter, . . .I 
DEFINT letter[,letter, ...I 
DEFSNG Zetter[,letter, ... I 
DEFSTR ktter[,letter, ...I 

Defines any variables beginning with letter(s) as: double preci- 
sion (DBL), integer (INTI, single precision (SNG), or string 
(STR) . 
You may specify letter as a range of letters, such as A-J. 

Remember, a type declaration tag always takes precedence over 
a DEF statement. 

Examples 
DEFDBL L-P  

classifies all variables beginning with the letters L through P as 
double precision variables. 

DEFSTR A 

classifies all variables beginning with the letter A as string 
variables. 

DEFINT I-N, W,Z 

classifies all variables beginning with the letters I through N, 
W, and Z as integer variables. 

DEFSNG I ,  Q -T 

classifies all variables beginning with the letters I or Q through 
T as single precision variables. 

111 



Chapter 10 I BASIC Keywords 

F t 

DEF FNnume [(argument list)] = expression 

Defines name as a function according to the expression. 

Name must be a valid variable name. The type of variable you 
use determines the type of value the function returns. For exam- 
ple, if you use a single precision variable, the function returns 
single precision values. This name, preceded by FN, is the name 
of the function when you call it. 

Argument list is a list of dummy variables used in expression. 
They are replaced on a one-to-one basis with the variables or 
values given when the function is called. If you enter several 
variables, separate them with commas. These variables do not 
affect variables in your program with the same name. 

Expression defines the operation to be performed. A variable 
used in a function definition may or may not appear in argument 
list. If it does, BASIC uses the value given when the function is 
called to perform the function. Otherwise, it uses the current 
value of the variable. 

Once you define and name a function (by using this statement), 
you can use it as you would any BASIC function. 

Examples 
DEF FNR = RND <1)*89+10 

defines a function FNR to return a random value in the range 
10 t o  99. Notice that  the function can be defined with no 
arguments. 

210 DEF FNW# (~x,B#)=(~#-Bx)*(~x-B#) 
220 I# = 345.998 
230 J# = 150.667 
240 T = F N W # ( I # , J # )  
250 P R I N T  T 

defines function FNW# in Line 210 using dummy variables A# 
and B#. Line 240 calls the function and replaces variables A# 
and B# with variables I# and J#, which are  used in  the 
program. 

112 



ChaDter 10 I BASIC Kevwords 

DEF SEG[ = address] 

Assigns the current segment address. The segment address is 
used by BLOAD, BSAVE, CALL, PEEK, POKE, and USR. 

Address is a number in the range 0 to 65535, and may be speci- 
fied as an integer or a hexadecimal value. If you specify a num- 
ber outside this range, BASIC returns an I 1 1 ega 1 f unc t 1 on 
call error and uses the previously set address. If you omit 
address, BASIC sets the current segment address to its data seg- 
ment (DS). 

If you specify address, do so on a 16-byte boundary. BASIC 
shifts the value to the left 4 bits, which is the same as multiply- 
ing it by 16 decimal (10 hexadecimal). 

Note: BASIC does not check the validity of the result- 
ant segment + offset address. 

When you load BASIC, the data segment (DS) register is set to 
the address of BASIC’s workspace. You must, therefore, execute a 
DEF SEG statement before executing BLOAD, BSAVE, PEEK, 
POKE, USR, or CALL (unless you used the /M: switch when you 
loaded BASIC). Without the DEF SEG statement or the /M: 
switch, BASIC’s workspace could be destroyed. 

If you execute a DEF SEG to change the DS register, you must 
execute another DEF SEG to restore the DS register to BASIC’s 
data segment (DS). 
Separate DEF and SEG with a space. Otherwise, BASIC inter- 
prets it as the variable DEFSEG. 

See the section “Interfacing with Assembly-Language Subrou- 
tines” in Chapter 11 for more information. 

Example 
10 DEF SEG=&HB800 ‘Set segment to &800 H e x  
20 DEF SEG ’Restore to BFISIC data segment 

sets the DS register to B8000 hexadecimal (B800H * 10H), 
which is its default value. 

113 



Chapter 10 I BASIC Kevwords 

DEF USR Statement 

DEF USR[number] = offset 

Defines the user number and segment offset of a subroutine to 
be called by the USR function. 

Number may be an integer in the range 0 to 9. If you omit m m -  
ber, BASIC assumes USR0. 

Offset is an integer in the range 0 to 65535. BASIC computes 
where the subroutine begins in memory by adding the offset to 
the current segment address as set by DEF SEG. BASIC trans- 
fers control to this address when you execute the USR function. 

If the subroutine is not in BASIC’s data segment, you must exe- 
cute a DEF SEG statement before the USR function. 

A program may contain any number of DEF USR statements, 
allowing access to as many subroutines as necessary. However, 
only 10 definitions may be in effect at one time. 

See the section “Interfacing with Assembly-Language Subrou- 
tines” in Chapter 11 and USR in this chapter for more details. 

Examples 
D E F  U S R 3  = 6 H 0 0 2 0  
D E F  SEG = 6 H 1 7 0 0  

USR3 begins at 20H bytes into the current data segment which 
is set at 1700 hexadecimal. When your program calls USRS, con- 
trol branches to your subroutine beginning at absolute address 
17020. (1700.18 +20). 

114 



Chapter 10 I BASIC Keywords 

DELETE Statement 

DELETE linel -line2 

Deletes linel through line2 of the program in memory. 

If you omit l inel,  BASIC deletes from the beginning of the pro- 
gram. If omit l i d ,  BASIC deletes to the end of the program. 

If you specify a line number that does not exist, BASIC displays 
an Illegal f u n c t i o n  call error. 

You can substitute a period (.I for either linel or line2 to indicate 
the current line number. 

Examples 

deletes Line 70 from memory. 

DELETE 7 0  

DELETE .-I10 

deletes from the current line to Line 110, inclusive. 
DELETE - 4 0  

deletes all program lines up to and including Line 40. 
DELETE 1 5 0 -  

deletes program lines starting at and including 150 to the end of 
the program. 

115 



Chapter 10 I BASIC Keywords 

DIM array(dimenswn)[,array(dimension), . . .I 

Sets aside storage for arrays with the dimensions you specify. 

Array is the variable name of the array. It may be a string, inte- 
ger, single precision, or double precision variable. 

Dimension is 1 or more integer numbers separated by commas 
that define the dimensions of the array. The lowest element in a 
dimension is always zero, unless an OPTION BASE 1 statement 
is executed. 

When you execute the DIM statement, BASIC reserves space in 
memory for each element of the array. Each element is initially 
set to zero for numeric arrays or null for string arrays. 

If you do not dimension an array, the maximum number of ele- 
ments it can have is 11 (0-10). 

Remember that arrays are completely independent of variables 
that have the same name; that is MN and MNO are unique. 

For more information on arrays, see Chapter 6. 

Examples 
DIM F I R ( 1 0 0 )  

sets up a 1-dimensional array ARO, containing 101 elements: 
AR(0), AR(l), AR(2), ..., through AR(100). 

DIM Ll%C8,25) 

sets up a 2-dimensional array Ll%O, containing 9 x 26 integer 
elements. 

116 



Chapter 10 I BASIC Keywords 

DRAW string 

Draws an  image on the screen. 

String specifies 1 or more of the movement commands listed 
below. String must be enclosed in quotation marks. 

Movement commands 
Each of the following movement commands begins movement 
from the current graphics position, which is the coordinate of the 
last graphics point plotted with another graphics command, such 
as LINE or PSET. The current position defaults to the center of 
the screen if no previous graphics command has been executed. 

U [nl 
D [nl 
L [nl 
R [nl 
E [nl 
F [nl 
G [nl 
H [nl 
M X Y  

Moves up n points. 
Moves down n points. 
Moves left n points. 
Moves right n points. 
Moves diagonally up and right n points. 
Moves diagonally down and right n points. 
Moves diagonally down and left n points. 
Moves diagonally up and left n points. 
Moves to  point x,y. If you precede x with a plus (+) or 
minus (-) sign, DRAW assumes it is a relative posi- 
tion. Otherwise, it is an absolute position. 

Prefix Commands 
The following prefix commands can precede the movement com- 
mands. Prefix commands must be enclosed in quotation marks. 

B 

N 
Aangle 

plots no points after move. 

returns to original position when move is complete. 

sets angle of move. Angle may be in the range 0 to  3 
(0 = 0 degrees, 1 = 90 degrees, 2 = 180 degrees, 
and 3 = 270 degrees). 

sets color as described in Chapter 8, “Displaying Text 
and Graphics.” 

Ccolor 

117 



Prefix Commands (Continued) 
Pcolor ,  
border 

Sfitctor 

sets the color to  paint and border color at which to 
stop painting. Possible colors are described in Chapter 
8, "Displaying Text and Graphics." 

sets scale factor. Factor is an integer in the range 1 to 
255. The scale factor is @tor divided by 4. For exam- 
ple, if factor is 2, the scale factor is 2/4. To determine 
the actual travel distance, multiply the scale factor by 
the number in the movement commands. If you do not 
specify a factor, BASIC uses 4, which sets the scale to 
1. 

moves at the specified angle. Angle is in the range 
-360 to  +360. If angle is positive, movement is coun- 
terclockwise. If angle is  negative, movement is  
clockwise. 

Xuariable; executes a substring. The X command lets you execute 
a second substring from the first string, much like the 
GOSUB statement. Variable is a string variable in 
your program that contains the substring you want to 
execute. Variable may contain an X command to exe- 
cute another substring. The semicolon after variable is 
required. 

In the prefix commands, the numeric arguments can be con- 
stants or variables. If you use a variable name as a numeric 
argument, you must follow it with a semicolon. 

TAangle 

Sample Programs 
5 SCREEN 1 
1 0  U S  = " U 3 0 ; " :  DS= " D 3 0 ; " :  LS = " L 4 0 ; " :  R S  = 
"R4 0 ;'I 
2 0  BOX$ = US + R S  + DS + LS 
3 0  DR4W "XBOXS;" 
4 0  AS- INKEYS : I F  AS=""THEN 4 0  
58 SCREEN 0 

draws a rectangle on the screen. 

118 



Chapter 10 I BASIC Keywords 

5 SCREEN 1 
1 0  US = "U30 ; " :  D $ =  "D30;" :  L $  = " L 4 0 ; " :  RS = 
"R4 0 ; ' I  

2 0  DRFIW "XU$;  XR$ ;  XDS; XL$;" 
3 0  A $ = I N K E Y $ :  I F  A$=""THEN 3 0  
4 0  SCREEN 0 

draws the same rectangle as the previous example. 
1 0  SCREEN 1 
2 0  DRFIW " L 4 0  E 2 0  F 2 0 "  
3 0  F I $ = I N K E Y $ :  IF FI$=""THEN 3 0  
4 0  SCREEN 0 

draws a triangle on the screen. 

119 



Chapter IO I BASIC Keywords 

EDIT line 

Enters the Edit mode. BASIC displays line for editing. 

You can substitute a period (.) for line to indicate the current 
line number. 

See Chapter 4, “General Information,” for more information on 
editing and special keys. 

Examples 

enters the Edit mode at  Line 100. 

E D I T  1 0 0  

EDIT . 
enters the Edit mode at current line. 

120 



Chapter 10 I BASIC Keywords 

END 

Ends program execution and closes all files. 

You may place this statement anywhere in the program. It forces 
execution to end at  some point other than the last sequential 
line. 

An END statement at  the end of a program is optional. 

Sample Program 
40 INPUT S I ,  S2 
50 GOSUB 100 
55 PRINT H 
60 END 
100 H=SQRCSl*SI + S2*S2) 
1 1 0  RETURN 

Line 60 prevents program control from continuing through the 
subroutine. Line 100 may be accessed only by a branching state- 
ment, such as GOSUB in Line 50. 

121 



Chapter 10 I BASIC Ke.ywords 

ENVIRON Advanced Statement 

ENVIRON “parameter id = text” [;“parameter 
id= text’, ... I 

Lets you modify BASIC’s Environment String Table, such as 
changing the PATH parameter for a child process or passing 
parameters t o  a child process. BASIC’s Environment String 
Table is initially empty. 

Parameter id is the name of the parameter. 

Text is the new parameter text. It must be separated from 
parameter id by an equal sign (=) or a space. BASIC reads the 
first nonblank, nonequal sign character after the parameter id as 
the text. If you omit text, or specify a null string or a semicolon 
( ; 1, BASIC removes the parameter from the Environment String 
Table and compresses the table. 

Parameter id = text must be enclosed in quotation marks and be 
typed in all uppercase characters. 

When you change a parameter in the Environment String Table, 
BASIC deletes the old parameter and adds the new one to the 
end of the table. 

If the parameter does not exist in the Environment String Table, 
BASIC adds it to the end of the table. 

For more information on Environment String Tables, see the Pro- 
grammer‘s Reference manual for your computer (sold separately). 

Examples 

sets the default path to  the root directory on Drive A. 

E N V I R O N  “PATH=&:  \‘I 

E NV I R 0 N “SAL  E S = MY S AL E S“ 

sets the name SALES equal to MYSALES. The Environment 
String Table now looks like this: 

P A T H = A : \ ; S A L E S = M Y S A L E S  

122 



ChaDter 10 I BASIC Keywords 

ENVIRON$ Advanced Function 

ENVIRON$ [('>parameter id")] [(number)] 

Returns the specified environment string from BASIC's Environ- 
ment String Table. 

Parameter Id specifies the parameter for which to search. ENVI- 
RON$ returns the text string for parameter id. If the parameter 
does not exist or does not contain a text string, ENVIRON$ 
returns an empty string. Parameter id must be enclosed in quo- 
tation marks. If you omit parameter id ,  you must specify 
number. 

Number specifies which parameter t o  return by i ts  position 
within the table. ENVIRON$ returns the text string for the 
number parameter. If there is not a parameter in that position, 
ENVIRON$ returns an empty string. If you omit number, you 
must specify parameter zd. 

Parameter id and number are mutually exclusive. Only one may 
be specified on the command line. 

For more information on the Environment String Tables, see the 
Programmer's Reference manual for your computer (sold 
separately). 

Example 
If you execute the following ENVIRON statements: 

ENVIRON "PATH=A: \ "  
E NV I R 0 N "SAL E S =MY S A L E S " 

the Environment String Table looks like this: 
PATH=A:\;SALES=MYSALES 

The command PRINT ENVIRON$("Pf4TH") prints h:\ ,  

The command PRINT ENVIRONS(2) prints SALES= MYSALES. 

123 



Chapter 10 I BASIC Keywords 

EOF Function 

E OF( buffer) 

Detects the end of a file. 

Buffer is the number assigned to the file when you opened it. It 
must access an open file. 

This function checks to see whether all characters up to the end- 
of-file marker have been accessed so that you can avoid I n pu t 
pa 5 t end errors during sequential input. 

When used with sequential access files, EOF returns 0 (false), 
when the end-of-file record has not been read yet, and -1 (true), 
when it has been read. 

When used with direct access files, EOF returns -1 (true) if the 
last executed GET statement was unable to  read an entire record 
because of an attempt to read beyond the physical end of the file. 

Sample Program 

The following sequence of lines reads numeric data from Data.txt 
into the array AO. When the last data character in the file is 
read, the EOF test in Line 30 is true, so the program branches 
out of the disk access loop. 

1 4 7 0  D I M  A ( 1 0 0 )  ASSUMING T H I S  I S  A SAFE VALUE 
1 4 8 0  OPEN "I", 1 ,  "data.txt" 
1 4 9 0  1% = 0 
1 5 0 0  I F  E O F ( 1 )  THEN GOTO 1 5 4 0  
1 5 1 0  I N P U T # l ,  A ( I X )  
1 5 2 0  I %  = I %  + 1 
1 5 3 0  GOTO 1 5 0 0  
1 5 4 0  REM PROG. CONT. HERE AFTER D I S K  I N P U T  

124 



Chapter 10 I BASIC Keywords 

E OF/Communications Function 

E OF( buffer) 

Detects an empty input queue for communications files. 

Buffer is the number assigned to the file when you opened it. It 
must access an open file. 

The value EOF returns depends on the mode (ASCII or binary) 
in which the file was opened. In ASCII mode, EOF returns a -1 
(true) if a CONTROL-Z is received. EOF remains true until the 
device is closed. In binary mode, EOF returns a -1 (true) when 
the input queue is empty. EOF becomes false when the input 
queue is not empty. 

Sample Program 
These lines are useful in a program when you want to  run the 
program while waiting for communications activity. 

10 OPEN "COM1:300,N,8,1" OS 1 
2 0 COMCI) ON 
30 ON COM(1) GOSUB 1000 

1000 "Communication Subroutine Begin5 Here 

1050 IF EOFCI) THEN RETURN 

Line 10 opens a file for Communications Channel 1 and allocates 
Buffer 1. Line 30 causes BASIC to perform the subroutine begin- 
ning at  Line 1000 as soon as there is activity on the communi- 
cations channel. When all the communications data has been 
processed, Line 1050 returns to the main program. 

125 



ChaDter 10 I BASIC Kevwords 

ERASE Statement 

ERASE array[,array, ... I 

Erases one or more arrays from memory. 

This lets you either redimension arrays or use their previously 
allocated space in memory for other purposes. 

If one of the parameters of ERASE is a variable name that is not 
usedintheprogram,an Illegal f u n c t i o n  call occurs. 

Example 
4 5 0  ERCISE C,F 
4 6 0  DIM F(99)  

Line 450 erases arrays C and F. Line 460 redimensions array F. 

126 



Chapter 10 I BASIC Keywords 

ERDEV Advanced Function 

ERDEV 

Returns the value of a device error within MS-DOS as set by the 
Interrupt 24 handler. The lower 8 bits of ERDEV contain the 
Interrupt 24 error code. 

For more information on device drivers and errors, see the Pro- 
grammer’s Reference manual for your computer (sold separately). 

See also ERDEV$. 

127 



Chapter 10 I BASIC Keywords 

ERDEV$ Advanced Function 

ERDEV$ 

Returns the name of the device (as set by the Interrupt 24 han- 
dler) when a device error occurs. 

If the error occurred on a character device, ERDEV$ returns the 
8-byte character device name. 

If the error does not occur on a character device, ERDEV$ 
returns the 2-character block device name. 

For more information on device drivers and errors, see the Pro- 
grammer’s Reference manual for your computer (sold separately). 

See also ERDEV. 

128 



Chapter 10 I BASIC Keywords 

ERL Statement 

ERL 

Returns the number of the line in which an error has occurred. 

This function is primarily used inside an error-handling routine. 
If no error has occurred, ERL returns a 0. If a statement entered 
at BASIC’s prompt causes the error, ERL returns line number 
65535 (the largest number that can be represented in 2 bytes). 

Examples 
P R I N T  ERL 

prints the line number of the error. 
E = ERL 

stores the error’s line number in variable E. 

Sample Program 
See ERROR. 

129 



Chapter 10 I BASIC Ke.ywords 

ERR Statement 

ERR 

Returns the error code if an error has occurred. 

ERR is only meaningful inside an  error-handling routine 
accessed by ON ERROR GOTO. 

See Chapter 12 for a list of error codes. 

Example 

branches to  Line 1000 if the error is an o u t  o f  m e m o r y  error 
(code 7); if it is any other error, control goes to  Line 2000. 

I F  ERR = 7 THEN 1 0 0 0  E L S E  2 0 0 0  

Sample Program 
See ERROR. 

130 



Chapter 10 I BASIC Keywords 

ERROR Statement 

ERROR code 

Simulates a specified error during program execution. 

Code is an integer expression in the range 0 to  255 specifying 
one of BASIC's error codes. 

This statement is used mainly for testing an ON ERROR GOTO 
routine. When the computer encounters an ERROR statement, it  
proceeds as if the error corresponding to that code has occurred. 
(Refer to  Chapter 12 for a listing of error codes and their 
meanings.) 

Example 

causes a NEXT without FOR error (Code 1) when BASIC reaches 
this line. 

ERROR 1 

Sample Program 
1 1 0  ON ERROR GOTO 4 0 0  
1 2 0  I N P U T  "WHAT I S  YOUR BET";  B 
1 3 0  I F  B > 5 0 0 0  THEN ERROR 2 1  ELSE GOTO 4 2 0  
4 0 0  I F  ERR = 2 1  THEN P R I N T  "HOUSE L I M I T  I S  
8 5 0 0 0 "  
4 1 0  I F  ERL = 1 3 0  THEN RESUME 5 0 0  
4 2 0  S = S+B 
4 3 0  GOTO 1 2 0  
5 0 0  P R I N T  "THE TOTAL AMOUNT OF YOUR B E T  1S";S 
5 1 0  END 

This program receives and totals bets until one of them exceeds 
the house limit. 

131 



Chapter 10 I BASIC Keywords 

EXP Function 

EXP(num ber) 

Returns the natural exponent of number, that is, e (base of natu- 
ral logarithms) to the power of number. 

Number must be less than or equal to  88.02968. 

This function is the inverse of the LOG function; therefore, num- 
ber = EXP(LOG(number)). 

BASIC always returns the result as a single precision number 
unless you specified the ID switch when starting up BASIC. 

Example 

prints the exponential value . 1 3 5 3 3 5 3 .  

P R I N T  E X P < - 2 )  

Sample Program 
310 I N P U T  "NUMBER". N 
3 2 8  PRINT "E R ~ I S E ~  T O  T H E ~ ~ N " P O W E R  IS" E X P C N )  

132 



Chapter 10 / BASIC Keywords 

FIELD Statement 

FIELD buffer ,  length AS variable[,length AS 
variable,. . .I 

Divides a direct access buffer into fields so that you can send 
data from memory to disk and disk to memory. Each field is 
identified by variable and is the length you specify. 

Buffer is the number assigned to the file when you opened it. 

Variable must be a string variable. 

Length is an integer in the range 1 to 255 representing the 
length of that field. The sum of all field lengths are equal to  the 
record length assigned when you opened the file. 

An OPEN statement assigning the buffer number must precede 
the FIELD statement. FIELD must precede GET and PUT. 

You may use the FIELD statement any number of times to re- 
field a file buffer. Fielding a buffer does not clear the buffer’s con- 
tents; it only alters the way the buffer is accessed. You may 
access the same disk file any number of ways simply by re-field- 
ing it. 

Note: All data-both strings and numbers-must be 
placed into the buffer in string form. There are three 
pairs of functions (MKIWCVI, MKS$/CVS, and 
MKD$/CVD) for converting numbers to  strings and 
strings to numbers. 

See also Chapter 7, OPEN, CLOSE, PUT, GET, LSET, and 
RSET. 

Examples 
FIELD 3 ,  128 FIS A $ ,  1 2 8  FIS E$ 

BASIC assigns 128-byte fields to  the variables A$ and B$. If you 
now print A$ or B$, you can see the contents of the field. Of 
course, this value would be meaningless unless you previously 
have used GET to read a 256-byte record from disk. 

133 



Chapter 10 I BASIC Keywords 

FIELD 3, 16 AS N M S ,  25 A S  AD$, 1 0  A S  C Y $ ,  2 AS 
S T S ,  7 A S  ZP$ 

BASIC assigns the first 16 bytes of Buffer 3 to field NM$; the 
next 25 bytes to  AD$; the next 10 to CY$; the next 2 to ST$; 
and the next 7 to ZP$. 

134 



Chapter 10 I BASIC Keywords 

FILES Statement 

FILES [pathname] 

Displays the names of the files and directories on a disk. 

Pathname is a standard file specification as described in Chapter 
1. 

If you specify pathname, BASIC lists all files that match that 
pathname. If you omit pathname, BASIC lists all files and direc- 
tories in the current directory on the current drive. Pathname 
may contain question marks and asterisks as wild cards. See the 
section on wild cards in Chapter 1 for more information. 

If you specify a drive as part of pathnume, then BASIC lists all 
files that match the specified pathname on that drive. 

If you omit the filename when specifying pathnume, BASIC lists 
all files and directories in the specified directory. 

If you omit the path in pathnume, FILES looks for the file in the 
current directory. 

Examples 

lists all files and directories in the current directory on the cur- 
rent drive. 

FILES 

FILES " \ B O O K S \ "  

lists all files in the directory BOOKS. 
FILES ' I * .  b a s "  

lists all files in the current directory on the current drive with 
the extension .bas. 

FILES " p a y ? ? ? ? ? . b a s "  

lists all files beginning with pay followed by any other five or 
fewer characters, in the current directory on the current drive, 
with the extension .bas. 

135 



Chapter 10 I BASIC Keywords 

FIX Function 

FIX(nurnber) 

Returns the truncated integer of number. 

Unlike CINT, FIX does not round the fractional portion of num- 
ber when making it an integer. Instead, FIX simply strips the 
fractional portion from number so that the resultant value is a 
whole number. The result is the same precision as the argument 
(except for the fractional portion). 

Unlike INT, FIX does not return the next lower number for a 
negative number. 

FIX is the same as: 

SGN(number) * INT(ABS(number)). 

See also CINT and INT, which also return integer values. 

Examples 
PRINT FIX (2.6) 

prints 2. 
PRINT FIX<-2.6) 

prints - 2 I 

136 



ChaDter 10 I BASIC Kevwords 

F ORINE XT Statement 

FOR variable = initial value TO final value [STEP 
increment] 
NEXT [variable] 

Establishes a program loop that allows a series of program state- 
ments to  be executed a specified number of times. 

Variable must be either integer or single precision. Each FOR/ 
NEXT loop must have a unique variable. 

Increment is the number BASIC adds to the initial value each 
time the loop is executed. If you omit increment, BASIC incre- 
ments by 1. If increment is a negative value, BASIC decreases 
the initial value each time through the loop. In this case, the 
final value must be less than the initial value. 

BASIC executes the program lines following the FOR statement 
until it encounters a NEXT. At this point, it increases initial 
value by the STEP increment. If initial value is less than or equal 
to final value, BASIC branches back to the line after FOR and 
repeats the process. When initial value is greater than final 
value, the loop is completed, and BASIC continues with the state- 
ment after NEXT. 

Note: BASIC skips the body of the loop if initial value 
is greater than final value when increment is positive 
or if final value is greater than initial value when 
increment is negative. 

Sample Program 
BASIC always sets the final value for the loop variable before 
setting the initial value. For example: 

820 1.5 
8 3 0  FOR I = 1 TO I + 5 
8 4 0  P R I N T  I ;  
8 5 0  NEXT 

executes the loop 10 times, which prints: 
1 2 3 4 5 6 7 8 9 1 0  

137 



Chapter 10 I BASIC Keywords 

Nested Loops 
FOWNEXT loops may be nested; that is, a FOWNEXT loop may 
be placed within the context of another FORINEXT loop. 

The NEXT statement for the inside loop must appear before the 
NEXT for the outside loop. If nested loops have the same end 
point, a single NEXT statement may be used for all of them. 

Sample Program 
880 FOR I = 1 TO 3 
890 P R I N T  "OUTER LOOP" 
900 FOR J = 1 TO 2 
91 0 P R I N T  'I INNER LOOP" 
920 NEXT J 
930 NEXT 1 

This program performs 3 outer loops and 2 inner loops within 
each of the outer loops. BASIC prints the following: 

OUTER LOOP 
INNER LOOP 
INNER LOOP 

INNER LOOP 
INNER LOOP 

INNER LOOP 
INNER LOOP 

OUTER LOOP 

OUTER LOOP 

By listing the counter variable, you can use the NEXT state- 
ment to close nested loops. (Be sure not to  type the variables out 
of order.) For example, delete Line 920 and change 930 to: 

930 NEXT J, I 

If you omit the variables in nested loops, BASIC matches the 
most recent FOR statement. 

138 



Chapter 10 I BASIC Keywords 

FRE Function 

FRE(dummy argument) 

Returns the number of bytes in memory not being used by 
BASIC. 

Dummy argument can be any string or numeric constant or vari- 
able. If you specify a numeric argument, BASIC returns the 
amount of memory available. If you specify a string argument, 
BASIC compresses the data before returning the amount of 
memory available. This frees unused memory that was once used 
for strings. 

BASIC automatically compresses data if it runs out of work- 
space. This may take a few seconds. 

Examples 
PRINT FRE(144) 

prints the amount of memory left. 

139 



Chapter 10 I BASIC Keywords 

GET Statement 

GET [#I buffer[,recordl 

Reads a record from a direct access disk file and places it in the 
specified buffer. 

Buffer is the number assigned to the file when you opened it. 
The number sign is optional. It is provided for compatibility with 
other BASICs. 

Record is an integer in the range 0 to 16,777,215 that specifies 
which record number you want to access. If you omit record, 
BASIC reads the next sequential record (after the last GET). 

When BASIC encounters GET, it reads the record number from 
the file and places it into the buffer. The actual number of bytes 
read equals the record length set when the file is opened. 

Examples 

reads the next record into Buffer 1. 

GET 1 

GET 1 , 2 5  

reads Record 25 into Buffer 1. 

140 



Chapter 10 I BASIC Keywords 

GET/C ornrnunications Statement 

GET [ #]buffr,number 

Transfers data from the communications line to the communica- 
tions buffer. 

Buffer must be the same buffer assigned to the file when it was 
opened. The number sign (#) is optional. It is provided for com- 
patibility with other BASICs. 

Number is the number of bytes to transfer. Number cannot 
exceed the value used in the LEN option of the OPEN COM 
statement. 

Note: Because of the low performance associated with 
telephone line communications, we recommend that 
you not use GET and PUT statements in such appli- 
cations. Instead, use the other disk I10 statements. 

Sample Program 
1 0  OPEN "CUM1 : "  AS 1 
2 0  F I E L D  1 ,  8 AS A S  
3 0  OPEN "R"  ,2, "F I L E " ,  8 
4 0  F I E L D  2 ,  8 AS BS 
5 0 1 = 1  
6 0  GET 1 ,8 
7 0  P R I N T  "COMMUNICATIONS BUFFER C F l S )  = " ; A S  
8 0  L S E T  B S = A $  
9 0  P R I N T  "NOW F I L E  BUFFER CBS) CONTAINS:  ";BO 
1 0 0  PUT 2 , 1  
1 1 0  I = I + 1 
1 2 0  I F  INKEYS < )  "(3" THEN GOT0 6 0  
1 3 0  CLOSE 

This program gets data from Communications Channel 1 and 
places it in the communications buffer. 

141 



Chapter 10 I BASIC Keywords 

GETGraphics Statement 

Transfers points from an area on the display to an array. 

( x l  , y l )  specifies the coordinates where the image begins. 

(x2,y2) specifies the coordinates where the image ends. 

x is the horizontal coordinate and y is the vertical coordinate. 
The ranges for the coordinates depend on the screen mode. See 
Chapter 8, “Displaying Text and Graphics,” for more information. 

Array is a numeric array to hold the image. It must be dimen- 
sioned large enough to hold the entire image. To ensure that the 
array is large enough t o  hold the image, use the following 
formula: 

4 + (INT((h * b + 7)/8) u )  

where: 

h is the length of the horizontal side of the image. 
b the number of bits per point (2 in Screen Mode 1, and 1 

u is the length of the vertical side of the image. 
in Screen Mode 2). 

For example, to  store an image that is 10 by 12 in Screen Mode 
1, type: 

4 + (INT((10 * 2 + 7)/8) 12) = 40 

The array must store 40 bytes. The number of bytes per element 
of an array are 2 for integer, 4 for single precision, and 6 for dou- 
ble precision. 

For this example, you need an integer array with 20 elements, a 
single precision array with 10 elements, or a double precision 
array with 7 elements. 

The information from the display is stored in the array as: 

Element 0 
Element 1 

the x dimension of the image 
the y dimension of the image 

142 



Chapter 10 / BASIC Keywords 

The remaining elements of the array store the data bits of the 
image. Numeric data is stored low byte first and then high byte, 
but the data is transferred high byte first and then low byte. 

You use the GET/Graphics and PUT/Graphics statements 
together for animation and high-speed object motion in the 
graphics modes. See also PUT/Graphics statement. 

Note: GET and PUT work faster in all resolutions if: 

xl MOD(8/bits per point) = 0 

(See Chapter 5 for an explanation of MOD.) 

Sample Program 
10 DIM R<50,50) 
20 SCREEN 1 
30 CIRCLE C30,30),20 
40 PRINT (38,301 
50 GET <10,0)-<50,50),R 
6 0  PUT (200,100),A 
70 END 

Line 10 sets up an array for storage. Line 20 selects the screen 
mode. Line 30 draws a circle, and Line 40 fills in the circle. Line 
50 gets the circle, and stores it in Array A(). Line 60 retrieves 
the circle, and puts it on the screen in a new location. 

143 



Chapter 10 I BASIC Keywords 

GOSUB Statement 

GOSUB line 

Branches to the subroutine beginning at the specified line num- 
ber. 

Every subroutine must end with a RETURN. You can call a sub- 
routine as many times as you want. When BASIC encounters a 
RETURN statement in the subroutine, it returns to  the state- 
ment that follows the GOSUB. 

GOSUB is similar to GOT0 in that it may be preceded by a test 
statement. 

The nesting of GOSUB statements is limited only by the amount 
of memory available in the BASIC stack. If you use CLEAR to 
increase the amount of memory for the stack, you also increase 
the maximum number of nested GOSUBs. 

Example 

branches to  the subroutine at Line 1000. 

GOSUB 1000 

Sample Program 
260 GOSUB 280 
270 PRINT "BACK F R O M  SUBROUTINE": END 
280 PRINT "EXECUTING THE SUBROUTINE" 
290 RETURN 

transfers control from Line 260 to the subroutine beginning at 
Line 280. Line 290 instructs the computer to return to the 
statement immediately following GOSUB. 

144 



Chapter 10 I BASIC Keywords 

GOTO Statement 

GOTO line 

Branches to  the specified line. 

When used alone, GOTO results in an unconditional branch. 
However, test statements, such as IFITHEN, may precede the 
GOTO to effect a conditional branch. Note that the GOTO is 
optional in IFITHEN statements. For example: 

I F  X = O  THEN 3 6 0  ELSE 2 0 0  

BASIC branches to Line 360 if X equals 0. If not, BASIC 
branches to Line 200. 

You can use GOTO in the command mode as an alternative to  
RUN. This lets you pass values assigned as a command to vari- 
ables used in the program. 

Example 

BASIC transfers control to  Line 100. 

GOTO 1 0 0  

Sample Program 
1 0  READ R 
2 0  I F  R = 13 THEN 8 0  
3 0  P R I N T  "R=";R 
4 0  A = 3 . 1  4 * R A 2  
5 0  P R I N T  "AREA = " ; A  
6 0  GOTO 1 0  
7 0  DATA 5 , 7 , 1 2 ,  13 
8 0  END 

Line 10 reads each of the data items in Line 70. Line 60 returns 
program control to  Line 10. This enables BASIC to calculate the 
area for each of the data items until it reaches item 13. 

145 



Chapter 10 I BASIC Keywords 

HEX$ Fune tion 

HEX$( number) 

Calculates the hexadecimal value of number. 

HEX$ returns a string that represents the hexadecimal value of 
number. Since the value returned is like any other string, you 
cannot use it in a numeric expression. Thus, you cannot add hex 
strings. You can concatenate them, though. 

Examples 

prints the following strings: 1 E, 3 2, and 5 A .  

PRINT H E X t ( 3 0 1 ,  H E X $ < 5 0 ) ,  H E X S ( 9 0 )  

Y S  = H E X S ( X / l G )  

Y$ is the hexadecimal string representing the integer quotient 
W16. 

146 



Chapter 10 I BASIC Keywords 

IF/THE N/E LSE Statement 

IF expression T H E N  statement(s)[ELSE statement(s)] 

Tests a conditional expression and makes a decision regarding 
program flow. 

Expression is any numeric or string expression, usually making 
logical or relational comparisons. 

Statement can be 1 or more valid BASIC statements. If you have 
more than one statement, separate the statements by colons. You 
can also specify a line number for BASIC t o  branch a s  a 
statement. 

If expression is true, BASIC executes the THEN statement. If 
expression is false, BASIC executes the matching ELSE statement 
or the next program line. 

You can also use IF/THEN to test the numeric value of a vari- 
able. If the variable contains a 0, the expression is true; other- 
wise, the expression is false. 

Examples 

passes control to  PRINT and then to END if X is greater than 
127. If X is not greater than 127, BASIC executes the next line 
in the program, skipping the PRINT and END statements. 

I F  X > 1 2 7  THEN P R I N T  "OUT OF RANGE" : END 

I F  A < B THEN P R I N T  " A  < B" ELSE P R I N T  "E < =  A "  

tests the first expression. If it is true, BASIC prints A < B. 
Otherwise, BASIC jumps to the ELSE statement and prints 
B < =  A.  

I F  X > 0 AND Y < >  0 THEN Y = X + 1 8 0  

assigns the value X + 180 to Y if both expressions are true. 
Otherwise, BASIC executes the next program line, skipping the 
THEN clause. 

147 



Chapter 10 I BASIC Keywords 

I F  A t  = "YES" THEN 2 1 0  ELSE I F  A t  = "NO" THEN 

branches to  Line 210 if A$ is YES. If not, BASIC skips to the 
first ELSE, which introduces a new test. If A$ is NO, then 
BASIC branches to  Line 400. If A$ is any value besides NO or 
YES, BASIC branches to  Line 370. 

4 0 0  E L S E  3 7 0  

Sample Program 
IFITHENIELSE statements may be nested. However, you must 
take care to match up the IFs and ELSEs. (If the statement does 
not contain the same number of ELSEs and IFs, each ELSE is 
matched with the closest unmatched IF.) 

1 0 4 0  I N P U T  "ENTER TWO NUMBERS"; A ,  B 
1 0 5 0  I F  A < =  B THEN I F  A < B THEN P R I N T  A ;  ELSE 
P R I N T  'I N E I T H E R " .  ELSE P R I N T  E; 
1 0 6 0  PRINT 11 IS &FILLER T H A N  THE OTHER" 

This program prints the relationship between the 2 numbers 
entered. 

148 



Chapter 10 I BASIC Ke-ywords 

INKEY$ Function 

INKEY$ 

Reads a character in the keyboard buffer, and returns a 0-, 1-, or 2- 
byte string. INKEY$ does not echo the character to  the display. 

0 A 0-byte (null) string indicates that no key is pressed. 

A 1-byte string is an actual character read from the keyboard. 

0 A 2-byte string indicates that the key pressed is one of the special 
keys that has an extended code. The first byte is hex 00. See 
Appendices B and D for a complete list of extended codes. 

INKEY$ is invariably put inside some sort of loop. If not, pro- 
gram execution passes through the line containing INKEY$ 
before you can press a key. 

The [CTRL][TEKJ and [CTRL] [LOCKJ keys are not passed to 
INKEY$. Also (ALT][CTRL](DELETE], which does a system reset, is not 
passed to INKEY$. 

Note: If your program contains an INKEY$ and you 
press a function key, BASIC returns 1 character of the 
key assignment at a time. For example, suppose this 
statement is executed: 
A $  = INKEYO 

Now suppose you press I, which initially has the 
value LIST. The first time the statement is executed 
A$ equals L, the second time A$ equals I, and so on. 
Keep this in mind when writing a BASIC routine to  
trap for a certain key. Your routine may not perform 
as expected if you accidently press a function key. 

You can assign the result of INKEY$ to a string variable and 
test the length of the string to determine whether a 0-, 1-, or 2- 
character string is returned by INKEY$. Example: 

1 0  A $ = I N K E Y $ :  I F  A $ = " "  THEN 1 0  
2 0  I F  L E N < A $ 1 > 1  THEN P R I N T  ASCCMIDCAS,I  , 1 1 1 ,  

3 0  GOT0 1 0  
A S C < M I D $ C A 6 , 2 , 1 ) 1  ELSE P R I N T  ASCCAO) 

149 



Chapter 10 I BASIC Keywords 

Example 
1 0  A $  = I N K E Y S  
20 I F  A $  = "I' THEN 1 0  

causes the program to wait for you to press a key. 

150 



Chapter 10 I BASIC Keywords 

INP Function 

INP(port) 

Returns the byte read from port. 

Port may be any integer from 0 to 65535. 

INP is the complementary function of the OUT statement. 

Example 

returns the byte read from port 255 into variable A. 

1 0 0  A=INPC255) 

151 



Chapter 10 I BASIC Keywords 

INPUT Statement 

INPUT[;] [ ‘~prompt”;]uariable[,variable, ...I 

Accepts data from the keyboard and inputs it into 1 or more 
variables. When BASIC encounters this statement, it stops exe- 
cution and displays a question mark. This means that the pro- 
gram is waiting for you to type something. 

Prompt is a string constant that BASIC displays before display- 
ing the question mark prompt. Prompt must be enclosed in quo- 
tation marks, and follow the keyword INPUT. If, instead of a 
semicolon, you type a comma after prompt, BASIC suppresses the 
question mark when printing the prompt. 

Variable may be 1 or more string or numeric variables to  receive 
the input. If you specify more than 1 variable, separate them by 
commas. 

If INPUT is immediately followed by a semicolon (;I, BASIC does 
not echo the [ENTER] key when you press it as part of a response. 

When typing multiple pieces of data on 1 line, separate the data 
items with a comma. The number of data items you supply must 
be the same as the number of variables you specify. 

Responding to INPUT with too many items or with the wrong 
type of value (including numeric type) causes BASIC to print the 
message ?Redo f r o m  start . No values are assigned until you 
provide an acceptable response. 

Examples 

when BASIC reaches this line, you must type any number and 
press [ 3 E K ]  before the program can continue. 

I N P U T  Y X  

I N P U T  SENTENCES 

when BASIC reaches this line, you must type in a string. The 
string does not have to be enclosed in quotation marks unless it 
contains a comma, a colon, or a leading blank. 

152 



Chapter 10 I BASIC Ke.ywords 

I N P U T  "ENTER YOUR NAME, AGE"; NO, A 

prints the prompt string on the screen, which helps the user 
enter the right kind of data. 

Sample Program 
5 0  I N P U T  "HOW MUCH DO YOU WEIGH". X 

C INTCX .38) "POUNDS." 
60 PRINT TIN M A R S  Y O U  WOULD W E I G ~  ABOUT" 

153 



Chapter 10 I BASIC Keywords 

INPUT# Statement 

INPUT# buffer, variable[,variable.. .I 

Accepts data from a sequential device or file and stores it in a 
program variable. 

Buffer is the number assigned to the file when you opened it. 

Variable is any string or numeric variable to  contain the 
information. 

The sequential file may be a disk file, a data stream from a com- 
munications device, or the keyboard device. 

With INPUT#, data is input sequentially. That is, when the file 
is opened, a pointer is set to  the beginning of the file. The 
pointer advances each time data is input. To start reading from 
the beginning of the file again, you must close the file buffer and 
reopen it. 

INPUT# does not care how you place the data in the file- 
whether you use a single PRINT# statement or 10 different 
PRINT# statements. INPUT# looks only for the position of the 
terminating characters and the end-of-file (EOF) marker. 

When inputting data into a variable, BASIC ignores leading 
blanks. When the first nonblank character is encountered, 
BASIC assumes it has encountered the beginning of the data 
item. 

The data item ends when BASIC encounters a terminating char- 
acter or when a terminating condition occurs. The terminating 
characters vary, depending on whether BASIC is inputting to a 
numeric or a string variable: 

Numeric: BASIC ends input when it encounters a carriage 
return or a comma. 

String: BASIC ends input when it encounters a carriage 
return or a comma, unless the first character is a quotation 
mark( " ). If the first character is a quotation mark, BASIC 
ends input when it encounters a second quotation mark. 
Thus, a quoted string may not contain a quotation mark as 
a character. 

154 



Chapter 10 I BASIC Keywords 

Examples 

sequentially inputs 2 numeric data items from the file opened to 
Buffer 1 and places them in A and B. 

I N P U T I I ,  A,B 

INPUTI4, A $ ,  BS, CS 

sequentially inputs 3 string data items from the file opened to 
Buffer 4 and places them in A$, B$, and C$. 

155 



Chapter 10 I BASIC Keywords 

INPUT$(nurnber [,[#]buffer]> 

Accepts a string of characters from either the keyboard or a 
sequential access file. 

Number is the number of characters to  be input. It must be a 
value in the range 1 to 255. 

Buffer is a buffer that accesses a sequential input file. If you 
include buffer, BASIC inputs the string from sequential access 
file. If you omit buffer, BASIC inputs the string from the key- 
board. The number sign (#) is optional. It is provided for compat- 
ibility with other BASICs. 

When inputting the string from the keyboard, BASIC waits until 
the user enters the number of characters specified by number. 
You do not need to press [ENTERJ to  signify end-of-line. The charac- 
ter(s) you type are not displayed on the screen. Any character, 
except [CTRL][BREAK], is accepted for input. 

When inputting from a sequential file, BASIC inputs the num- 
ber of bytes specified by number from the file assigned to buffer. 

Examples 

assigns a string of 5 keyboard characters to A$. Program execu- 
tion halts until 5 characters are typed at the keyboard. 

08 = INPUTSCS)  

FIS = I N P U T F C 1 1 , 3 )  

assigns a string of 11 characters to  A$. The characters are read 
from the file associated with Buffer 3. 

156 



ChaDter 10 I BASIC Kevwords 

Sample Programs 
This program shows how you can use INPUT$ to have an opera- 
tor input a password for accessing a protected file. By using 
INPUT$, you can type in the password without anyone seeing it 
on the video display. To see the full file specification, run the 
program. When the BASIC prompt returns, enter PR I NT F $. 

1 1 0  L I N E  I N P U T  "TYPE I N  THE F I L E N A M E . E X T " ;  F $  
1 2 0  P R I N T  "TYPE I N  THE PASSWORD - -  MUST TYPE 8 
CHARACTERS : ' I ;  

1 3 0  P $  = I N P U T S ( 8 )  
1 4 0  F $  - F $  + " . 'I + P $  
1 5 0  P R I N T  "YOUR F I L E N A M E  I S " ;  F $  

In the program below, Line 100 opens a sequential input disk 
file (which we assume has been previously created). Line 200 
retrieves a string of 70 characters from the file and stores them 
in T$. Line 300 closes the file. 

1 0 0  OPEN " I "  2 ,  " t e s t  . d a t "  
2 0 0  T $  = I N P i T $ C 7 0 , 2 )  
3 0 0  CLOSE 

157 



Chapter 10 I BASIC Keywords 

INSTR Function 

INSTR( [ number,lstringl ,string2) 

Searches for the first occurrence of string2 in stringl and 
returns the position at which the match is found. 

Number specifies the position in stringl to begin searching for 
string2. Number must be an integer in the range 1 to 255. If you 
omit number, INSTR starts searching at the first character in 
stringl . 
If BASIC finds string2 in stringl , it returns the starting position 
of the match; otherwise, it returns zero. If the entire substring 
is not contained in the search string, BASIC returns a zero. 

Examples 
Suppose A$ = "LINCOLN" 

Statement 
I N S T R C A O ,  "INC") 
I N S T R C A O ,  "1 2") 
I N S T R C A t  , " L I N C O L N A B R A H A M " )  

BASIC returns 
2 
0 
0 

For a slightly different use of INSTR, try: 
1 0 X = I N S T R  C 3, "1 2 32 1 2 3" , "1 2" 1 
20 P R I N T  X 

which prints 5, because the search started a t  the third 
character. 

158 



Chapter 10 I BASIC Keywords 

Sample Program 
The program below uses INSTR to search through the addresses 
contained in the program's DATA statements. It counts the num- 
ber of addresses with a specified county zip code (761--) and 
returns that number. The zip code is preceded by an asterisk to 
distinguish it from the other numeric data found in the address. 

3 6 0  RESTORE 
3 7 0  COUNTER = 0 
3 9 0  READ ADDRESS$ 
395 I F  ADDRESS$ = "$END" THEN 4 1 0  
4 0 0  I F  INSTRCADDRESS$,  " * 7 6 1 " )  < >  0 THEN COUNTER 
= COUNTER + 1 ELSE 3 9 0  
4 0 5  GOT0 3 9 0  
4 1  0 P R I N T  "NUMBER OF TARRANT COUNTY, TX 
ADDRESSES IS" COUNTER : END 
4 2 0  DATA " 5 9 5 0  GORHAM D R I V E ,  BURLESON, TX 
* 7 6 1  4 8 "  
4 3 0  DATCI " 7 1  F I R S T F I E L D  ROAD, GAITHERSBURG, MD 

2 0 76 0 I' 
4 4 0  DATA " 1 0 0 0  TWO TANDY CENTER, FORT WORTH, TX 
* 7 6 1  0 2 "  
4 5 0  DATA " 1 6 6 3 3  SOUTH CENTRAL EXPRESSWAY, 
RICHARDSON, TX * 7 5 0 8 0 "  
4 6 0  DATA "$END" 

159 



Chapter 10 I BASIC Keywords 

ction 

INT(num ber) 

Converts number to the largest integer that is less than or equal 
to number. 

Number is not limited to the integer range - 32768 to  32767. 

The result has the same precision as number (except for the frac- 
tional portion). 

Unlike CINT, INT does not round positive numbers. It does, 
however, round negative numbers. 

Examples 
PRINT INTC79.89) 

prints 79. 
PRINT I N T  C-12.11) 

prints - 1  3. 

160 



Chapter 10 I BASIC Keywords 

I ent 

IOCTL [#]buf,r,string 

Sends a control data string to a device driver. Control data can 
be sent to  a drive only after it has been opened. 

Buffer is the number assigned to the driver when you opened it. 
The number sign (#) is optional. It is provided for compatibility 
with other BASICs. 

String is a string expression containing a series of commands 
called control datu. The commands are generally 2 to 3 charac- 
ters long and may be followed by an alphanumeric argument. 
The commands are separated by semicolons (;). String may be a 
maximum of 255 bytes. 

For more information on device drivers, see the Programmer's 
Reference manual for your computer (sold separately). 

Example 
If you write your own driver to  replace PRN to set the page 
length, the IOCTL command may be: 

PLn where n is the new page length. 

To open the new PRN driver and set the page length at  56 lines 
per page, use the following statements: 

1 0  OPEN "PRN" FOR OUTPUT a 5  1 
2 0  I O C T L  1 , " P L 5 6 "  

161 



Chapter 10 I BASIC Ke-ywords 

IOCTL$ vanced Function 

IOCTL$( [#I buffer) 

Returns the control data string from a device driver that you 
have opened previously. 

Buffer is the number assigned to the driver when you opened it. 
The number sign (#) is optional. It is provided for compatibility 
with other BASICs. 

You can use the IOCTL$ function to confirm that a IOCTL 
statement succeeded (or failed). You can also use IOCTL$ to get 
information from the device. 

For more information on device drivers, see the Programmer's 
Reference manual for your computer (sold separately). 

Example 
1 0  OPEN " \DEV\PRN"  AS 1 
20 I F  IOCTLtCl) = "NR" THEN P R I N T  "PRINTER NOT 
READY" 

162 



Chapter 10 I BASIC Keywords 

K tlDisplay Statement 

KEY number,strirg 
KEY ON 
KEY OFF 
KEY LIST 

KEY number,string 
Assigns or displays function key values. 

Number is an integer in the range 1 to 10 that indicates the 
function key being defined (m - lFlQ). 
String is the string expression assigned to the key and may con- 
tain a maximum of 15 characters. 

Yov can program the function keys on your computer to  generate 
a specific string of characters. When you press the key, BASIC 
displays the string on the screen just as if you had typed every 
character. Initially, the function keys have these values: 

F1 LIST F6 , " L P T l : " m  
F2 RUN= F7 T R O N m  
F3 LOAD" F8 TROFF@FEKI 
F4 SAVE" F9 KEY 
F5 C O N T m  F1O SCREEN 0,0,0 (ENTER] 

You can use the KEY statement to redefine the function keys so 
that BASIC displays the strings you use most often. 

You can remove the string from a function key by assigning it a 
string length of zero (" '7. For example: 

K E Y  1 , "I' 

Key [F11 no longer has a string assigned to it. Moreover, assign- 
ing a null string (length zero) to a function key disables it as a 
soft key. If the disabled soft key is pressed, INKEY$ returns a 2- 
byte string. See Appendix D for more information. 

163 



Chapter 10 I BASIC Keywords 

KEY ON 
KEY ON displays the function key assignment values on Line 25 
of the screen. If the screen width is 40, the screen shows 5 of the 
function key assignments. If the width is 80, the screen shows 
all 10 assignments. In both cases, the screen shows only the first 
6 characters of the string. When you load BASIC, KEY ON is 
the initial default value. 

KEY OFF 
KEY OFF erases the soft key assignments from Line 25. The 
assignments are still active, but the screen does not display 
them. 

BASIC reserves Line 25 for the function key display. Even if the 
display is turned off, BASIC does not display program lines on 
Line 25. 

KEY LIST 
KEY LIST displays all 15 characters of all 10 soft key assign- 
ments on the screen. 

Note: If your program contains an INKEY$ and you 
press a function key, BASIC returns 1 character of the 
key assignment at a time. For example, suppose this 
statement is executed: 

A S  = I N K E Y O  

Now suppose you press [, which initially has the 
value LIST. The first time the statement is executed 
A$ equals L, the second time A$ equals I, and so on. 
Keep this in mind when writing a BASIC routine to 
trap for a certain key. Your routine may not perform 
as expected if you accidentally press a function key. 

164 



Chapter 10 I BASIC Ke.ywords 

ent 

KEY(number) action 

Turns on, turns off, or temporarily halts key trapping for a spec- 
ified key. 

Action may be any of the following: 

ON enables key trapping 
OFF disables key trapping 
STOP temporarily suspends key trapping 

Number may be a number in the range 1 to  20, indicating the 
number of the key to trap. Function keys use their corresponding 
function key number (1-10). The cursor direction key trap num- 
bers are: 

11 
12 
13 
14 

User-defined keys are 15-20. Use the following syntax to define 
your own user keys: 

KEY number, CHR$(lzey) + CHR$(scan) 

Key is one of or a combination of the following: 

FeE;  &H40 
&H20 
&H08 (ALT] key 
&H04 (CTRL] key 
&H02 Left = key 
&H01 Right key 

Scan is the scan code for a physical key on the keyboard. 
See the appendices for a list of scan codes. 

Notes: 

0 Trapped keys do not go into the keyboard buffer. 

0 Defining a function key or a cursor-direction key has no 
effect. BASIC considers them pre-defined. 

165 



Chapter 10 I BASIC Ke-ywords 

0 You can trap any key, including a, [ C T R L ] [ m ] ,  
and [MI [ALT] (DELETE] (the soft boot). This feature makes 
it possible to  prevent BASIC application users from con- 
trol-breaking out of a program or from accidentally reset- 
ting the computer. 

You can use the KEY/Trap statement in a key trapping routine 
with the ON KEYO GOSUB statement to detect when a specific 
key is pressed. 

The KEYO ON statement turns on key trapping for a specific 
key. BASIC checks after each program statement to  see if the 
specified key has been pressed. If so, BASIC transfers program 
control to  the line number specified in the ON KEYO GOSUB 
statement. For example: 

K E Y ( 3 )  ON 
O N  K E Y ( 3 )  GOSUB 1 0 0 0  

BASIC turns on a trap for @. BASIC continues to execute the 
other program statements, checking after each statement to  see 
if [F31 has been pressed. When IF3] is pressed, BASIC branches to  
the subroutine beginning at Line 1000. 

KEYO STOP temporarily halts trapping for the specified key. If 
the specified key is pressed, BASIC does not transfer program 
control to  the ON KEYO GOSUB until you turn on key trapping 
again with KEYO ON. When you do turn on key trapping again, 
BASIC remembers that the key was pressed, and immediately 
branches to  the subroutine. 

KEYO OFF turns off key trapping. When key trapping is turned 
on again, BASIC does not remember that the key has been 
pressed. 

Note: Key trapping only occurs while BASIC is run- 
ning a program. 

See ON KEYO GOSUB for more information on key trapping. 

Sample Program 
See ON KEY0 GOSUB. 

166 



Chapter 10 I BASIC Keywords 

KILL Statement 

KILL pathname 

Kills (deletes) pathname from disk. 

Pathname is a standard file specification as described in Chapter 
1. 

You may delete any type of disk file. However, if the file is cur- 
rently open, a F i l e a l r e a  dy open error occurs. YOU must close 
the file before deleting it. 

Example 
KILL "f i 1 e .  b a s "  

deletes File.bas if it exists in the current directory. 
KILL " A :  \ R E P O R T \ d a t a "  

deletes the file Data from the directory REPORT in Drive A. 

167 



Chapter 10 I BASIC Keywords 

ent 

LCOPY 

Copies all text data on the screen to the printer. 

Sample Program 
550 F O R  1 = 1  TO 24 
560 PRINT STRING0<79,33) 
570 NEXT I 
580 LCOPY 

This program segment prints exclamation points on the screen, 
and dumps them to the printer. 

168 



Chapter 10 I BASIC Keywords 

ction 

LEFT$(string,number) 

Returns the specified number of characters from the left portion 
of string. 

Number must be an integer in the range 1 to 255. If number is 
equal to or greater than the length of the string, BASIC returns 
the entire string. 

Examples 
P R I N T  L E F T S C " B A T T L E S H I P S " ,  6 )  

prints BATTLE.  

P R I N T  L E F T $ C " B I G  F I E R C E  DOG", 2 0 )  

Since B I G F I ERCE DOG is fewer than 20 characters, BASIC prints 
the whole phrase. 

Sample Program 
7 4 0  A $  = "TIMOTHY" 
7 5 0  BS = L E F T $ < A $ ,  3 )  
7 6 0  P R I N T  B S ;  " - - T H A T ' S  SHORT FOR 'I; F I Q  

When you run this program, BASIC prints: 
T I M - - T H A T ' S  SHORT FOR TIMOTHY 

Line 750 gets the 3 left characters of A$ and stores them in B$. 
Line 760 prints these 3 characters, a string, and the original 
contents of A$. 

169 



Chapter 10 I BASIC Keywords 

LEN Function 

LEN(string1 

Returns the number of characters in string. Blanks are counted. 

Examples 

gets the length of SENTENCE$ and stores it in X. 
X = LENCSENTENCEt )  

P R I N T  LEN("CFIMBR1DGE") + LEN("BERKELEY")  

prints 1 7. 

P R I N T  LENC"ORLAND0, FLORIDA" )  

prints 16. 

170 



Chapter 10 I BASIC Keywords 

LET Statement 

[LET] variable = expression 

Assigns the value of expression to  variable. 

Variable is a numeric or string variable. 

Expression is a numeric or string constant or expression. A 
BASIC function can be substituted for expression. 

BASIC does not require assignment statements to begin with 
LET, but you might want to  use LET to be compatible with ver- 
sions of BASIC that do require it. 

Examples 
L E T  A S  = " A  ROSE IS FI ROSE" 
L E T  E1 = 1.23 
L E T  X = X - 21 
L E T  X = SQRCB) 

In each case, the variable on the left side of the equals 
sign is assigned the value of the constant, expression, or 
function on the right side. 

Sample Program 
550 P = 1001: P R I N T  "P ='I P 
560 L E T  P = 2001: P R I N T  "NOW P ="P 

171 



Chapter 10 I BASIC Keywords 

Draws a line or a box on the video display. 

The STEP option tells BASIC that the (x,y) coordinates are rela- 
tive to  the last point referenced. If you use STEP with the sec- 
ond set of coordinates, the coordinates are relative to  the first 
set of coordinates. 

(x1,yl) specifies the point at which to begin the line. x l  is the 
horizontal coordinate, and y l  is the vertical coordinate. If you 
omit (x1,yl) BASIC begins the line at the last point referenced 
on the screen. 

(x2,yZ) specifies the point at which to end the line. x2 is the hor- 
izontal coordinate and y2 is the vertical coordinate. 

Color indicates the color of the line. 

See Chapter 8, “Displaying Text and Graphics” for information 
on coordinates and colors for the current screen mode. 

If you specify coordinates that are not in the range of the cur- 
rent viewport, BASIC displays only that portion of the line that 
is within the viewport. 

With the B option, BASIC draws a box. The points that you 
specify are opposite corners. 

If you specify both the B and F options, BASIC draws a box and 
fills the box in with color. 

Style lets you select the line-style used when drawing normal 
lines and unfilled boxes. Style is a 16-bit integer. Each bit repre- 
sents a point in the line. If the bit equals 1, then the point is 
drawn. If the bit equals zero, then the point is not drawn. A zero 
bit does not erase a previously drawn point; therefore, you might 
want to  draw a background line first to  have a known back- 
ground. The style pattern is repeated as necessary, to  complete 
the line drawing. 



Chapter 10 I BASIC Keywords 

Here are some sample styles showing the bit representation, the 
line drawn, and their hex equivalents: 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 equals&H5555 
- is drawn - - - - - - - 

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 lequals&HDBGD 
- is drawn _ -  _ -  _ -  - _  - _  

Examples 
You can try these examples in the graphics modes. The color, 
size, and position of the image on the display vary, depending on 
the current screen mode. 

L I N E  -(319, 199) 

draws a line from the last point referenced to point 319,199 in 
the current color. This is the simplest form of the LINE state- 
ment. Note that when you omit the beginning points you must 
still include the hyphen. 

L I N E  C 0 , 0  )-(319,199) 

draws a diagonal line on the display in the current color. 
L I N E  (0,100 )-<319,100 ),I 

draws a horizontal line across the display in Color 1. 
L I N E  C0,0)-<100,100),,B 

draws a box in the upper left corner of the display. 
L I N E  <0,0)-<200,200),1,BF 

draws a box on the display and fills it in with Color 1. 
L I N E  <0,0)-(200,200),1,B, 6H5555  

draws a box outlined by a dashed line. 

173 



Chapter 10 I BASIC Keywords 

Sample Programs 
1 0  CLS 
2 0  
3 0  

L I N E  
GOTO 

- C R N D * 3 1 9 ,  R N D * 1 9 9 ) ,  RND.4 
2 0  

In the graphics modes, Lines 10-30 create a loop that draws ran- 
dom lines on the video display. 

4 0  FOR X-0  TO 3 1 9  
5 0  L I N E  C X , B ) - C X , 1 9 9 ) , X  AND 1 
6 0  NEXT 

In the graphics modes, Lines 40-60 draw an alternating pattern, 
turning on and off the line. 

1 0  C L S  
2 0  L I N E  -CRND*639,RND*199),RND*2,BF 
3 0  GOTO 2 0  

This program draws a random filled box in a graphics mode. 

174 



Chapter 10 I BASIC Keywords 

L Statement 

LINE INPUT[;][ “prompt”;] string variable 

Accepts an entire line (a maximum of 254 characters) from the 
keyboard. LINE INPUT is a convenient way to input string data 
without accidental entry of delimiters (commas, quotation marks, 
and so on.). 

Prompt is a string constant enclosed in quotation marks that 
BASIC prints before waiting for input. 

String variable is the variable to receive the input. 

The only way to terminate the string input is to  press [. 
However, if LINE INPUT is immediately followed by a semicolon, 
pressing [ENTER] does not echo a carriage return to  the display. 

Note: You must place a space between LINE and 
INPUT. 

LINE INPUT is similar to INPUT, except: 

BASIC does not display a question mark when waiting for 

Each LINE INPUT statement can assign a value to  only 1 

0 Commas and quotation marks can be entered in the string 

Leading blanks are not ignored. 

input. 

variable. 

input. 

Examples 
L I N E  I N P U T  At 

waits for input to A$ without displaying a prompt. 
L I N E  I N P U T  “ L A S T  N A M E ,  F I R S T  N A M E ?  ‘I; N$ 

displays the message and waits for input. 

175 



Chapter 10 I BASIC Keywords 

LINE INPUT#buffr, variable 

Accepts an entire line of data from a sequential file to  a string 
variable. 

Buffer is the number assigned to the file when you opened it. 

This statement is useful when you want to  read an ASCII format 
BASIC program file as data or when you want to  read in data 
without following the usual restrictions regarding leading char- 
acters and terminators. 

LINE INPUT# reads everything from the first character up to: 

0 the end-of-file 
0 the 255th data character 
0 a carriage return 

Other characters encountered-quotation marks, commas, lead- 
ing blanks-are included in the string. 

Note: You must place a space between LINE and 
INPUT#. 

Example 
If a ASCII format program file looks like this: 

1 0  C L E A R  5 0 0  
2 0  OPEN " I " ,  1 ,  " p r o g "  

then the statement: 
LINE INPUT#I, A t  

can be used repeatedly to read each program line, one at a time. 

176 



ChaDter 10 I BASIC Kevwords 

LIST [startline] [- [endline] 1 [ ,device1 

Lists a program in memory to the display. 

Startline specifies the first line to be listed. If you omit startline, 
BASIC starts with the first line in your program. 

Elzdline specifies the last line to  be listed. If you omit endline, 
BASIC ends with the last line in your program. 

If you omit both startline and endline, BASIC lists the entire 
program. 

Device may be either SCRN: (screen) or LPT1: (line printer 1). If 
you omit device, the lines are listed to the screen. 

You can temporarily stop the listing by pressing [CTRLl INUMLOCKJ. 
Press any key to  continue the listing. 

You can substitute a period (.) for either startline or endline to  
indicate the current line number. 

Examples 

displays the entire program. 

LIST 

LIST 5 0 - 8 5 ,  " S C R N : "  

displays lines in the range 50 to 85 on the screen. 
LIST . -  

displays the program line that you have entered or edited and all 
higher numbered lines on the screen. 

LIST -227 

displays all lines up to and including 227 on the screen. 
LIST 227- ,"LPTI :"  

lists Line 227 and all higher numbered lines to  the printer. 

177 



Chapter 10 I BASIC Keywords 

LLIST 

LLIST [startZine][-[endZine]] 

Lists program lines in memory to the printer. 

Startline specifies the first line to  be listed. If you omit startline, 
BASIC starts with the first line in your program. 

Endline specifies the last line to be listed. If you omit endline, 
BASIC ends with the last line in your program. 

If you omit both startline and endline, BASIC lists the entire 
program. 

You can substitute a period (.) for either startline or endline to  
indicate the current line number. 

LLIST assumes an 80-character-wide printer. You may change 
this by using the WIDTH statement with the LPRINT option. 

Examples 

lists the entire program to the printer. To stop this process, 
press (CTRLI I N U M ] .  This causes a temporary halt in the com- 
puter’s output to  the printer. Press any key to continue printing. 

LL I S T  

LLIST 68-90 

prints lines in the range 68 to 90. 

178 



Chapter 10 I BASIC Keywords 

LOA 

LOAD pathname [,Rl 

Loads a BASIC program from disk into memory. 

Pathname is a standard file specification used to save the file to 
disk. 

The R option tells BASIC to run the program. (LOAD with the R 
option is equivalent to the command RUN pathname.) When you 
specify the R option, BASIC leaves all open files open and runs 
the program automatically. If you omit the R option, BASIC 
wipes out any resident BASIC program, clears all variables, and 
closes all open files. 

You can use LOAD inside programs to allow program chaining 
(one program calling another). 

If you attempt to LOAD a non-BASIC file, a Direct statement 
i n  f i 1 e error occurs. 

Example 
LOAD "A:progl .ba5"  

loads Progl.bas from Drive A, and then returns to BASIC's 
prompt. 

LOAD "progl . b a s "  

loads Progl.bas. Because no drive is specified, BASIC searches 
for Progl.bas on the current drive. 

179 



Chapter 10 I BASIC Keywords 

LOC( buffer) 

Returns the current record position within a file. 

Buffer is the number assigned to the file when you opened it. 

You use LOC to  determine the current record position, that is, 
the number of the last record processed since you opened the file. 

When used with direct access files, LOC returns the record 
number accessed by the last GET or PUT statement. 

When used with sequential files, LOC returns the number of 
128-byte blocks that have been read or written. 

Ex ample 

Program execution ends, if the current record position is greater 
than 55. 

I F  L O C ( 1 ) > 5 5  THEN END 

Sample Program 
1 3 1 0  A $  = " W I L L I A M  WILSON" 
1 3 2 0  GET 1 
1 3 3 0  I F  N $  = A $  THEN P R I N T  "FOUND I N  RECORD" 
LOCC1) :  CLOSE: END 
1 3 4 0  GOT0 1 3 2 0  

This is a portion of a direct access program. Elsewhere the file 
has been opened and fielded. N$ is a field variable. If N$ 
matches A$, the record number in which it was found is printed. 

180 



Chapter 10 I BASIC Keywords 

LOC (buffer) 

Returns the number of characters in the input queue if that 
number is 255 or less. 

If the queue contains 256 or more characters, the LOC function 
returns the number 255. Since a string is limited to 255 charac- 
ters, this limit eliminates the need for testing string size before 
reading data into the queue. 

Bufler is the number assigned to the file when you opened it. 

The default size for the input queue is 256 characters, but you 
can change the size by using the IC: option when loading BASIC. 

Example 
1 0  X = L O C C l )  
2 0  I f  X > 0  THEN A $ = I N P U T $ C L O C C l ) , # l )  

Line 10 checks to  see if there are any characters in the input 
queue and stores the number of characters in the variable X. 
Line 20 tests the value of X. If X is greater than 0, there are 
characters in the input queue, and Line 20 returns the charac- 
ters in the buffer into A$. 

Notice from the example that INPUT$ is preferred over LINE 
INPUT# or INPUT# when reading communications files. This 
preference is because all ASCII characters might be significant 
in communications. INPUT$ allows all characters to be read. 
The other statements do not. LINE INPUT# stops at  a carriage 
return. INPUT# stops at a comma or a carriage return. 

181 



Chapter 10 I BASIC Keywords 

L ternent 

LOCATE [row][, [column] [, [cursor] [, [start] [,stop1111 

Positions the cursor on the screen. 

Row is a numeric expression in the range 1 to 25 that indicates 
the screen row where you want to position the cursor. 

Column is a numeric expression that indicates the screen column 
where you want to position the cursor. It may be in the range 1 
to 40 or 1 to 80, depending on the current screen width. 

Cursor indicates whether the cursor is visible or invisible. Set 
cursor to  1 for a visible cursor and to 0 for an invisible cursor. 

Start specifies the starting scan line of the cursor. There are 7 
scan lines available for the cursor. Start must be an integer in 
the range 0 to  31, where 0 is the top line and 31 is the bottom 
line. 

Stop specifies the ending scan line of the cursor. Stop must be in 
the same range as start. If stop is less then start BASIC displays 
a split cursor. 

Cursor, start, and stop are only effective in Screen Mode 0. 

Examples 

positions a half cursor on Row 10 in Column 20. 

LOCATE 1 0 , 2 0 , 1  , 4  

LOCATE 2 5 , l  ,1 ,7 

positions an underline cursor in the first position of the last line. 

182 



Chapter 10 I BASIC Keywords 

LOCK [#]buffer [,record] 
UNLOCK [#]buffer [,record] 

Controls access by other processes to 11 r part 

Statement 

f a n  opened file. 

LOCK and UNLOCK are used only by the compiler. Use them 
in a network environment where several users might work on 
the same file at the same time. 

Bufer is the number used when you opened the file. The number 
sign is optional. It is provided for compatibility with other 
BASICs. 

Record is the record or range of records to  lock or unlock. It 
applies only to  files opened for random input or output. If a file 
is opened for sequential input or output, LOCK and UNLOCK 
affect the entire file, regardless of the range specified. 

To specify a range, use this format: starting record TO ending 
record. If you omit starting record, BASIC assumes you mean the 
first record in the file. If you omit ending record, BASIC assumes 
you mean the last record in the file. If you omit the record 
parameter completely, BASIC locks or unlocks the entire file. 

Remove all locks with an UNLOCK statement before closing a 
file or stopping a program. Be sure the ranges in the corre- 
sponding LOCK and UNLOCK statements match exactly, as in 
this example: 

LOCK 1 ,  1 TO 4 
LOCK 1 ,  5 TO 8 
UNLOCK 1 ,  1 TO 4 
UNLOCK 1 ,  5 TO 8 

The following statements do not match, and give unpredictable 
results: 

LOCK 1 ,  1 TO 4 
LOCK 1 ,  5 TO 8 
UNLOCK 1 ,  1 TO 8 

183 



Chapter 10 I BASIC Keywords 

Examples 
LOCK 2 

locks all records in File 2. 

LOCK 2 ,  3 2  

locks Record 32 in File 2. 

LOCK 2 ,  9 TO 3 2  

locks all records in the range 9 to 32 in File 2. 

LOCK 2 ,  TO 3 2  

locks all records in the range 1 to 32 in File 2. 

Sample Program 
1 3 1 0  OPEN "MONITOR" A S  1 L E N  = 5 9  
1 3 2 0  F I E L D  1 , 1 5  FIS PAYER$,  2 0  AS ADDRESS$, 2 0  
A S  PLACES,  4 A S  OWE$ 
1 3 3 0  L E T  UPDATE$="Y" 
1 3 4 0  W H I L E  CUPDATE$="y"  O R  UPDATE$="Y" )  
1 3 5 0  CLS : LOCATE 1 0 , 1 0  
1 3 6 0  I N P U T  "CUSTOMER NUMBER? I " ;  NUMBER% 
1 3 7 0  LOCK 1 ,  NUMBER% 
1 3 8 0  GET 1 ,  NUMBER% 
1 3 9 0  L E T  DOLLARS!  = CVS(OWE$) 
1 4 0 0  LOCFITE 1 1 , 1 0 :  P R I N T  
I' C US T 0 MER : I' ; P A Y E R 0 
1 4 1 0  LOCATE 1 2 , 1 0 :  P R I N T  
'IFIDDRESS: ";ADDRESS$ 
1 4 2 0  LOCATE 1 3 , 1 0  : P R I N T  "CURRENTLY 
OWES: $" ;DOLLARS! 
1 4 3 0  LOCATE 1 5 , 1 0 :  I N P U T  "CHANGE ( +  O R  -> ' I ;  

CHANGE ! 
1 4 4 0  L S E T  OWE$ = MKS$<DOLLARS! )  
1 4 5 0  PUT 1 ,  NUMBER% 
1 4 6 0  UNLOCK 1 ,  NUMBER% 
1 4 7 0  LOCATE 1 7 , 1 0 :  I N P U T  "UPDATE 
ANOTHER? " ,CONTINUE$ 
1 4 8 0  L E T  U P D A T E $ = L E F T $  C C O N T I N U E S $ , l )  
1 4 9 0  WEND 

This program fragment opens a file and lets the user lock a 
record and update the information in it. When the user finishes, 
the program unlocks the record so that other people can use the 
file. 

184 



Chapter 10 I BASIC Keywords 

LOF ( buffer) 

Returns the length of the file in bytes. 

Buffer is the number assigned to the file when you opened it. 

Example 
Y = L O F ( 5 )  

assigns the length of the file in bytes to  variable Y 

Sample Programs 
During direct access to an existing file, you often need a way to 
know when you have read the last valid record. LOF provides a 
way 

1 5 4 0  OPEN "R" ,  1 ,  "unknown.txt", 1 2 8  
1 5 5 0  F I E L D  1 ,  1 2 8  A S  A $  
1 5 6 0  RCNUM% = 1 'START AT B E G I N N I N G  OF F I L E  
1 5 7 0  R C S I Z %  = 1 2 8  'SET RECORD S I Z E  
1 5 8 0  I F  RCNUM% * R C S I Z X  > LOF(1  1 GOTO 1 6 4 0  
1 5 9 0  'CHECK FOR END OF F I L E  
1 6 0 0  GET 1 ,  RCNUM% 'RECORD NUM. TO BE ACCESSED 
1 6 1 0  P R I N T  A S  
1 6 2 0  RCNUM% = RCNUM% + 1 ' INCREMENT RECORD NUM 
1 6 3 0  GOTO 1 5 8 0  
1 6 4 0  CLOSE 

If you attempt to  GET record numbers beyond the end-of-file, 
BASIC gives you an error. 

These lines use LOF to  determine where to  start adding when 
you want to  add to the end of a file: 

1 7 0 0  RCNUM% = (LOF(1)  / R C S I Z % )  + 1 
1 7 2 0  'H IGHEST E X I S T I N G  RECORD 
1 7 2 0  PUT 1 ,  RCNUM% 'ADD NEXT RECORD 

185 



Chapter 10 I BASIC Keywords 

LOFICommunications Fune tion 

Returns the amount of free space in the input queue. 

Bufier is the number assigned to the file when you opened it. 

You can use LOF to determine when an input queue is getting 
full so that transmission is stopped. 

The default length of the communications receive buffer is 256 
bytes. If you wish, you can specify a different length by using 
the IC: switch when loading BASIC. (See “Options for Loading 
BASIC” in Chapter 2.) 

186 



Chapter 10 I BASIC Keywords 

LOG &ion 

LOG(num ber) 

Computes the natural logarithm of number. 

Number must be greater than zero. LOG is the inverse of the 
EXP function. 

BASIC always returns the result as a single precision number. 

Examples 

prints I . I 4 4 7 2 9 .  

P R I N T  L O G ( 3 . 1 4 1 5 9 )  

2 = 1 0  L O G ( P S / P I )  

performs the indicated calculation and assigns the value to Z. 

Sample Program 
This program demonstrates the use of LOG. It uses a formula 
taken from space communications research. 

5 4 0  
D 
5 5 0  
5 6 0  
5 7 0  
IS" 

I N P U T  "DISTFINCE S I G N A L  MUST TRAVEL ( M I L E S ) " ;  

I N P U T  "SIGNFIL FREQUENCY (GIGAHERTZ) " .  F 
L = 96.58 + ( 2 0  LOGCF))  + ( 2 0  LO<(D)) 
P R I N T  " S I G N A L  STRENGTH LOSS I N  FREE SPFICE 
L " D E C I B E L S . "  

187 



Chapter 10 I BASIC Keywords 

ion 

LPOS(number) 

Returns the logical position of the print head within the printer’s 
buffer. 

Number can be 0 or 1 to indicate LPT1:. 

LPOS is only useful for checking the position of the print head 
after a LPRINT statement that is terminated by a semicolon to 
suppress the automatic carriage return. The statement contain- 
ing LPOS is not executed until the LPRINT statement is fin- 
ished printing. 

LPOS does not necessarily give the physical position of the print 
head if the printed string contains the ASCII code for a carriage 
return. For example, if you are printing a string of 20 characters 
and the 10th character is the ASCII code for a carriage return, 
the printer advances to the next line after printing the 9th char- 
acter. Then it prints the remaining 10 characters. If the string is 
terminated by a semicolon to supress the automatic line feed, the 
physical location of the print head is a t  position 10. LPOS 
returns a value of 21, however, because that is the logical loca- 
tion of the print head. 

Example 
You may want to  use LPOS t o  determine whether there is 
enough room to continue printing more variables on the same 
line. 

1 0 0  I F  L P O S C X ) > 6 0  THEN L P R I N T  

If the printer has printed more than 60 characters, a carriage 
return is sent so that the printer skips to  the next line. 

188 



Chapter 10 I BASIC Keywords 

LPRINT [USING f o n m t ; ]  data[,data, ... I 

Prints data on the printer. 

LPRINT assumes a print width of 80 characters. You may 
change the width using the WIDTH statement with the LPRINT 
option. 

See PRINT and PRINT USING for more information on format- 
ting the output. 

Examples 

prints the value of expression (A 2)/3 on the printer. 

LPRINT ( A  2)/3 

LPRINT TABC501 "TABBED 5 0 "  

moves the printer carriage to tab position 50 and prints TABBED 
50. (Refer to  the TAB function.) 

LPRINT USING " # # # # # . # " ;  2.17 

sends the formatted value 151515b2.2 to  the printer. 

189 



Chapter 10 I BASIC Keywords 

t atemen 

LSET field name = data 

Moves data to the direct access buffer and places it in field name, 
in preparation for a PUT statement. 

Field mine is a string variable defined in a FIELD statement. 

You must have used FIELD to set up buffer fields before using 
LSET. 

You must convert numeric values to string values before they are 
LSET. See MKI$, MKD$, MKS$. 

You use LSET to left-justify the variable in the field. If the field 
is larger than the variable it is receiving, the field is filled with 
blanks on the right. If the variable is larger than the field, char- 
acters are truncated on the right. The complementary command 
of LSET is RSET. 

See also Chapter 7, and OPEN, CLOSE, FIELD, GET, PUT, and 
RSET. 

Example 
Suppose NM$ and AD$ have been defined as field names for a 
direct access file buffer. NM$ has a length of 18 characters; AD$ 
has a length of 25 characters. The statements: 

LSET N M S  = "JIM CRICKET, JR." 
L S E T  AD$ = " 2 0 0 0  EFIST PECAN S T . "  

set the data in the buffer as follows: 
JIMMCRICKET,JR.MMM 2000MEASTMPECFINMST.M~MMMM 

Notice that filler blanks are placed to the right of the data 
strings in both cases. If we use RSET statements instead of 
LSET, the filler spaces are placed to the left. This is the only 
difference between LSET and RSET. 

190 



ChaDter 10 I BASIC Kevwords 

MERGE Statement 

MERGE pathname 

Loads a BASIC program and merges it with the program cur- 
rently in memory. 

Pathname is a standard file specification as described in Chapter 
1. The filename is required. The file must be in ASCII format; 
that is, it must have been saved with the A option. 

Program lines in pathnume are inserted into the resident pro- 
gram in sequential order. For example, suppose that 3 lines from 
pathname are numbered 75, 85, and 90, and 3 lines from the 
resident program are numbered 70, 80, and 90. When you use 
MERGE on the 2 programs, this portion of the merged program 
is now numbered 70, 75, 80, 85, 90. 
If line numbers on the new program coincide with line numbers 
in the resident program, the new program's lines replace the res- 
ident program's lines. 

MERGE closes all files and clears all variables. Upon completion, 
BASIC returns its prompt. 

Example 
Suppose you have a BASIC program on disk, Prog2.txt (saved in 
ASCII), that you want to merge with the program you have in 
memory: 

MERGE " p r o g 2 .  t x t "  

merges the 2 programs. 

191 



Chapter 10 I BASIC Keywords 

Sample Programs 
MERGE provides a convenient means of putting program mod- 
ules together. For example, an often-used set of BASIC subrou- 
tines can accompany a variety of programs with this command. 

Suppose the following program is in memory: 
8 0  REM M A I N  PROGRAM 
9 0  REM L I N E  NUMBER RESERVED FOR SUBROUTINE HOOK 
1 0 0  REM PROGRAM L I N E  
1 1 0  REM PROGRAM L I N E  
1 2 0  REM PROGRAM L I N E  
1 3 0  END 

And suppose the following subroutine, Sub.txt, is stored on disk 
in ASCII format: 

9 0  GOSUB 1 0 0 0  'SUBROUTINE HOOK 
1 0 0 0  REM B E G I N N I N G  OF SUBROUTINE 
1 0 1 0  REM SUBROUTINE L I N E  
1 0 2 0  REM SUBROUTINE L I N E  
1 0 3 0  REM SUBROUTINE L I N E  
1 0 4 0  RETURN 

You can MERGE the subroutine with the main program with: 
MERGE "5ub. t x t "  

The new program in memory is: 
8 0  REM M A I N  PROGRAM 
9 0  GOSUB 1 0 0 0  'SUBROUTINE HOOK 
1 0 0  REM PROGRAM L I N E  
1 1 0  REM PROGRAM L I N E  
1 2 0  REM PROGRAM L I N E  
1 3 0  END 
1 0 0 0  REM B E G I N N I N G  OF SUBROUTINE 
1 0 1 0  REM SUBROUTINE L I N E  
1 0 2 0  REM SUBROUTINE L I N E  
1 0 3 0  REM SUBROUTINE L I N E  
1 0 4 0  RETURN 

192 



Chapter 10 I BASIC Keywords 

MID$(olds tr ing ,s tar t [ ,~~th])  = newstring 

Replaces a portion of oldstring with newstring. 

Oldstring is the variable name of the string you want to  change. 

Start is a number specifying the position of the first character 
you want to  change. 

Length is a number specifying the number of characters you 
want to  replace. 

Newstring is the string to replace a portion of oldstring. 

The length of the resultant string is always the same as the 
original string. If newstring is shorter than length, the entire 
replacement string is used. 

Examples: 
1 0  A $  = " LINCOLN" 
20 MID$<A$,3,4) = "12345": PRINT A $  

prints L I 1  234N. 

Replace Line 20 with: 
20 MID$(A$,5) = "01": PRINT A b  

and BASIC prints L I N C 0 1 N. 

193 



Chapter 10 I BASIC Ke-ywords 

MID$ Function 

MID$(string, start [,length]) 

Returns a substring of a string. 

Length is the number of characters in the substring. It must be 
in the range 1 to 255. 

Start specifies the position in the string from which to get the 
substring. 

If you omit length or if there are fewer than that number of char- 
acters to the right of start position, BASIC returns all characters 
to the right of the character at the start position including that 
character at  start. 

If start is greater than number of characters in string, BASIC 
returns a null string. 

Examples 
1 0  A $  = "WEATHERFORD" 
2 0  P R I N T  M I D $ < A $ ,  3 ,  2 )  

prints A T  

F $  = M I D $ < A $ ,  3)  

puts ATHERFORD into F$. 

Sample Program 
2 0 0  I N P U T  "AREA CODE FIND NUMBER CNNN-NNN-NNNN)"; 
P H $  
2 1 0  E X $  = M I D $ < P H $ ,  5 ,  3 )  
2 2 0  P R I N T  "NUMBER I S  I N  THE I' E X $  'I EXCHANGE." 

The first 3 digits of a local phone number are sometimes called 
the exchange of the number. This program looks at a complete 
phone number (area code, exchange, last 4 digits) and picks out 
the exchange. 

194 



Chapter 10 I BASIC Keywords 

MKDIFt Statement 

MKDIR pathname 

Creates the directory specified by pathname. 

Pathname is a standard directory specification as described in 
Chapter 1. If you omit the drive identifier, the directory is cre- 
ated on the current drive. If you omit the root directory symbol 
(\>, the directory is created in the current directory. 

Examples 

creates the directory PAYABLE in the ACCTS directory on Drive 
A. 

MKD I R "A : \ A C C T S  \ PAYABLE" 

MKDIR "\ADDRESS" 

creates the directory ADDRESS in the root directory on the cur- 
rent drive. 

MKD I R "NAMES" 

creates the directory NAMES in the current directory on the 
current drive. 

195 



Chapter 10 / BASIC Keywords 

cti 

MKD$(doubZe precision expression) 
MKI$(integer expression) 
MKS$(singk precision expression) 

Converts numeric values to string values. 

Any numeric value that is placed in a direct file buffer with an 
LSET or RSET statement must be converted to a string. 

These 3 functions are the inverse of CVD, CVI, and CVS. The 
byte values that make up the number are not changed; only 1 
byte, the internal data-type specifier, is changed so that numeric 
data can be placed in a string variable. 

MKD$ returns an 8-byte string; MKI$ returns a 2-byte string; 
and MKS$ returns a 4-byte string. 

Example 
L S E T  AVGS = MKSS(0.123) 

Sample Program 
1350 OPEN " R " ,  1, "te5t.dat8', 14 
1360 F I E L D  1, 2 A S  IlS, 4 A S  120, 8 FIS I39 
1370 L S E T  IlS = MKIS(3000) 
1380 L S E T  I20 = MKSS(3000.1) 
1390 L S E T  13s = MKDS(3000.00001) 
1400 PUT 1, 1 
1410 C L O S E  1 

For a program that retrieves the data from Test.dat, see CVD/ 
CVI/CVS. 

196 



Chapter 10 I BASIC Ke.ywords 

ent 

N A M E  old filename AS new filename 

Renames old filename as new filename. 

With this statement, the data in the file is left unchanged. The 
new filename may not contain a path,  password, or drive 
specification. 

You can only rename a file in the current directory. 

Example 

BASIC renames File.bas as File.old. 

NAME "f i 1 e . ba  3'' FIS "f  i 1 e . o 1 d" 

197 



Chapter 10 I BASIC Ke-ywords 

NEW Statement 

NEW 

Deletes the program currently in memory and clears all vari- 
ables. NEW also closes all open files, turns off the trace function 
and resets the music background. 

Example 
NEW 

198 



Chapter 10 I BASIC Keywords 

c Function 

OCT$( number) 

Returns the octal value of number. 

OCT$ returns a string that represents the octal value of a deci- 
mal number. The value returned is like any other string-it can- 
not be used in a numeric expression. 

Examples 

prints the strings 36,  62 ,  and I 32.  

PRINT O C T $ < 3 0 ) ,  O C T $ < 5 0 ) ,  O C T $ < 9 0 )  

Y $  = O C T $ < X / 8 4 )  

Y$ is a string representation of the integer quotient XI84 to  base 
8. 

199 



Chapter 10 I BASIC Keywords 

men 

ON COM(channe1) GOSUB line 

Transfers program control to a subroutine beginning at line 
when any character is received on the specified communications 
channel. 

Channel selects Communications Channel 1 or 2. 

Line is the first line of the subroutine to  be executed when activ- 
ity occurs on the specified communications channel. If you spec- 
ify Line 0, you turn  off communications trapping. Use the 
RETURN statement to  exit the subroutine. 

BASIC executes the ON COM( ) GOSUB statement only if a 
COM( ) ON statement has been previously executed to enable 
communications trapping. If a COM( ) STOP statement has been 
issued to halt communications trapping temporarily, BASIC exe- 
cutes the subroutine immediately after the next COM( ) ON 
statement. 

When you execute the ON COM( ) GOSUB statement, BASIC 
immediately issues a COM( ) STOP statement to  prevent recur- 
sive traps. When BASIC executes the RETURN from the subrou- 
tine, it automatically executes another COM( ) ON statement to 
enable communications trapping again, unless the subroutine 
executes a COM( ) OFF statement. 

Example 
1 0  OPEN "CUM1 :"  FIS 1 
2 0  COM(1 1 ON 
3 0  ON CUM(1) GOSUB 1 0 0  
4 0  GOT0 4 0  

1 0 0  A $ = I N P U T S ( l  , I ) : P R I N T  FIt; 
1 1 0  RETURN 

Line 20 turns on communications trapping on Channel 1. After 
executing each program statement, BASIC checks to see if any 
character has come into the communication channel's buffer. If 
any has, BASIC immediately executes the subroutine beginning 

200 



Chapter 10 I BASIC Keywords 

at Line 100. The communications trap subroutine reads the 
received character and displays it on the screen. 

To avoid the overhead of trapping at high baud rates, we recom- 
mend that the communications trap subroutine read the entire 
message from the buffer. 

201 



Chapter 10 I BASIC Keywords 

ON ERROR GOTO line 

Transfers control to line if an error occurs. 

This lets your program recover from an error and continue exe- 
cution. (Normally, you have a particular type of error in mind 
when you use the ON ERROR GOTO statement.) 

You must execute an ON ERROR GOTO before the error occurs. 

To disable it, execute an ON ERROR GOTO 0, which causes 
BASIC to  stop execution and print an error message. This is rec- 
ommended for errors that are trapped and from which you can- 
not recover. 

Note: If an error occurs during execution of an error- 
handling routine, that error message is printed and 
execution terminates. Error trapping does not occur 
within the error handling routine. 

The error-handling routine must be terminated by a RESUME 
statement. 

Example 

branches program control to Line 1500 if an error occurs any- 
where after Line 10. 

1 0  ON E R R O R  GOTO 1 5 0 0  

Sample Program 
See ERROR. 

202 



Chapter 10 I BASIC Keywords 

/GOSUB Statement 

ON n GOSUB Zine[,Zine, ... I 

Looks at n and transfers program control to the subroutine indi- 
cated by the nth line listed. 

For example, if n equals 1, BASIC branches to the first line 
listed; if n equals 2, BASIC branches to the second line listed. 

Line is the subroutine line at which execution begins when 
BASIC makes the branch. 

N must be a number in the range 0 to  255. If necessary, BASIC 
rounds n to an integer before evaluating it. If n is 0 or greater 
than the number of line numbers listed, BASIC continues with 
the next statement. If n is negative or is greater than 255, an 
I l l e g a l  f u n c t i o n  c a l l  erroroccurs. 

Use the RETURN statement to  exit the subroutine. 

Example 

If Y equals 1, BASIC branches to a subroutine, beginning at 
Line 1000. If Y equals 2, BASIC branches to  a subroutine, 
beginning at  Line 2000. If Y equals 3, BASIC branches to  a 
subroutine, beginning at Line 3000. 

If Y is outside the range 1 to 3, BASIC either continues with the 
next statement or generates an Illegal f u n c t i o n  call, as 
mentioned earlier. 
Sample Program 

10 ON Y GOSUB 1000, 2000, 3000 

430 INPUT "CHOOSE 1 ,  2, OR 3" ; I 
440 ON I GOSUB 500, 6 0 0 ,  700 
450 END 
500 PRINT "SUBROUTINE # I " :  R E T U R N  
600 PRINT "SUBROUTINE #2": RETURN 
700 PRINT "SUBROUTINE #3": RETURN 

203 



Chapter 10 I BASIC Keywords 

ON n GOTO line[,line, ...I 

Looks at n and transfers program control to  the nth line listed. 

For example, if n equals 1, BASIC branches to the first line 
listed; if n equals 2, BASIC branches to the second line listed. 

N must be in the range 0 to 255. If necessary, BASIC rounds n 
to an integer before evaluating it. If n is 0 or is greater than the 
number of line numbers listed, BASIC continues with the next 
statement. If n is negative or is greater than 255, an 1 1  1 ega 1 
function call error occurs. 
Example 

tells BASIC to evaluate MI. If MI equals 1, BASIC branches to  
Line 150; if MI equals 2, BASIC branches to  Line 160; and so 
on. If MI is outside of the range 1 to 5, BASIC either continues 
with the next statement or generates an I 1 lega 1 f u n c  t ion 
c a 1 1, as mentioned earlier. 

1 0  ON M I  GOTO 1 5 0 ,  1 6 0 ,  1 7 0 ,  1 5 0 ,  1 8 0  

Sample Program 

5 REM <CAPS> MUST BE ON 
1 0  I N P U T  "ENTER A , B ,  o r  C,";LS 
2 0  L = A S C  CLS)  
3 0  ON L - 6 4  GOTO 5 0 ,  6 0 ,  7 0  
4 0  P R I N T  "TRY AGA1N":GOTO 1 0  
5 0  P R I N T  "YOU TYPED 'A"' :END 
6 0  P R I N T  "YOU TYPED 'B ' " :END 
7 0  P R I N T  "YOU TYPED 'C ' " :END 

204 



Chapter 10 I BASIC Keywords 

ON KEY(number) GOSUB line 

Transfers program control to  a subroutine when you press the 
specified key. 

Number may be a number in the range 1 to 20, indicating the 
number of the key to trap. Function keys use their corresponding 
function key numbers. The cursor direction keys are numbered: 

m 11 
El 12 
El 13 
El 14 

User keys are numbered 15 through 20. User keys are defined 
with the KEY statement. 

Line is the first line number in the subroutine to  execute when 
the specific key is pressed. If you specify Line 0, you turn off key 
trapping for that key. It is the same as executing a KEYO OFF 
statement. Use the RETURN statement to  exit the subroutine. 

BASIC executes the ON KEYO GOSUB statement only if a 
KEYO ON statement has been executed previously to  enable key 
trapping for that key. 

If a KEYO STOP statement has been issued to halt key trapping 
for that key temporarily, BASIC executes the subroutine immedi- 
ately after the next KEYO ON statement for that key. 

When you execute the ON KEYO GOSUB statement, BASIC 
immediately issues a KEYO STOP statement for that key to pre- 
vent recursive traps. When BASIC executes the RETURN from 
the subroutine, it automatically executes another KEYO ON 
statement for that key to enable key trapping again, unless the 
subroutine executes a KEYO OFF statement for that key. 

205 



Chapter 10 I BASIC Keywords 

Sample Program 
1 0  KEYCS) ON 
2 0  K E Y ( 1 )  ON 
3 0  ON K E Y ( 5 )  GOSUB 8 0  
4 0  ON K E Y ( 1 )  GOSUB 1 0 0  
5 0  FOR I = 1 TO 1 0 0  
60 PRINT "NO K E Y  PRESSED" 
7 0  NEXT 1:END 
8 0  P R I N T  "KEY(5 )  PRESSED * * * * * * * * * * * * l a  

90 RETURN 
1 0 0  P R I N T  "KEY(1  1 PRESSED ; ;; ; ; ; ; ; ; ; ; ;'I 
1 1 0  RETURN 

This program sets up [F5j and [F11 to  be trapped. 

206 



Chapter 10 I BASIC Keywords 

ON PEN GOSU Statement 

ON PEN GOSUB line 

Transfers program control to a subroutine when you activate the 
light pen. 

Line is the first line number in the subroutine to execute when 
the light pen is activated. If you specify Line 0, you turn off 
trapping for the pen. It is the same as executing a PEN OFF 
statement. Use the RETURN statement to  exit the subroutine. 

BASIC executes the ON PEN GOSUB statement only if a PEN 
ON statement has been executed previously to enable light pen 
trapping. 

If a PEN STOP statement has been issued to halt trapping for 
the pen temporarily, BASIC executes the subroutine immediately 
after the next PEN ON statement. 

When you execute the ON PEN GOSUB statement, BASIC 
immediately issues a PEN STOP statement to prevent recursive 
traps. When BASIC executes the RETURN from the subroutine, 
it  automatically executes another PEN ON statement to enable 
pen trapping again, unless the subroutine executes a PEN OFF 
statement. 

Example 
1 0  PEN ON 
2 0  ON PEN GOSUB 1 0 0 0  
3 0  REM 

5 0 0  END 
1 0 0 0  REM PROCESSING R O U T I N E  

1 1 0 0  RETURN 3 0  

Line 10 turns on pen trapping. After each program statement is 
executed, BASIC checks to see if the pen has been activated. If it 
has, BASIC immediately executes the subroutine at Line 1000. 

207 



Chapter 10 I BASIC Keywords 

PLAY() en 

ON PLAY(number) GOSUB line 

Transfers program control to  a subroutine when the number of 
notes in the background music buffer goes from number to num- 
ber minus 1. This event trapping allows continuous music by let- 
ting you maintain a full music buffer. 

Number is an integer in the range 1 to 32. 

Line is the number of first line of the subroutine to execute. If 
you specify Line 0, you turn off play event trapping. Use the 
RETURN statement to exit the subroutine. 

BASIC executes the ON PLAYO GOSUB statement only when 
playing background music (PLAY “MB”) and if the PLAY ON 
statement has been executed to enable event trapping. 

If a PLAY STOP statement has been issued to halt event trap- 
ping temporarily, BASIC executes the subroutine immediately 
after the next PLAY ON statement. 

When you execute the ON PLAYO GOSUB statement, BASIC 
immediately issues a PLAYO STOP to prevent recursive traps. 
When BASIC executes the RETURN from the subroutine, it 
automatically executes another PLAY 0 ON statement to enable 
trapping again, unless the subroutine executes a PLAYO OFF 
statement. 

Notes: BASIC does not issue a play event trap if the 
background music queue is already empty when you 
execute a PLAY ON. 

The PLAY statement is supported by a 32-element 
music queue. Given that “normal” and “staccato” 
notes are constructed from 2-note elements, the queue 
can contain as few as 16 notes or as many as 32 notes. 

208 



Chapter 10 I BASIC Keywords 

Therefore, select conservative values for the trap num- 
ber. For example, if number is set at 32, event traps 
might happen so often that there is little time to exe- 
cute the rest of your program. It is suggested that the 
trap number be less than 16 for better performance. 

Example 
100 P L A Y  ON 

540 P L A Y  "ME L1 XZITHERS"  
558 ON P L A Y ( 8 )  GOSUB 6000 

6800 REM **BACKGROUND M U S I C * *  
6810 L E T  COUNT% = COUNT% + 1 

6999 RETURN 

Control branches to a subroutine when the background music 
buffer decreases to 7 notes. 

209 



Chapter 10 I BASIC Kevwords 

ON STRIGO GOSUB Statement 

ON STRIG(number) GOSUB line 

Transfers program control to a subroutine when you press one of 
the joystick’s buttons. 

Number specifies the number of the button pressed and is one of 
the following: 

0 left joystick, button 1 
2 right joystick, button 1 
4 left joystick, button 2 
6 right joystick, button 2 

Line is the first line number of the subroutine to be executed 
when you press one of the joystick’s buttons. If you specify Line 
0, you turn off trapping for the joysticks. Use RETURN to exit 
the subroutine. 

BASIC executes the ON STRIGO GOSUB statement only if a 
STRIG ON statement has been executed previously to enable joy- 
stick trapping. 

If a STRIG STOP statement has been issued to halt joystick 
trapping temporarily, BASIC executes the subroutine immedi- 
ately after the next STRIG ON statement. 

When the ON STRIGO GOSUB statement is executed, BASIC 
immediately issues a STRIG STOP statement to  prevent recur- 
sive traps. When BASIC executes the RETURN from the subrou- 
tine, it  automatically executes another STRIG ON statement to 
enable joystick button trapping again, unless the subroutine exe- 
cutes a STRIG OFF statement. 

210 



Chapter 10 I BASIC Keywords 

Sample Program 
5 S T R I G ( 0 )  ON: S T R I G ( 2 )  ON 
1 0  ON S T R I G ( 0 )  GOSUB 1 0 0 0  
2 0  ON S T R I G ( 2 )  GOSUB 2 0 0 0  
3 0  P R I N T  "Press one of the joystick buttons." 
4 0  FOR I = 1 TO 3 0 0 0 : N E X T  I 
5 0  GOT0 3 0  
1 0 0 0  P R I N T  "You pressed the left button." 
:RETURN 
2 0 0 0  P R I N T  "You pressed the right button." 
:RETURN 

Lines 10 and 20 turn on joystick trapping. Line 30 instructs you 
to press one of the buttons. Line 40 waits for you to press a but- 
ton. If you press the left button, BASIC transfers program control 
to the subroutine at Line 1000. If you press the right button, 
BASIC transfers program control to  the subroutine at Line 2000. 
If you do not press a button, Line 50 returns to  print the mes- 
sage again. This program is a continuous loop. To end the pro- 
gram, press [CTRL][%EiK]. 

211 



Chawter 10 I BASIC Kevwords 

0 t 

ON TIMER(number) GOSUB Line 

Transfers program control to a subroutine when the specified 
period of time has elapsed. 

Number indicates the number of seconds. Number may be a 
value in the range 1 to 86400 (86400 seconds = 24 hours). 

Line is the first line number in the subroutine to  execute when 
the specified time has passed. If you specify Line 0, you turn off 
trapping for the timer. Use RETURN to exit the subroutine. 

BASIC executes the ON TIMERO GOSUB statement only if a 
TIMER ON statement has been executed previously to enable 
time event trapping. 

If a TIMER STOP statement has been issued to halt time event 
trapping temporarily, BASIC executes the subroutine immedi- 
ately after the next TIMER ON statement. 

When you execute the ON TIMERO GOSUB statement, BASIC 
immediately issues a TIMER STOP to prevent recursive traps. 
When BASIC executes the RETURN from the subroutine, it 
automatically executes another TIMER ON statement to  enable 
trapping again, unless the subroutine executes a TIMER OFF 
statement. 

212 



Chapter 10 I BASIC Keywords 

Example 
1 0  T I M E R  ON 
2 0  O N  T I M E R  ( 6 0 )  GOSUB 1 0 0 0  
3 0  REM 

5 0 0  END 

1 0 0 0  REM PROCESSING R O U T I N E  

1 1 0 0  RETURN 3 0  

Line 10 turns on timer trapping. After each statement is exe- 
cuted, BASIC checks to  see if the specified time has elapsed. If 
i t  has, BASIC immediately executes the subroutine at Line 
1000. 

213 



Chapter 10 / BASIC Keywords 

OPEN mode, [ # I  bu f f r ,  [pathnume] [dev:] [ ,record length] 
OPEN [pathnamel[dev:l [FOR model [access] AS 
[#]buffer [LEN = record length] 

Establishes an input/output path for a file or device. 

Buffer is an integer in the range 1 to 255. It specifies the I/O 
buffer in memory to use when accessing the file. The number 
sign (#) is optional. It is provided for compatibility with other 
BASICs . 
Pathname is a standard file specification as described in Chapter 
1. If you omit pathname, you must include deu:. 

deu: specifies the device to be opened for communication. 

Record length is an integer in the range 1 to 32768 that sets the 
record length for direct access files. If you omit record length, 
BASIC assumes a default record length of 128 bytes, unless you 
used /I and /R when loading BASIC. Do not use this option with 
sequential access files. 

Mode specifies any of the following: 

0 or OUTPUT 
I or INPUT 
A or APPEND 
R or RANDOM 

sequential output mode 
sequential input mode 
sequential extension of an existing file 
direct input/output mode 

In the first form of the syntax, you must use the abbreviated 
form of mode, and it must be enclosed in quotation marks. 

In the second form of the syntax, you must specify the complete 
word for mode. You may not specify RANDOM. If you want to 
use direct access in the second form of the syntax, omit mode. 

214 



Chapter 10 I BASIC Keywords 

You may open a file for output in only one buffer at a time. Once 
you assign a buffer to a file with the OPEN statement, you can- 
not use that buffer in another OPEN statement until you close 
the first file. However, BASIC lets you access the same file for 
input by opening it in different buffers. You may keep several 
records from the same file in memory for quick access. 

If you try to open a non-existing file for input, BASIC returns a 
F i l e  n o t  f o u n d  error. 

If you try to open a non-existing file for output, BASIC creates 
the file. 

If you try to open a non-existing file for append, BASIC creates 
the file and sets the mode to RANDOM. 

If you try to open a file for direct access with a record length 
that does not match the record length assigned to the file when 
it was created, an error occurs. 

Access supports networking and controls the processes that can 
access the file and the degree to which they can do so. Access 
can be any of the following: 

SHARED Any process on any machine can read from 
or write to the file. 

LOCK READ Only the current process can read the file. 
(The system grants LOCK READ only if no 
other process already has LOCK READ 
access to the file.) 

Only the current process can write to the 
file. (The system grants LOCK WRITE only 
if no other process already has LOCK 
WRITE access to the file.) 

Only the current process can read from or 
write to the file. (The system grants LOCK 
READ WRITE only i f  no other process 
already has LOCK READ, LOCK WRITE, 
or LOCK READ WRITE access to the file.) 

If you omit access, the current process can open the file any 
number of times for reading and writing, but all other processes 
are denied access. 

LOCK WRITE 

LOCK READ 
WRITE 

215 



Chapter 10 I BASIC Keywords 

Remarks 
You can refer to the same file in a subdirectory by different 
pathnames. For example, if MARY is your current directory, 
then: 

0 P E N "RE P 0 R T" 
OPEN "ES\MARY \REPORT" 
OPEN ". . \MARY\REPORT" 
OPEN ' I . .  \ .  . \MARY\REPORT" 

all refer to the same file. 

It is nearly impossible for BASIC to know that the file is the 
same simply by looking at the path. For this reason, BASIC does 
not let you open a file for output or append if it is on the same 
disk, even if the path is different. 

BASIC Devices 
The BASIC devices are: 

KYBD: LPT:n 
SCRN: CON: 
COMn: 

The BASIC file I/O system lets you take advantage of user- 
installed devices. (See your MS-DOS Reference Manual for infor- 
mation on character devices.) 

You can open and use character devices in the same manner as 
disk files. However, BASIC does not buffer the characters the 
same as for disk files. Instead, it sets the record length to  one. 

At the end of a line, BASIC sends only a carriage return (X0D'). 
If the device requires a line feed (XBA'), the device driver must 
provide it. When writing device drivers, keep in mind that other 
BASIC users will want to  read and write control information. 
Use the BASIC IOCTL statement and the IOCTL$ function to 
handle writing and reading of device control data. 

Note: A file can be opened for sequential input or 
random access on more than one file number at a 
time. A file can be opened for output, however, on only 
one file number at a time. 

216 



Chapter 10 I BASIC Keywords 

Examples 

opens the file Test.dat in direct access mode, using Buffer 2. If 
Test.dat does not exist, BASIC creates it on the current drive. 
The record length is 128 bytes. 

OPEN 'OR", 2 ,  " t e s t  . d a t "  

OPEN " L P T I : "  FOR OUTPUT A S  2 

opens the printer for sequential output using Buffer 2. 
OPEN " A : \ P A Y R O L L \ d a t a . b a 5 "  FOR I N P U T  A S  1 

opens the file Data.bas in the PAYROLL directory on Drive A for 
sequential input using Buffer 1. 

OPEN " \ D E V \ C O N : "  FOR OUTPUT A S  1 

opens the console for sequential output using Buffer 1. 
OPEN " m a i 1 i n g . d a t "  FOR APPEND A S  1 

opens the file Mailing.dat, using Buffer 1, and allows you to add 
data without destroying the current contents of the file. 

217 



Chapter 10 I BASIC Keywords 

atement 

OPEN “COMchannek [speed] [,parity] [,datal[,stop] 
[ ,RS] [ ,CS[seconds]] [ ,DS[secondsll [,CD[secondsll[, model 
[,PE] [,LF]” [FOR mde] AS [#lbufidLEN =number1 

Opens a file and allocates a buffer for RS-232C (Asynchronous 
Communications Adapter) communication. 

Channel can be 1 or 2 to  select the communications channel to  
be opened. 

Speed is an integer specifying the transmit and receive rate in 
bits per second (bps). Valid speeds are 75, 110, 150, 300, 600, 
1200, 2400, 4830, and 9600. If you omit speed, BASIC sets the 
speed at 300 bps. 

Purity is a constant specifying the parity to  be used when the 
data is transmitted and received. The constant must be one of 
the following: 

E 

0 

M 

S 

N 

EVEN transmit parity, EVEN receive parity 
checking. 
ODD transmit  parity,  ODD receive parity 
checking. 
parity bit always transmitted and received as a 
mark (1 bit). 
parity bit always transmitted and received as a 
space (0 bit). 
no transmit parity, no receive parity checking. 

If you omit parity, BASIC assumes E (EVEN). 

Datu is a n  integer specifying the number of transmit and 
receive bits. Valid values are 5, 6, 7, and 8. If you do not specify 
datu, BASIC assumes 7. 

Note: Eight data bits with parity is illegal. Therefore, 
if you specify 8 data bits, you must specify parity N. 

Stop must be either 1 or 2 to indicate the number of stop bits. If 
you omit stop, 75 and 110 bps transmit 2 stop bits, and all other 

218 



Chapter 10 I BASIC Keywords 

speeds transmit 1 stop bit. However, if you specify 5 as the data, 
the 2 stop bits actually mean 1% stop bits. 

Mode is one of the following string expressions: 

OUTPUT sequential output mode 
INPUT sequential input mode 

If you omit mode, BASIC assumes it to be random inputloutput. 

Buffer is a number in the range 1 to 15, indicating the buffer 
that accesses the file. The number sign (#) is optional. It is pro- 
vided for compatibility with other BASICs. 

Number specifies the maximum number of bytes that can be 
accessed in the communications buffer by GET and PUT state- 
ments. If you omit the LEN option, BASIC assumes 128 bytes. 

The parameters speed, parity, data, and stop are all positional. 
That is, they must be in the order specified in the syntax. If you 
omit one of the parameters, you must still include the comma to 
hold its position. 

The remaining parmeters are not positional. They may be in any 
order, or you may omit them. They control the software commu- 
nication signal lines between 2 terminals. If you omit the CS, 
DS, or CD options, the signals are not checked at all. Include 
them only if you are testing these software signals. 

The RS option suppresses the Request To Send (RTS) signal. 
Request To Send is a signal that is sent from the sending termi- 
nal to the receiving terminal to  ensure that the receiving termi- 
nal is ready to accept communication data. When you execute an 
OPEN COM statement, the RTS line is turned on, unless you 
include the RS option. 

The CS option controls the Clear To Send (CTS) signal which is 
sent from the receiving terminal to the sending terminal to let 
the sending terminal know that the receiving terminal is ready 
to receive. 

You can think of RTS and CTS as a hand-shaking exercise, in 
which the 2 terminals let each other know that they are ready to 
send andor receive data. RTS is an output signal from the send- 
ing terminal,  and CTS is a n  input signal to the sending 
terminal. 

219 



Chapter 10 I BASIC Keywords 

The DS option controls the Data Set Ready (DSR) signal. The 
DSR signal ensures that a data set, such as a modem, is present 
to  transmit the data. 

The CD option controls the Carrier Detect (CD) signal. The CD 
signal is an input signal which ensures that the data set is 
ready to  transmit the data. 

The seconds argument in the CS, DS, and CD options specifies 
the number of milliseconds to wait for the signal before return- 
ing a D e v i c e  Timeout error. Seconds may be in the range 0 to  
65535. If you omit seconds or specify a zero, the signal is not 
checked. 

If you specify RS, seconds defaults to  zero for CS. If you omit RS, 
the default for CS is 1000. Either an RS or a CS is required. 
That is, if you omit RS, the Clear To Send signal is not checked. 
If you include RS, OPEN COM waits 1 second for CS before issu- 
ing a D e v i c e  Tirneout error. 

If you omit seconds after the DS option, the default value is 
1000, and OPEN COM waits 1 second before issuing a Dev i c e 
Tirneout error. If you omit seconds after CD, the default is zero 
and the signal is not checked. 

I/O statements to a communications file do not execute if these 
signals are off. The system waits 1 second before returning a 
De v i c e T i rn e o u t error. Specifying these options lets you ignore 
these signals or specify the length of time to wait for the signal. 

The LF option sends a line feed character after every carriage 
return. This is useful if you are printing the communication 
data to a serial line printer. A line feed is also sent after the 
carriage return that is the result of the width setting. Note that 
when you specify the LF option, INPUT# and LINE INPUT# 
stop when they read a carriage return and ignore the line feed. 

Mode specifies the type of data that is transmitted. It may be 
either BIN for binary mode or ASC for ASCII mode. If you omit 
mode, OPEN COMl opens the device in binary mode. 

If you specify the BIN mode, OPEN COM does not expand tabs 
to  spaces, does not force a carriage return at the end of the line, 
does not recognize Control Z as an end-of-file, and ignores the 
LF option. 

220 



Chapter 10 I BASIC Ke.ywords 

If you specify the ASC mode, OPEN COM expands tabs to 
spaces, forces a carriage return at the end of the line, and recog- 
nizes Control Z as the end-of-file. When you close the channel, 
Control Z is sent over the RS-232 line. 

The PE option enables parity checking. With the option on, par- 
ity errors cause Device 110 errors and turn on the high order 
bit for 7 or fewer data bits. The default is no parity checking. 
Framing and overrun errors always cause Dev i c e I / 0 errors 
and turn on the high order bit, regardless of whether or not you 
use the PE option. 

Examples 
OPEN "COW1 : ' I  A S  1 

opens Buffer 1 for Communications Channel 1 at a rate of 300 
bps with even parity, 7 data bits, and 1 stop bit. RTS is sent. 

OPEN "COM2:9600,N,8,1 , B I N "  A S  2 

opens Buffer 2 for Communications Channel 2 at a rate of 9600 
bps with no parity, 8 data bits, and 1 stop bit. The data is 
binary. 

OPEN "COW1 : 4800,, , ,CS3000 ,DS2000" A S  1 

opens Buffer 1 for Communications Channel 1 at a rate of 4800 
bps with even parity, 7 data bits, and 1 stop bit. RTS is sent. 
OPEN COM issues a Device Timeout error if there is no CS 
signal after 3 seconds and no DS signal after 2 seconds. Note 
that even though parity, data, and stop are not included, the 
commas are required. 

221 



Chapter 10 I BASIC Keywords 

Statement 

OPTION BASE value 

Sets value as the minimum value for an array subscript. 

Value may be 1 or 0. The default is 0. 

If you use this statement in a program, it must precede the DIM 
statement. 

If the statement: 
OPTION BASE 1 

is executed, 1 is the lowest value an array subscript may have. 

222 



Chapter 10 /BASIC Keywords 

T tement 

OUT port, data byte 

Sends a data byte to a machine output port. A port is an input/ 
output location in memory. 

Port is an integer in the range 0 to 65535. 

Datu byte is an integer in the range 0 to  255. 

Example 

sends 100 to port 32. 

OUT 32,100 

223 



Chapter 10 I BASIC Ke,ywords 

nt 

PAINT (XJ) [ ,coIor[, border1 [, background11 

Fills in an area on the display with a selected color or pattern. 

(x,y) specify the coordinates where the painting begins. x is the 
horizontal coordinate, and y is the vertical coordinate. 

Color can be either a number or a string expression. If color is a 
number it specifies a color number available in the current 
screen mode. 

If color is a string expression, it specifies the mask to be used for 
tiling. The tiling mask describes a pattern to  be used when 
painting and is in the form: 

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Hnn) ... 
Border specifies the border color at which to stop painting, and 
must be a color number in the current palette. If you omit bor- 
der, BASIC assumes the value of color. 

See Chapter 8, “Displaying Text and Graphics,” for information 
on coordinates and colors for the current screen mode. 

Background is a 1-byte string expression specifying which color 
to skip when checking for borders while paint tiling. 

BASIC begins to change the color of pixels at the point you spec- 
ify with x and y coordinates. BASIC continues to  change the 
color of every pixel that is not the same color as color. When 
BASIC paints 1 line of pixels without changing the color of any 
pixel in that line, PAINT is complete. 

However, you may continue past this point while tile painting. 
The background option tells PAINT what background tile pattern 
or color byte to skip when checking for the boundary. 

224 



Chapter 10 I BASIC Keywords 

This means that instead of stopping when 1 line of points has 
been painted without changing the color, PAINT can continue, if 
you specify background. For example, normally you cannot draw 
alternating blue and red lines on a red background because 
PAINT stops after painting the first red line. However, by speci- 
fying red as the background color (&HAA), you can draw the red 
line over the red background. 

PAINT must start on a nonborder point. If the point is already 
border or color color, BASIC does not execute the PAINT 
statement. 

PAINT can fill any figure, but painting jagged edges or very 
complex figures may result in an o u t  o f  memory error. If this 
happens, you must use the CLEAR statement to increase the 
amount of stack space available. 

Tiling 
Tiling lets you select a pattern to be used when painting an area 
on the screen. The tile mask is 8-bits wide and may be a maxi- 
mum of 64 bytes long: 

X,Y 8 7 6 5 4 3 2 1 tile byte 

070 
071 
092 
073 

. . . . . . . .  1 

. . . . . . . .  2 

. . . . . . . .  3 

. . . . . . . .  4 

0,63 . . . . . . . .  64 

Each byte in the mask represents 8 points along the horizontal 
row and 1 point along the vertical row. PAINT repeats the tile 
mask pattern (horizontally and vertically) to create a uniform 
pattern over the entire area being painted. 

225 



Chapter 10 I BASIC Ke.ywords 

In high resolution graphics, 1 bit of the tile mask equals 1 point 
on the screen. Therefore, each position in the tile mask with the 
bit value one (1) is drawn. You can paint a pattern of Xs with 
this tile mask: 

byte 8 7 6 5 4 3 2 1  

0 1 0 0 0 0 0 0 1  
1 0 1 0 0 0 0 1 0  
2 0 0 1 0 0 1 0 0  
3 0 0 0 1 1 0 0 0  
4 0 0 0 1 1 0 0 0  
5 0 0 1 0 0 1 0 0  
6 0 1 0 0 0 0 1 0  
7 1 0 0 0 0 0 0 1  

CHR$(&HS 1) 
CHR$(&H42) 
CHR$(&H24) 
CHR$(&H18) 
CHR$(&H18) 
CHR$(&H24) 
C HR$ (&H42) 
CHR$(&HSl) 

In 4-color graphics, 2 bits correspond to each point on the screen. 
That is, each byte of the tile mask describes only 4 points. These 
2 bits describe the color for the point being drawn. The following 
chart shows the values for the given colors. Remember, Color 0 is 
the set background color. (See COLOR.) 

Palette Palette 
0 1 

binary 
value 

green cyan 01 
red magenta 10 
brown high-intensity white 11 

The following tile mask sets up a star pattern in green and 
brown using Palette 0 or in cyan and high intensity white using 
Palette 1. 

BYTE 

0 01 00 00 01 CHR$(&H41) 
1 00 01 01 00 CHR$(&H14) 
2 11 11 11 11 CHR$(&HFF) 
3 00 01 01 00 CHR$(&H14) 
4 01 00 00 01 CHR$(&H41) 

226 



Chapter 10 I BASIC Keywords 

PE netion 

PEEK(memory location) 

Returns a byte from memory location . 
Memory location must be in the range -32768 to  65535. 

The value returned is an integer in the range 0 to  255. (For the 
interpretation of a negative value of memory location, see the 
VARPTR statement.) 

PEEK is the complementary function of the POKE statement. 

Example 

BASIC returns the value stored at address 5A00 and stores it in 
variable A. 

A = PEEK t&H5A00) 

227 



Chapter 10 I BASIC Keywords 

PEN Function 

PEN( number) 

Returns the light pen’s coordinates. 

Number is a number in the range 0 to 9 that tells BASIC what 
to  return. Values 0-5 return x,y coordinates corresponding to the 
current screen mode. Values 6-9 return the character row or col- 
umn position. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Returns a -1 if pen button has been pressed since the 
last poll. Returns a 0 if not. 

Returns the x-coordinate (horizontal) where the pen 
was last activated. 

Returns the y-coordinate (vertical) where the pen was 
last activated. 

Returns a -1 if the pen button is being pressed. 
Returns a 0 if it is up. 

Re tu rns  t h e  l a s t  known valid x-coordinate 
(horizontal). 

Returns the last known valid y-coordinate (vertical). 

Returns the character row position where the pen was 
last activated. 

Returns the character column position where the pen 
was last activated. 

Returns the last known character row position. 

Returns the last known character column position. 

You must execute a PEN ON statement before executing the 
PEN function. If you do not, an Illegal f u n c t i o n  call error 
occurs. 

Example 
A = P E N C 1 )  

returns the x-coordinate of the pen. 

228 



Chapter 10 I BASIC Keywords 

PE NITr ap Statement 

PEN action 

Turns on, tu rns  off, or temporarily hal ts  light pen event 
trapping. 

Action may be any of the following: 

ON enables event trapping 
OFF disables event trapping. 
STOP temporarily suspends event trapping. 

Use the PEN/Trap statement in a light pen trap routine with 
the ON PEN statement to detect when the light pen has been 
activated. 

The PEN ON statement turns on the trap. BASIC checks after 
each program line to see if the light pen has been activated. If 
so, BASIC transfers program control to the line number specified 
in the ON PEN GOSUB statement. 

The PEN STOP statement temporarily halts light pen trapping. 
If the light pen is activated, BASIC does not transfer program 
control to the ON PEN GOSUB statement until you turn on 
trapping again by executing a PEN ON statement. BASIC 
remembers that the light pen was activated and branches to  the 
subroutine immediately after trapping is turned on again. 

The PEN OFF statement turns off light pen trapping. BASIC 
does not remember if the light pen was activated when trapping 
is turned on again. 

You must also use PEN ON before executing the PEN function. 

See ON PEN GOSUB for more information about light pen 
trapping. 

229 



Chapter 10 I BASIC Keywords 

PLAY ~tatement 

PLAY string 

Plays the musical notes specified by string. 
String is a string expression consisting of 1 or more single-char- 
acter music commands. String must be enclosed in quotation 
marks. 

The single character music commands are: 

A - G  plays notes A through G of one musical scale. 
You may include an optional number sign (#) or 
plus sign ( + ) to  indicate a sharp note or a minus 
sign (-) to indicate a flat note. You may only 
specify sharp or flat notes that correspond to the 
black keys on a piano. The letters A, C, D, F, 
and G may be followed by a plus because they 
are followed by black keys on a piano. The letters 
A, B, D, E, and G may be followed by minus 
because they are preceded by black keys on a 
piano. 

Ln 

On 

sets the duration of the notes that follow. n may 
be a value in the range 1 to 64. Here are a few of 
the more common lengths: 

1 indicates a whole note. 
2 indicates a half note. 
4 indicates a quarter note. 
8 indicates an eighth note. 

16 indicates a sixteenth note. 

If you want to change the duration for only 1 
note, place n immediately after the note, omit- 
ting the L. For example, A16 is equivalent to 
L16A. 

sets the current octave. There are 7 octaves, 0 
through 6. Each octave starts with C and ends 
with B. Octave 3 starts with middle C. If you 
omit n, BASIC assumes Octave 4. 

230 



Chapter 10 I BASIC Keywords 

> 

< 

Changes the current octave to the next higher 
octave . 
Changes the current octave to the next lower 
octave. 

Nn plays a note. n may be in the range 0 to  84. In 
the 7 possible octaves, there are 84 notes. Instead 
of specifying the letter and the octave of the note, 
you may specify its number 1 to  84. Specifying 
zero means rest. 

rests. n may be in the range 1 to 64 and has the 
same meaning as n with the L option. 

sets the number of quarter notes in 1 minute. n 
may be in the range of 32 to  255. If you omit n, 
BASIC assumes 120 quarter notes in 1 minute. 
That is a moderate tempo. See the SOUND 
statement for information on beats per minute for 
common tempos. 

Pn 

Tn 

plays as a dotted note. BASIC plays the note one- 
half its length longer. You may use more than 
one dot after each note. BASIC scales the length 
of time accordingly. Dots may also appear after 
the P option to scale the length of the rest. 

MF plays the music in the foreground, which includes 
sounds made by both PLAY and SOUND. This 
means that each subsequent note or sound does 
not start until the previous note or sound is fin- 
ished. If you omit MF and MB, BASIC assumes 
MF. 

plays the music in  the background, which 
includes sounds made by both PLAY and 
SOUND. This means that each note or sound is 
placed in a buffer allowing the BASIC program 
to continue execution while music plays in the 
background. A maximum of 32 notes and/or rests 
can play in background at a time. 

MB 

23 1 



Chapter 10 I BASIC Keywords 

MN 

ML 

MS 

X variable; 

sets "music normal"; each note plays 7/8 of the 
duration as set by the L option. If you omit MN 
and MS, BASIC assumes MN. 

sets "music legato"; each note plays the full 
duration as set by the L option. 

sets "music staccato"; each note plays 3/4 of the 
duration as set by the L option. 

executes a substring. The X command lets you 
execute a second substring from a string, much 
like GOSUB. You can have one string execute 
another, which executes a third, and so on. Vari- 
able is a string variable in your program that 
contains the substring you want to  execute. Vari- 
able may contain an  X command t o  execute 
another substring. The semicolon after the vari- 
able name is required. 

With the 0, N, P, and T commands, n may also be a numeric 
variable in your BASIC program. Do not space between the com- 
mand and the n or between the command and the variable. You 
must include a semicolon after the variable name. 

Example 
1 0  PLAY "C4F .C8F8 .C16F8 .G16A2F2"  
2 0  I N P U T  "CAN YOU NAME THAT TUNE " ; A $  
4 0  I F  A $  = "THE EYES OF TEXAS" THEN GOTO 5 0  ELSE 

5 0  P R I N T  "THAT'S R I G H T ! "  
P R I N T  "TRY AGAIN" :  GOTO 1 0  

232 



Chapter 10 I BASIC Keywords 

PLAY Function 

PLAY (num ber) 

Returns the number of notes currently in the background music 
queue. 

The maximum number that can be returned is 32 because the 
buffer can hold a maximum of 32 notes and/or rests. 

Number is a dummy argument. 

The PLAY function returns a 0 when the program is running in 
music foreground mode. 

See also SOUND. 

Sample Program 
10 PLAY "ME ABCDEFG" 
20 I F  PLAY (0) = 4 GOTO 40 
30 GOTO 20 
40 PLAY "GFEDCBA" 

Line 10 sends notes to the music buffer. When only 4 notes are 
left, Line 40 sends more notes to  the buffer. 

233 



Chapter 10 I BASIC Keywords 

PLAY /Trap Statement 

PLAY action 

Turns on, turns off, or temporarily halts background music event 
trapping. 

Action may be any of the following: 

ON enables play event trapping. 

OFF disables play event trapping. 

STOP 

Use the PLAY/Trap statement in a background music trap rou- 
tine with the ON PLAY GOSUB statement to detect when the 
background music queue goes from number to number minus 1. 

The PLAY ON statement turns on the trap. BASIC checks the 
number of notes in the background music queue after each pro- 
gram line. If the number is equal to that in the ON PLAYO 
GOSUB statement, BASIC transfers program control to  the line 
number specified. 

The PLAY STOP statement temporarily halts background music 
trapping. If the number of notes equals the specified number, 
BASIC does not transfer program control to the ON PLAYO 
GOSUB statement until you turn on trapping again by execut- 
ing a PLAY ON statement. BASIC remembers that the number 
of notes was equal and branches to  the subroutine immediately 
after trapping is turned on again. 

The PLAY OFF statement turns off background music trapping. 
BASIC does not remember if the number of notes in the queue is 
equal to the number specified when trapping is turned on again. 

See ON PLAYO GOSUB for more information about background 
music trapping. 

temporarily suspends play event trapping. 

234 



Chapter 10 I BASIC Keywords 

PMAP Function 

PMAP(coordinate,actwn) 

Returns the physical or world coordinate for the specified coordi- 
nate. 

Coordinate is any x- or y-coordinate. If coordinate is a physical 
coordinate, it must be within the limits of the screen. If coordz- 
nute is a world coordinate, it may be any single precision floating 
point number. 

Action is one of the following: 

0 

1 

2 

3 

returns the physical x-coordinate for the specified 
world coordinate. 

returns the physical y-coordinate for the specified 
world coordinate. 

returns the world x-coordinate for the specified physi- 
cal coordinate. 

returns the world y-coordinate for the specified physi- 
cal coordinate. 

Example 

returns the physical x-coordinate of the world coordinate 200 
and places it in A. 

A = P M A P C 2 0 0 , f l )  

235 



Chapter 10 I BASIC Keywords 

POINT/Graphics ~nction 

POINT (XJ) 
POINT (action) 

Returns the color number of a point on the screen or returns the 
current physical or world coordinates. 

(x,y) specify the coordinates of the point. x is the horizontal 
point, and y is the vertical point. The x and y coordinates must 
be absolute values. If you specify a point that is out of range, 
BASIC returns a -1. 

See Chapter 8, “Displaying Text and Graphics,” for information 
on coordinates for the current screen modes. 

Action is one of the following: 

0 returns the current physical x-coordinate (horizontal). 

1 returns the current physical y-coordinate (vertical). 

2 If WINDOW is active, returns the world x-coordinate. 

3 If WINDOW is active, returns the world y-coordinate. 

When retrieving the color number, POINT returns the color 
number as it is defined in the current palette. 

Otherwise, returns the physical x-coordinate. 

Otherwise, returns the physical y-coordinate. 

Example 
1 0  SCREEN 1 
2 0  I F  P O I N T  < 1 , 1 ) < > 0  THEN PRESET C 1 , l )  ELSE PSET 
C 1 , l )  

If point 1,l is any foreground color, PRESET changes it to the 
background color. If the point is the background color, PSET 
changes it to  Color 3. 

1 0  SCREEN 1 
2 0  X-POINT C B ) : Y = P O I N T < l )  
3 0  P R I N T  X , Y  

BASIC prints the coordinates of the graphics cursor. 

236 



Chapter 10 I BASIC Keywords 

Statement 

POKE memory location, data byte 

Writes data byte into memory location. 

Both memory location and data byte must be integers. Memory 
location must be in the range -32768 to  65535. 

POKE is the complementary statement of PEEK. The argument 
to  PEEK is a memory location from which a byte is to be read. 

PEEK and POKE are useful for storing data efficiently, loading 
assembly-language subroutines, and passing arguments (or 
results) to and from assembly-language subroutines. 

See also VARPTR. 

Example 

writes a hexadecimal FF into memory location 5A00. 

P O K E  C H 5 A 0 0 ,  (IHFF 

231 



ChuDter 10 I BASIC Kevwords 

POS Function 

POS( num ber) 

Returns the current column position of the cursor. 
Number is a dummy argument. 

POS returns a number in the range 1 to 80, indicating the cur- 
rent cursor-column position on the display. 

Example 

prints 40.  The PRINT TAB statement moves the cursor to  Posi- 
tion 40; therefore, POS(0) returns the value 40. (However, 
because a blank is inserted before the “4” to accommodate the 
sign, the “4” is actually at Position 41.) 

P R I N T  T A B C 4 0 )  POSCB) 

Sample Program 
1 5 0  CLS 
1 6 0  cl$ = I N K E Y $  
1 7 0  I F  A $  = “I’ THEN 1 6 0  
1 8 0  I F  POSCX) > 7 0  THEN I F  A $  = CHR$C32)  THEN A $  
= C H R S C l 3 )  
2 0 0  L P R I N T  A S ;  
2 1 0  GOT0 1 6 0  

This program lets you use your printer as a typewriter (except 
that you cannot correct mistakes). Your computer keyboard is 
the typewriter keyboard. Everything you type is printed on your 
printer. The program also makes sure that no word is divided 
between two lines. 

238 



Chapter 10 I BASIC Keywords 

Statement 

PRINT data[,data,. . .I 

Prints numeric or string data on the display. You can substitute 
a question mark (?) in place of the word PRINT. 

Data is any numeric or string constant or variable. If you omit 
data, BASIC prints a blank line. If you specify more that 1 data 
item in the statement, separate them by commas, semicolons, or 
spaces. 

If you use commas, the cursor automatically advances to  the 
next tab position before printing the next item. (BASIC divides 
each line into print zones containing 14 positions each, at col- 
umns 14, 28, 42, 56, and 70.) 

If you use semicolons or spaces to  separate the data items, 
PRINT prints the items without any spaces between them. 
BASIC begins the next PRINT item where the last one stopped. 

If no trailing punctuation is at the end of the PRINT statement, 
the cursor drops to the beginning of the next line. 

If BASIC tries to  print a string longer than it can fit on the cur- 
rent line, it moves to  the next line and prints the string. 

Single precision numbers with 7 or fewer digits that can be accu- 
rately represented are printed in regular format rather than 
exponential format. For example, 1E-7 is printed as .0000001; 
1E-8 is printed as 1E-08. 

Double precision numbers with 16 or fewer digits that can be 
accurately represented are printed in regular format rather than 
exponential  format .  For example, 1D-15 i s  pr inted as 
.000000000000001; 1D-16 is printed as 1D-16. 

BASIC prints all numbers with a trailing blank and prints posi- 
tive numbers with a leading blank. Negative numbers are pre- 
ceded by a minus sign. 

String constants must be enclosed in quotation marks. 



Chapter 10 I BASIC Kkywords 

Examples 
P R I N T  

displays DONOTLEAVESPACESBETWEENTHESEWORDS 

Sample Program 
6 0  I N P U T  "ENTER T H I S  YEAR"; Y 
7 0  I N P U T  "ENTER YOUR AGE";A 
8 0  I N P U T  "ENTER A YEAR I N  THE FUTURE";F 
9 0  N = A + CF - Y )  
1 0 0  P R I N T  " I N  THE YEAR"F"Y0U W I L L  BE"N"YEARS 
OLD" 

Because F and N are positive numbers, PRINT inserts a space 
before and after them; therefore, your display should look similar 
to this (depending on your input): 

I N  THE YEAR 2 0 0 4  YOU W I L L  BE 4 6  YEARS OLD 

If we had separated each expression in Line 100 by a comma: 
1 0 0  P R I N T  " I N  THE YEAR",F,"YOU W I L L  BE",N,"YEARS 
OLD" 

BASIC would move to the next tab position after printing each 
data item. 

240 



Chapter 10 I BASIC Keywords 

PRINT USING Statement 

PRINT USING format; data[,data, ...I 

Prints data using a format you specified. This statement is espe- 
cially useful for printing report headings, accounting reports, 
checks, or any other documents that require a specific format. 

Format consists of 1 or more field specifier(s1, or any alphanu- 
meric character. Format must be enclosed in quotation marks. 

Datu may be string and/or numeric value(s). If you specify more 
than 1 data item in the statement, use the same separators as 
described in PRINT. 

With PRINT USING, you may use certain characters called field 
specifiers, to  format the field. You may use more than 1 field spe- 
cifier, except as indicated. 

Specifiers for String Fields: 

! prints the first character in the string only. 
P R I N T  U S I N G  ' I !" ;  "PERSONNEL" 

BASIC prints P. 

\spaces\ prints 2 + n characters from the string (n is the num- 
ber of spaces between the slashes). If you type the 
backslashes without any spaces, BASIC prints 2 char- 
acters; with one space, BASIC prints 3 characters, and 
so on. If the string is longer than the field, the extra 
characters are ignored. If the field is longer than the 
string, the string is left-justified and padded with 
spaces on the right. 
P R I N T  USING " \ b b b \ " ;  "PERSONNEL" 

BASIC prints PERSO. 

prints the string without modifications. 
1 0  A$="TAKE" :B$="RACE"  
20 P R I N T  U S I N G  " ! " : A $ :  
30 P R I N T  U S I N G  "&";B$ 

When this program is run, BASIC prints TRACE. 

241 



Chapter 10 I BASIC Keywords 

Specifiers for Numeric Fields: 

# prints the same number of digit positions as number 
signs (#). Numbers are rounded as necessary. 

You may insert a decimal point at any position. BASIC 
always prints the digits preceding the decimal point. If 
there is no number, BASIC prints a zero. 

If the number to  be printed has fewer digits than posi- 
tions specified, the number is right-justified (preceded 
by spaces). If the number to  be printed is larger than 
the specified numeric field, a percent sign (%) is 
printed in front of the number. 
PRINT USING " # # . # # " ; 1 1 1  .22 
PRINT USING " # I . # # " ;  .75 
PRINT USING "###.t#";876.567 

BASIC prints x1 1 1  .22, 0.75 and 876.57, respectively. 

If the number of digits specified exceeds 24, an 1 1 1 e - 
gal function call occurs. 

prints the sign of the number. The plus sign may be 
typed at the beginning or at the end of the format 
string. 

+ 

PRINT USING " + # # . I #  'I; -98.45,3.50,22.22,-.9 

BASIC prints: -98.45 +3.50 +22.22 -0.90 

PRINT USING " # I . # # +  'I; -98.45,3.50,22.22, - .9 

BASIC prints: 98.45- 3.50+ 22.22+ -0.90- 

(Note the use of spaces at the end of a format string to 
separate printed values.) 

prints a negative sign after negative numbers (and a 
space after positive numbers). 

- 

PRINT USING " # # # . # - " ;  -768.660 

BASIC prints 768.7- 

242 



Chapter 10 I BASIC Ke.ywords 

** fills leading spaces with asterisks. The 2 asterisks also 
establish 2 more positions in the field. 
PRINT USING " * * # # # # " ;  44.0 

BASIC prints * * * 4 4 

$$ prints a dollar sign immediately before the number. 
This specifies 2 more digit positions, one of which is 
the dollar sign. You may not use exponent format with 
$$. 
PRINT USING "$$#I.##"; 112.7890 

BASIC prints $ I I 2 .79 

**$ fills leading spaces with asterisks and prints a dollar 
sign immediately before the number. 
PRINT USING " * * $ # # . # # " ;  8.333 

BASIC prints ***$8.33 

prints a comma before every third digit to  the left of 
the decimal point. The comma establishes another digit 
position. 
PRINT US I NG " A # # # ,  ### ' I ;  1234.5 

BASIC prints I ,234.50 

prints in exponential format. The 4 exponent signs are 
placed after the digit position characters. You may 
specify any decimal point position. You may not use $$ 
with exponent format. 
PRINT U S  I NG ' I .  ; 888888 

BASIC prints .8889E + 0 6  

A h 1 1  

Prints next character as a literal character. 
PRINT US I NG 'I-! # # .  ##-! ' I ;  12.34 

BASIC prints ! I 2.34 ! 

243 



ChaDter 10 I BASIC Kevwords 

Sample Program 
4 2 0  C L S :  A $  = " * * $ # # , # # # # # # . # #  DOLLARS" 
4 3 0  I N P U T  "WHAT I S  YOUR F I R S T  NAME"; F $  
4 4 0  I N P U T  "WHAT I S  YOUR M I D D L E  NAME"; M $  
4 5 0  I N P U T  "WHAT I S  YOUR L A S T  NAME". L $  
4 6 0  I N P U T  "ENTER AMOUNT PAYABLE".  

4 8 0  P R I N T  U S I N G  ' I ! !  ! !  'I; F $ ;  ' I . " ;  M S ;  " - >  'I. 

4 9 0  P R I N T  L $  
5 0 0  P R I N T  : P R I N T  U S I N G  A $ ;  P 

4 7 0  CLS : PRINT ' # P A Y  T O  THE O R D E ~  OF 1 1 ;  

In Line 480, each ! picks up the first character of one of the fol- 
lowing strings (F$, ".", M$, and "." again). Notice the 2 spaces in 
"!!b!!b". These 2 spaces insert the appropriate spaces after the 
initials of the name (see below). Also notice the use of the vari- 
ables A$ for format and P for item list in Line 500. Any serious 
use of the PRINT USING statement would probably require the 
use of variables rather than constants, at least for data items. 
(We have used constants in our examples for the sake of better 
illustration.) 

When the program above is run, the display shows: 
WHAT I S  YOUR F I R S T  NAME? JOHN 
WHAT I S  YOUR M I D D L E  NAME? PAUL 
WHAT IS YOUR L A S T  NAME? JONES 
ENTER AMOUNT PAYABLE? 1 2 3 4 5 . 6  
PAY TO THE ORDER OF J. P .  JONES 

* * * * * $ 1 2 , 3 4 5 . 6 0  DOLLARS 

244 



Chapter 10 I BASIC Keywords 

PRINT# Statement 

PRINT# buffer,[USING format1 data[,data, ... I 

Writes data items to a sequential disk file. 

Buffer is the number assigned to the file when you opened it. 

When you first open a file for sequential output, BASIC sets a 
pointer to the beginning of the file-that is where PRINT# 
starts writing the data items. At the end of each PRINT# opera- 
tion, the pointer advances so that data items are written in 
sequence. 

A PRINT# statement creates a disk image similar to  the image 
a PRINT to the display creates on the screen. For this reason, be 
sure to  delimit the data so that it will be input correctly from 
the disk. 

PRINT# does not compress the data before writing it to  disk. It 
writes an ASCII-coded image of the data. 

When you include the USING option, data is written to the disk 
in the format you specify. See PRINT USING. 

Examples 
I f  A = 1 2 3 . 4 5  
P R I N T #  l , A  

writes this 9-byte character sequence to the file as: 
h l 1 2 3 . 4 5 Y  c a r r i a g e  r e t u r n  

The punctuation in the PRINT list is very important. Unquoted 
commas and semicolons have the same effect as they do in regu- 
lar PRINT statements to  the display. For example: 

R = 2 3 0 0  
B = 1 . 3 0 3  
P R I N T #  1 ,  A,B 

writes the data on disk as: 
hl 2 3 0 0  UUhlhlhlhlhlMhlhl 1 . 3 0 3 M  c a r r i a g e  r e t u r n  

245 



Chapter 10 I BASIC Keywords 

The comma tells BASIC to tab between A and B, which creates 
10 extra spaces in the file. Generally you do not want to use up 
storage space this way, so you use semicolons instead of commas. 

P R I N T #  1 ,  A ;  “ , ‘ I ;  B 

This time BASIC writes the data as: 
1 2 3 . 4 5 , l  . 3 0 3  

An INPUT# statement reads this as 2 separate fields. 

If string variables contain commas, semicolons, or leading 
blanks, enclose them in quotation marks. For example: 

A S  = CAMERCI, AUTOMATIC 
B$ = 1 0 2 3 8 2  
P R I N T #  1 ,  A S ;  E$ 

writes the data as: 
C A M E R A U U ~ U U U ~ ~ U U A U T O M C I T I C l 0 2 3 8 2  

An INPUT# statement reads this as 2 separate fields 
A $  = CCIMERA 
E$ = AUTOMCITICI 0 2 3 8 2  

To separate these 2 strings properly in the file, write quotation 
marks using the hexadecimal representation CHR$(34). For 
example: 

P R I N T #  1 ,  C H R $ < 3 4 ) ;  A $ ;  C H R $ < 3 4 ) ;  E$; C H R $ < 3 4 )  

BASIC writes the following image to the file: 
“CAMERA, CIUTOMCITI C”1 0 2 3 8 2 ”  

The s ta tement  INPUT# 1, A$, B$ reads “CAMERA, 
AUTOMATIC” into A$ and “102382” into B$. 

246 



Chapter 10 I BASIC Keywords 

You can write files in a carefully controlled format using 
PRINT# USING. You also can use this option to control how 
many characters of a value are written to disk. 

For example, suppose A$ = “LUDWIG’, B$ = “VAN, and C$ = 
“BEETHOVEN”. Then the statement: 

PRINT# 1 ,  USING”! . !  . \ i d i d \ ” ; f A $ ; B $ ; C $  

writes the data in nickname form: 
L . V .  BEET 

(In this case, we did not want to add any explicit delimiters.) See 
PRINT USING for more information on the USING option. 

247 



Chapter 10 I BASIC Keywords 

PSET [STEP] (x,y)[,colorl 
PRESET [STEP] (x,y)[,colorl 

Draws a point on the display. 

The STEP option tells BASIC that the (x,y) coordinates are rela- 
tive to  the last point referenced. 

(x,y) specify the coordinates in which to draw the point. X is the 
horizontal coordinate and y is the vertical coordinate. 

Color specifies the color of the point. 

See Chapter 8, “Displaying Text and Graphics” for information 
on coordinates and colors. 

The only difference between the PSET and PRESET statements 
is the default values for color. If you use PSET, color defaults to 
the foreground color. If you use PRESET, color defaults to the 
background color. 

Note: BASIC does not print and does not issue an 
error message for points the coordinate values of 
which are beyond the edge of the screen. However, 
values outside the integer range (-32768 to 32767) 
cause an overflow error. 

I 

Sample Program 
5 SCREEN 1 
10 FOR 1 = 0  TO 100 
20 PSET (1,I) 
30 NEXT I’draw a diagonal line to (100,100) 
40 FOR I = 100 TO 0 STEP - 1  
50 PRESET (1,1),0 
6 0  NEXT I 
70 ‘clear t h e  line by setting each pixel to 0 
8 0  SCREEN 0 

Lines 10 to 30 draw a diagonal line on the screen from the home 
position to Position 100,100. Lines 40 to 60 erase the line by 
drawing another line at the same position in the background 
color. 

248 



Chapter 10 I BASIC Keywords 

PUT Statement 

PUT [#lbuffer[,recordl 

Puts a record in a direct access disk file. 

Buffer is the number assigned to the file when you opened it. 
The number sign (#) is optional. It is provided for compatibility 
with other BASICs. 

Record is the record number you want to write to  the file. It is 
an integer in the range 1 to 16,777,215. If you omit record, the 
current record number is used. 

If record is higher than the end-of-file record number, then rec- 
ord becomes the new end-of-file record number. 

The first time you use PUT after opening a file you must specify 
the record. The first time you access a file via a particular buffer 
the next record is set equal to  one greater than the last record 
accessed. 

See Chapter 7, “Disk Files,” for programming information. 

Examples 
PUT 1 

writes the next record from Buffer 1 to a direct access file. 
PUT 1 ,25 

writes Record 25 from Buffer 1 to a direct access file. 

249 



Chapter 10 I BASIC! W w o r d s  

PUT/Cornmunications Statement 

PUT [#I buffe,number 

Transfers data from the communications buffer to  the communi- 
cations line. 

Buffer is the number assigned to the file when you opened it. 
The number sign (#) is optional. It is provided for compatibility 
with other BASICs. 

Number is the number of bytes to transfer. It cannot exceed the 
value you used in the LEN option in the OPEN COM statement. 

Note: Because of the low performance associated with 
telephone line communications, we recommend that 
you not use GET and PUT statements in  such 
applications. 

Example 

transfers 80 bytes from communications buffer (Buffer 2) t o  the 
communications line. 

PUT 2 , 8 0  

Sample Program 
1 0  OPEN "CUM1 :I' AS 1 
2 0  F I E L D  1 ,  8 &S cI$ 
3 0  OPEN " R 1 ' , 3 , " d a t a . f i 1 " , 8  
4 0  F I E L D  3, 8 A S  NO 
5 0  FOR I = 1 TO 7 
6 0  GET 3 , 1  
7 0  L S E T  A $ = N $  
8 0  PUT 1 ,8 
9 0  NEXT I 
1 0 0  CLOSE 

This program moves the data from the Data31 file buffer to the 
communications buffer. Line 80 sends the data in the communi- 
cations buffer to  the communications line. 

250 



Chawter 10 /BASIC Keywords 

PUTGraphics Statement 

PUT (x,y),array[,action] 

Transfers an image stored in an  array onto the screen. 

You get the GET/Graphics and PUT/Graphics statements 
together for animation and high-speed object motion in the 
graphics modes. The GET/Graphics statement transfers the 
screen image described by specified points of the rectangle in the 
array. The PUT/Graphics statement transfers the image from 
the array to the display. 

(x,y) specify the coordinates where the image begins. x is the 
horizontal coordinate and y is the vertical coordinate. 

The x and y coordinates are the coordinates of the upper left cor- 
ner of the image. If you omit x and y, BASIC begins the image 
at the last point referenced on the screen. See Chapter 8, “Dis- 
playing Text and Graphics,” for information on coordinates for 
the current screen mode. 

BASICreturnsan Illegal f u n c t i o n c a l l  erroriftheimageis 
too large to  fit on the current viewport. 

Array is the array variable name that holds the image. 

Action sets the type of interaction between the transferred image 
and the image already on the screen. Action may be PSET, PRE- 
SET, AND, OR, or XOR. If you omit action, BASIC assumes 
XOR. The following describes each type of action: 

PSET transfers the data to the screen exactly as it was 
stored in the array. 

251 



Chapter 10 I BASIC Keywords 

PRESET produces an opposite image on the screen. In 
Screen Mode 2, white becomes black on the screen (and 
black becomes white). In Screen Mode 1 (the 4-color mode), 
the color value becomes the numeric opposite on the screen. 
This table shows the color displayed for each possible value: 

Screen Mode 1 

Array 
Value 

0 
1 
2 
3 

Screen 
Color 

3 
2 
1 
0 

AND transfers the image over existing image. The result is 
a logical AND of the array and the image on the screen. 

OR superimposes an image onto an existing image. The 
result is a logical OR of the array and the image on the 
screen. 

XOR inverts the points on the screen where a point exists 
in the array image. When an image is PUT against a com- 
plex background twice, the  background is restored 
unchanged. This lets you move an object around the screen 
without obliterating the background. 

Animation 
To perform object animation, follow these steps: 

1. Put the object on the screen using XOR. 
2. Calculate the next position of the object. 
3. Put the object on the screen a second time at the previous 

location to remove the previous image. 
4. Repeat Step 1, putting the object at  the next location. 

If you do movement this way, the background is not changed. You 
can reduce flicker by minimizing the time between Steps 4 and 
1 and by ensuring enough time delay between Steps 1 and 3. If 
you are animating more than 1 object, process every object at 
the same time, 1 step at a time. 

252 



Chapter 10 I BASIC Keywords 

If preserving the background is not important, you can perform 
animation using the PSET action rather than the XOR action. 
Leave a border around the image as large or larger than the 
maximum distance the object moves. When you move an object, 
this border effectively erases any points. This method may be 
faster than the XOR method described before, because only one 
PUT is required to move an object. 

Sample Program 
See the GET/Graphics statement. 

253 



Chapter 10 I BASIC Kwwords 

RANDOMIZE Function 

RANDOMIZE [number] 

Reseeds the random number generator. 

Number may be an integer, or single- or double precision num- 
ber. If you omit number, BASIC suspends program execution and 
prompts you for a number before executing RANDOMIZE: 

R a n d o m  N u m b e r  Seed ( - 3 2 7 6 8  t o  3 2 7 6 7 ) ?  

If the random number generator is not reseeded, the RND func- 
tion returns the same sequence of numbers each time it is exe- 
cuted. To change the sequence of random numbers every time 
the RND function is executed, place a RANDOMIZE statement 
before the RND function. 

You can use the TIMER function to ensure that the random 
number generator is reseeded with a different value each time 
BASIC executes the RANDOMIZE function. For example, the 
statement: 

RCINDOMIZE TIMER 

uses the value returned by TIMER as the seed. TIMER returns 
the number of seconds that have elapsed since midnight or the 
last system reset. Because the seconds are constantly changing, 
number has a different value each time BASIC executes this 
statement. 

Sample Program 
1 0  CLS 
2 0  RANDOMIZE T IMER 
3 0  I N P U T  " P I C K  A NUMBER BETWEEN 1 CIND 1 0 0 " ;  A 
4 0  B = I N T < R N D * l 0 0 )  
5 0  I F  CI=B THEN 8 0  
6 0  P R I N T  " Y o u  l o s e ,  the a n s w e r  i s " B ; " - - t r y  
a g a i n  . I' 
7 0  GOT0 2 0  
8 0  P R I N T  " Y o u  p i c k e d  t h e  r i g h t  n u m b e r  - -  y o u  
w i n . "  

254 



Chapter 10 I BASIC Keywords 

READ Statement 

READ variable[, varia ble, . . .I 

Reads values from a DATA statement and assigns them to 
variables . 
BASIC assigns values from the DATA statement on a one-to-one 
basis. The first time READ is executed, the first value in the 
first DATA statement is assigned to the first variable; the second 
time, the second value is assigned to the second variable, and so 
on. 

A single READ may access 1 or more DATA statements, or sev- 
eral READS may access the same DATA statement. If a program 
contains multiple DATA statements, BASIC reads them in the 
order they appear. 

The values read must agree with the variable types specified in 
a list of variables; otherwise, a S y n t a x  e r r o r occurs. 

If the number of variables in the READ statement exceeds the 
number of elements in the DATA statementb), BASIC returns an 
O u t  o f  DATA error message. If the number of variables specified 
is less than the number of elements in the DATA statement(s1, 
the next READ statements begin reading data  at the first 
unread element. 

To reread DATA statements from the start, use the RESTORE 
statement. 

Example 

reads a numeric value from a DATA statement and assigns it to  
variable T. 

READ T 

255 



Chapter 10 I BASIC Ke.ywords 

Sample Program 
This program illustrates a common application for the READ 
and DATA statements. 

4 0  P R I N T  "NAME", "AGE" 
5 0  READ NS 
68 I F  N t = " E N D "  THEN P R I N T  "END OF L I S T " :  END 
7 0  READ AGE 
8 0  I F  AGE<18  THEN P R I N T  NS,  AGE 
9 0  GOT0 50 
1 0 0  DATA " S M I T H ,  JOHN", 3 0 ,  "ANDERS, T . M . "  2 0  
1 1 0  DATA "JONES, B I L L " ,  1 5 ,  "DOE, SALLY" ,  ;1 
1 2 0  DATA " C O L L I N S ,  W . P . " ,  1 7 ,  "END" 

256 



Chapter 10 I BASIC Keywords 

ta t 

REM 

Inserts a remark line in a program. 

REM instructs the computer to  ignore the rest of the program 
line, which lets you insert remarks in your program for docu- 
mentation. Thus, when you look at a listing of your program, you 
can quickly interpret it. 

If REM is used in a multistatement program line, it must be the 
last statement in the line. 

You may use an apostrophe (') as an abbreviation for REM. 

Sample Program 
1 1 0  D I M  V C 2 0 )  
1 2 0  REM CALCULATE AVERAGE V E L O C I T Y  
1 3 0  FOR 1 = 1  TO 2 0  
1 4 0  SUM=SUM + V ( I 1  
1 5 0  NEXT I 

OR 
1 1 0  D I M  V ( 2 0 1  
1 2 0  FOR 1 = 1  TO 2 0  'CALCULATE AVERAGE V E L O C I T Y  
1 3 0  SUM=SUM + V C I )  
1 4 0  NEXT I 

257 



Chapter 10 I BASIC Keywords 

RENUM Statement 

RENUM [new Zinel[,[Zinel[,incrementll 

Renumbers the program currently in memory. You can renumber 
the entire program or renumber from a specific line to  the end. 

Line is the line in the program where BASIC starts renumber- 
ing. If you omit line, it renumbers the entire program. 

New line is the new line number assigned to line. If you omit 
new line, BASIC starts numbering at Line 10. 

Increment tells BASIC how to number the successive lines. If you 
omit increment, it increments by 10. 

RENUM also changes all line number references appearing after 
GOTO, GOSUB, THEN, ONIGOTO, ONIGOSUB, ON ERROR 
GOTO, RESUME, and ERL. 

You cannot use RENUM to change the order of program lines. 
For example, if a program has lines numbered 10, 20, and 30, 
the command RENUM 15,30 is illegal, since this would place 
Line 30 before Line 20. 

Also RENUM cannot create line numbers greater than 65529. If 
you attempt to do this, BASIC returns an I 1 legal f unc t i o n  
c a  1 1 error and leaves the program unchanged. 

If BASIC finds an undefined line number within the program, it 
prints a warning message, U n d e f i n e d 1 i n e  m x  i n yyyy, where 
xwuc is the undefined line number and yyyy is the line where it 
appears. RENUM renumbers the program despite this warning 
message. It does not change the incorrect line number reference, 
but it does renumber yyyy. 

258 



Chapter 10 I BASIC Keywords 

Examples 
RENUM 

renumbers the entire program, using an increment of 10. The 
new number of the first line is 10. 

RENUM 6 0 0 ,  5 8 0 0 ,  1 0 0  

renumbers from Line 5000 to the end of the program. The first 
renumbered line becomes 600, and an increment of 100 is used 
between subsequent lines. 

RENUM 1 0 0 , , 1 0 0  

renumbers the entire program, starting with a new line number 
100, and incrementing by 100s. Notice that the commas must be 
retained even though the middle argument is not used. 

259 



Chapter 10 I BASIC Keywords 

t e ~ e n t  

Closes all open files on all drives. 
If a disk contains any open files, RESET writes all blocks in 
memory to disk. 

RESET ensures that all files on all diskettes are closed before 
you remove them from the drives. RESET is the same as a 
CLOSE statement for each open file. 

260 



Chapter 10 I BASIC Ke.ywords 

RESTORE [line] 

Restores a program’s access to  previously read DATA statements. 

Line is a line number that contains a DATA statement. If you 
specify line, the next READ statement accesses the first item in 
the specified DATA statement. If you omit line, BASIC resets to  
the first DATA statement in the program. 

This lets your program reuse the same DATA lines. 

Sample Program 
160 READ X $  
170 RESTORE 
180 READ Y S  
190 PRINT X $ ,  Y $  
200 DATA FIRST ITEM, SECOND ITEM 

When you run this program, BASIC prints: 
FIRST ITEM FIRST ITEM 

Because of the RESTORE statement in Line 170, the second 
READ statement starts over with the first DATA item. 

261 



Chapter 10 I BASIC Keywords 

RESUME Statement 

RESUME [line] 
RESUME NEXT 

Resumes program execution after an error-handling routine. 

RESUME without an argument and RESUME 0 both cause the 
computer to  return to the statement in which the error has 
occurred. 

RESUME line causes the computer to branch to the specified 
line number. 

RESUME NEXT causes the computer to branch to the state- 
ment following the point at which the error has occurred. 

Examples 

If an error has occurred, this line transfers program control to 
the statement in which it has occurred. 

RESUME 

RESUME 1 0  

If an error has occurred, transfers control to Line 10. 

Sample Program 
1 0  O N  ERROR GOT0 9 0 0  

9 0 0  I F  CERR=230)  ANDCERL=90)  THEN P R I N T  "TRY 
AGAIN" :RESUME 8 0  

262 



Chapter 10 I BASIC Keywords 

RETURN Statement 

RETURN [line] 

Returns control to the line immediately following the most 
recently executed GOSUB. 

Line tells BASIC to return to  a specific line in the program. If 
you omit line, BASIC goes to  the line immediately following the 
GOSUB. 

Use caution when specifying a line number with RETURN. Any 
other GOSUB, WHILE, or FOR statement remains active while 
a GOSUB subroutine is executing. If BASIC returns to a line 
number that is outside these loops, an error occurs because the 
loops were left incomplete. 

If the program encounters a RETURN statement without execu- 
tion of a matching GOSUB, an error occurs. 

Example 
RETURN 4 0  

returns from the subroutine to  Line 40 in the program. 

Sample Program 
3 3 0  P R I N T  " T H I S  PROGRAM F I N D S  THE AREA OF A 
C I R C L E "  
3 4 0  I N P U T  "TYPE I N  A VALUE FOR THE RADIUS" ;  R 
3 5 0  GOSUB 3 7 0  
3 6 0  P R I N T  "AREA I S "  ; A :  END 
3 7 0  A = 3.14 R R 
380 RETURN 

263 



Chapter 10 I BASIC Ke-ywords 

RIGHT$ Function 

RIGHT$(string,number) 

Returns the specified number of characters from the far right 
portion of string. 

Number is an integer in the range 1 to 255. 

If number is equal to or greater than the length of string, BASIC 
returns the entire string. 

Examples 

prints MELON. 

P R I N T  RIGHT$<"WATERMELON", 5 )  

P R I N T  R I G H T $ < " M I L K Y  W A Y " ,  2 5 )  

prints MILKY W A Y .  

Sample Program 
8 5 0  RESTORE : ON ERROR GOTO 8 8 0  
8 6 0  READ COMPFINYS 
8 7 0  P R I N T  RIGHT$<COMPANY$,  2 1 ,  : GOTO 8 6 0  
8 8 0  END 
8 9 0  DFITFI "BECHMAN LUMBER COMPANY, SEATTLE,  W A "  
9 0 0  DATA "ED NORTON SEWER SERVICE,  BROOKLYN, NY" 
9 1 0  DATA "HAMMON MANUFACTURING COMPANY, HAMMOND, 
I N "  

This program prints the name of the state in which each com- 
pany is located. 

264 



Chapter 10 I BASIC Keywords 

RMDIR Statement 

RMDIR pathname 

Removes (deletes) the directory specified by pathname. 

Pathname is a standard directory specification as described in 
Chapter 1. If you omit the drive identifier, the directory is 
deleted from the current drive. If you omit the root directory 
symbol (\), the directory is deleted from the current directory. 

The directory being deleted must be empty except for the "." and 
".." symbols. Use the MS-DOS COPY command to move those 
files you want to save; then use KILL to remove all files from 
the directory. 

Examples 
RMD I R " A : \ A C C TS \ P A Y A EL E " 

removes the directory PAYABLE from the ACCTS directory on 
Drive A. 

RMDI R " \ADDRESS"  

removes the directory ADDRESS from the root directory on the 
current drive. 

RMD I R "NAMES" 

removes the directory NAMES from the current directory on the 
current drive. 

265 



Chapter 10 I BASIC Keywords 

RND Function 

RND [(number)] 

Returns a random number in the range 0 and 1. 

BASIC uses the current seed when generating a random number 
and produces the same sequence of random numbers each time 
the program is run unless you reseed the random number gener- 
ator. Use the RANDOMIZE statement to reseed the random 
number generator. 

If number is negative, RND starts the sequence of random num- 
bers at the beginning. If number is 0, RND repeats the last 
number generated. If you omit number or specify a positive 
value, RND returns the next number in the sequence. 

Example 

prints the next decimal fraction in the sequence. 

P R I N T  R N D C I )  

Sample Program 
1 0  FOR I = 1 TO 5 
2 0  P R I N T  I N T C R N D x l 0 0 ) ;  
30 NEXT I 

This program produces 5 random integers. Line 20 converts the 
decimal fraction returned by RND to a real number and trun- 
cates the real number to  an integer. 

266 



Chapter 10 I BASIC Ke-ywords 

RSET Statement 

RSET field name = data 

Sets data in a direct access buffer field name in preparation for a 
PUT statement. 

Field name is a string variable defined in a FIELD statement. 

This statement is similar to LSET. The difference is that with 
RSET, data is right-justified in the buffer. 

See LSET for details. 

267 



Chapter 10 I BASIC Keywords 

t 

RUN [line] 
RUN pathname[ ,R] 

Executes a program. 

Line is the program line where BASIC begins execution. If you 
omit line, BASIC executes the program from the beginning. 

Pathnume specifies the disk file for BASIC to load into memory 
and execute. 

If you specify the R option, BASIC does not close the open files 
before loading the new program into memory. If you omit the R 
option, BASIC closes all open files before loading the program. 

RUN automatically clears all variables. 

Examples 

starts execution at  the beginning of the program. 

RUN 

RUN 1 0 0  

starts execution at Line 100. 
RUN " p r o g r a r n . a "  

loads and executes Pr0gram.a. 
RUN " \ W O R D \ e d i t d a t a " ,  R 

loads and executes Editdata from the WORD directory without 
closing any open files. 

268 



Chapter 10 I BASIC Keywords 

tement 

SAVE pathname [,AI 
SAVE pathname [,PI 

Saves a program on disk with the specified name. 

Pathname is a standard file specification as described in Chapter 
1. When you save a file to disk, you must specify the filename. If 
the file already exists on disk, its contents are lost when the file 
is re-created. 

The A option tells BASIC to save the program in ASCII format. 
If you omit the A option, BASIC saves the file in a compressed 
format. 

The compressed format takes less disk space than ASCII format. 
Also BASIC can save and load in compressed format faster than 
in ASCII format. BASIC programs are stored in RAM using 
compressed format. 

Use the ASCII format if you plan to use the MERGE command 
to merge the program with another. Also, data programs that be 
read by other programs usually must be in ASCII. 

When using the ASCII option, be sure your program has no 
embedded line feeds; otherwise, the computer will not be able to 
read it properly. Embedded line feeds are produced by typing 
[K][T] in a program line. 

For compressed-format programs, a useful convention is the 
extension .bas. For ASCII-format programs, use .txt. 

The P option protects the file by saving it in an encoded binary 
format. When a protected file is later run (or loaded), any 
attempt to list or edit it fails. The only operations that you can 
perform on a protected file are RUN, LOAD, and CHAIN. 

269 



Chapter 10 I BASIC Keywords 

Examples 

saves the resident program in compressed format as Filel.bas. 
The file is placed on Drive A: in the current directory. 

SCIVE " A  : f i 1 e 1 . ba 5"  

S A V E  " \ E D U C \ m a t h p a k .  t x t " ,  A 

saves the resident program in ASCII form, using the name 
Mathpak.txt, on the current drive in the directory EDUC. 



Chapter 10 I BASIC Keywords 

REEN Function 

SCREEN (row, column,[numberl) 

Returns the ASCII code for the character at  the specified row 
and column. 

Row is an integer in the range 1 to 25. 

Column is an integer in the range 1 to 80. Column must be in 
the range for the current screen mode. 

Number is applicable only for text mode. If you specify a non-zero 
number, SCREEN returns the color attribute, rather than the 
ASCII code, of the character. The attribute is in the range of 0 
to 255, and can be translated as follows: 

attribute MOD 16 = foreground color (((attribute - foreground)/ 
16)MOD 128) = background color 

(number>l27) is true (-1) if the character is blinking and false 
(0)  if it is not. 

In the graphics modes, if the location does not contain a stan- 
dard ASCII character, BASIC returns a value of zero. 

Sample Program 
10 LOCATE 20,20 
20 PRINT “ROBBIE” 
30 A = SCREEN<20,20):B = SCREENC20,21) 
40 PRINT A,B 

Line 10 positions the cursor to Row 20, Column 20. Line 20 
prints the message at the current cursor position. Line 30 stores 
the ASCII code for “R’ in the variable A and the ASCII code for 
“0” in variable B. Line 40 prints: 

82 79 

271 



Chapter 10 I BASIC Keywords 

tate~ent 

SCREEN [mode] [ ,[ burst][ ,[active page] [,dispZay 
pagel 11 

Sets the screen attributes to  be used by all other graphics state- 
ments (CIRCLE, LINE, DRAW, POINT, PSET, PRESET). 

Mode is an integer in the range 0 to  2 that sets the valid coordi- 
nates and the number of colors you can use. Screen mode 
descriptions a re  given in Chapter 8, “Displaying Text and 
Graphics.” 

When you change from one mode to another, BASIC stores the 
new screen mode, erases the video display, and sets the fore- 
ground color to white and the background and border colors to  
black. 

Burst activates or de-activates color in Screen Mode 0 or 1. Set 
burst to  one of these values: 

Mode Activate De- Activate 
0 1 0 
1 0 1 

Burst has no effect in Screen Mode 2, the black-and-white graph- 
ics mode. 

Active page is an integer that selects the video page to  which 
BASIC will write. All output statements to  the screen go to the 
selected active page. The range depends on the screen mode and 
the amount of video memory available. If you omit active page, 
BASIC assumes the current active page. Active page is initially 
set to  Page 0. 

Display page is an integer that selects the video page for BASIC 
to display. The range is the same as active page. If you omit dis- 
play page, BASIC uses the same page as active page. BASIC 
automatically sets display page to active page if the program 
halts because of an END or STOP statement or because of an 
error. 

All video pages share one cursor. Therefore, when switching 
active pages, you should save the cursor position with the POS 

272 



Chapter 10 I BASIC Keywords 

and CSRLIN statements. Then when you return to  an active 
page, you can restore the cursor with the LOCATE statement. 
If you omit any parameter (except display page), BASIC contin- 
ues to use the current value for that particular parameter. 

For more information on the graphics statements and video 
pages, see Chapter 8, “Displaying Text and Graphics.” 

Examples 
1 0  SCREEN 0 , 0  

selects text mode with color off. 
6 0  SCREEN 2 

changes to high resolution, 2-color, graphics mode. 

273 



Chapter 10 I BASIC Keywords 

Function 

SGN(num ber) 

Determines number's sign. 

If number is a negative number, SGN returns -1. 
If number is a positive number, SGN returns 1. 
If number is zero, SGN returns 0. 

Examples 

determines the sign of the expression A B, and passes the 
appropriate number (-1,0,1) to Y. 

Y = SGN<A * B) 

Sample Program 
61 0 I N P U T  "ENTER A NUMBER"; X 
620 ON SGNCX) + 2 GOT0 630, 640, 650 
6 3 0  P R I N T  "NEGATIVE" :  END 
640 P R I N T  "ZERO": END 
650 P R I N T  " P O S I T I V E " :  END 

274 



Chapter 10 I BASIC Keywords 

Adva~ced 

SHELL [command] 

Loads and executes another program (.EXE or .COM or an 
internal command as a child process to the original program. 
After the child process ends, control returns to the BASIC pro- 
gram at the statement following the SHELL statement. 

Command is a string expression containing the name of the pro- 
gram you want to run. You may also specify command argu- 
ments on the command line. Use a space to separate arguments 
from the program name. If you omit command, SHELL transfers 
control to COMMAND. You can now execute MS-DOS commands 
as allowed by COMMAND. To return to BASIC, use the MS- 
DOS EXIT command. 

SHELL sends the command information to COMMAND.COM, 
the MS-DOS command processor. If you omit the extension in 
the program name, COMMAND looks for the program with a 
.COM extension, then with an .EXE extension and finally with a 
BAT extension. If COMMAND still cannot find the program, it 
issues a F i l e  n o t  f o u n d  error to SHELL. 

Note: Do not specify BASIC as the command string of 
SHELL. If you do, BASIC might not function properly. 

For more information on child processes and COMMAND.COM, 
see the MS-DOS Reference and the Programmer’s Reference man- 
uals for your computer. They are available through your Radio 
Shack Computer Store. 

Examples 
SHELL 

transfers control to COMMAND.COM. You can execute MS-DOS 
commands such as: 

DIR 
TIME 

and then type EX I T to return to BASIC. 

275 



Chapter 10 I BASIC Keywords 

The following command uses redirection of input and output and 
the MS-DOS SORT command. 

SHELL'ISORT <data. in >data.out" 

sorts the text from Datain and writes it to Data.out. 

276 



Chapter 10 I BASIC Keywords 

EN Function. 

SIN( num ber) 

Returns the sine of number. 

SIN returns the angle (in radians) whose cosine is number. 

Number must be in radians. To obtain the sine of number when 
number is in degrees, use SIN(number PI/180), where PI 
equals 3.141593. 
BASIC always returns the result as a single precision number 
unless you set the /D switch when starting up BASIC. 

Examples 

prints .9943854. 

PRINT SIN(7.96) 

Sample Program 
660 INPUT "ANGLE I N  DEGREES"; A 
670 PRINT "SINE IS"; SINCA * .01745329) 

277 



Chapter 10 I BASIC Kqwords 

OUND ent 

SOUND frequency, duration 

Generates a sound with the frequency and duration specified. 

When a SOUND statement is producing sound, the program con- 
tinues to  execute. See the PLAY statement for more information 
about executing program lines during SOUND. 

frequency specifies the desired tone in Hertz, and is an integer in 
the range 37 to  32767. The frequency 32767 is treated as the 
silence frequency. To create periods of silence, use SOUND 
32767, duration. Possible frequencies are given later. 

Duration is a numeric expression in the range 0.027 to  65535, 
specifying the duration in clock ticks. Clock ticks occur 18.2 
times per second. If duration is 0, BASIC turns off any currently 
running SOUND statement. Otherwise, BASIC completes the 
first SOUND statement before executing the next one. 

You can buffer sound by specifying MB in the PLAY statement. 
Doing this ensures that execution does not stop when BASIC 
encounters another SOUND statement. 

This statement can be especially useful in educational applica- 
tions. For example, you can have the computer respond with a 
sound if a user has answered a program’s prompt incorrectly (or 
vice versa). 

You can use the SOUND or PLAY statements to  generate musi- 
cal notes from your computer. The following chart shows the fre- 
quency you specify to generate the notes in the octave above 
middle C. Middle C is the first note in the chart. 

Note 
C 
D 
E 
F 
G 
A 
B 
C 

Frequency 

523.25 
587.33 
659.26 
698.46 
783.99 
880.00 
987.77 

1046.50 

278 



ChaDter 10 I BASIC Kevwords 

To generate notes in the octave below middle C, find the fre- 
quency of the note's letter in the chart and divide that number 
by 2. For example, the note A in the octave below middle C has a 
frequency of 440.00. 

To generate notes in the octave above middle C, find the fre- 
quency of the note's letter in the chart and multiply that number 
by 2. For example, the note A in the octave above middle C has a 
frequency of 1760.00. 

There are 1092 clock ticks per minute. To determine the number 
of clock ticks for 1 beat, divide the beats per minute into 1092. 
The chart below shows the number of clock ticks for some typical 
tempos. 

Beats Ticks 
Tempo per minute per minutes 
Largo 40- 60 27.3 -18.2 
Larghetto 60- 66 18.2 -16.55 
Adagio 66- 76 16.55-14.37 
Andante 76-108 14.37-10.11 
Moderato 108-120 10.11- 9.1 
Allegro 120-168 9.1 - 6.5 
Presto 168-208 6.5 - 5.25 

Sample Program 
1 0  I N P U T  " I N  HONOR OF WHOM WAS THE CONTINENT OF 
AMERICA NAMED". A $  
2 0  I F  A$="AMERiGO VESPUCCI "  THEN SOUND 5 0 0 , 5 0  
E L S E  GOT0 4 0  
30 P R I N T  "THAT'S R I G H T ! " :  END 
4 0  SOUND 37,2 : P R I N T  "THE CORRECT FlNSWER IS 
AMERIGO VESPUCCI "  

279 



Chapter 10 I BASIC Keywords 

eti 

SPACE$(number) 

Returns a string of number spaces. 

Number must be in the range 0 to 255. If number is greater 
than the width of the device, SPC uses number modulo width. 
(See Chapter 5 for an explanation of modulo arithmetic.) 

Example 
PR I NT "DESCR I P T  I ON" SPACE $ ( 4 1 "TYPE" SPACE $ (9  1 
" Q U A N T I T Y "  

prints D E S C R I P T I O N ,  4 spaces, TYPE, 9 spaces, Q U A N T I T Y .  

Sample Program 
9 2 0  P R I N T  "Here"  
9 3 0  P R I N T  S P A C E $ ( 1 3 )  "is" 
9 4 0  P R I N T  SPACE$C26)  "an" 
9 5 0  P R I N T  SPACESC39) "example" 
9 6 0  P R I N T  S P A C E $ ( 5 2 )  " o f "  
9 7 0  P R I N T  S P A C E $ < 6 5 )  "SPACE$" 

280 



Chapter 10 I BASIC Keywords 

SPC (num ber) 

Skips number spaces in a PRINT statement.. 

Number is in the range 0 to  255. A semicolon is assumed to fol- 
low the SPC(nurnber) command. 

You may use SPC only with PRINT, LPRINT, or PRINT# . 
See also SPACE$. 

Example 
P R I N T  "HELLO" S P C (  1 5 )  "THERE" 

prints: 
HELLO THERE 

281 



Chapter 10 I BASIC Keywords 

SQR Function 

SQR( num ber) 

Returns the square root of number. 

Number must be greater than zero. 

BASIC always returns the result as a single precision number 
unless you specified the /D switch when starting up BASIC. 

Example 

prints I 2 . 4 7 7 9 8 .  

P R I N T  S Q R ( 1 5 5 . 7 )  

Sample Program 
6 8 0  I N P U T  "TOTAL RESISTANCE ( O H M S ) " ;  R 
6 9 0  I N P U T  "TOTAL REFICTANCE COHMS)"; X 
7 0 0  2 = SQRCCR R )  + ( X  X I )  
7 1 0  P R I N T  "TOTAL IMPEDANCE (OHMS) I S "  2 

This program computes the total impedance for series circuits. 

282 



Chapter 10 I BASIC Keywords 

STICK Function 

STICK (action) 

Returns the coordinates of the joysticks. 

Action may be one of the following: 

0 

1 

2 

3 

reads all 4 coordinates, and returns the horizontal (x) 
coordinate for the left joystick. 

returns the vertical (y) coordinate for the left joystick. 

returns the horizontal (x) coordinate for the right 
joystick. 

re turns  the vertical (y) coordinate for the right 
joystick. 

The coordinates returned by STICK(l), STICK(2), and STICK(3) 
are those previously read by STICK(0). 

Sample Program 
The following program continually displays the coordinates of 
the right joystick. 

1 0  CLS 
2 0  LOCQTE 1 , 1  
2 5  T = S T I C K ( 0 )  
3 0  P R I N T I I B :  f f ; S T I C K ( 2 )  
4 0  PR1NT"B: " ; S T I C K ( 3 )  
5 0  GOT0 2 0  

283 



ChuDter 10 I BASIC Kevwords 

ST tatement 

STOP 

Stops program execution. 

When BASIC encounters a STOP statement, it prints the mes- 
sage ERE A K  I N m, where m is the line number that contains 
the STOP. STOP is primarily a debugging tool. During the 
break in execution, you can examine variables or change their 
values. 

Use the CONT statement if you want to resume execution. If the 
program itself has been altered during the break, you cannot 
use CONT. 

Unlike the END statement, STOP does not close files. 

Sample Program 
2 2 6 0  X = RNDCI 0 )  
2 2 7 0  STOP 
2 2 8 0  GOT0 2 2 6 0  

A random number in the range 1 to 10 is assigned to X and 
then program execution halts at Line 2270. You can now exam- 
ine the value X with P R I N T  X .  Type CONT to start the cycle 
again. 

284 



ChaDter 10 I BASIC Kevwords 

STR$ nction 

STR$( number) 

Converts number to  a string. 

If number is positive, STR$ places a blank before the string. If 
number is negative, STR$ places a minus sign (-) before the 
string. 

While arithmetic operations may be performed on number, only 
string functions and operations may be performed on the string. 

The complementary function to STR$ is VAL. 

Example 
SF = STRFCX) 

converts the number X into a string and stores it in S$. 

Sample Program 
1 0  A = 1 .6 : E X  = A : C #  = VALCSTRFCA))  
2 0  P R I N T  "REGULAR CONVERSION" T A B ( 4 0 )  " S P E C I A L  
CONVERSION" 
3 0  P R I N T  B# T A B C 4 0 )  C# 

285 



Chapter 10 I BASIC Keywords 

STRIG Statement 

STRIG ON 
STRIG OFF 

Enables the STRIG function. 

STRIG ON 
STRIG ON lets you execute STRIG function statements to return 
the status of the joystick buttons. If you attempt to execute a 
STRIG function before you execute a STRIG ON statement, 
BASICissuesan Illegal function call error. 

STRIG OFF 
If you execute a STRIG OFF statement, you cannot execute the 
STRIG function. Executing a STRIG function after a STRIG 
OFFstatementresultsinan Illegal function call error. 

When you load BASIC, the default is STRIG OFF and you cannot 
execute STRIGPunction statements. 

You cannot place a STRIG function in a subroutine that you 
branch to as a result of an ON STRIGO GOSUB statement. 
BASIC does not keep track of which button was pressed after the 
ON STRIGO GOSUB statement is executed. If you wish to trap 
both buttons and perform a different procedure for each button, 
you must execute a STRIGiTrap for each button, and you must 
branch to different subroutines with different ON STRIGO 
GOSUB statements. 

See the STRIG function, STRIG/Trap, and ON STRIGO GOSUB 
for additional information on joystick trapping. 

286 



Chapter 10 I BASIC Keywords 

STRIG unctio 

STRIG(number) 

Returns the status of joystick buttons. 

Number is an integer in the range 0 to  7 to  test the status of the 
joystick buttons. 

Variable is a numeric variable to  receive the value returned by 
number. 

Each number tests for a different status of the buttons and 
returns a numeric value in variable regarding the results of the 
test. The numbers and their functions are: 

Tests to see if Trigger 1 on the left joystick has been 
pressed and released since the last STRIG(0) function 
was executed. BASIC returns a -1 if i t  has been 
pressed and a 0 if not. 

Tests to  see if you are currently pressing Trigger 1 on 
the left joystick. BASIC returns a -1 if you are press- 
ing it and a 0 if not. 

Tests to  see if Trigger 1 on the right joystick has been 
pressed and released since the last STRIG(2) function 
was executed. BASIC returns a -1 if i t  has been 
pressed and a 0 if not. 

Tests to see if you are currently pressing Trigger 1 on 
the right joystick. BASIC returns a -1 if you are press- 
ing it and a 0 if not. 

Tests to  see if Trigger 2 on the left joystick has been 
pressed and released since the last STRIG(4) function 
was executed. BASIC returns a -1 if i t  has been 
pressed and a 0 if not. 
Tests to see if you are currently pressing Trigger 2 on 
the left joystick. BASIC returns a -1 if you are press- 
ing it and a 0 if not. 

287 



Chapter 10 I BASIC Keywords 

6 Tests to see if Trigger 2 on the right joystick has been 
pressed and released since the last STRIG(6) function 
was executed. BASIC returns a -1 if it has been 
pressed and a 0 if not. 

Tests to see if you are currently pressing Trigger 2 on 
the right joystick. BASIC returns a -1 if you are press- 
ing it and a 0 if not. 

7 

You must execute a STRIG ON statement before you can execute 
a STRIG function. If you attempt to  execute a STRIG function 
before you execute a STRIG ON, BASIC issues an 1 11  ega 1 
func t ion ca 11 error. See STRIGITrap. 

You cannot place a STRIG function in a subroutine that you 
branch to as a result of an ON STRIGO GOSUB statement. 
BASIC does not keep track of which button was pressed after the 
ON STRIGO GOSUB statement is executed. If you wish to  trap 
both buttons and perform a different procedure for each button, 
you must execute a STRIGPTrap for each button, and you must 
branch to different subroutines with different ON STRIGO 
GOSUB statements. 

Sample Program 
This program tells BASIC to beep whenever the trigger on the 
left joystick is pressed. 

10 STRIG ON 
20 IF STRIGC0) THEN BEEP 
30 GOT0 20 

288 



Chapter 10 I BASIC Ke.y words 

STRIG( number) ON 
STRIG(number) OFF 
STRIG(number) STOP 

Turns on, turns off, or temporarily halts joystick trapping. 

Number is a value of 0, 2, 4, or 6 to indicate the joystick button 
you are trapping: 

0 
2 
4 
6 

indicates Trigger 1 on the left joystick. 
indicates Trigger 1 on the right joystick. 
indicates Trigger 2 on the left joystick. 
indicates Trigger 2 on the right joystick. 

STRIGO ON 
STRIGO ON enables joystick trapping with the ON STRIG() 
GOSUB statement. If you execute a STRIGO ON statement, 
BASIC checks after every program statement to see if you 
pressed a joystick button. If you press a joystick button, BASIC 
transfers program control to the line number specified in the ON 
STRIGO GOSUB statement. See ON STRIGO GOSUB. 

Note: Do not confuse the STRIGITrap statement with 
the STRIG function statement. These are separate 
statements that perform distinct functions in BASIC. 

STRIGO STOP 
STRIGO STOP temporarily halts joystick trapping. If you press a 
joystick button after a STRIGO STOP statement is executed, 
BASIC does not transfer program control to  the subroutine until 
trapping is turned on again with a STRIGO ON statement. 
BASIC remembers that the joystick buttons were pressed and 
transfers program control to the subroutine immediately after 
joystick trapping is turned on again. 

289 



Chapter 10 I BASIC Keywords 

STRIG OFF 
STRIGO OFF turns off joystick trapping with the ON STRIGO 
GOSUB statement. 

When you load BASIC, STRIGO OFF is the default, because joy- 
stick trapping slows program execution. Therefore, if you execute 
a STRIGO ON statement to enable joystick button trapping, we 
recommend that you also execute a STRIGO OFF statement 
when you no longer need to check for joystick button activity. 

If you press a joystick button after a STRIGO OFF statement is 
executed, BASIC does not remember that the joystick buttons 
were pressed when joystick trapping is turned on again. 

Example 
See STRIG. 

290 



Chapter 10 I BASIC Ke.ywords 

STRING$ Function 

STRING$(num ber,character) 

Returns a string containing the specified number of character. 

Number must be in the range 0 to  255. 

Character is a string or an ASCII code. If you use a string con- 
stant, you must enclose it in quotation marks. All the characters 
in the string have either the ASCII code, or the first letter of the 
string specified. 

STRING$ is useful for creating graphs or tables. 

Examples: 
BS = S T R I N G S ( 2 5 ,  " X " )  

puts a string of 25 "X's into B$. 
P R I N T  STRINGSCSB,  1 0 )  

prints 50 blank lines on the display, because 10 is the ASCII 
code for a line feed. 

Sample Program 
1 0 4 0  CLECIR 3 0 0  
1 0 5 0  I N P U T  "TYPE I N  3 NUMBERS BETWEEN 33 FIND 

1 0 6 0  C L S :  FOR I = 1 TO 4 :  P R I N T  S T R I N G S ( 2 0 ,  N I ) :  

1 0 7 0  FOR J = 1 TO 2:  P R I N T  STRINGSC40,  N 2 ) :  NEXT 

1 0 8 0  P R I N T  S T R I N G S ( 8 0 ,  N 3 )  

1 5 9 " ;  N I ,  N 2 ,  N 3  

NEXT I 

J 

This program prints 3 strings. Each string has the character 
corresponding to one of the ASCII codes provided. 

29 1 



Chapter 10 I BASIC Keywords 

Statement 

SWAP variable1 ,variable2 

Exchanges the values of 2 variables. 

You may swap variables of any type (integer, single precision, 
double precision, or string). However, both must be of the same 
type; otherwise, a Type mismatch error results. 

Either or both variables may be elements of arrays. If one or 
both of the variables are non-array variables that have not been 
assignedvalues, an I l l e g a l  function c a l l  errorresults. 

Example 

swaps the values of F1# and F2#. The contents of F2# are put 
into F1#, and the contents of F1# are put into F2#. 

SWAP Flt, F 2 #  

Sample Program 
10 A$="ONE " :B$="ALL " :C$="FOR 'I 

20 P R I N T  A $  C$ BO 
30 SWAP A $ ,  Et 
40 P R I N T  A $  C$ E$ 

When run, the program displays: 
ONE FOR ALL 
ALL FOR ONE 

292 



Chapter 10 I BASIC Keywords 

SYSTEM Statement 

SYSTEM 

Returns you to the MS-DOS command level. 

BASIC closes all files before returning to MS-DOS. Your resident 
BASIC program is not retained in memory. 

Examples 

returns you to  MS-DOS. Your resident BASIC program is lost. 

SYSTEM 

293 



Chapter 10 I BASIC Keywords 

TAB Function 

TAB(num ber) 

Spaces to position number on the display. 

Number must be in the range 1 to 255 and specifies the charac- 
ter position to which to tab. The leftmost position is 1, and the 
rightmost position is the set width minus 1 (WIDTH-1). 

If the current print position is already beyond space number, 
TAB goes to  that position on the next line. 

You cannot use TAB to move the cursor to  the left. 

You cannot use TAB more than once in a print list. 

You may use TAB only wi th  the  PRINT and LPRINT 
statements. 

Sample Program 
1 0  P R I N T  "NAME" T A B ( 2 5 )  "AM0UNT":PRINT 
2 0  READ C I S ,  E$ 
3 0  P R I N T  A $  TCIB(25)  BS 
4 0  DCITA " G . T .  J O N E S " , " $ 2 5 . 0 0 "  

When you run this program, the display shows: 
NAME AMOUNT 

G. T .  JONES $ 2 5 . 0 0  

294 



Chapter 10 I BASIC Keywords 

TAN Function 

TAN(number) 

Returns the tangent of number. 

Return the angle (in radians) whose arc tangent is number. 

Number must be in radians. To obtain the tangent of number 
when it is in degrees, use TAN (number PI/180), where PI 
equals 3.141593. 

BASIC always returns the result as a single precision number 
unless you set the /D switch when starting up BASIC. 

Example 

prints - 9 . 3 9 6 9 5 9 .  

P R I N T  T A N C 7 . 9 6 )  

Sample Program 
This programs asks you t o  input an angle in degrees and 
returns the tangent in radians. 

7 2 0  I N P U T  "ANGLE I N  DEGREES"; ANGLE 
7 3 0  T = TANCANGLE * . 0 1 7 4 5 3 2 9 )  
7 4 0  P R I N T  "TAN I S "  T 

295 



Chapter 10 I BASIC Ke-ywords 

TIME$ F ~ n ~ t i o n  

TIME$[ = string] 

Sets or retrieves the current time. 

String is a literal, enclosed in quotation marks, that sets the 
time by assigning its value to TIME$. If you omit string, BASIC 
retrieves the current time. 

BASIC uses a 24-hour clock. For example, it sets 8:15 P.M. as 
20:15:00. 

Setting the Time 
You set the time in the following format: 

hh:mm:ss 

The hours (hh) may be any number 0-23. 
The minutes (mm) and the seconds (ss) may be any number 
0 through 59. 

If you omit the minutes, minutes and seconds default to  
zero. If you omit the seconds, seconds default to  zero. 

Although you may omit leading zeros in each of the values, you 
must include at  least 1 digit of the preceding value. For example, 
you may type 1:5 to  set the the time to 1:05 A.M. However, :5 is 
invalid. 

Retrieving the Time 
BASIC always returns the time in the 8-character (hh:mm:ss) 
format, with leading zeros. You may set the time before you enter 
BASIC. If you do not set the time at the MS-DOS time prompt or 
with the TIME$ statement, BASIC returns the length of the 
time that has elapsed since you turned on the computer. 

296 



Chapter 10 I BASIC Keywords 

Examples 
TIME$ = ' I 1  4: 15" 

sets the current time to 14:15:00. 
TIMEt = "3:3 :3"  

sets the current time to  03:03:03. 
CIS =T I ME$ 

assigns the current time to the variable A$. 
PRINT TIMEt 

prints the current time. 

297 



Chapter 10 I BASIC Keywords 

TIMER Function 

TIMER 

Returns the number of seconds since midnight or since the last 
system reset. 

BASIC always returns a single precision number. 

You can use TIMER as the argument for the RANDOMIZE 
statement to  reseed the random number generator. See RAN- 
DOMIZE for more information. 

Example 

A = TIMER 

stores the number returned by TIMER into variable A. 

298 



Chapter 10 I BASIC Keywords 

TIMER/Trap Statement 

TIMER action 

Turns on, turns off, or temporarily halts timer event trapping. 

Action may be any of the following: 

ON enables timer event trapping. 
OFF disables timer event trapping. 
STOP 

The TIMER ON statement turns on the trap. BASIC checks the 
the value of timer after each program line. If the number is 
equal to that in the ON TIMERO GOSUB statement, BASIC 
transfers program control to the line number specified. 

The TIMER STOP statement temporarily halts timer trapping. 
If the timer equals the specified number, BASIC does not trans- 
fer program control to the ON TIMERO GOSUB statement until 
you turn on trapping again by executing a TIMER ON state- 
ment. BASIC remembers that the timer value was equal and 
branches to the subroutine immediately after trapping is turned 
on again. 

The TIMER OFF statement turns off timer trapping. BASIC 
does not remember if the value of timer equals the number spec- 
ified when trapping is turned on again. 

temporarily suspends timer event trapping. 

Sample Program 
See ON TIMERO GOSUB for an example. 



Chapter 10 I BASIC Keywords 

TROFF, TRON Statements 

TROFF 
TRON 

Turn the trace function on/off. 

TRON turns on the tracer and TROFF turns it off. 

The tracer lets you follow program flow. This is helpful for 
debugging and for analyzing the execution of a program. After a 
program is debugged, you can remove the TRON and TROFF 
statements. 

Each time the program advances to a new line, the tracer dis- 
plays that line number inside a pair of brackets. 

Sample Program 
2 2 9 0  TRON 
2 3 0 0  X = X 3 . 1 4 1 5 9  
2 3 1 0  TROFF 

Lines 2290 and 2310 assure you that Line 2300 is actually 
being executed, because [ 2 3 0 0 I is printed on the display each 
time it is executed. 

5 TRON 
1 0  K.10 
2 0  FOR J - 1  TO 2 
3 0  L = K + 1 0  
4 0  P R I N T  J ; K ; L  
5 0  K = K + 1 0  
6 0  NEXT J 
70 TROFF 
8 0  END 

When you run this program, BASIC prints: 
~ 1 0 1 [ 2 0 1 ~ 3 0 1 ~ 4 0 1  1 1 0  2 0  
~ 5 0 1 ~ 6 0 1 ~ 3 0 1 ~ 4 0 1  2 2 0  3 0  
~ 5 0 1 [ 6 0 1 ~ 7 0 1  

300 



Chapter 10 I BASIC Keywords 

Function 

USR[ number] (argument) 

Calls a user’s assembly-language subroutine identified with 
number and passes argument to  that subroutine. 

The number you specify must be the same as the corresponding 
DEF USR statement for that routine. If you omit number, BASIC 
assumes zero. 

USR lets you call as many as 10 assembly-language subroutines 
and then continue execution of your BASIC program. 

Before you can execute a USR function call, you must define the 
subroutine’s address in a DEF SEG and DEF USR statement. 
The DEF SEG defines the address of the segment containing the 
subroutine. The DEF USR statement defines the subroutine 
being called and its offset from the beginning of the segment set 
by DEF SEG. See DEF SEG, DEF USR, and the section “Inter- 
facing with Assembly-Language Subroutines” in Chapter 11. 

301 



Chapter 10 I BASIC Keywords 

VAL Function 

VAL(string) 

Calculates the numerical value of string. 

VAL is the inverse of the STR$ function; it returns the number 
represented by the characters in a string argument. This num- 
ber may be integer, single precision, or double precision, depend- 
ing on the range of values and the rules used for typing all 
constants. 

VAL terminates its evaluation on the first character that has no 
meaning in a numeric value. 

If the string is nonnumeric or null, VAL returns a zero. 

Examples 

prints I 0 0. 

P R I N T  VALC"1 0 0  DOLLARS")  

P R I N T  VALC"1 2 3 4 E 5 " )  

prints I 2 3 4 0 0 0 0 0 .  

Sample Programs 
1 0  READ NAMES, C I T Y $ ,  STATES, Z I P 0  
2 0  I F  V A L < Z I P $ )  < 9 0 0 0 0  OR V A L C Z I P B )  > 96699 
THEN P R I N T  NAMES T A B ( 2 5 )  "OUT OF STATE" 
3 0  I F  V A L C Z I P O )  > 9 0 8 0 1  AND V A L C Z I P $ )  < =  9 0 8 1 5  
THEN P R I N T  NAME$ T A B C 2 5 )  "LONG BEACH" 

This program searches for zip codes within the specified ranges 
to determine if they are within Long Beach or "out of state." 

302 



ChaDter 10 I BASIC Keywords 

VARPTR Function 

VARPTR (variable) 
VARPTR ([#]buffer) 

Returns the offset into BASIC’s data segment of a variable or a 
disk buffer. 

Variable is a numeric or string variable. 

Buffer is the number assigned to the file when you opened it. 
The number sign is optional. It is provided for compatibility with 
other BASICs. 

VARPTR can help you locate a value in memory. When used 
with variable, it returns the address of the first byte of data 
identified with variable. See the section “How Variables are  
Stored” in Chapter 11 for the format. 

If the variable you specify has not been assigned a value, an 
Illegal f u n c t i o n  c a l l  occurs. 

When used with sequential access files, VARPTR returns the 
starting address of the disk buffer. When used with direct access 
files, VARPTR returns the address of the FIELD buffer. 

If you specify a bufir that was not allocated when loading 
BASIC, a B a d  file n u m b e r  error occurs. (See Chapter 2 for 
information on how to load BASIC.) 

The offset returned is an integer in the range -32768 to 32767. 
It is always an offset into BASIC’s data segment, regardless of 
whether you have executed a DEF SEG to change the segment. 

VARPTR is used primarily t o  pass a value t o  a n  assembly 
language subroutine via USR. Since VARPTR returns an offset 
that indicates where the value of a variable is stored, you can 
pass this address to  an assembly-language subroutine as the 
argument of USR. The subroutine can then extract the contents 
of the variable with the help of the address that you have sup- 
plied to it. 

If VARPTR returns a negative address, add it to  65536 to obtain 
the actual address. 

303 



Chapter 10 I BASIC Keywords 

VARPTR$ Function 

VARPTR$(variable) 

Returns a character form of the memory address of the variable. 
VARPTR$ is primarily used with PLAY and DRAW in programs 
that are later executed. 

Variable is a numeric or string variable. 

VARPTR$ returns a 3-byte string: 

byte 0 = type 
byte 1 = low byte of address 
byte 2 = high byte of address 

Type is 2 for integer variables, 3 for string variables, 4 for single 
precision variables, and 8 for double precision variables. 

Note: Because array and string addresses and file 
data blocks change whenever you assign a new vari- 
able, do not store the contents of VARP"R$ into a 
variable. 

Example 

uses the PLAY subcommand X, plus the contents of A$, as the 
argument for PLAY. 

1 0  PLAY " X "  + V A R P T R $ ( A $ )  

304 



Chapter 10 I BASIC Keywords 

VIE WGraphics Statement 

Creates a viewport that redefines the screen parameters. This 
defined area, a window, becomes the only place you can draw 
graphic displays. 

(XI , y l )  specifies the upper-left coordinates for the rectangular 
viewport. 

(x2,yZ) specifies the lower-right coordinates for the rectangular 
viewport. 

All coordinates must be within the limitations of the screen. 

Color lets you fill in the specified viewport with the specified 
color. See Chapter 8, “Displaying Text and Graphics,” for infor- 
mation on color. 

Border is an integer expression that specifies the color for the 
boundary line around the viewport (assuming there is enough 
space for the line). The range is the same as that for color. If you 
omit border, no boundary line is drawn. 

SCREEN specifies that all coordinates used in drawing are 
absolute to Point 0,0 on the screen. If you omit SCREEN, all 
coordinates specified are relative to the viewport coordinates. 

If you omit all options, BASIC sets the viewport to define the 
entire screen. 

Examples 
VIEW C 1 0 , 1 0 ) - < 1 0 0 , 1 0 0 )  

sets up a viewport with the upper-left corner at 10,10 and the 
lower-right corner at 100,100. Since SCREEN is omitted, all 
subsequent coordinates are relative to  the viewport. Fbr example, 
PSET C 5,s 1 , 3  actually sets point 15,15. 

VIEW SCREEN C 2 0 , 2 5 ) - ( 1 0 0 , 1 5 0 )  

sets up a viewport. Because SCREEN is specified, all subse- 
quent coordinates are absolute. For example, PSET ( 5 ,5 1 , 3  does 
not appear because it is outside the viewport. PSET C 30,30  ) , 3  
is within the viewport. 

305 



Chapter 10 I BASIC Ke-ywords 

Notes: 

0 BASIC ignores any points that  are outside the viewport’s 

0 RUN, SCREEN, and WINDOW statements, without parame- 

CLS clears only the active viewport. 

Sample Program 

limits. 

ters, define the entire screen as the viewport. 

1 0  SCREEN 1 
2 0  VIEW ( 1 0 , 1 0 ) - ~ 2 0 0 , 1 0 0 ) , 2  
3 0  PSET ( 1 8 0 , 5 0 1  
4 0  DRFlW “ L 4 0  E 2 0  F 2 0 ”  

Line 20 sets the viewport. Line 30 sets the starting point for the 
DRAW statement in Line 40. 

306 



Chapter 10 I BASIC Keywords 

VIEW PRINT Statement 

VIEW PRINT top line TO bottom line 

Creates a text viewport that redefines the text screen parame- 
ters. All statements and functions that normally function within 
the text viewport now function in the new text screen parame- 
ters. Cursor movement and scrolling are also limited to the text 
viewport. 

Top line specifies the first line of the text viewport. It may be in 
in the range 1 to 25, but must be less than bottom line. 

Bottom line specifies the last line of the text viewport. It may be 
in the range 1 to 25, but must be greater than top line. 

If you omit all parameters, VIEW PRINT defines the entire 
screen as the text viewport. 

Example 

BASIC defines the first 15 lines of the video as the text viewport. 
All cursor movements, scrolling, and text screen functions and 
statements are limited to these boundaries. 

V I E W  PRINT 1 TO 15 

307 



Chapter 10 I BASIC Keywords 

WAIT Statement 

WAIT port, numberl [,number21 

Suspends program execution until a machine input port develops 
a specified bit pattern. (A port is an inputloutput location.) 

Number1 and Number2 are integers in the range 0 to 255. 

BASIC reads the data at the specified port and XORs it with 
number2, if given. If you omit number2, BASIC XORs the data 
with zero. BASIC then ANDs the result with numberl. If the 
result is zero, BASIC starts again with reading the data at the 
port again. If the result is nonzero, BASIC continues with the 
next statement. 

It is possible to enter an infinite loop with the WAIT statement. 
In this case, you must restart the machine manually. To avoid 
this, WAIT must have the specified value at port number during 
some point in program execution. 

Example 
1 0 0  WFIIT 32,2 

308 



Chapter 10 I BASIC Keywords 

WHILE ... WEND Statement 

WHILE expression 
WEND 

Executes a series of statements in a loop as long as a given con- 
dition is true. 

Expression is any numeric or string expression, usually making 
logical or relational comparisons. 

If expression is true, BASIC executes the statements after the 
WHILE statement until it encounters a WEND statement. Then 
BASIC returns to the WHILE statement and checks expression. 
If it is still true, BASIC repeats the process. If it  is not true, exe- 
cution resumes with the statement following the WEND 
statement. 

You may nest WHILENEND loops to any level. Each WEND 
matches the most recent WHILE. An unmatched WHILE state- 
ment causes a WH I L E  w i t h o u  t WEND error, and an unmatched 
WEND causes a WEND w i t h o u t  WHILE error. 

Sample Program 
9a "BUBBLE S O R T  F IRRAY A $  
i a a  FLIPS=I "FORCE ONE PFISS THRU L O O P  
i i a  WHILE FLIPS 
1 1 5  F L I P S = 8  
1213 FOR 1.1 TO J-1 
I 313 I F  F I $ < I ) > A $ < I + l ) T H E N  SWFIP A $ < I ) ,  

1 4 0  NEXT I 
I 5 a  WEND 

A $ < I + l ) :  F L I P S = I  

This program sorts the elements in array A$. Control falls out of 
the WHILE loop when no more swaps are performed on Line 
130. 

309 



Chapter 10 I BASIC Keywords 

WIDTH Statement 0 

WIDTH [LPRINT] size 
WIDTH buffer, size 
WIDTH device, size 

Sets the line width in number of characters for the display, line 
printer, or communication channel. 

Size may be an integer in the range 0 to 255 that specifies the 
number of characters in a line. For the screen, size may be only 
40 or 80. 

Buffer is an integer in the range 0 to 15 and specifies the buffer 
used in the OPEN statment. 

When you specify buffer, BASIC changes the width immediately. 
This lets you change the width when the file is open. To return 
to the previous width, execute another WIDTH statement. 

Device is a valid device enclosed in quotation marks that speci- 
fies on which device you want to set the width. See Chapter 1 for 
valid device names. 

When you specify device, BASIC stores the new width and does 
not change the current width of the device. When a subsequent 
OPEN statement opens that device, BASIC uses the new width 
while the file is open. After you close the file, the device returns 
to  the previous width. 

When you set the width for the line printer or the communica- 
tions channel, BASIC sends a carriage return after every size 
character. Specifying a width of 255 disables line wrapping. 
Doing this is the same as  specifying an  “infinite” width. 
WIDTH 255 is the default for the communications channel. For 
example: 

10 WIDTH LPRINT 100 
2 0  LPRINT ”This line 15 100 character5 long. S e e  
what happen5 when you print a string longer than 
width . ‘I 

Line 10 sets the printer width to 100 characters. After printing 
100 characters, BASIC issues a carriage return. The carriage 
return causes the printer to print the remaining characters on 
the next line. 

310 



Chapter 10 I BASIC Keywords 

To set WIDTH at the screen, you may omit the LPRINT option 
in the first form of the syntax, like this: 

WIDTH 40 

or you may use the third form of the syntax and specify the 
device: 

WIDTH "SCRN:", 40 

You may only use the WIDTH statement to  select a width of 80 
if you are using the VM-2 Monochrome Monitor or CM-2 Color 
Monitor. If you are using the VM-2 Monochrome Monitor or the 
CM-2 Color Monitor, you should note the following: 

0 If you change the screen width, BASIC clears the screen and 

Changing the screen width does not affect the color enabling1 

0 If you are in Screen Mode 1, changing the WIDTH to 80 

0 If you are in Screen Mode 2, changing the WIDTH to 40 

If you attempt to select a size outside the range 0 to 255, an 
Illegal function call errorresults. 

sets the background to black and the foreground to white. 

disabling value (burst value). 

forces the screen into Screen Mode 2. 

forces the screen into Screen Mode 1. 

Examples 
WIDTH LPRINT 132 
WIDTH "LPT1 : ' I ,  132 

Both these statements change the printer width to  132. The sec- 
ond statement does not change the printer width until LPT1: is 
specified as the device in an OPEN statement. 

10 WIDTH LPRINT 80 

100 OPEN "LPTI :'I FOR OUTPUT FIS X I  

150 PRINT # l  

1000 WIDTH X l ,  40 

Line 10 changes the width of the printer to  80 characters. Line 
150 prints the records as 80 characters each. After BASIC exe- 
cutes Line 1000, Line 150 prints the records as 40 characters 
each. 

311 



Chapter 10 I BASIC Keywords 

WINDOW [SCREEN] [(~I,yl)-(~2~2)1 

Lets you change the physical coordinates of the screen (or cur- 
rent viewport) by defining world coordinates. World coordinates 
can be any single-precision floating point numbers, including 
numbers outside the physical range of the screen as defined by 
the VIEW statement. 

Note: The viewport is set to the entire screen by 
default. For more information on viewports, see the 
VIEW command. 

(x1,yl) specifies the world coordinates for the upper-left corner of 
the screen. x is the horizontal coordinate, and y is the vertical 
coordinate. 

(x2,y2) specifies the world coordinates for the lower-left corner of 
the display. x is the horizontal coordinate, and y is the vertical 
coordinate. 

The SCREEN option tells BASIC to set the coordinates like the 
screen display where the lesser y-coordinate is in the upper-left 
corner of the screen. If you omit screen, BASIC inverts the 
y-coordinates to  show a true Cartesian coordinate system. That 
is, the lesser y-coordinate is  in  the lower-left corner of the 
screen. 

WINDOW lets you plot points outside the normal screen coordi- 
nate limits by setting new world coordinates to  the screen. WIN- 
DOW transforms the new world coordinates onto the screen, 
usually altering the aspect ratio. 

Note: CIRCLE, GET, and PUT do not use world 
coordinates. 

You can easily plot graphs by specifying coordinates that are 
directly proportional to the limits of the graph. For example, to 
plot the increase of sales from 1984 to  1987 with sales averaging 
100,000 to 300,000, you can use the following command: 

WINDOW (1984,100000)-(1987,300000) 

312 



Chapter 10 I BASIC Ke.ywords 

The coordinates can be pictured for commands that use world 
coordinates: 

1984,300000 

1984,100000 1987,100000 

If you give the command: 
W I N D O W  S C R E E N  <1984,100000)-<1987,300000) 

the coordinates can be pictured as follows for commands that use 
world coordinates: 

Note: RUN, SCREEN and WINDOW statements, 
without parameters, define the entire screen as the 
window. 

313 



Chapter 10 I BASIC Ke.ywords 

WRITE Statement 

WRITE datu[,datu, ...I 

Writes data to the screen. 

Datu can be any string or numeric expression or variables. If you 
omit datu, BASIC outputs a blank line. 

The only difference between WRITE and PRINT is that WRITE 
prints commas between the data items and prints quotation 
marks around strings. 

314 



Chupter 10 I BASIC Ke.ywords 

WRITE# Statement 

WRITE#buffer, data[,data,.. .I 

Writes datu to a sequential access disk file. 

Bufer is the number assigned to the file when you opened it. 

Datu may be numeric or string expressions. If you specify more 
than one data item, separate the items with commas. 

WRITE# inserts commas between the data items it writes to  
disk. It delimits strings with quotation marks. Therefore, it is 
not necessary to put explicit delimiters between the data. 

WRITE# inserts a carriage return after writing the last data 
item to disk. 

Example 
A $ = "M I C R 0 C 0 MP UT E R " : B $ = "NEWS I' 
W R I T E x l  , A $  ,E$ 

writes the following image to disk: 
" M I  CROCOMPUTER","NEWS" 

315 





Chapter 11 

TECHNICAL INFORMATION 

This chapter provides various information of a technical nature. 
If you are just beginning to use BASIC, you may want to  skip 
this chapter until later. 

Subroutines 
This section is for users who call subroutines written in other 
languages from their BASIC programs. BASIC provides for inter- 
facing with subroutines through the USR function and through 
the CALL and the CALLS statements. 

You can load your assembly language subroutine into BASIC’s 
work area or into another segment of memory. We will show you 
both methods. 

with A s s e ~ b l y - ~ a n ~ u  

Memory Allocation Outside BASIC’s Work Area 
When you load BASIC, the DS (data segment) register is set to  
the address of BASIC’s work area. To access an area of memory 
outside this work area, execute a DEF SEG statement to specify 
the address of the segment of memory you are accessing. If you 
don’t execute a DEF SEG statement, your CALL, CALLS, or 
USR statements transfer control to an area within BASIC’s work 
area. After returning from the subroutine, execute another DEF 
SEG statement to restore the DS register to its original value. 
See DEF SEG in Chapter 10 for more information. 

Memory Allocation Inside BASIC’s Work Area 
To set aside memory space for an assembly language subroutine 
within BASIC’s work area, use the /M: switch when you load 
BASIC. See Chapter 2 for a review of the start-up procedure. 

317 



Chapter 11 I Technical Information 

The /M: switch sets the highest memory address that BASIC can 
use. The value that you specify with the /M: switch tells BASIC 
that it can use all memory up to that offset. Load your subrou- 
tine at that offset. Using the /M: switch prevents BASIC from de- 
stroying your subroutine. For example, 

BASIC / M : & H F 0 0 0  

sets the highest memory location that BASIC can use at hexa- 
decimal address EFFF. This reserves the highest 4K bytes of 
memory for your subroutine. You can load your subroutine at 
hexadecimal address &HF000 like this: 

BLOAD " S U B A . A S M " , & H F B B B  

Note: For BASIC to BLOAD any subroutine, the sub- 
routine must have a special 7-byte header that con- 
tains the necessary loading information. (If the 
subroutine does not have this header, BASIC returns a 
Bad f i l e  mode error.) 

When you BSAVE a subroutine written in BASIC, the 
header is created automatically. But it does not exist 
on subroutines written in MS-FORTRAN, C, or as- 
sembly language. Therefore, to interface such subrou- 
tines with a BASIC program, you must either create 
the header manually or convert the subroutine to a 
format acceptable to  BASIC. See "Converting Subrou- 
tines," below, for a breakdown of the header's contents 
and instructions on converting subroutines. 

Stack Space 
If you need more stack space when you call an assembly lan- 
guage subroutine, you can save the BASIC stack and set up a 
new stack for the subroutine. You must restore the BASIC stack 
before returning from the subroutine. You save the stack, create 
a new stack, and restore the stack in your subroutine. 

318 



Chapter 11 I Technical Information 

Loading the Subroutine into Memory 
You can use the operating system or the POKE statement to  load 
the subroutine into memory. You may assemble the routines 
with the Macro Assembler (available through your Radio Shack 
dealer) and link them with Linker. The Linker is part of the 
MS-DOS package. To load the program file, observe these 
guidelines: 

0 Be sure tha t  the subroutines do not contain any long 
references. 

0 Skip the first 512 bytes of the LINK output file and then 
read in the rest of the file. 

Poking a Subroutine into Memory 
You can code short subroutines in machine language and use the 
POKE statement to  put the code into memory. To do so, follow 
these steps: 

1. Code the machine language instructions for your subroutine. 

2. Put the assembly instruction code for each byte of the ma- 
chine language code into DATA statements, preceded by the 
&H symbols to  denote that they are hexadecimal values. 

3. Execute a loop that reads the DATA statements and POKES 
them into an area of memory. 

For example, the instruction code for the statement 
PUSH BP 

is 55. The DATA statement for that instruction is 
DATA & H 5 5  

After the loop is complete, the subroutine is in memory. Whether 
you are using the USR function or the CALL statement to call 
the subroutine, you must set the value of the subroutine entry 
point as the location specified in the first POKE statement. 

319 



Chapter 11 I Technical Information 

Converting Subroutines 
The special BSAVE header mentioned earlier consists of: 

Byte 1: 

Bytes 2 and 3: 
Bytes 4 and 5:  
Bytes 6 and 7: 

The program follows the header. The last byte must be 1A (deci- 
mal 26, Control-Z, EOF). 

To convert a program that does not have the header, first use the 
linker to create an executable (.exe) file from the machine lan- 
guage program. Then, via a simple BASIC program: 

FD (specifies that the file is for BASIC’s 
use) 
segment address 
offset into segment address 
length of machine language program (in 
bytes) 

1. 

2. 

3. 

4. 

5. 

Open and read the file, ignoring (skipping) the first 512 
bytes. 

Continue reading the file, and poke each byte into its proper 
place in memory. Remember to use the DEF SEG command, 
if required. 

When finished, close the file. 

Use BSAVE to save the machine language object program on 
disk. The header is created automatically. 

Use the BLOAD command to  load the subroutine as you 
wish. 

320 



Chapter 11 I Technical Information 

Example 
You can use the following program to prepare a binary (.bin) file 
from an executable (.exe) file: 

1 0  

2 0  
3 0  
4 0  

5 0  
6 0  
7 0  

8 0  
9 0  

1 0 0  

1 1 0  
1 2 0  
1 3 0  
1 4 0  
1 5 0  

1 6 0  

1 7 0  
1 8 0  

1 9 0  
2 0 0  
2 1  0 
2 2 0  
2 3 0  
2 4 0  

REM WHEN YOU ENTER B A S I C ,  USE " / M : & H F 0 0 0 "  TO 
PROTECT THE 
REM TOP 4K BYTES OF MEMORY. 
REM 
OPEN "rnprograrn.exe" AS 1 L E N = I  : REM THE 
F I L E  TO BE CONVERTED 
F I E L D  1 ,  1 AS A $  
REM 
I = 5 1 2  : REM S K I P  THE F I R S T  5 1 2  BYTES OF 
THE ' I .  e x e "  F I L E  
REM 
A D D R X = & H F 0 0 0 :  REM WHERE ROUTINE I S  TO 
R E S I D E  AT TOP OF MEMORY 
S I Z = 1  : REM WHERE NUMBER OF BYTES FOR "BSAVE" 
I S  KEPT 
REM 
WHILE NOT C E O F C I ) )  

I = I + 1  
GET 1 ,  I 
B Y T E = A S C ( A $ )  : REM CONVERT S T R I N G  
CHARACTER I N T O  NUMBER 
POKE ADDRX,BYTE: REM PUT THE BYTE WHERE YOU 
WANT I T  
S I Z = S I Z + 1  
ADDRX=ADDRX+I  : REM INCREMENT ADDRESS 
PO I N T E R  

WEND 
CLOSE 1 
REM 
BSAVE "rnprograrn. b i n " , & H F 0 0 0 , S I Z - I  
REM 
END 

CALL Statement 
When the CALL statement is executed, the following occurs: 

1. For each parameter in the parameter list, the two-byte offset 
of the parameter's location within the data segment (DS) is 
pushed onto the stack. If the parameter is a string variable, 
the offset points to the string descriptor. See the section "Ac- 
cessing String Parameters" in this appendix. 

321 



Chmter 11 I Technical Information 

2. The BASIC return address code segment (CS) and offset (IP) 
are pushed onto the stack. 

3. Control is transferred to the subroutine by an 8086 long call 
to  the segment address given in the last DEF SEG state- 
ment and the offset given in variable. 

When the CALL statement is executed, the operating system 
loads the CS (code segment) register with the value specified in 
the last DEF SEG statement. If you are CALLing a subroutine 
within BASIC’s work area, and no DEF SEG is required, the CS 
register is loaded with the address of BASIC’s work area. This 
address is shifted left 4 bits; in other words, which is the same 
as multiplying it by 16 decimal (10 hexadecimal). Then, the off- 
set of the subroutine is added to the segment address. 

Example 

17120 is the absolute address of the first instruction in the 
subroutine. 

1 7 1 0 0  + 0 0 2 0  = 1 7 1 2 0  

Technical Functions 
The called routine may destroy the previous contents of all regis- 
ters. If you want to save the contents of the registers, the first 
instructions in the subroutine must be a PUSH for each register, 
and the last instructions in the subroutine must be a POP to re- 
store the registers to  their original value. You must execute a 
POP for every PUSH to maintain stack integrity. 

The subroutine may refer to the passed parameters as positive 
offsets to  the Base Pointer (BP). The CALLed routine must 
PUSH BP on the stack and then move the current stack pointer 
into BP. BP should be the first register you PUSH so that the 
parameters may be referenced as an offset to  BP. The first 4 
bytes of the stack contain the IP and CS register values that 
BASIC saves when the CALL is executed. To calculate the pa- 
rameters offset from the BP, use this equation: 

2 (total parameters - parameter position) + 6 = offset 

For example, the address of parameter 1 is at 10(BP), parameter 
2 is at 8(BP), and parameter 3 is at 6(BP). 

322 



Chapter 11 I Technical Information 

Exiting the Subroutine 

The called routine must execute a RET number statement to  ad- 
just the stack to the start of the calling sequence. The value of 
number is 2 times the number of parameters in the parameter 
list. 

CALLS Statement 
The CALLS statement is the same as CALL except the argu- 
ments are passed as segmented addresses. CALLS should be 
used to access MS-FORTRAN routines. 

Because MS-FORTRAN routines need to know the segment 
value for each argument passed, the segment is pushed first, fol- 
lowed by the offset. CALLS pushes 4 bytes for each argument; 
therefore, the number in the RET statement (RETn) must be 4 
times the number of arguments. 

USR Function 
When the USR statement is executed, the operating system loads 
the CS (code segment) register with the value specified in the 
last DEF SEG statement. If you are accessing a subroutine 
within BASIC’s work area and no DEF SEG is required, the CS 
register is loaded with the address of BASIC’s work area. This 
address is shifted left 4 bits; which is the same as multiplying it 
by 16 decimal (10 hexadecimal). Then the offset of the subrou- 
tine is added to the segment address. 

Example 
17100 + 0020 = 17120 

This is  the absolute address of the first instruction in  the 
subroutine. 

323 



Chapter 11 I Technical Information 

Technical Functions 

When the USR function call is made, register AL contains a 
value that specifies the type of argument that was given. The 
value in AL may be one of the following: 

Value in AL Type of Argument 

2 2-byte integer (two’s complement) 
3 String 
4 Single precision floating-point number 
8 Double precision floating-point number 

If the argument is a string, the DX register pair points to the 
“string descriptor.” See the section “Accessing String Variables” 
in this chapter. 

If the argument is a number, the BX register pair points as 
follows: 

0 To the least significant byte (for an integer) 

0 To the least significant mantissa (for a single precision real 
number) 

0 To the FAC-3 location (for a double precision real number). 

See the chart that follows: 

Relative I FAC I Integer 
&H0000 
&H0001 
&H0002 
&H0003 
&H0004 
&H0005 
&H0006 
&H0007 

FAC-7 
FAC-6 
FAC-5 
FAC-4 
FAC-3 
FAC-2 
FAC-1 
FAC-0 

lower byte 
higher byte 

SNG real 

LS mantissa 
mantissa 
MS mantissa 
exponent 

DBL real 

LS mantissa 
mantissa 
mantissa 
mantissa 
mantissa 
mantissa 
MS mantissa 
exponent 

LS and MS stand for “least significant” and “most significant.” 

Exiting the Subroutine 
The subroutine must execute a RET 7 statement to  adjust the 
stack to the start of the calling sequence. 

324 



Chapter 11 I Technical Information 

ria 
BASIC stores variables in its data segment as follows: 

Byte Contents Description 

Byte 0 Type Identifies the type of vari- 
able stored at  this location: 

2 integer 
3 string 
4 single precision 
8 double precision 

Bytes 1 and 2 Name 

Byte 3 Integer 
3 - 38 

Byte 4 + Name 
integer stored 
in Byte 3 

Byte 4 + length Data 

The first 2 characters of the 
variable name. 

Integer is the number of ad- 
ditional characters in the 
variable name. 

The remainder of the vari- 
able name is stored at bytes 
4 + the integer stored in 
Byte 3. 

The contents of the variable 
are stored in the bytes im- 
mediately following the vari- 
able name. The data can be 
2, 3, 4, or 8 bytes in length, 
depending on the type of 
data. 

At least 3 bytes are required to store any variable name. A 1- or 
2-character variable name occupies exactly 3 bytes. Bytes 1 and 
2 for the first 2 characters and Byte 3 to contain a zero to  indi- 
cate that there are no additional characters in the variable 
name. If the variable name only contains 1 or 2 characters, the 
data is stored beginning at Byte 4. As you can see, the location 
of the first actual byte of data depends on the length of the vari- 
able name. VARPTR returns the offset of the first actual byte of 
data, not the offset of the beginning of the storage area. 

325 



Chapter 11 I Technical Information 

If the parameter passed in a CALL statement is a string expres- 
sion, the parameters offset points to the string descriptor. If the 
argument passed in a USR function call is a string expression, 
the DX register points to the string descriptor. 

The string descriptor is a 3-byte area of memory that points to 
the text of the string. The string descriptor contains the 
following: 

Byte 0 contains the length of the string (0 to 255). 

Byte 1 contains the lower 8 bits of the string 
starting address in BASIC’s data segment. 

Byte 2 contains the upper 8 bits of the string 
starting address in BASIC’s data segment. 

The text of the string may be altered by the subroutine, but the 
length of the string must not be changed. BASIC cannot cor- 
rectly manipulate strings if their lengths are modified by exter- 
nal routines. 

Since the string descriptor points to an area of memory in your 
BASIC program, you must be careful not to  alter or destroy your 
program. To avoid unpredictable results, add the concatenation 
symbol ( +) to  the string. This forces the string to be copied into 
string space, where the string may be modified without affecting 
the program. 

Example 

20 A$ = “MONTHLY SALES REPORT” + “ ” 

File Cont Ck 
A file control block is a storage area in BASIC’s data segment 
that contains information BASIC needs for all functions per- 
formed on that file. When you execute the VARPTR function and 
specify the buffer number, BASIC returns the address of the 
BASIC file control block for that file. Note that this is the BASIC 
file control block, not the DOS file control block. The address is 
specified as an offset into BASIC data segment. In this section 
we define the information in the file control block. Offsets are 
relative to  the value returned by VARPTR. Length is in bytes. 

326 



Chapter 11 I Technical Information 

OFFSET LENGTH DESCRIPTION 

0 

1 

39 

41 

42 

43 

46 

47 

48 

1 

38 

2 

1 

1 

3 

1 

1 

1 

Mode 

FCB 

CURLOC 

ORNOFS 

NMLOFS 

*** 

DEVICE 

WIDTH 

POS 

The mode in which the file 
was opened: 

1 - Input Only 
2 - Output Only 
4 - Random I/O 

16 - Append Only 

Disk File Control Block. 
Refer to DOS User’s Guide 
for contents. 

Number of sectors read or 
written for sequential ac- 
cess. For random access, it 
contains t h e  l a s t  record 
number + 1 read or written. 

Number of bytes in  sector 
when read or written. 

Number of bytes left in In- 
put buffer. 

Reserved for future 
expansion. 

Device number: 
0-9 - Disks A: thru J: 
255 - KYBD: 
254 - SCRN: 
253 - LPT1: 
251 - COM1: 
250 - COM2: (not available) 
249 - LPT2: (not available) 
248 - LPT3: (not available) 

Device width. 

Position i n  buffer for 
PRINT#. 

327 



Chapter 11 I Technical Information 

49 

50 

51 

179 

181 

183 

185 

186 

188 

1 

1 

128 

2 

2 

2 

1 

2 

<n> 

FLAGS 

OUTPOS 

BUFFER 

VRECL 

PHYREC 

LOGREC 

*** 
OUTPOS 

FIELD 

Internal use during LOAD/ 
SAVE; not used for da t a  
files. 

Output position used during 
tab expansion. 

Physical data buffer. Used 
t o  transfer data  between 
DOS and BASIC. Use this 
offset t o  examine data in  
Sequential 110 mode. 

Variable length record size. 
Default  i s  128.  Se t  by 
length  option in  OPEN 
statement. 

Current  physic a1 re  cord 
number. 

Cur ren t  logical record 
number. 

Future use. 

Disk files only. Output posi- 
tion for PRINT#, INPUT#, 
and WRITE#. 

Actual FIELD data buffer. 
Size is determined by / S :  
switch. VRECL bytes are  
t ransfer red  between 
BUFFER and FIELD on I/O 
operations. Use this offset to  
examine File data in Ran- 
dom I/O mode. 

328 



Chapter 11 I Technical Information 

ser 
When writing device drives to  use with BASIC, note the follow- 
ing rules: 

BASIC sends only a carriage return as an end of line. If the 
device requires a line feed also, you must provide for this in 
your driver. 

0 BASIC must read and write control information to the device. 
Reading and writing Device Control data is handled by the 
BASIC IOCTL statement and the IOCTL$ function. 

0 Your driver must provide the following control functions: 

The driver must set a maximum line width as requested by 
the OPEN statement. 

The driver must return the current maximum line width 
when BASIC asks for it. 

Input Devices must re turn a n  “end-of-file’’ condition to 
BASIC if you want to be able to  close sequential input files 
open to the device driver. This is used by the EOF statement. 

Input Devices should return a ” Z  [CTRLJ E] if BASIC attempts 
to read past the end of the device input stream. BASIC uses 
this to  give an “Input past end” error. 

For more information on device drives, see the Programmer’s 
Reference manual for your computer. It is available at your Radio 
Shack Computer Store. 

for sse 
When writing programs for use as child processes from BASIC, 
please note the following rules and information: 

0 Child processes that use the screen device might modify the 
screen mode parameters. If necessary, restore these parame- 
ters from BIOS. 

0 Save and restore interrupt vectors the child process uses. 

BASIC places many hardware devices in specific states. 
These devices include an Interrupt Controller, Counter Tim- 
ers, DMA Controller, I/O Latch, and Uarts. 

329 



Chapter 11 I Technical Information 

Be careful when altering any files opened by the BASIC par- 
ent program. The BASIC parent program should close all files 
before executing SHELL and then reopen them upon return. 

When the SHELL command executes, BASIC tries to free 
any memory not being used. However, BASIC does not free 
memory preserved with the /M switch. This may cause an 
Out o f  memory error. 

To avoid this, load your machine language routines before en- 
tering BASIC. Use Interrupt 27 to let the routines to exit 
MS-DOS but still remain in memory. 

For more information, see the Programmer's Reference man- 
ual for your computer (sold separately). 

Never use Interrupt 27 on a child process. If you attempt to 
terminate a child process but have it remain in memory, 
BASIC may not have enough room to expand its workspace to 
its original size. If the workspace cannot be restored, BASIC 
closes all files, prints the error message SHELL can't con- 
t inue, and exits to MS-DOS. 

You cannot run BASIC as a child process to itself. 

330 



Chapter 12 

BASIC ERROR CODES AND MESSAGES 

Number 

1 

2 

3 

4 

5 

Message 

NEXT without FOR 

BASIC executed a NEXT statement without previ- 
ously executing a FOR statement, or a variable in a 
NEXT statement does not correspond to a previ- 
ously executed FOR statement. 

Syntax error 

BASIC encountered a line that contains an incor- 
rect sequence of characters (such as unmatched pa- 
ren theses ,  misspelled s ta tement ,  incorrect 
punctuation, and so on). BASIC automatically en- 
ters the edit mode at the line that caused the error. 

RETURN without GOSUB 

BASIC executed a RETURN statement without pre- 
viously executing a GOSUB statement. 

Out of DATA 
When executing a READ statement, BASIC could 
not find any DATA statements or unread data  
items. 

Illegal function call 

A parameter that is out of range was passed to a 
math or string function. This error may also occur 
as the result of 
0 negative array subscript or an unreasonably 

large array subscript. 

0 negative or zero argument with LOG. 
0 negative argument to SQR. 

0 negative mantissa with a noninteger exponent. 

0 invalid exponential number. 

33 1 



Chapter 12 I Error Messages 

Number 

6 

7 

8 

9 

10 

Message 
a call to  a USR function without a starting ad- 
dress set by DEF USR. 

0 improper argument to MID$, LEFT$, RIGHT$, 
PEEK, POKE, TAB, SPC, STRING$, SPACE$, 
INSTR, or LEFT$, RIGHT$, PEEK, POKE, 
TAB, SPC, STRING$, SPACE$, INSTR, or 
ON.. . GOTO. 

0 negative record number used with GET or PUT. 

Overflow 

The result of a calculation was too large to  be rep- 
resented in BASIC numeric format. If underflow oc- 
curs, the result is zero, and execution continues 
without an error. 

Out of memory 

A program is too large, has too many FOR loops or 
GOSUBs, has too many variables, or has expres- 
sions that are too complicated. 

Undefined line number 

A nonexistent line was referenced in a GOTO, GO- 
SUB, IF ... THEN ... ELSE, or DELETE statement. 

Subscript out of range 

An array element is referenced with a subscript 
outside the dimensions of the array or with the 
wrong number of subscripts. 

Redimensioned Array/Duplicate Definition 

BASIC encountered 2 DIM statements for the same 
array, or a DIM statement after the default dimen- 
sion of 10 had already been established for that 
array. 

332 



Chapter 12 I Error Messages 

Number 
11 

12 

13 

14 

15 

16 

17 

Message 
Division by zero 
An expression includes division by zero, or the oper- 
ation of involution results in zero being raised to a 
negative power. BASIC supplies machine infinity 
with the sign of the numerator as the result of the 
division, or it supplies positive machine infinity 
as the result of the involution. Execution then 
continues. 

Illegal direct 

A statement that is illegal as a command was en- 
tered at BASIC’s prompt. 

Type mismatch 
A string variable name was assigned a numeric 
value or vice versa. A string function was given a 
numeric argument or vice versa. 

Out of string space 

The amount of memory used by string variables ex- 
ceeded the amount of free memory. 

String too long 
An attempt was made to create a string more than 
255 characters. 

String formula too complex 

A string expression is too long or too complex. The 
expression should be broken into smaller  
expressions. 

Can’t continue 

An attempt was made to continue a program that: 

0 halted because of an error. 

0 was modified during a break in execution. 

0 does not exist. 

333 



Chapter 12 I Error Messages 

Number 
18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Message 
Undefined user function. 

A USR function was called before providing a func- 
tion definition (DEF USR statement). 

No RESUME 
BASIC executed an error-handling routine that did 
not have a RESUME statement. 

RESUME without error 

BASIC executed a RESUME statement when no er- 
ror had occurred. 

Unprintable error 

An error message is not available for the error that 
occurred. 

Missing operand 
BASIC encountered an expression that contained an 
operator but no operand. 

Line buffer overflow 

The line being input is too long. 

Device Timeout 

BASIC did not receive information from an I/O de- 
vice within a predetermined amount of time. 

Device Fault 

An incorrect device designation has been entered. 

FOR without NEXT 

BASIC executed a FOR statement that did not have 
a matching NEXT. 

Out of Paper 

BASIC received an out of paper status from the 
printer . 

334 



Chapter 12 f Error Messages 

Number Message 

29 WHILE without WEND 

BASIC encountered a WHILE statement that did 
not have a matching WEND. 

30 WEND without WHILE 

BASIC executed a WEND statement before execut- 
ing a WHILE statement. 

335 



Chapter 12 I Error Messages 

Disk Errors 

Number 

50 

51 

52 

53 

54 

55 

57 

58 

Message 

FIELD overflow 

A FIELD statement is allocating more bytes than 
the specified record length of the direct access file. 

Internal error 
An internal malfunction has occurred in BASIC. 
Report to  Radio Shack the conditions under which 
the message appeared. 

Bad file number 

BASIC encountered a reference to a buffer number 
that is not open or is out of the range of the number 
of files specified when BASIC was loaded. 

File not found 
A LOAD, KILL, or OPEN statement references a 
file that does not exist on the current disk. 

Bad file mode 
An attempt was made to use PUT, GET, or LOF 
with a sequential file, to  LOAD a direct file, or to  
execute an OPEN statement with a file mode other 
than I, 0, R, E or D. 

File already open 

BASIC encountered an OPEN statement for sequen- 
tial output, or a KILL statement, for a file that is 
already open. 

Device I/O Error 

An Input/Output error occurred. This is a fatal er- 
ror; the operating system cannot recover it. 

File already exists 

The filename specified in a NAME statement is 
identical to a filespec already in use on the disk. 

336 



Chapter 12 I Error Messages 

Number 

61 

62 

63 

64 

66 

67 

68 

Message 

Disk full 
All disk storage space is in use. 

Input past end 

BASIC executed an INPUT statement after all the 
data in the file had been read, or BASIC executed 
an INPUT statement to a null (empty) file. To avoid 
this error, use the EOF function to detect the end- 
of-file. 

Bad record number 

In a GET or PUT statement, the record number is 
e i the r  g r e a t e r  t h a n  t h e  maximum allowed 
(16,777,215) or equal to zero. 

Bad file name 

An illegal pathname was used with a LOAD, 
SAVE, KILL, or OPEN statement (for example, a 
filename with too many characters). 

Direct statement in file 

Information in a non-ASCII format was encountered 
while LOADing an ASCII-format file. The LOAD is 
terminated. 

Too many files 
The diskette already contains the maximum num- 
ber of files allowed. This usually occurs on SAVE or 
OPEN. An attempt was made to create a new file 
(using SAVE or OPEN) when all directory entries 
are full. 

Device Unavailable 

An attempt was made to open a file to a non- 
existent device. It may be that hardware does not 
exist to support the device, such as LPT2: or LPT3:, 
or that the device is disabled. This occurs if an 
OPEN “COM1: ... statement is executed but the user 
disabled RS232 support via the /C:0 switch direc- 
tive on the command line. 

337 



Chapter 12 I Error Messages 

Number 

69 

70 

71 

72 

73 

74 

75 

76 

77 

Message 

Communication buffer overflow 

Not enough space has been reserved for the commu- 
nica t ions buffer. 

Disk write protected 
Occurs when an attempt is made to write to  a 
diskette that is write-protected. Use an ON ERROR 
GOTO statement to detect this situation and re- 
quest user action. 

Disk not Ready 

Occurs when the diskette drive door is open or a 
diskette is not in the drive. Use an ON ERROR 
GOTO statement to recover. 

Disk media error 
Occurs when the FDC controller detects a hardware 
or media fault. This usually indicates harmed me- 
dia. Copy any existing files to a new diskette and 
re-format the damaged diskette. FORMAT flags any 
bad tracks and records them in a special file. The 
remainder of the diskette is then usable. 

Advanced Feature 

Rename across disks 

An attempt was made to rename a file with a new 
drive designation. BASIC does not allow this. 

Path/File Access Error 

During an OPEN, MKDIR, CHDIR, or RMDIR op- 
eration, MS-DOS was unable t o  make a correct 
Path-to-Filename connection. 

Path not found 

The OPEN, MKDIR, CHDIR, or RMDIR statement 
references a path that does not exist. 

Deadlock 

338 



Appendix A 

BASIC Reserved Words 
and Derived Functions 

ABS DELETE IOCTL OPTION SIN 
AND DIM IOCTL$ OR SOUND 
ASC DRAW KEY OUT SPACE$ 
ATN EDIT KEY$ PAINT SPC( 
AUTO ELSE KILL PALETTE SQR 
BEEP END LEFT$ PALETTE USING STEP 
BLOAD ENVIRON LEN PCOPY 
BSAVE ENVIRON$ LET PEEK 
CALL EOF LINE PEN 
CDBL EQV LIST PLAY 
CHAIN ERASE LLIST PMAP 
CHDIR ERDEV LOAD POINT 
CHR$ ERDEV$ LOC POKE 
CINT ERL LOCATE POS 
CIRCLE ERR LOCK PRESET 
CLEAR ERROR LOF PRINT 
CLOSE EXP LOG PRINT# 
CLS FIELD LPOS PSET 
COLOR FILES LPRINT PUT 
COM FIX LSET RANDOMIZE 
COMMON FN MERGE READ 
CONT FOR MID$ REM 
cos FRE MKDIR RENUM 
CSRLIN GET MKD$ RESET 
CSNG GOSUB MKI$ RESTORE 
CVD GOT0 MKS$ RESUME 
CVI HEX$ MOD RETURN 
cvs IF MOTOR RIGHT$ 
DATA IMP NAME RMDIR 
DATE$ INKEY$ NEW RND 
DEF INP NEXT RSET 
DEFDBL INPUT NOISE RUN 
DEFINT INPUT# NOT SAVE 
DEFSNG INPUT$ OCT$ SBN 
DEFSTR INSTR OFF SCREEN 
DEFFN INT ON SGN 
DEFUSR INTER$ OPEN SHELL 

STICK 
STOP 
STR$ 
STRIG 
STRING$ 
SWAP 
SYSTEM 
TAB( 
TAN 
TERM 
THEN 
TIME$ 
TIMER 
TO 
TROFF 
TRON 
UNLOCK 
USING 
USR 
VAL 
VARPTR 
VARPTR$ 
VIEW 
WAIT 
WEND 
WHILE 
WIDTH 
WINDOW 
WRITE 
WRITE# 
XOR 

339 



Appendix A 

ri 
Functions which are not intrinsic to  BASIC may be calculated as 
follows: 

Function 
SECANT 
COSECANT 
CONTANGENT 
INVERSE SINE 

INVERSE COSINE 

INVERSE SECANT 

INVERSE 
COSECANT 

INVERSE 
COTANGENT 

HYPERBOLIC 
SINE 

HYPERBOLIC 
COSINE 

HYPERBOLIC 
TANGENT 

HYPERBOLIC 
SECANT 

HYPERBOLIC 
COSECANT 

HYPERBOLIC 
COTANGENT 

INVERSE 
HYPERBOLIC 
SINE 

INVERSE 
HYPERBOLIC 
COSINE 

INVERSE 
HYPERBOLIC 
TANGENT 

BASIC Equivalent 
SEC(X) = l/COS(X) 
CSC(X) = l/SIN(X) 
COT(X) = l/TAN(X) 
ARCSIN(X) = ATN(X/ 
SQR( - X*X + 1)) 
ARCCOS(X) = - ATN(X/ 
SQR( - X*X + 1)) + 1.5708 
ARCSEC(X) = ATN(X/ 
SQR(X*X - 1)) + (SGN(X) - 1) 
* 1.5708 
ARCCSC(X) = ATN(X/SQR(X*X - 1)) 
+(SGN(X)- 1)*1.5708 

ARCCOT(X) = ATN(X) + 1.5708 

SINH(X) = (EXP(X) - EXP( - X))/2 

COSH(X) = (EXP(X) + EXP( - X))/2 
TANH(X) = (EXP(X) - EXP( - X))/ 
(EXP(X) + EXP( - X)) 

SECH(X) = 2/(EXP(X) + EXP( - X)) 

CSCH(X) = 2/(EXP(X) - EXP( - X)) 
COTH(X) = (EXP(X) + (EXP( - X))/ 
(EXP(X) - EXP( - X)) 

ARCSINH(X) = LOG(X 
+ SQR(X*X + 1)) 

ARCCOSH(X) = LOG(X 
+ SQR(X X - 1)) 

ARCTANH(X)=LOG((l +X)/(l -X))/ 
2 

340 



Appendix A 

Function BASIC Equivalent 

INVERSE 
HYPERBOLIC ARCSECH(X) = LOG((SQR 
SECANT 

HYPERBOLIC ARCCSCH(X) = LOG((SGN(X)* 
COSECANT SQR(X*X+ 1) + l)/X) 

HYPERBOLIC 

( -  x*x + 1) + 1)/X) 
INVERSE 

INVERSE 

COTANGENT ARCCOTH(X) = LOG((X + 1)/(X - 1))/2 

341 





Appendix B 

KEYBOARD AND CHARACTER CODE 
CHARTS 

Keyboard ASCIIlScan Codes 
The following table lists the keys, in scan code order, and the 
ASCII codes generated by each (which depends on the shift sta- 
tus). The entries in the table are: 

0 SCAN CODE - A value in the range 01H-54H (hexadecimal) 
that uniquely describes which key is pressed. 

0 NORM - The normal (unshifted) ASCII value (returned 
when only the indicated key is pressed). 

0 UPPERCASE - The shifted ASCII value (returned when 

0 CTRL - The control ASCII value (returned when [CTRL] is 
also pressed.) 

0 ALT - The alternate ASCII value (returned when IALT] is 
also pressed). 

All numeric values in the table are expressed in hexadecimal. 
Those values preceded by an X are extended ASCII codes. (They 
are preceded by an ASCII NUL [ = 001.) 

The following notations are used in the table: 
- 
** 

is also pressed). 

indicates that no ASCII code is generated. 

indicates that no ASCII code is generated, and that, in- 
stead, the special function described later is performed. 

indicates that you can generate the ASCII codes of decimal 
numbers in the range 1 to 255. Hold down IALT] while you 
type on the numeric Keypad any decimal number in the ac- 
ceptable range. When you release I, the ASCII code of 
the number is generated and displayed. 

Note: When the NUM LOCK light is on, the BASE CASE 
characters are produced. 

t 

343 



Appendix B 

Scan code to  ASCII translations for US English Tandy 3000 keyboard 

key # - 
SCAN 
CODE 

01 
02 
03 
04 
05 
06 
07 
08 
09 
0A 
OB 
0 c  
0D 
BE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1c 
1D 
1E 
1F 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2 c  
2D 
2E 
2F 
30 
31 
32 

NORM CASE 
(ASCII code) 

ESC 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

- - 
BS 

q 

e 
r 
t 
Y 

i 

.* 

W 

u 

D 

P 
1 
CR 
CTRL 
a 

d 
I 
B 
h 
I 
k 
I 

9 

1B 
31 
32 
33 
34 
35 
36 
37 
38 
39 
30 
2D 
3D 
08 
09 
71 
77 
65 
72 
74 
79 
75 
69 
6 F  
70 
5B 
5D 
OD 

61 
73 
64 
66 
67 
68 
6A 
6B 
6C 
3B 
27 
60 

- 

left SHIFT - 
\ 5C 
7, 7A 
K 78 

63 
V 76 
3 62 
n 6E 
m 6D 

UPPER CASE 
(ASCII code) 

ESC 
! 
@ 
# 
$ 
% 

& 

( 
) 

* 

- 
+ 
BS 
c 

Q 
W 
E 
R 
T 
Y 
U 
I 
0 
P 
I 
1 
CR 
CTRL 
A 
S 
D 
F 
G 
H 
J 
K 
L 

1B 
21 
40 
23 
24 
25 
5E 
26 
2A 
28 
29 
5F 
2B 
08 

X00F 
51 
57 
45 
52 
54 
59 
55 
49 
4F  
50 
7B 
7D 
0D 

41 
53 
44 
46 
47 
48 
4A 
4B 
4 c  
3A 
22 
7E 

- 

left SHIFT - 
7 c  
5A Z 

X 58 
C 43 
V 56 
B 42 
N 4E 
M 4D 

I 

CTRL CASE 
(ASCII code) 

ESC 
- 
NULL 
- 
- 
- 
RS 
- 
- 
- 
- 
us 
DEL 

DC1 
ETB 
ENQ 
DC2 
DC4 
EM 
NAK 
HT 
SI 
DLE 
ESC 
GS 
LF 
CTRL 
SOH 
DC3 
EOT 
ACK 
BEL 
BS 
LF 
VT 
FF 

- 
- 

- 
- 
- 
left SHIFT 
FS 
SUB 
CAN 
ETX 
SYN 
STX 
so 

1B 

00 
- 

- 
- 
- 
1E 
- 
- 
- 
- 
1F 

7F 

11 
17 
05 
12 
14 
19 
15 
09 
OF 
10 
1B 
1D 
OA 

01 
13 
04 
06 
07 
08 
OA 
OB 
0 c  

- 

- 

- 

- 
- 
- 
- 
1c 
1A 
18 
03 
16 
02 
OE 

CR OD 

ALT CASE 
(ASCII code) 

- - 
ALTl X078 
ALTB X079 
ALT3 X07A 
ALT4 X07B 
ALT5 X07C 
ALTG X07D 
ALT7 X07E 
ALTB X07F 
ALTS X080 
ALTB X081 

ALT= X083 
ALT- X082 

- - 
- - 
ALTQ XO1O 
ALTW X 0 l l  
ALTE X012 
ALTR X013 
ALTT X014 
ALTY X015 
ALTU X016 
ALTI X017 
ALTO X018 
ALTP X019 
- - 
- - 
- - 
CTRL - 
ALTA X01E 
ALTS X01F 
ALTD X020 
ALTF X021 
ALTG X022 
ALTH X023 
ALTJ X024 
ALTK X025 
ALTL X026 
- - 
- - 
- - 
left SHIFT - 

ALTZ X02C 
ALTX X02D 
ALTC X02E 
ALTV X02F 
ALTB X030 
ALTN X031 
ALTM X032 

- - 

344 



Appendix B 

key # - 
SCAN 
CODE 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3c 
3D 
3E 
3F  
40 
41 
42 
43 
44 
45 
46 

54 

SCAN 
CODE 

47 
48 
49 

4A 
4B 

4 c  
4D 

4E 
4F  
50 
51 
52 
53 

~~~ 

NORM CASE
(ASCII code)

2 c
2E

I 2F
right SHIFT -

2A
ALT -
SPACE 20
CAPS -
F1 X03B
F2 X03C
F3 X03D
F4 X03E
F5 X03F
F6 X040
F7 X041
F8 X042
F9 X043
F1O X044
NUM LOCK-
SCROLL
LOCK -
SYS**

*

NUM LOCK
(ASCII code)

7 37
8 38
9 39

- 2D
4 34

5 35
6 36

+ 2B
1 31
2 32
3 33
0 30

2E

UPPER CASE
(ASCII code)

< 3c
> 3E
? 3F
right SHIFT -
PrScr**
ALT -

SPACE 20
CAPS -
F11 X054
F12 X055
F13 X056
F14 X057
F15 X058
F16 X059
F17 X05A
F18 X05B
F19 X05C
F20 X05D
NUM LOCK-
SCROLL
LOCK -
SYS**

CTRL CASE
(ASCII code)

- -
- -
- -
right SHIFT -
CPrScr** X072
ALT -
SPACE 20

F21 X05E
F22 X05F
F23 X060
F24 X061
F25 X062
F26 X063
F27 X064
F28 X065
F29 X066
F30 X067
PAUSE **
BREAK **

- -

SYS**

Numeric key pad
BASE CASE
(ASCII code)

HOME X047
t X048
P G U P X049

2D
+ X04B
-

- -
+ X04D

+ 2B
END X04F
1 X050
PGDN X051
INS X052
DEL X053

ALT CASE
(ASCII code)

- -
- -
- -
right SHIFT-

ALT -
SPACE X020
CAPS -
F31 X068
F32 X069
F33 X06A
F34 X06B
F35 X06C
F36 X06D
F37 X06E
F38 X06F
F39 X070
F40 X071
NUM L O C I C
SCROLL
LOCK -
SYS**

- -

CTRL CASE
(ASCII code)

CLR SCN

TOP OF TEXT
AND HOME

LEFT ONE
WORD

RIGHT ONE
WORD

ERASE TO EOL

ERASE TO EOS

-

-

-

-

-

-
-

X077

X084
-

-
X073

-
X074

-
X075

X076
-

-

-

345

Appendix B

ASCII and Scan Code Special Handling
[CTRL1(BREAK] Empties the keyboard queue and executes the key-
BREAK board break interrupt (int 1BH). Places a NULL

ASCII scan code in the keyboard queue.

[CTRLIE) Delays system activity (except external interrupts)
PAUSE until you press another key.

[SHIFT)[)Invokes the BIOS print screen function (int 5H). A
PrScr second PrScr halts the printer output.

[CTRLlWSCRJ Tells MS-DOS to direct console output to both the
CPrScr printer and the console. A second CPrScr halts

printer output.

Invokes interrupt 15H (sequence write) and Regis-
ter AX=8500H. When you release m, MS-DOS
invokes interrupt 15H and Register AX = 8501H.

SYS

ASCII Character Codes
The previous table listed the ASCII codes (in hexadecimal) gen-
erated by each key. The following table lists the characters gen-
erated by those ASCII codes. (Note: All ASCII codes in this table
are expressed in decimal form.)

Note: All ASCII codes in this table are expressed in
decimal form.

You can display the characters listed by doing either of the
following:

0 Using the BASIC statement PRINT CHR$(code), where code is

0 Pressing and, without releasing it, typing the ASCII code

For Codes 0-31, the table also lists the standard interpretations.
The interpretations are usually used for control functions or
communications.

Note: The BASIC program editor has its own special
interpretation of some codes and may not display the
character listed.

the ASCII code.

on the numeric keypad.

346

Appendix B

ASCII CHARACTER CODES
ASCII COntrOl
coda Character Character

000
00 1
002
003
004
005
006
007
008
009
010
01 1
01 2
013
01 4

015
016
01 7
018
01 9
020
02 1
022
023
024
025
026
027
028
029
030
03 1

(null)
@
e
V +
4

(beep)
0

(tab)
(line feed)
(home)
(form feed)

(carriage return)

0
at3
b

*
:
!!

7
5

1
t
4

I

+

c

(cursor right)

(cursor left)
(cursor up)
(cursor down)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF

CR
so
SI
DLE
DC 1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS

GS
RS
us

341

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

032

033
034
035
036
037
038
039
040
04 1
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
06 1

062
063
064
065
066
067

(space)
!

I ,

$
%
&

(
1

+

-

I

0
1
2
3
4
5
6
7
8
9

<
- -
>
?

@
A
B
C

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
09 1
092
093
094
095
096
097
098
099
100
101
102
103

D

E
F
G
H
I
J
K

L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
2

[
\

I
A
-

a
b
C

d
e
f

9

348

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

104
105
106
107
108
1 09
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139

h 140
I 141
i 142
k 143
I 144

m 145
n 146
0 147
P 148
9 149
r 150
S 151
t 152

U 153
V 154
W 155
X 156
Y 157
2 158
{ 159
; 160
1 161

162
0 163

164
165 u

e 166
a 167
a 168

a 169
d 170
c 171
5 172
e 173
e 174

I 175

-

c
..

349

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
1 95
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21 1

% 21 2
9 213
i% 214

I 21 5
-I 216
4 21 7
-4 21 8
n 21 9
;1 220

22 1 -4
II 222

J

=a 223
3 224
II 225
A 226
1 227
L 228
I 229
T 230
k 231
- 232
+ 233
I= 234

235
b 236
F 237

J& 238
239 i r

Ik 240
24 1 + 242

& 243
Y 244
=i= 245
77 246
IL 247

It

-

- -

350

Appendix B

ASCII CHARACTER CODES
ASCII ASCII
Code Character Code Character

0 248 252 v
249 0 253 2

250 0 254
25 1 fl 255 (blank 'FF')

351

Appendix C

VIDEO DISPLAY WORKSHEET

The following page contains a video display worksheet of your
text screen’s coordinates. This map is provided to help you
quickly position the cursor for screen prints. You’ll find it espe-
cially useful for creating visually pleasing, easy-to-follow screen
menus. See the CSRLIN and POS functions for information on
returning the current cursor position. See the LOCATE state-
ment and the TAB function for information on positioning the
cursor.

352

353

Appendix D

EXTENDED CODES

For certain keys and key combinations, INKEY$ returns a 2-
character code. The first character is a null character (ASCII
Code 00). The second is usually the scan code of the key(s)
pressed. The key(s> and associated ASCII codes (in decimal) are
listed below.

Second Key(& Second Key(s)
Character Pressed Character Pressed
15
16
17
18
19
20
21
22
23
24
25
30
31
32
33
34
35
36
37
38
44
45
46
47
48
49
50
59
60
61
62
63

LsHlFT] [TAB]
[ALTIQ
[ALTIW
W E
pii7JR
W T

D U
[ALTII
[ALTIO
[ALTJP
[ALTIA
[ALTIS
[ALTID
D F
[ALTIG
W H
W J
[ALTIK
[ALTIL
[ALTIZ
[ALTIX
[ALTIC
[ALTV
[ALTIB
[ALTIN
pii7JM
[nl
IF21
[F31
!El
[F5)

64
65
66
67
68
71
72
73
75
77
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

Appendix D

Second Key(s) Second Key(s)
Character Pressed Character Pressed

102
103
104
105
106
107
108
109
110
111
112
113
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

[CTRL] [PGDN]
(CTRL] [HOME]
[ALTIl
[ALTJ2
[ALTIQ
IALTJ4
IALTJ5

m7

[ALTIS
IALTJ0
IALTJ-
IALT]=
[CTRLl [PGUp]

m6

[ALTI8

356

INDEX

ABS Fn 68, 71
Absolute coordinates 59
Absolute value 71
Active page 58, 272
Addition 32
ALT key 22
AND 35
Animation 143, 251
Arctangent 73
Arguments 2
Arithmetic operators 31 -32
Arrays 39-43

defining 43, 116
erasing 126
types 42-43

ASC Fn 68, 72
ASCII codes 72, 86, 271, 343-51
Aspect ratio 56, 57
Assembly-language subroutines

CALL 79, 321-22
calling 79, 321-22
converting 320-21
DEF USR 114
interfacing 317-18
loading 319
poking 319
USR 301, 323

ATN Fn 68, 73
AUTO St 63, 74

Background colors 54, 55
BASIC

concepts 23-37
derived function 340-41
device names 6
directory paths 4
disk files 3
editing 17-1 9
line numbers 23, 74, 258-59
loading 7-12
loading options 8-1 1

357

BASIC (cont.)
pathnames 4
program 23
redirection 11-12
reserved words 339
sample session 13-1 5
special keys 20-21
statement 23
wildcards 5-6
work area 317-18

BEEP St 63, 75

Boolean operators 34-36
Borders 54, 95, 97
Branching 200-1 3

Buffer 2, 133-34, 190, 214, 267, 310-11
Buffer, communications 9, 181, 186, 218-21, 250
Buffer, music 208-09
Buffer, printer 188

Calling subroutines 79, 321-22
CALLS St 63, 80, 323
CDBL Fn 68, 81
Chaining 82-84, 101

CHDlR St 63, 85
Child processes 275-76, 329-30
CHR$ Fn 68, 86
ClNT Fn 68, 87

CLOSE St 63, 93, 260
Clear

memory 91-92
screen 94

CLS St 63, 94
Color 53-56, 95-96, 97-98.
COLOR/Graphics St 55, 63, 95-96
Color sets 54-55
COLORflext St 63, 97-98

Comments 23, 257

BLOAD St 63, 76-77, 78

BSAVE St 63, 76-77, 78

CALL St 63, 79, 321-22

CHAIN St 63, 82-83

CIRCLE St 63, 88-89

CLEAR St 63, 91-92

COM St 63, 99-100

358

COMMON St 63, 101
Communications 124, 141, 181, 186, 218-21, 250
Communications buffer 9, 181, 186, 218-21, 250
Communications trapping 99-1 00, 200-01
Compressed files 269
Concatenation 32
Concepts 23-37
Constants 26-28

classifying 28
declaring 28

CONT St 63, 102, 285
Converting precision 29-31, 81, 87, 104
Converting strings 285, 302
Coordinates

absolute 59
relative 59
physical 235, 236, 312-13
world 235, 236, 312-13

COS Fn 68, 103
Cosine 103
CSNG Fn 68, 104
CSRLIN Fn 68, 105
Current segment 11 3
Cursor 105, 182, 238
CVD Fn 68, 106
CVI Fn 68, 106
CVS Fn 68, 106

Data 24-26
constants 26-27
converting 29-31, 81, 87, 104, 196
double precision 25, 28, 29, 81, 106, 196
hexadecimal 25, 146
integers 24, 87, 106, 160, 196
manipulating 31
numeric 24-26
octal 26, 199
printing 189
single precision 25, 28, 29, 104, 196
strings 24, 29, 111, 158-59, 169, 170, 264

DATA St 63, 107
Data files 91, 214-17, see also Disk files
Date, retrieving 109-10
Date, setting 109-10

359

DATE$ Fn 68, 109-10
Debugging 127, 316, 332
DEFDBL St 63, 111
DEF FN St 63, 112
DEFINT St 63, 111
DEF SEG St 63, 113
DEFSNG St 63, 111
DEFSTR St 63, 111
DEF USR St 63, 114
DELETE St 63, 115
Derived functions 340-41
Device errors 127, 128
Device names 6
Devices 6, 214-17, 310, 329
DIM St 63, 116
Direct access 48-52, see also Disk files
Directories 4

changing 85
creating 195
displaying 135
removing 265

Directory path 4
Disk files

buffer 2, 133-34, 190, 214, 267
CLOSE 93
closing 260
converting data 106
direct access 48-52

accessing 50-51, 140
closing 93
creating 49-50
EOF 124
FIELD 133-34
GET 140
locating records 182
LSET 190
MKD$196
MKl t 196
MKS$l96

PUT 249
RSET 267

displaying 135
end of file 124

OPEN 214-17

360

Disk files (cont.)

file control block 326-28
length 185
LOAD 179
LOF 185
MERGE 191

renaming 197
sequential access 45-48

closing 93
creating 45-47
end of file 124
EOF 124

FIELD 133-34

OPEN 214-17

INPUT# 154-55
INPUT$ 156-57
LINE INPUT# 176
locating records 181

updating 47-48
Display page 58, 272
Division 32

integer 32
Double precision 25

CDBL 81
CVD 106
DEFDBL 111
MKD$ 196

Draw point 248

OPEN 214-17
PRINT# 245-47

DRAW St 63, 117-19

EDIT St 64, 120
Editing 17-20, 120
END St 64, 121
End of file 124
ENVIRON St 64, 122
ENVIRON$ Fn 68, 123
Environment String Table 122, 123
EOF Fn 68, 124
Equal sign 33
EQV 35
ERASE St 64, 126
ERDEV Fn 68, 127

361

Index

ERDEV$ Fn 68, 128
ERL St 64, 129
ERR St 64, 130
ERROR St 64, 131
Error codes 331-38
Error messages 331 -38
Errors 127-31, 331 -38

device 127-28
ERDEV 127
ERDEV$l28
ERL 129
ERR 130
ERROR 131
RESUME 262
simulate 131
trapping 129, 130, 208

EXP Fn 68, 132
Exponent, natural 132
Exponential numbers 28
Exponentiation 32
Expressions 31, 147
Extensions 4

FIELD St 64, 133-34
File control block 326-28
Filenames 4, 5
Files see Disk files
FILES St 64, 135
FIX Fn 68, 136
Formatting printing 189, 239-44

FORTRAN routines 80
FRE Fn 68, 139
Function keys 163-64

assigning 163
displaying 164
trapping 165-66, 205-06

Functions 37, 68-70
Function, user 112

FOR/NEXT St 64, 137-38

GET St 64, 106, 140
GET/Communications St 64, 141
GET/Graphics St 64, 142-43
GOSUB St 64, 144, 262

362

GOT0 St 64, 145
Graphics 53-60, 88-89, 117-19, 172-74, 224-26,

Graphics modes 55
Greater Than sign 33
Greater Than/Equal To sign 33

HEX$ Fn 68, 146
Hexadecimal 1, 25, 146
Hierarchy of operators 36-37

Image file 76-77, 78
IMP 35
Inequality sign 33
INKEY$ Fn 68, 149-50
INP Fn 68, 151

248, 251 -53, 272-73, 305-06

IF/THEN/ELSE St 64, 147-48

INPUT St 64, 152-53
INPUT# St 64, 154-55
INPUT$ St 64, 156-57
Input

communications 141
device 154-55
disk 140, 154-55, 156-57, 176
graphics 142-43
keyboard 149-50, 152-53, 156-57, 175
joysticks 283, 287-88
light pen 228
memory 227
music buffer 208-09
port 151, 308

Input, redirection 9
INSTR Fn 68, 158-59
INT Fn 68, 160
Integer division 32
Integers 24, 28, 29

ClNT 87
CVI 106
DEFDBL 11 1
FIX 136
INT 160
MKI$ 196

IOCTL St 94, 161
IOCTL$ Fn 69, 162

363

Joystick 283, 286, 287-88
trapping 210-1 1, 289-90

KEY St 64, 163-64, 166
Keyboard codes 343-51
Keyboard input 149-50, 152-53, 156-57, 175
Keys 20-22, 165
Keys, user-defined 165
KEYflrap St 64, 165-66
Key trapping 165-66, 205-06
KILL St 64, 167

LCOPY 64, 168
LEFT$ Fn 69, 169
LEN Fn 69, 170
Less Than sign 33
Less Than/Equal To sign 33
LET St 64, 171
Light pen

trapping 207, 229
LINE St 64, 172-74
LINE INPUT St 64, 175
LINE INPUT# St 64, 176
Line length 17
Line numbers 23

automatic 74
LIST St 65, 177
LLlST St 65, 178

Loading
LOAD St 14-15, 65, 179

BASIC 7, 13
BASIC options 8-10
programs 14-15, 179

LOC Fn 69, 181
LOCATE St 65, 182
Locating cursor 105, 238
Locating record 181
LOC/Communication Fn 69, 181

LOF Fn 69, 185
LOF/Communication Fn 69, 186
LOG Fn 69, 187
Logarithms 132, 187

LOCK St 65, 183-84

364

Index

Logical operators 34-36
LOOPS 137-38
LPOS Fn 69, 188
LPRINT St 65, 189, 294
LSET St 65, 190

Memory allocation 31 7-1 8
Memory image file 76-77, 78
Memory read 227
Memory size 91-92, 113, 139
MERGE St 65, 191
MID$ Fn 69, 194
MID$ St 65, 193
MKD$ Fn 69, 196
MKDlR St 65, 195
MKI$ Fn 69, 196
MKS$ Fn 69, 196
MOD 32
Modulus arithmetic 32

child processes 275
directory path 4
directory structure 3
names 5
pathnames 4
root 3
SYSTEM 293

Multiplication 32
Music 230-34

buffer 208-09

trapping 208-09, 234

MS-DOS 3, 275-76, 293

PLAY 230-32

NAME St 65, 197
Natural exponent 132
Natural logarithm 187
Negation 32
Nested loops 137-38
NEW St 65, 198
NOT 35
Notations 1
Numbers

converting 29-31, 81, 87, 104, 106
double precision 25, 28, 29, 81, 106, 196

365

Numbers (cont.)
hexadecimal 25, 146
integers 24, 87, 106, 160, 196
octal 26, 199
single precision 25, 28, 29, 104, 196

Numeric constants 28
Numeric data 24-26
Numeric variables 28-29

OCT$ Fn 69, 199
Octal 1, 26, 199

ON ERROR GOT0 St 65, 202, 262
ON/GOSUB St 65, 203, 263
ON/GOTO St 65, 204

ON PEN GOSUB St 65, 207

ON COM()GOSUB St 65, 99-100, 200-01

ON KEYOGOSUB St 65, 166, 205-06

ON PLAY()GOSUB St 65, 208-09, 234
ON STRIG()GOSUB St 65, 210-11, 286, 289-90
ON TIMER()GOSUB St 65, 212-13, 299
OPEN St 65, 214-17
0PEN"COM St 65, 218-21
Operators

arithmetic 31-32
hierarchy 36
logical 34-36
relational 32-34
string relational 33-34

OPTION BASE St 65, 222
OR 35
OUT St 65, 223
output

communication 250
disk 245-47, 249, 315
display 178, 239-40, 241-44, 248, 294, 314
graphics 251-53
memory 237
music 230-32
port 223
printer 178, 189, 294
sound 75, 91-92

Output redirection 11 -1 2

Pages, video 58

366

Index

PAINT St 66, 224-26
Palettes 55, 95-96
Parameters 2
Pathnames 4
PEEK Fn 69, 227, 237
PEN Fn 69, 228
PENiTrap St 65, 207, 228, 229
Physical coordinates 235, 236, 312-13
PLAY Fn 69, 233

PLAYiTrap St 65, 208-09, 234
PMAP Fn 69, 235
POINT Fn 69, 236
POKE St 66, 227, 237
Ports 151, 223, 308
POS Fn 69, 238
Position cursor 182
Precision conversion 29-31, 81, 87, 104, 106
PRESET St 66, 248
PRINT St 66, 239-40, 294
PRINT USING St 66, 241-44
PRINT# St 66, 245-47

PLAY St 66, 230-32

Print buffer 188
Printer 178, 188, 189, 294, 310-11
Printing, formatted 189, 239-44
Program

elements 23
execution 268
line numbers 23, 258-59
lines 23, 258-59
listing 177, 178

Program merging 191
Program renumbering 258-59
Program termination 121, 285
PSET St 66, 248
PUT St 66, 249
PUTKommunication St 66, 250
PUT/Graphics St 66, 251-53

RANDOMIZE St 66, 254, 298
Random numbers 254, 266

Records 45

IOOPS 137-38, 309

READ St 66, 107, 255-56, 261

367

Record size 9
Redirection 9, 11-12
Relational operators 32-34

with strings 33-34
Relative coordinates 59
REM St 66, 257
Remarks 66, 257
Removing directories 265
Removing files 167
Removing lines 11 5
Removing programs 198
Renaming files 197

Reserved words 339
RESET St 66, 260
Resolution 56-57
RESTORE St 66, 261
RESUME St 66, 262
Retrieving date 109-1 0
Retrieving time 296-97
RETURN St 66, 263
RIGHT$ Fn 69, 264
RMDIR St 66, 265
RND Fn 69, 266
Root directory 3
RSET St 66, 267
RUN St 13, 66, 268

RENUM St 66, 258-59

Sample session 13-1 5

Saving programs 14, 269-70
Scan codes 343-46
SCREEN Fn 69, 271

Screen, clear 94
Screen modes 53-60, 272-73
Search, strings 158-59
Segment address 113
Sequential access files 45-58

closing 93
creating 45-47
end of file 124
EOF 124

SAVE St 14, 66, 269-70

SCREEN St 66, 272-73

INPUT# 154-55

368

Sequential access files (cont.)
INPUT$ 156-57
LINE INPUT# 176
locating records 185

Updating 47-48
Setting date 109-10
Setting time 296-97
SGN Fn 69, 274

SIN Fn 69, 277
Sine 277
Single precision 25, 28, 29

CSNG 104
CVS 106
DEFSNG 111
MKS$l96

SPACE$ Fn 69, 280
SPC Fn 70, 281
Speakers 75, 278-79
Special keys 20-21
SQR Fn 70, 282
Square root 282
Stack space 91
Statements 23, 63-67
STICK Fn 70, 283
STOP St 67, 102, 285
STR$ Fn 70, 285, 302
STRIG Fn 70, 11 7, 287-88
STRIG St 67, 286
STRIGflrap St 67, 210-11, 289-90
STRING$ Fn 70, 291
String constants 26, 27
Strings 24, 26-27, 29, 111, 158-59, 169, 170, 264
String space 139
String variables 27, 29
Subroutines 79, 114, 144, 203, 263, 301
Subtraction 32
SWAP St 67, 292
Syntax 2
SYSTEM St 67, 293

OPEN 214-17
PRINT# 245-47

SHELL St 67, 275-76

SOUND St 66, 75, 91-92, 278-79

369

TAB Fn 70, 294
TAN Fn 70, 295
Tangent 295
Terms 2, 62
Text mode 53, 54-55, 57, 58, 97-98, 272-73, 307
Tiling 225-26
Time 70

setting 296-97
trapping 298

TIME$ Fn 70, 296-97
TIMER Fn 70, 298
TlMERnrap St 67, 212-13, 299
Tracer 300
Trapping

communication 99-1 00, 200-01
errors 130, 131, 202
joystick 21 0-1 1, 289-90
keys 165-66, 205-06
light pen 207, 229
music 208-09, 234
timer 212-13, 299

TROFF St 67, 300
TRON St 67, 300
Typing programs 13-14

User installed devices 329
Unary minus 32
USR Fn 70, 301, 323-24

VAL Fn 70, 285, 302
Variables 27, 21, 171, 292, 303, 304, 325-26

classifying 27, 29, 111
clearing 91
declaring 27-29, 11 1
numeric 27, 11 1
string 27, 111, 324

VARPTR Fn 70, 303
VARPTR$ Fn 70, 304
Video aspect ratio 56-57
Video, clear 94
Video display worksheet 353
Video memory 58
Video pages 58

310

Index

Video resolution 56-57

Viewports 305-06
VIEW PRINT St 67, 307

VIEW St 67, 305-06

WAIT St 67, 308
WHILE/WEND St 67, 309
WIDTH St 67, 310-11
Wildcards 5-6
WINDOW St 67, 312-13
World coordinates 235, 236, 31 2-1 3
WRITE St 67, 314
WRITE# St 67, 315

XOR 35

371

RADIO SHACK, A Division of Tandy Corporation

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

91 KufralOnQ Avenue Rue des Pleas d Alouene. 39 BP 147-95022 Bilslon Road Wednesbury
West Midlands WSlO 7JN

AUSTRALIA BELMUM FRANCE U. I(.

Mount Druitt N S W 2770 5140 Naninne (Namur) Cergy Ponloise Cedex

0 7I86-TP 874-9965 Printed in U.S.A.

	Contents
	Introduction to BASIC
	About this Manual
	Notations
	Terms

	Chapter 1 / About BASIC for MS-DOS
	Disk Files
	Pathnames
	Directory Paths
	Names
	Wildcards

	Device Names

	Chapter 2 / Loading BASIC
	Loading BASIC via BASICA
	Options for Loading BASIC
	Redirection of Input and Output

	Chapter 3 / Sample Session
	Loading BASIC
	Typing the Program
	Saving the Program on Disk
	Loading the Program into Memory

	Chapter 4 / General Information
	Editing
	Sample Editing Session
	Special Keys
	The ALT Key
	The PRT SC Key

	Chapter 5 / Basic Concepts
	Elements of a Program
	Data
	Constants
	Variables
	Declaring Numeric Constants and Variables
	Numeric Constants
	Numeric Variables

	Numeric Precision Conversion
	Manipulating Data
	Arithmetic Operators
	String Operator
	Relational Operators
	Logical Operators
	Hierarchy of Operators
	Functions

	Chapter 6 / Arrays
	Types of Arrays
	Defining Arrays

	Chapter 7 / Disk Files
	Sequential Access Files
	Creating a Sequential Access File
	Updating a Sequential Access File

	Direct Access Files
	Creating a Direct Access File
	Accessing a Direct Access File

	Chapter 8 / Displaying Text and Graphics
	Graphics Capability
	Color
	Colors in Mode 0
	Colors in Mode 1
	Colors in Mode 2

	Resolution
	Text Width
	Video Memory
	Summary
	Specifying Coordinates

	Chapter 9 / Introduction to BASIC Keywords
	Format for Chapter 10
	Terms Used in Chapter 10
	Statements
	Functions

	Chapter 10 / BASIC Keywords
	Chapter 11 / Technical Information
	Interfacing With Assembly-Language Routines
	Memory Allocation Outside BASIC's Work Area
	Memory Allocation Inside BASIC's Work Area
	Converting Subroutines
	CALL Statement
	CALLS Statement
	USR Function

	How Variables are Stored
	Accessing String Variables
	File Control Block
	User Installed Devices
	Information for Creating Child Processes

	Chapter 12 / BASIC Error Codes and Messages
	Appendix A / BASIC Reserved Words and Derived Functions
	Appendix B / Keyboard and Character Code Charts
	Keyboard ASCII/Scan Codes
	ASCII Character Codes

	Appendix C / Video Display Worksheet
	Appendix D / Extended Codes
	Index

