
TANDY8

GW-BASIC
Quick Reference

GW-BASIC
Quick Reference

Tandy GW-BASIC Quick Reference
©1989 Tandy Corporation.

All Rights Reserved.

Tandy is a registered trademark of Tandy
Corporation.

MS-DOS is a registered trademark of
Microsoft Corporation.

GW is a trademark of Microsoft Corporation.

Reproduction or use of any portion of this
manual, without express written permission
from Tandy Corporation and/or its licensor, is
prohibited. While reasonable efforts have
been taken in the preparation of this manual
to assure its accuracy, Tandy Corporation as-
sumes no liability resulting from any errors in
or omissions from this manual, or from the use
of the information obtained herein. The infor-
mation in this document is subject to change
without notice and should not be construed as
a commitment by Tandy Corporation.

10 9 8 7 6 5 4 3 2 1

Contents

Introduction 1

Loading GW-BASIC 2

GW-BASIC Commands and Statements . . 3

GW-BASIC Function Key Settings 34

Typing Keywords Using the ALT Key . . . 34

Exponential Notation and Numeric Precision
Characters 35

Operator Precedence 35

Text and Graphics Modes 36

4-Color Set, 1 Palette 38

4-Color Set, 2 Palettes 39

16-Color Set 39

Enhanced Graphics Color Selection 39

Error Codes and Messages 40

Introduction

This quick reference presents only a brief de-
scription of each GW-BASIC function. The
BASIC Reference Manual for your computer
provides more detailed information.

Notations:
The following typeface conventions and nota-
tions are used in this quick reference.

BOLD UPPERCASE indicates a command or
statement. Type commands and statements ex-
actly as they appear.

lowercase italics represent variable names, let-
ters, characters, or values. You supply the
names, letters, characters, or values.

[] (brackets) indicate optional parameters. In-
clude these optional parameters if you want the
functions they provide.

... (ellipsis) indicates that you can repeat a pa-
rameter.

(Graphics) indicates that you must be in a
graphics screen mode to use a particular func-
tion. The abbreviation EGA indicates that a
function is available only if your system has an
enhanced graphics adapter.

| between two items indicates that either of the
items, but not both, can be included in a com-
mand.

SMALL CAPS BOLD indicates a key, such as
ENTER, that you press.

1

Loading GW-BASIC

Use the following syntax to load GW-BASIC at
the MS-DOS system prompt:

BASIC | BASICA [pathname] [< input file]
[> I >]outputfile] [/Fvnax. # of files open at
same time] [/Miworkspace [,blocksize]]
[IOHS-232 receive buffer size] [/Svnax.
record length for direct access files] [/D] [/I]

Pathname Loads and executes the specified
GW-BASIC program file.

<inputfile Inputs data from a file instead of
the keyboard.

output file Outputs data to a file instead of
the display. Use > to overwrite the existing
output file or > > to append to it.

/F:files The maximum number of files (0-15)
that can be open at the same time during the
current GW-BASIC program. If/F is used, /I
must also be used.

M:\vorkspace, blocksize GW-BASIC
reserves (workspace x 16) bytes, blocksize of
which are reserved for the program. Any
excess bytes are reserved for programs or
machine language routines.

IO.RS-232 receive buffer size Defaults to 256
bytes. The RS232 transmit buffer is always 128
bytes.

/S: max.record lengfh for direct access files
Defaults to 128 bytes. Maximum is 32767 bytes.

/D Loads a double-precision math package.

/I Prevents dynamic allocation of file space.
Automatically invoked with BASICA.

Defaults:

/F:3 /M:64000,4096

/C:256 /S:128

2

GW-BASIC
Commands and Statements

\BS(number)
Computes the absolute value of number.

PRINT ABS(-44) X=ABS(Y)

ASC(string)

Returns ASCII code for first character of
string.

PRINT ASCC'A") N=ASC(B$)

ATN(number)

Computes the arctangent of number radians.
PRINT ATN(7) X=AT N(Y/3)*57.29578

AUTO [starting line number] [increment]
Generates program line numbers. To turn off
AUTO, press BREAK.

AUTO AUTO 100,50

BEEP

Produces a sound at 800 Hz for 1/4 second.
IFX> 20 THEN BEEP

BLOAD pathname [offset]

Loads memory image pathname into memory,
offset (0-65535) bytes from top of current
segment.

BLOAD "progi .txt" BLOAD "prog2.txt",0

BSAVE pathname offset Jength
Saves length bytes (1-65535), beginning offset
bytes (0-65535) from top of current segment,
as pathname.

BSAVE "progi .sav",0,500

CALL variable [{parameter list)]

Executes external subroutine stored at variable
and passes parameter list to the subroutine.

CALLC CALL C (A$,Z,X)

3

CDBL(number)

Converts number to double precision.
PRINT CDBL(465.342) Z=CDBL(A)

CHAIN [MERGE]pathname ytartline]
[ALL] [,DELETE line-line]

Chains pathname to the current program,
beginning execution of pathname at startline.
MERGE overlays the lines of the chained
program with the current program. DELETE
deletes lines in the overlay so that you can
merge in a new overlay. ALL permits access to
current variables and arrays.

CHAIN "subprog.bas",,ALL

CHDlRpathname

Sets pathname as the current directory.
CHDIR "B:\ACCTS\RECVBLE"

CRR$(code)

Returns the character equivalent of an ASCII
or control code.

PRINT CHR$(35) C$=CHR$(32)

CINT(/i«/7ibe/-)

Rounds number to the nearest integer.
PRINTCINT(1.6) Z=CINT(-1.67)

CIRCLE [STEP] (xcenter,ycenter),
radius[folor[jtart, [end[#spect]]]]

(Graphics) Draws an ellipse. Start and end are
in radians (-6.283186 to 6.283186). Aspect is
the ratio of the x-radius to the y-radius in
terms of coordinates. STEP tells BASIC that
the (xcenter, ycenter) coordinates are relative to
the last point referenced.

CIRCLE (150,100),50

4

CLEAR [jnemsize] [jtacksize]
[,video memory]

Frees memory and initializes variables without
erasing the program in memory. Video memory
(Tandy 1000 family only) specifies the amount
of memory to set aside.

CLEAR CLEAR ,45000 CLEAR ,6100,300

CLOSE [buffer,...]
Closes access to buffer. Default = All.

CLOSE CLOSE 1,2,8

CLS

Clears the screen or active viewport and
returns the cursor to the home position.

CLS

COLOR [background] [foreground palette]
(Graphics) Sets background color and
foreground palette for Screen Mode 1. See
"Text and Graphics Modes."

COLOR 0,0 COLOR 0,1

COLOR [foreground] [background] [^border]
(Text Mode) Sets the display colors for Screen
Mode 0. See "Text and Graphics Modes."

COLOR 0,7 COLOR 1,0

COLOR [foreground] [^background]

(Graphics) Sets foreground and background
colors for Screen Modes 3-6 (Tandy 1000
family only). See "Text and Graphics Modes."

COLOR [foreground] [background]
(EGA) Sets foreground color (identified by
palette position) and background color (0-15)
for Screen Modes 7-10. See "Text and
Graphics Modes."

COLOR 7,0

5

COM(channel) action
Controls event trapping on channel. Channel
can be 1 or 2. Action is ON, OFF, or STOP.

COM (1) ON COM(2)STOP

COMMON variable [,variable...]
Allows access to variables by chained
programs. Use COMMON in each program.

COMMON A, B$,D()

CONT

Resumes execution after CTRL-BREAK, STOP,
or END.

CONT

COS(number)

Computes the cosine of number radians.
PRINT COS(5.8) Y=COS(X*.00174533)

CSNG(number)

Converts number to single precision and
rounds to 7 significant figures.

PRINT CSNG(. 145388509) Z=CSNG(A#)

CSRLIN

Returns the current row position of the cursor.
PRINT CSRLIN A=CSRLIN

C\D{8-byte string)
C\l(2-byte string)
CVS(4-byte string)
Converts string to double-precision (CVD),
integer (CVI), or single-precision (CVS) form.

A# = CVD(GROSSPAY$)
D = CVS(TOTAL$)

DATA constant [^constant...]

Stores constants for access by a READ
statement.

DATA 2,4,6,8
DATA "NEW JERSEY","DALLAS,TEXAS"

6

DATES I = string]

Sets or retrieves the current date.
DATE$="04/17/85"
TODAYS=DATE$

DEFDBL letterUetter...]
DEFINT letterUetter...]
DEFSNG letterUetter...]
DEFSTR letterUetter...]

Defines variables beginning with letter(s) as
double precision (DBL), integer (INT), single
precision (SNG), or string (STR).

DEFDBL A DEFINT A,C.H-M

DEF FNname [(argument list)] = expression
Defines function name, which uses argument
list (a list of dummy variables) to perform
expression.

DEFFNR= RND(1) *89+10

DEFSEG[= address]
Assigns address (0-65535) to be the current
segment address. Default = Data Segment
address.

DEF SEG DEF SEG = &HB800

DEF VSR[number] = offset
Defines the user number (0-9) and segment
offset (0-65535) of an assembly language
subroutine to be called by the USR function.

DEF USR = 0 DEF USR3 = &H0020

DELETE [Iinel][-[line2]]
Deletes Iinel-line2 of the current program.
Deletes all lines if you omit both parameters.

DELETE 70 DELETE-110

DIM array (dimension) [^array (dimension)...]

Allocates storage for array(s).
DIMAR(100) 'DIM L1%(8,25)

7

DRAW string

(Graphics) Draws the image defined by the
movement/prefix commands in string.
Movement is relative to current graphics
position. (Default = center of screen.)
Movement can be U (up), D (down), L (left),
R (right), E (up and right), F (down and
right), G (down and left), or H (up and left),
followed by the number of points to move. See
also "Text and Graphics Modes."

DRAW "U30 D30 L40 R40"

EDIT line

Enters Edit mode and displays line for editing.
EDIT 100 EDIT.

END

Ends program execution and closes all files.
END

ENVIRON "parameter id = text"
[{"parameter id = text",...]

Sets the Environment String Table value of
parameter id to text. Parameter id must be
typed in all uppercase.

ENVIRON "PATH=A:\"
ENVIRON "SALES = MYSALES"

ENVIRONS [("parameter id")]
ENVIRONS [(number)]

Returns the string named parameter id or the
string in position number from GW-BASIC'S
Environment String Table.

PRINT ENVIRON$("PATH")
PRINT ENVIRON$(3)

EOF(buffer)

(Function) Detects the end of a file. True is
indicated by a value of -1, false by a value of 0.

IF EOF (1) THEN GOTO 1540

8

EOF(buffer)

(Communications) Detects an empty input
queue for a communications file.

ASCII mode: true (-1) if CONTROL-Z is
received.

Binary mode: true (-1) if input queue is empty.
IFEOF(1)THEN RETURN

ERASE array [#rray...]
Erases array(s) from memory. Lets you
redimension arrays or use their previously
allocated space for other purposes.

ERASE C ERASE G,H,I,Z$

ERDEV

Returns an MS-DOS device error as set by the
Interrupt 24 handler. Lower 8 bits of ERDEV
contain the Interrupt 24 error code.

ERDEV

ERDEV$

Returns a device name, as set by the Interrupt
24 handler, when a device error occurs.
Character device names contain 8 bytes. Block
device names contain 2 bytes.

ERDEV$

ERL

Returns the number of the line in which an
error occurred, or 0 if no error occurred.

PRINT ERL E=ERL

ERR

Returns the error code if an error occurred.
IF ERR = 7 THEN 1000 ELSE 2000

ERROR code

Simulates a specified GW-BASIC error code.
ERROR 1

9

EXP(number)

Calculates e (base of natural logarithms) to the
power of number. Number must be less than or
equal to 88.02968.

PRINTEXP(-2) A=EXP(-6)

EXTERR (number)

Returns extended information about an error
code, class, recovery or location, when number
is 0,1, 2 or 3, respectively.

FIELD buffer, length AS variable [Jength
AS variable...]

Divides a direct access buffer into fields. Each
field is assigned a size in bytes (length) and a
name (variable). Length is an integer, 1-255.

FIELD 3, 128asA$, 128ASB$

FILES [pathname]

Displays the names of the files and directories
on a disk.

FILES FILES"\BOOKSY'

FlX(number)

Truncates number to an integer.
PRINT FIX(2.6) Z=FIX(B)

FOR variable = initial value TO final value
[STEP increment]statements
NEXT {variable]

Initializes variable to initial value and executes
statements until variable reaches final value.
Increment can be a positive or negative integer;
the default value is 1. Variable must be either
integer or single precision.

FOR X =1 TO 5 : PRINT X : NEXT

10

FRE(dummy argument)
Returns the number of bytes in memory not
being used by GW-BASIC. Specify a string
argument if you want GW-BASIC to compress
the data before returning the amount of
memory available.

PRINT FRE(44) PRINT FRE("44")

GET[#]buffer[/ecord]

Reads record from a direct access disk file and
places it in buffer. Record is an integer in the
range 0-16,777,215.

GET 1 GET 1,25

GET[#]buffersuimber

Transfers number bytes from communications
line to communications buffer.

GET 1,8

GET(JC7, yl) -(x2, y2)#rray

(Graphics) Transfers points from (xlyl) to
(x2y2) into a numeric array.

GET(0,0)-(100,100),Z

GOSUB line

Branches to the subroutine beginning at line.
Subroutines must end with RETURN.

GOSUB 1000

GOTO line

Branches to line.
GOTO 100 IF R = 14 THEN GOTO 80

HEXUnumber)

Calculates hexadecimal value of number.
Number is a decimal, -32768 to 65535.

PRINT HEX$(30) Y$=HEX$(X/16)

11

IF expressions) THEN statements)
[ELSE statement (s)]

Executes THEN statement(s) if expression is
true. Executes ELSE statement(s) or next
program line if expression is false.

IF A=B THEN PRINT "A=B"
ELSE PRINT "AoB"

INKEY$
Returns the first character in the keyboard
buffer, or returns the null string if the buffer is
empty. The character is not displayed.

10 A$ = INKEY$:IF A$ = "" THEN 10

TNViport)

Reads a byte fromport. Port is an integer,
0-65535.

100 A = INP(255)

INPUT[;] ["prompt";]variable [,variable...]

Allows for data entry from the keyboard
during program execution. GW-BASIC stops
execution and displays prompt and a question
mark. Use a comma instead of a semicolon
niter prompt if you do not want the question
mark displayed. The semicolon after INPUT
does not echo ENTER when you press it as part
of the response.

INPUTY%
INPUT "ENTER YOUR NAME AND

AGE";N$, A

INPUT # buffer, variable[,variable...]

Inputs data from buffer (a sequential device or
file) and stores it in variable.

INPUT #1,A,B INPUT #4,A$,B$,C$

l$P\m(.number[,[#]buffer])
Inputsnumber characters (1-255) from the
keyboard or a sequential access buffer.

A$ = INPUT$(5) A$ = INPUT$(11, 3)

12

lNSTR([number,]stringljtring2)
Searches for string2 in stringl, beginning at
position number or the first character in
stringl. Returns the position at which the first
match is found.

PRINT INSTR (3, "1232123", "12")
A$ = "LINCOLNTP =INSTR(A$,"INC")

\HY(number)

Truncates number to integer form.
PRINT INT(79.89) PRINT INT (-12.11)

IOCTL [#]bufferstring
Sends control data string to a device driver.
Use semicolons to separate the commands in
string. String can be a maximum of 255 bytes.

IOCTL #1,"PL56"

\OCTL$([#]buffer)
Returns the control data string from buffer, a
previously opened device driver.

IF IOCTL$(1) = "NR"THEN PRINT
"PRINTER NOT READY"

KEY number string

Assigns function string (up to 15 characters) to
function key number. Function keys are
numbered 1-10; user keys are numbered 15-20.

KEY ON

Displays soft key assignments on screen line 25.

KEY OFF

Erases the soft key assignments from screen
line 25.

KEY LIST

Displays all 15 characters of all 10 soft key
assignments on the screen.

13

KE\(number) action

Turns on, turns off, or temporarily halts key
trapping for a specified key. Number can be
1-10 for function keys, 11-14 for cursor
direction keys, or 15-20 for user-defined keys.
Action can be ON, OFF, or STOP.

Use the following syntax to define user keys:
KEY number,CHR$(key hexcode) +

CH R$(scan code)

KILL "pathname"

Kills (deletes) pathname from disk.
KILL "file.bas" KILL "A:\REPORT\data"

LEFT$(stringjiumber)

Returns number (1-255) characters from the
left portion of string.

PRINT LEFT$("BATTLESHIPS",6)

LEN(string)

Returns the number of characters in string.
Blanks are counted.

X = LEN (SENTENCES)
PRINT LEN ("DOG") + LEN ("TERRIER")

[LET] variable = expression

Assigns expression to variable.
LET A$ = "A ROSE IS A ROSE"
B1 = 1.23

LINE [[STEP](r/,y7)]-[STEP]
(x2y2),[color][,B[FniJtyle]

(Graphics) Draws a color line (or box if the B
option is included) from (xl,yl) to (x2,y2) on
the display. The F option fills the box. See
"Text and Graphics Modes." Style is a 16-bit
integer mask.

LINE (0,0)-(319,199)
LINE (0,0)-(319,199),,,&HF0F0

14

LINE INPUT[;] ["prompt";]string variable
Inputs up to 255 characters from the keyboard.
ENTER designates the end of the line. A
semicolon following LINE INPUT prevents
ENTER from echoing a carriage return to the
display.

LINE INPUT A$
LINE INPUT "LAST NAME, FIRST NAME?11;

N$

LINE INPUT# buffer, variable

Inputs a line of data from sequential file buffer
into variable.

LINEINPUT#1,A$

LIST [startline][-[endline]][,"device"]

Lists startline to endline of the current program
to device (SCRN: or LPT1:).

LIST LIST 50-100/LPT1:"

LLIST [startline] [-[endline]]
Lists startline to endline to the printer.
Assumes a 132-character-wide printer. See the
WIDTH statement to change this setting.

LLIST LLIST 68-90

LOAD "pathname" [,R]

Loads pathname. R option runs the program.
LOAD"A:prog1.bas"
LOAD "prog1.bas",R

LOC(buffer)

Direct access file: returns the record number
accessed by the last GET or PUT statement.

Sequential access file: returns the number of
128-byte records read or written.

A=LOC(2) IF LOC(1) > 55 THEN END

LOC(buffer)

(Communications) Returns the number of
characters in input queue buffer. Returns 255 if
buffer contains more than 255 characters.

IFLOC(X)>0THEN 1000

15

LOCATE [row] [^column] [^cursor]
[jtart scan line] [jtop scan line]

Positions cursor on the screen at row, column.
Cursor is visible if cursor = 1, invisible if
cursor = 0. Start scan line and stop scan line
(both 0-31) control cursor size.

LOCATE 10,20,1,4
LOCATE 25,1,1,3

LOCK \#]buffer\,recordl [TO record!]]
UNLOCK [#]bufferlrecord 1 [TOrecord!]]

Controls access by other processes to all or
part of open buffer. Use with the MS-DOS
share command.

LOCK 1,1 TO 4 UNLOCK1.1TO4

hO¥(buffer)

Returns the length of buffer in bytes.
Y = LOF(5)

LOF(buffer)

(Communications) Returns the amount of free
space in the input queue buffer.

IFLOF(X)<20GOTO 1000

LOG(number)

Computes the natural logarithm of number.
Number must be greater than zero.

PRINT LOG(3.14159)
Z = 10*LOG(P5/P1)

LPOS(number)

Returns the logical position of the print head
within the printer's buffer. Number can be 0 or
1 to indicate LPT1.

100IFLPOS(X)>60THEN LPRINT

LPRINT [USINGformat;] data[<data...]
Sends data to the printer. Assumes
80-character print width. See also WIDTH,
PRINT, and PRINT USING.

LPRINT (A * 2)/3
LPRINT USING "#####.#";2.17

16

LSET field name = data
Moves data, left justified, to field name, in the
direct access buffer, in preparation for a PUT
statement. Use FIELD before LSET to define
fields. Any numeric value placed in a direct
access file buffer with LSET must be
converted to a string. See MKS$, MKD$, and
MKJ$.

LSET AD$ = "2000 EAST PECAN ST."
LSETTD$=D$

MERGE pathname

Loads pathname (an ASCII-format program
file) and merges it with the program in
memory.

MERGE "prog2.txt"

MID${oldstringjtart [Jength]) = newstring
Replaces length characters of oldstring with
newstring, beginning at position start.

MID$ (A$,3,4) = "1234":PRINTA$

M\D%(stritigjtart [Jength])

Returns a substring of length characters from
string, beginning at position start. Length can be
1-255.

A$ = "WEATHERFORD":PRINT
MID$(A$,3,2)

MKDIR pathname

Creates the directory specified by pathname.
MKDIR "A:\ACCTS\PAYABLE"
MKDIR "\ADDRESS"

MKD$ {double-precision expression)
MKI$ {integer expression)
MKS$ {single-precision expression)

Converts numeric values to strings. MKD$
returns an 8-byte string, MKI$ a 2-byte string,
and MKS$ a 4-byte string. Inverse functions of
CVD, CVI, and CVS.

LSET YTD$ = MKS$(564.33)
LSET TOT$ = MKS$(TOT)

17

NAME old filename AS new filename
Renames old filename as new filename.

NAME "file.bas" AS "file.old"

NEW

Deletes current program; clears all variables.
NEW

OCT$(number)

Returns octal equivalent of decimal number.
PRINT OCT$(30) S$=OCT$(90)

ON COM(c/ifl/i/ie/)GOSUB line

Transfers to subroutine at line when activity
occurs on channel (1 or 2). Line = 0 turns off
trapping.

ON COM (1) GOSUB 1000

ON ERROR GOTO line
Transfers to line if an error occurs. You must
execute an ON ERROR GOTO before the
error occurs. Line = 0 turns off error trapping.

10 ON ERROR GOTO 1500

ON number GOSUB list

Transfers to the subroutine beginning at the
line specified as item number in list. Number
can be 0-255. List is a series of line numbers. If
number = 1, the program branches to the first
entry in list. If number = 2, the program
branches to the second entry in list.

ON Y GOSUB 1000, 2000, 3000

ON number GOTO list

Transfers to the line specified as item number
in list. Number can be 0-255. List is a series of
line numbers. If number = 1, the program
branches to the first entry in list. If number =
2, the program branches to the second entry in
list.

ON X GOTO 150, 160, 170, 150, 180

18

ON KEY(number)GOSUB line
Transfers to a subroutine beginning at line if
KEY number is pressed. Function keys are
numbered 1-10; cursor direction keys, 11-14;
user keys 15-20. Use KEY to define user keys.

ONKEY(13)GOSUB500

ON PLAY(numb*r)GOSUB line
Transfers to the subroutine at line when the
number of notes in the background music
buffer goes from number to number minus 1.
Number can be 1-32.

ONPLAY(30)GOSUB200

ON STRIGfaumfcer) GOSUB line
Transfers to the subroutine at line when you
press joystick button number. Number = 0
(left joystick, button 1), 2 (right joystick,
button 1), 4 (left joystick, button 2), or 6 (right
joystick, button 2). Line = 0 turns off joystick
trapping.

ON STRIG(O) GOSUB 1000

ON TlMER(number)GOSUB line
Transfers to the subroutine at line when
number seconds have elapsed. Number can be
1-86400 (24 hours).

ON TIMER(3600) GOSUB 500

OPEN mode Joufferpathname
[/ecord length]

Creates an input/output path for a sequential
file or device. Buffer specifies the I/O buffer
(1-the maximum number of files allowed) in
memory to use when accessing the file. Use a
single letter in quotation marks for mode: O
(Output), I (Input), A (Append), or R
(Random Input/Output). R is the default.
Record length cannot exceed the value
specified with the GW-BASIC /s: switch.
Default = 128 bytes.

OPEN "R",2,'TEST.DAT"

19

OPENlpathname | device:] [FOR mode]
[access] AS buffer [LEN = record length]

Creates an input/output path for a random-
access file or device. Use OPEN, INPUT, or
APPEND for mode. RANDOM is not valid.
Do not enclose mode in quotation marks, and
do not use a single letter only.To use direct
access in this syntax, omit mode

Access can be SHARED, LOCK READ,
LOCK WRITE, or LOCK READ WRITE.

OPEN "LPT1 :"FOR OUTPUT AS 2.

OPEN "COM channel: [speed] [parity] [4ata]
[jtop] [,RS] [,CS [seconds]] [,DS [seconds]]
[,CD[seconds]][4ate type] [,PE] [,LF]"
[FORaccess] AS [#][buffer]
[LEN = number]

(Communications) Opens channel (1 or 2) and
allocates buffer for RS-232C (asynchronous)
communication. Speed is 75,110,150, 300, 600,
1200, 2400,4800, or 9600 (bps). Default = 300.
Parity is E, O, M, S, or N (for even, odd, mark,
space, or no parity checking). Default = E.
Data is 5, 6, 7 or 8 (transmit and receive bits).
Default = 7. Stop is 1 or 2 (stop bits). Data
type is BIN (binary) or ASC (ASCII). Default
= BIN. Number is the maximum number of
bytes that can be accessed in the
communications buffer by GET and PUT
statements. Default = 128.

OPEN"COM1:"AS1
OPEN "COM1:9600,N,8,1 ,BIN" AS 2

OPTION BASE value

Sets value as the minimum value for an array
subscript. Value can be 1 or 0; default = 0.
OPTION BASE must precede the DIM
statement.

OPTION BASE 1

20

OUT port, data byte

Sends data byte to port. Port is an integer,
0-65535. Data byte is an integer, 0-255.

OUT 32,100

PAINT (x,y) [$olor] [fiorder] [background]
(Graphics) Fills a screen area from (x,y) to the
nearest borders on the display with color or a
pattern.

Color is a currently valid color number, or a
masking string for titling, in the form:

CHR$(&Hnn)+CHR$(&Hnn) = CHR$(&Hnn)...
(See "Text and Graphics Modes.")
Border is the border color. Default = color.
Background allows re-painting without erasing
previous layers.

PAINT (X,y) [£olor[frorder] [background]]
(Graphics, EGA) In an EGA environment,
GW-BASIC stores the string as a stack of 8-bit
units, called bit planes.

PALETTE [color number display color]
(Graphics; any Tandy business computer with
EGA, any Tandy 1000 family computer.)
Associates display color with color number in
the current palette.

PALETTE 3,7

PALETTE [palette position] [folor number]
(Graphics, EGA) Change one or more of the
colors in the color palette.

PALETTE 3,7

21

PALETTE USING array (subscript)
(Graphics; any Tandy business computer with
EGA, any Tandy 1000 family computer.)
Assigns new colors to all 16 slots of the current
palette. New values are taken from array, an
integer array, beginning with position subscript.
Array must include enough entries beyond
subscript to fill the palette.

PALETTE USING A(0)
PALETTE USING A(2)

PCOPY source page, destination page

Copies video source page to destination page.
PCOPY 3,5 PCOPY 6,4

¥EEK(memory location)
Returns a byte from memory location. Memory
location can be 0-65535. The value returned is
an integer in the range 0-255.

A = PEEK(&H5A00)

PLAY string

Plays musical notes specified by string. String is
a series of single-character music commands.

Commands are:
A-G Notes. Optional # or + indicates

sharp note. Optional - indicates flat
note.

L/t Sets duration of notes. N — 1 (whole),
2 (half), 4 (quarter), etc.

On Sets octave n (0-6).
> (<) Goes up (down) an octave.
Nn Plays note (0-84).
P/i Rests (1-64). See L for values.
Tn Sets number of quarter notes per

minute (32-255).
Plays a dotted note.

MF (MB) Plays music in foreground
(background).

MN (ML, Sets music normal (legato, staccato).
MS)

22

Xvariable Executes a substring.
V« Sets volume (0-15).

PLAY "C4F.C8F8.C16F8.G16A2F2"

FL\Y(number)
Returns the number of notes in the
background music queue. The maximum
returned value is 32 (the maximum buffer
size). Number is the voice channel (0,1, or 2)
on Tandy 1000 family computers and a dummy
argument on Tandy business computers.

X=PLAY(0) X=PLAY(2)

PLAY action

Turns on, turns off, or temporarily halts
background music event trapping. Action can
be ON, OFF, or STOP.

PLAY ON PLAYOFF PLAY STOP

PM AF'(coordinate^action)
Returns a physical or world x- or y-coordinate
for a mapped x- or y-coordinate. Action is 0,1,
2, or 3, indicating that coordinate is a physical
x, physical y, world x, or world y, respectively.

X=PMAP(200,0) Z=PMAP(50,0)

POINT(x, y)

(Graphics) Returns color number of (x,y)
IF POINT(1,1)=0THEN PRESET

POINTfarcftb/i)
Returns the current physical or world
coordinates of the cursor. Action is 0, 1, 2, or 3,
indicating that coordinate is a physical x,
physical y, world x, or world y, respectively.

X=POINT(0)

POKE memory location, data byte
Writes data byte to memory location. Use
hexadecimal form for data byte and memory
location. Memory location must be in the range
0-65535.

10POKE&H5A00, &HFF

23

POS(number)

Returns current column position of the cursor.
Number is a dummy argument.

IF POS(X)>70THEN IF A$ = CHR$(32)
THENA$ = CHR$(13)

PSET [STEP] (x, y) Uolor]
PRESET [STEP] (x, y) [,color]

(Graphics) Draws a color point at (x, y) on the
display. STEP indicates that (x,y) are relative
coordinates. Color defaults to the foreground
color in PSET and to the background color in
PRESET. See "Text and Graphics Modes."

PSET (1,1) PRESET STEP (1,1),0

PRINT data[[,\;]data...]

Prints numeric or string data on the display.
Use commas to tab between items. Use
semicolons or spaces to print without spaces.

PRINT1DO";"NOT1;"LEAVE";"SPACES";
"BETWEEN";"THESE";"WORDS"
PRINT "THE TOTAL IS",TTL

PRINT USING format; data [4ata...\
Prints data using the specified format. Format
consists of one or more field specifier(s) or
alphanumeric character(s) in quotation marks.
Data can be a string, a numeric value, or both.

Field specifiers are:
! Prints first character only
\spaces\ Prints 2 + n characters, where n is

number of spaces typed
& Prints string as is
Prints same number of digits as

number signs
+ Prints number's sign

Prints a negative sign or space, as
appropriate, after number

** Fills leading spaces with asterisks
$$ Prints $ before number
**$ Fills leading spaces with asterisks

and prints $
, Prints commas in numbers > 999

24

"• ~ ~ ^ Prints in exponential format
_ Prints next character as literal

character (instead of a specifier)
PRINT USING ".#### - ~ ~ - "; 888888
PRINT USING "###.##"; 876.567

PRINT# buffer,[USWGformat] data[4ata...]
Writes data to sequential access buffer. Does
not compress data before writing to disk.
Produces ASCII-coded image of data. See
PRINT USING tor format.

PRINT#1 ,A PRINT#1, B$, T$
PRINT#1,USING "###.##";A(T)

PSET [STEP] (x, y) [fiolor]

See PRESET.

PUT [#]buffer[/ecord]

Puts record (1-16,777,215) in direct access
buffer. Default = current record number.

PUT1 PUT 1,25

PUT [#]buffer, number
Transfers number bytes from the com-
munications buffer to the communications
line.

PUT 2,80

PUT (.t, y)&rray\ fiction]
(Graphics) Transfers a graphics image from
array to the screen, (x, y) is the upper left
corner of the image. Default = the last point
referenced.
Action can be PSET, PRESET, AND, OR or
XOR. Default = PSET.

PUT (200,100),A

25

RANDOMIZE number
RANDOMIZE TIMER

Reseeds the random number generator.
Number can be an integer or a single- or
double-precision number. RANDOMIZE
TIMER seeds the random number generator
without prompting.

RANDOMIZE TIMER
RANDOMIZE 300

READ variable [,variable...]

Reads values from a DATA statement, and
assigns them to variables.

READ T READ N$, D$, T

REM
Inserts a remark line. You can use an
apostrophe (') as an abbreviation for REM.

REM AVERAGE VELOCITY
TOTALS

RENUM [new line] [jtartline] [increment]
Renumbers the program in memory, including
line numbers in GOTO, GOSUB, THEN,
ON/GOTO, ON/GOSUB, ON ERROR
GOTO, RESUME, and ERL statements.

RENUM RENUM 600, 5000, 100

RESET

Closes all open files on all drives.
RESET

RESTORE [line]

Restores access to line, a previously read
DATA statement. Default = the first DATA
statement.

RESTORE RESTORE 600

26

RESUME [line]
RESUME NEXT

Resumes program execution after an
error-handling routine. Execution resumes at
line or the NEXT statement after the point at
which the error occurred.

RESUME RESUME 10 RESUME NEXT

RETURN [line]

Returns control from a subroutine executed by
a GOSUB to the specified line. Default = the
line immediately following the GOSUB.

RETURN RETURN 40

RlGHT$(.stringstumber)

Returns the rightmost number characters of
string. Number is an integer, 1-255.

PRINT RIGHT$("WATERMELONlr,5)

RMDIR directory

Removes (deletes) directory. This directory
must be empty except for the "." and
".."symbols. See the KILL command.

RMDIR "NAMES"
RMDIR "A:\ACCTS\PAYABLE"

KSD[(number)]

Returns a random number in the range 0-1.
Number is an integer in the range -32767 to
+ 32768. RND starts the sequence of random
numbers again (if number is negative), repeats
the last number generated (if number is 0), or
returns the next number (if number is positive).

PRINT RND(1) A = RND(0)

RSET field name = data
Right-justifies data in a direct access buffer
field name, in preparation for a PUT.

RSETA$ = CVI(Z)

27

RUN[///ie]LR]
Executes the program currently in memory.
Execution begins at line. Default = first line.
R option leaves current data files open.

RUN RUN 100

RUNpathname [,R]

Executes the program identified by pathname.
R option leaves current data files open for
access by new program.

RUN "program.a"

SA\E pathname [,A]
SAVE pathname [,P]

Saves current program as pathname. The A
option saves in ASCII format; P saves in
protected format. Default (no options) =
compressed format.

SAVE"A:file1.bas"
SAVE "\educ\mathpak.txt",A

SCREEN (rowfolumn[jiumber\)
Returns the ASCII code for the character at
row,column. If number is non-zero,
GW-BASIC returns the color attribute.

A = SCREEN(20,20)
PRINT SCREEN(10,10,1)

SCREEN [mode] [purst] [^active page]
[display page] [#rase]

Sets the screen mode and attributes for all
other graphics statements. (CIRCLE, LINE,
DRAW, and so on). Mode is 0-10. See "Text
and Graphics Modes." Burst (0 or 1)
enables/disables color in Mode 0,1, or 4.

SCREEN 0,0 SCREEN 2
SCREEN 8,1

SGN(number)

Determines number's sign. Returns -1 if
number is negative, 1 if number is positive, and
0 if number is 0.

Y=SGN(A*B)

28

SHELL [command]
Loads and executes another program (with an
.exe or a .com extension), an internal
command, or a batch file as a child process to
the original program. Command is a string
containing the name of the program to run.

SHELL "FORMAT B:"

SlN(number)
Returns the sine of number radians.

PRINT SIN(7.96) D=SIN(T)

SOUND frequency duration
Generates frequency Hertz sound for duration
clock ticks. Frequency is an integer, 1-32767
(Tandy 1000 family computers) or 37-32767
(Tandy business computers). Duration is a
numeric expression, 1-65535, specifying the
number of clock ticks.

SOUND 37,2

SPACES (number)

Returns a string of number spaces.
PRINT "COST" SPACE$(4) "QUANTITY"

SPC(number)

Skips number spaces in a PRINT statement.
PRINT "HELLO" SPC(15) "THERE"

SQR(number)

Returns the square root of number. Number
must be greater than zero.

PRINT SQR(155.7)

STICK (action)

Returns the coordinates of the joysticks.
Action = 0 or 1 for horizontal or vertical
coordinate of the left joystick. Action = 2 or 3
for horizontal or vertical coordinate of the
right joystick. Read 0 before reading 1, 2, or 3.

A=STICK(0)

29

STOP

Stops program execution.
STOP

STR$(number)

Converts number to a string.
S$ = STR$(X) PRINT STR$(-234)

STRIG (action)

Enables and disables STRIG (number)
functions. Action can be ON, OFF or STOP.
STRIG ON must be executed before any other
STRIG functions can be executed.

STRIG ON

STRlG(number)

Returns the status of the joystick buttons.
Values 0, 2,4, and 6 see whether button has
been pressed since last STRIG function.
Values 1, 3, 5, and 7 see whether button is
being pressed. STRIG returns -1 for yes, 0 for
no. See ON STRIG for button numbers.
Execute STRIG ON before using this function.

IF STRIG(0) THEN BEEP

STRlG(number) action
Turns on, turns off, or temporarily halts
joystick trapping. Action is ON or OFF.
Number specifies the joystick and button. See
ON STRIG.

STRIG(O) ONSTRIG(6) OFF

STRlNG$(numberfharacter)

Creates a string in which character is repeated
number times. Number is 0-255. Character is a
string or an ASCII code.

B$ = STRING$(25, "X")
PRINT STRING$(50, 10)

SWAP variable I,variable2

Exchanges values of two variables of same type.
SWAPF1#,F2#

30

SYSTEM
Returns control to MS-DOS command level.

SYSTEM

T\B(number)
Spaces to position number on the display.
Number can be 1-255.

PRINT "NAME" TAB(25) "AMOUNT":PRINT

TAN(number)

Returns the tangent of number radians.
PRINT TAN(7.96) S=TAN(X)

TIME$[= string]

Sets string to current time (24-hour clock), or
gets the current time if you omit string.

TIME$ = "14:15" PRINT TIME$

TIMER
Returns the number of seconds since midnight
or since the last system reset.

A = TIMER PRINT TIMER

TIMER action

Turns on, turns off, or temporarily halts timer
event trapping. Action is ON, OFF, or STOP.

TIMER ON TIMER OFF TIMER STOP

TROFF
TRON
Turns on (TRON) or turns off (TROFF) the
program flow tracer.

TRON TROFF

VSR[number] (argument)
Calls the user-defined subroutine identified by
number. Passes argument to the subroutine.
Number (0-9) must be the same as the
corresponding DEF USR statement for that
routine. Default = 0. Argument is a numeric or
string expression passed to the subroutine.

31

YAL(string)

Calculates the numerical value of string.
PRINT VAL(" 100") PRINT VAL(NUM$)

VARVTR(variable)

Returns address of first byte of variable. The
address is the offset from the data segment.

VARPTR([#]&£#?/•)

Returns address of buffer's control block. The
address is the offset from the data segment.

A = VARPTR(A$) PRINT VARPTR(3)

YAKPTRUvariable)
Returns a 3-byte string representing the
memory address of variable. Byte 0 is the
variable type (2 for integer, 3 for string, 4 for
single-precision, 8 for double-precision), Byte
1 is the low byte of address, and Byte 2 is the
high byte of address.

PLAY "X" + VARPTR$(AS)

VIEW [SCREEN] [ixl,yl)-(x2,y2)][^olor]
[^border color]

(Graphics) Creates a rectangular viewport that
redefines the screen parameters. Measures
coordinates relative to (0, 0) if SCREEN is
specified, or relative to viewport if SCREEN is
not specified. Optionally fills the viewport with
color. (xl,yl) is the upper-left coordinate of
the viewport. (x2,y2) is the lower-right
coordinate of the viewport.

VIEW (10,10)-(100,100)
VIEW SCREEN (20,25)-(100,150)

VIEW PRINT top line TO bottom line
Creates a text viewport. Top line (1-24) is the
first line of the text viewport. It must be less
than bottom line (1-24); Default = 1. Bottom
line is the last line of the text viewport. Default
= 24.

VIEW PRINT 1 to 15

32

WAIT port, number! [jmmber2]
Suspends program execution until port
develops a specified bit pattern. Number 1 and
number2 are integers, 0-255. BASIC XORs
data with number2 or 0, then ANDs result with
numberl. If result = 0, BASIC reads data
again. If not, it continues with next statement.

WAIT 32,2

WHILE expression
statement(s)
WEND
Executes statement(s) as long as logical
expression is true. If expression is not true,
execution resumes with the statement
following the WEND statement.

WHILE A
PRINT "Calculating..."
WEND

WIDTH [LPRINT] size
WIDTH buffer, size
WIDTH device, size

Sets the line width for the display, printer, or
communications channel, to size characters.
For the screen, size can be 40 or 80. Default =
255 (communications channel). Device can be
SCRN:, LPT2:, COM1:, or COM2:.

WIDTH 40
WIDTH LPRINT 100
WIDTH "SCRN:",40

WINDOW [SCREEN] [(xl,yl)-(x2,y2)]
Changes physical coordinates of the screen or
current viewport. Plots points outside normal
screen coordinate limits by setting new world
coordinates to the screen.

(xl,yl) are the world coordinates for the
upper-left corner of the screen.

(x2,y2) are the world coordinates for the
lower-left corner of the screen.

33

SCREEN sets coordinates like the screen
display. If you omit SCREEN, GW-BASIC
inverts the y-coordinates to show a true
Cartesian coordinate system.

WINDOW (1984,100000)-(1987,300000)

WRITE dataldata...]

Outputs data to the screen.
10A=80:B=90:C$=That'sAII'
20 WRITE A,B,C$

WRITE# buffer, data[<data...]

Writes data to a sequential access disk file.
WRITE#1,A$,B$

GW-BASIC Function Key Settings
Fl LIST" F6 "LPT1:" ENTER

F2 RUN ENTER F7 TRON ENTER

F3 LOAD" F8 TROFF ENTER

F4 SAVE" F9 KEY

F5 CONT ENTER F10 SCREEN 0.0,0 ENTER

Typing Keywords Using the ALT Key
A AUTO J (none) S SCREEN
B BSAVE K KEY T THEN
C COLOR L LOCATE U USING
D DELETE M MOTORt V VAL
E ELSE N NEXT W WIDTH
F FOR O OPEN X XOR
G GOTO P PRINT Y (none)
H HEX$ Q (none) Z (none)
I INPUT R (RUN)

fMOTOR is a reserved word, but it is not
recognized in this implementation of
GW-BASIC.

34

Exponential Notation and Numeric
Precision Characters

D Used in double-precision ex-
ponential notation

E Used in single-precision ex-
ponential notation

% Makes the variable preceding
it integer precision

! Makes the variable preceding
it single precision

Makes the variable preceding
it double precision

$ Makes the variable preceding
it a string

Operator Precedence

Each operator or group of operators takes pre-
cedence over the group below it.

() Parentheses
~ Exponentiation
+,- Unary positive, negative
*, / Multiplication, division
\ Integer division
MOD Modulus arithmetic
+, - Addition, subtraction
<, >, < =, Relational tests

NOT
AND
OR
XOR
EQV
IMP

35

Text and Graphics Modes

Screen mode availability depends on the
computer type and the presence of an EGA
adapter:

Tandy 1000 Family Computers
With EGA Screen Modes 0-2,7-10
Without EGA Screen Modes 0-6

Tandy Business Computers
With EGA Screen Modes 0-2, 7-10
Without EGA Screen Modes 0-2

Use the SCREEN statement to select the
screen mode.

Screen Mode 0:
16-color text
40 or 80 columns
Use COLOR \foreground][,background]
[porder] to select the foreground color (0-31),
the background color (0-7), and the border
color (0-15). See "16-Color Set."

Screen Mode 1:
4-color graphics
320 x 200
One of two 4-color palettes is available at a
time. Use COLOR [background][foreground
palette] to select the foreground palette (0 or
1) and the background color (0-15). See
"4-Color Set, 2 Palettes." Use PALETTE
\palette position][,display color] to change the
color associated with palette position. (In
Screen Mode 1, PALETTE can be used only
with Tandy 1000 family computers or Tandy
business computers with EGA.)

Screen Mode 2:
Black & white graphics
640 x 200

Foreground is white; background is black.

36

Screen Mode 3:
16-color graphics
160x200
Use COLOR \foreground][,background] to
select the foreground color (0-15) and the
background and border color (0-15). See
"16-Color Set."

Screen Mode 4:
4-color graphics
320 x 200
Use COLOR \foreground\[,background\ to
select the foreground color (0-3) and the
background and border color (0-15). See
"4-Color Set, 1 Palette" for valid foreground
values and "16-Color Set" for valid background
values.

Screen Mode 5:
16-color graphics
320x200
See Screen Mode 3 description.

Screen Mode 6:
4-color graphics
640x200

See Screen Mode 4 description.

Screen Mode 7:
16-color graphics
320x200
Sixteen of 64 colors are available at a time.
Use COLOR [foreground palette position]
[Jbackground] to select the foreground palette
position (0-15) and the background and
border color (0-15) to display. See "Enhanced
Graphics Color Selection" for valid foreground
palette position values and "16-Color Set" for
valid background values. Use PALETTE
\paletteposition][,color number] to associate a
color (0-63) with a palette position (0-15).

37

Screen Mode 8:
16-color graphics
640 x 200

See Screen Mode 7 description.

Screen Mode 9:
16-color graphics
640 x 350
Use COLOR [foregroundpalette position]
[background] to select the foreground palette
position (0-15) and the background border
color (0-63) to display. See "Enhanced Color
Graphics Selection."

Screen Mode 10:
Black & white graphics
640x350
Monochrome monitor required. Use COLOR
\foreground][,background] to selectforeground
(1-3, where 1 = normal intensity, 2 = blinking,
3 = high-intensity) and background (0-8).
Background values are:

0 = off
1 = blinking off to on
2 = blinking off to high-intensity
3 = blinking on to off
4 = on
5 = blinking on to high-intensity
6 = blinking high-intensity to off
7 = blinking high-intensity to on
8 = high-intensity

4-Color Set, 1 Palette

0 = background 2= magenta
1 = cyan 3 = high-intensity white

Background is the current background color.

38

4-Color Set, 2 Palettes

Palette 0 Palette 1

0 = background 0 = background
1 = green 1 = cyan
2 = red 2 = magenta
3 = brown 3 = high-intensitywhite

16-Color Set

Colors 0-15 are non-blnking. For blinking
color, add 16 to a number below.

0 = black
1 = blue
2 = green
3 = cyan
4 = red
5 = magenta
6 = brown
7 = white

8 = gray
9 = light blue
10 = light green
11 = light cyan
12 = light red
13 = light magenta
14 = yellow
15 = high-intensitywhite

Enhanced Graphics Color Selection

The following 64 colors (eight shades of eight
colors) are available with an EGA/EGM
combination in enhanced mode:

Color |—

Black 1
Blue
Green
Cyan
Red
Magenta
Yellow
White

- Shades 1

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56'
57
58
59
60
61
62
63

39

Error Codes and Messages

Number
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29
30
50
51
52
53
54
55
57
58

Message
NEXT without FOR
Syntax error
RETURN without GOSUB
Out of DATA
Illegal function call
Overflow
Out of memory
Undefined line number
Subscript out of range
Redimensioned array/duplicate

Definition
Division by zero
Illegal direct
Type mismatch
Out of string space
String too long
String formula too complex
Can't continue
Undefined user function
No RESUME
RESUME without error
Unprintable error
Missing operand
Line buffer overflow
Device timeout
Device fault
FOR without NEXT
Out of paper
WHILE without WEND
WEND without WHILE
FIELD overflow
Internal error
Bad file number
File not found
Bad file mode
File already open
Device I/O error
File already exists

40

Number
61
62
63
64
66
67
68
69
70
71
72
73
74
75
76

Message
Disk full
Input past end
Bad record number
Bad file name
Direct statement in file
Too many files
Device unavailable
Communication buffer overflow
Disk write protect
Disk not ready
Disk media error
Advanced feature
Rename across disks
Path/File access error
Path not found

41

RADIO SHACK
A Division of Tandy Corporation

Fort Worth, Texas 76102

6/89- TP 875-8330 Printed in U.S.A.

	Contents
	Introduction
	Loading GW-BASIC
	GW-BASIC Commands and Statements
	GW-BASIC Function Key Settings
	Typing Keywords Using the ALT Key
	Exponential Notation and Numeric Precision Characters
	Operator Precedence
	Text and Graphics Modes
	4-Color Set, 1 Palette
	4-Color Set, 2 Palettes
	16-Color Set
	Enhanced Graphics Color Selection
	Error Codes and Messages

