

Tandy 1000

Mouse Controller/
Calendar PLUS Board

Owner's Manual

Cat. No. 25-1015

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND
SOFTWARE PURCHASED FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL

STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZED LOCATIONS
LIMITED WARRANTY

I. CUSTOMER OBLIGATIONS
A. CUSTOMER assumes full responsibility that this computer hardware purchased (the "Equipment"), and any

copies of software included with the Equipment or licensed separately (the "Software") meets the specifications,
capacity, capabilities, versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

II. LIMITED WARRANTIES AND CONDITIONS OF SALE
A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon

purchase of the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. This warranty is only applicable
to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer
centers, retail stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is
void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been subjected to
improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective
Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio
Shack franchisee or a participating Radio Shack dealer for repair, along with a copy of the sales document or
lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the
correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and
sole expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
except as provided in this paragraph. Software is licensed on an "AS IS" basis, without warranty. The original
CUSTOMER'S exclusive remedy, in the event of a Software manufacturing defect, is its repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION TO THE
DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to
CUSTOMER.

III. LIMITATION OF LIABILITY
A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR

ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED
TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR
FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF
BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE "EQUIPMENT" OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS
OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF
THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE
OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE." NOTWITHSTANDING THE ABOVE LIMITATIONS
AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR
OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR
"SOFTWARE" INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or
Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two (2) years after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

IV. SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer, subject to
the following provisions:
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to

CUSTOMER, but not title to the Software.
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if

the Software permits this function.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer

and as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the
Software.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions of this Software License shall also be
applicable to third parties receiving copies of the Software from CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.
V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a
sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

VI. STATE LAW RIGHTS
The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may
have other rights which vary from state to state. 12/84

Tandy 1000
Mouse Controller/Calendar PLUS Board

Owner's Manual

Tandy 1000 Mouse Controller/Calendar PLUS Board Owner's Manual: Copyright
1985 Tandy Corporation. All Rights Reserved.

MOUSE.SYS: Copyright 1984 Tandy Corporation and Microsoft Corporation. All
Rights Reserved.

PIANO.BAS: Copyright 1984 Microsoft Corporation. All Rights Reserved.
Licensed to Tandy Corporation.

CLOCKGET.EXE and CLOCKSET.EXE: Copyright 1984 Tandy Corporation. All
Rights Reserved.

Reproduction or use without express written permission from Tandy Corporation
of any portion of this manual is prohibited. While reasonable efforts have been
taken in the preparation of this manual to assure its accuracy, Tandy Corporation
assumes no liability resulting from any errors or omissions in this manual, or from
the information contained herein.

10 987654321

CONTENTS

Introduction .. 5
About the DIGI-Mouse .. 5
About this Manual... 5

Chapter 1. Installing the Hardware 7
Connecting the Mouse Board to the Memory Board 7
Installing the Combination Board 11
Connecting the Mouse... 13
Checking the Memory... 13
Notes ... 14

Chapter 2. Learning about the Software 15
Chapter 3. Copying the Mouse/Calendar

Software .. 17
Floppy Diskette Users ... 17
Hard Disk Users ... 18

Chapter 4. Initializing the Mouse
Automatically .. 19

Creating CONFIGSYS... 19
Adding to CONFIGSYS .. 19

Chapter 5. Using the System Clock 21
Initializing the Clock Automatically 21

Creating AUTOEXECBAT 21
Adding to AUTOEXECBAT 21

Setting the System Clock ... 22
Chapter 6. Using the Mouse ... 23

Mouse Anatomy .. 23
Mouse Surface Requirements .. 23
Moving the Mouse .. 24
Using the Mouse with PIANO .. 24

Chapter 7. Programming for the Mouse............................... 27
Mouse Interface.. 27

Virtual Screen .. 28
Graphics Modes... 29
Text Modes ... 30
Cursors ... 30
Buttons ... 31
Mouse Unit of Distance: The Tick 31
Internal Cursor Flag .. 32

Contents

Making Mouse System Calls 32
From the BASIC Interpreter 33
From Assembly-Language Programs.................. 34
From High-Level Languages 35
Sample Program .. 35

Chapter 8. Defining Graphics Cursors 37
Graphics Cursor Hot Spot.. 44

Chapter 9. Black-and-White Graphics
Cursors ..

45

Example .. 45
Chapter 10. 4-Color Graphics Cursors 49

Example .. 49
Chapter 11. 16-Color Graphics Cursors 51

Example .. 51
Chapter 12. Defining Text Cursors 53

Software Text Cursor .. 53
Hardware Text Cursor .. 55

Chapter 13. Function Descriptions.................................. 57
Appendix A. PIANO Program Listing 77
Appendix B. Sample Cursors .. 85
Index .. 95

INTRODUCTION

Your new dual-purpose Mouse Controller/Calendar PLUS Upgrade
Board includes a controller for the DIGI-Mouse pointing device
and a real-time/date clock.
A major feature of this board is the way it is installed in the
computer. It plugs into the Memory PLUS Expansion Board (Cat.
No. 25-1011), which, in turn, plugs into 1 of 3 option slots on the
computer's main circuit board. This piggy-back feature lets you
save the 2 remaining option slots for other option boards.

About the DIGI-Mouse
Designed for use with a variety of screen-oriented programs, the
DIGI-Mouse frees you from having to use the keyboard to move
the cursor and to select commands. By sliding the DIGI-Mouse
across a desk top, you can guide the cursor to the words and
symbols on the screen that represent a program's commands. By
pressing the buttons on the mouse, you can select the commands to
be performed.

Note: When using the mouse, place a piece of paper
between it and the desk top. This safeguard keeps the
mouse clean and helps to avoid marring the desk top.

About this Manual
Chapter 1 of this manual discusses the installation of the
Mouse/Calendar PLUS Upgrade Board onto the Memory PLUS
Expansion Board. If you decide to install the boards yourself, use
both Chapter 1 and your Memory PLUS Expansion Board Instal-
lation Guide as references.
Chapters 2 through 5 discuss installation of the software and use of
the clock features. It is important that you take a few minutes to
read each of these brief chapters before attempting to use the mouse
or clock. Chapter 6 discusses use of the mouse. To get you started,
it includes a sample program called PIANO.
The remainder of the manual is for programmers who want to write
programs to use the mouse. Chapter 7 is an overview. Chapters 8
through 12 describe the different types of cursors

5

Introduction

and how to create them. Chapter 13 is a reference list of the mouse
function calls. Appendix A is a program listing of PIANO.BAS.
Appendix B shows how to create 8 different cursor shapes for use
in your own programs.

6

Chapter 1

INSTALLING THE HARDWARE

Be sure you have the following equipment:
• Tandy 1000 Mouse Controller/Calendar PLUS Upgrade Board
• Type CR 2320H 3-Volt Lithium Coin Cell Battery (Radio

Shack Part No. 26-163, included with the board)

• DIGI-Mouse (sold separately)
• Tandy 1000 Memory PLUS Expansion Board (sold separately)
• Installation guide that is included with the Memory PLUS

Board
As mentioned in the introduction to this manual, your new Mouse
Controller/Calendar PLUS Upgrade Board plugs into the Memory
PLUS Expansion Board. The memory board, in turn, plugs into 1 of
3 option slots on the computer's main circuit board.
We highly recommend that you have the mouse and memory
boards installed by the service technicians at your Radio Shack
Service Center. Doing so not only ensures expert installation, but
also enables the technicians to quickly check to be sure all the
equipment is functioning properly.
If, however, you do decide to install the boards yourself, follow the
instructions in this chapter exactly.

Connecting the Mouse Board to the Memory Board
Caution: Do not stand on a carpeted floor during this
procedure. Walking on carpets promotes the buildup
of static electricity, which, if discharged while you are
handling a circuit board, can destroy integrated
circuits (IC's) on the board.

1. If your Memory PLUS Expansion Board is already installed,
remove it by following these condensed instructions: Turn off
your computer, disconnect all equipment, remove the com-
puter's cover, discharge any built-up static electricity by
touching a grounded metal object, unscrew the bracket, and

7

Chapter 1

remove the board. Remember to wait at least 10 seconds
between disconnecting the equipment and removing the board.

2. If you plan to install additional memory, you might need to
remove the jumper on your memory board and add memory
IC's to the board. If so, perform these steps now so that you
do not need to remove the mouse board later. The mouse
board, once installed, covers the jumper pins. See your Memory
PLUS Expansion Board Installation Guide for informa
tion on reconfiguring the jumper and installing the IC's.

3. Discharge any built-up static electricity by touching a
grounded, metal object.

4. The memory board comes with a solid, metal bracket. To
install the mouse board, you must replace this bracket with
the one supplied with the mouse board. Loosen and remove
the 2 screws that secure the solid bracket. (See Figure 1.)
Remove the bracket and save it for possible later use.

Figure

5. Attach to the
securing it w
Do not overtig

6. The clock fun
tery so that th

8

BRACKET

BRACKET

SCREWS
 1. Memory Board with Solid Bracket.

 memory board the bracket that has the cutout,
ith the screws that held the original bracket.
hten the screws.
ction is backed up by a Lithium Coin Cell bat-

e correct time is retained when you turn off

Installing the Hardware

the computer. The battery has an estimated lifetime of more
than a year. Install the battery now, by sliding it under the clip
on the mouse board, positive side up. (See Figure 2.)

7. Packaged with the mouse board are 3 white, nylon stand-offs
used to help support the mouse board. Insert one end of each
stand-off into 1 of the holes on the mouse board, as shown in
Figure 2. Although the 2 ends of the stand-offs are shaped
differently, it does not matter which end you attach to the
mouse board.

Figure 2. Battery Clip and Stand-Offs.

8. Hold the mouse board at a slight angle to the memory board
so that its cable connector fits into the cutout as shown in
Figure 3.

9. Carefully align the mouse board's socket connector over the
row of pins on the memory board as shown. Then, slowly
lower the board onto the pins, maintaining the alignment so
that the pins go into the corresponding holes on the socket.
Be sure to keep the cable connector in the bracket.
When the board is completely seated and is parallel to the
memory board, check to see that all pins are fully inserted into
the socket. If you encounter any resistance, stop. Do not force
the board. You might have a bent pin that requires repair by a
Radio Shack technician.

9

BATTER
Y CLIP

Chapter 1

Figure 3. Mouse/Calendar PLUS Board Installation.

10. Snap each stand-off into the corresponding hole on the memory
board by applying pressure to the mouse board.

11. Using the 2 screws provided, secure the cable connector
socket to the mounting bracket, as shown below.

Figure 4. Cable Connector Socket.

You are now ready to install your mouse/memory combination
board onto the computer's main circuit board. To do so, follow the
instructions in the next section.

10

SOCKET
CONNECTOR

CABLE
CONNECTOR

Installing the Hardware

Installing the Combination Board
1. Warning: Be sure all equipment is turned off and dis-

connected. If any unit is on, you might damage the central
processing unit or the board. Always wait at least 10 sec
onds between disconnecting the equipment and inserting or
removing a board.

2. As before, touch a grounded metal object before beginning
the installation, and do not stand on a carpeted floor.

3. Remove the 2 screws on the front of the main unit. Then,
remove the computer's cover by sliding it straight toward the
front of the unit.

4. Rotate the main unit so that the back of it faces you. To the
immediate right of the fan are 3 option slot covers, each fas-
tened to the chassis by a sheet-metal screw. On the main
circuit board, directly behind these covers, are 3 thin, black
edge-connector sockets. You install the combination board in
either the middle socket or the one on your right.

5. Remove the screw from the selected cover. Then, remove the
cover by tilting it away from you and lifting it clear of the
slot. Store it in a safe place for future replacement.

Figure 5. Removal of Option Slot Cover.

11

Chapter 1

6. As you look at the computer from the back, check the upper
right corner of the main circuit board for a small, multi-
pronged metal connector. (See Figure 6.)

If your board: then:
has the connector do not remove the short wire

attached to one corner of your
memory board. You connect this
wire in Step 9.

does not have the
connector

remove the short wire attached to
one corner of your memory board.
You do not need it.

7. Touch a grounded metal object. Now, grasp the combination
board by its upper edges, and position it above the socket.
Insert the combination board's bracket into the slot in the same
way the slot covers are mounted. At the same time, apply even
downward pressure, engaging the edge-connector in the socket.

Figure 6. Installation of Combination Board.

12

Installing the Hardware

8. Align the board's bracket so the U-shaped cutout is positioned
over the screw hole. Replace the screw you removed
earlier. Do not overtighten it.

9. If you did not remove the wire mentioned in Step 6, fasten
the free end of it to 1 prong of the multi-pronged connector.

10. Replace the computer's cover, securing it with the screws
previously removed.

Connecting the Mouse

With all the equipment turned off and disconnected, plug the DIGI-
Mouse into the cable connector on the combination board.

Figure 7. Mouse Connected to Combination Board.

Checking the Memory

To be sure the computer is registering the correct amount of memory,
follow these steps:

1. Re-connect all equipment, and turn on the computer and the
monitor. You need not have a diskette in the drive.

13

Chapter 1

2. The first message displayed is the amount of available memory.
Suppose you install the memory board with its standard 256K
RAM (you do not add IC's to it). Because your computer
contains 128K of built-in RAM, your system has a total of
384K. Therefore, the screen displays:
MEMORY SIZE = 384K

If you see any other message, such as MEMORY FAULT ERROR,
disconnect all equipment, and turn off your computer. Then, after
waiting at least 10 seconds, remove the computer's cover to see if
the memory board is completely seated in the socket. Recheck your
jumper configuration, too. Then, run the memory check again.
If you still get an error message, contact your Radio Shack store for
assistance.
Once your screen displays the correct amount of memory, you are
ready to install the mouse/calendar software. Continue to Chapter 2
after taking note of the information below.

Notes

• Any time you plug your mouse board into your computer—
whether initially upon installation—or because you removed
the board for some reason, the battery signal might indicate
that the battery is low. After you install the software, you can
clear this false indication by using the CLOCKSET routine
(described in Chapter 5).

• When you need to replace the battery, remove the combination
board, adhering to the precautions in Step 1 of "Connecting
the Mouse Board to the Memory Board." Then, use an awl or
a small screwdriver to pry up the old battery.

14

Chapter 2

LEARNING ABOUT THE SOFTWARE

The Mouse/Calendar Software consists of five files, of which one is
optional. Three are provided with the mouse. You provide the other
two. Those that are provided on DIGI-Mouse Controller/ Calendar
Utilities Diskette are:
• MOUSE.SYS, the loadable mouse driver
• CLOCKSET.EXE, which sets the clock
• CLOCKGET.EXE, which reads the clock
The file CONFIG.SYS is a configuration file—a file that gives the
hardware extra information it needs to execute a particular piece of
software. In this case, CONFIG.SYS must tell the computer to use
the mouse device.
It may be, however, that you have an application program that
already has its own CONFIG.SYS file. Because of this, we do not
provide CONFIG.SYS on the DIGI-Mouse Controller/Calendar
Utilities Diskette. Instead, we describe how to add the mouse
information to an existing CONFIG.SYS or how to create CON-
FIG.SYS if it does not exist. The procedures, which are given in
Chapter 5, take very little time.
The file AUTOEXEC.BAT is an optional file that causes your
system to read the real-time clock automatically upon each startup.
It is not provided on diskette for the same reason that CONFIG.SYS
is not: If you have no other file named AUTOEXEC.BAT, you can
create the file; if you do have one, you can add to it. See Chapter 6
for instructions.

15

Chapter 3

COPYING THE
MOUSE/CALENDAR SOFTWARE

The procedure for copying the mouse/calendar software varies,
depending on the kind of system you have. Follow the appropriate
steps below.

Floppy Diskette Users
Follow these steps once for each system diskette with which you
want to use the mouse and clock. A system diskette is any diskette
that contains the MS-DOS operating system. This includes any
application program diskette to which you have transferred the
system.

1. Turn on the Tandy 1000.
2. Insert a backup of the system diskette in Drive A. (First, be

sure the diskette's write-protect notch is not covered by a
tab.)

3. Insert the DIGI-Mouse Controller/Calendar Utilities Diskette
in Drive B.

4. At the A> prompt, enter these commands:
COPY B:MOUSE.SYS A:
COPY B:CLOCKSET.EXE A:
COPY B:CLOCKGET.EXE A:

If you later want to see the demonstration program used in
Chapter 6, enter this command, also:

COPY B:PIANO.BAS A:

The Drive A diskette now contains all mouse/calendar files pro-
vided. Remove the DIGI-Mouse Controller/Calendar Utilities
Diskette from Drive B and store it in a safe place. Then proceed to
the next chapter to learn how to create CONFIG.SYS on the Drive
A diskette—or how to add to it, if it already exists—so that you can
use the mouse with that diskette whenever you wish.

17

Chapter 3

Hard Disk Users
Follow these steps once to transfer the software to the hard disk,
Drive C.

Note: This procedure assumes you have formatted your
hard disk and have transferred the latest version of the
operating system and application programs to it. If you
have not done so, see your Hard Disk Controller Board
Installation and User's Guide.

1. Turn on your Tandy 1000 and start it up under hard disk
control.

2. Insert the DIGI-Mouse Controller/Calendar Utilities Diskette
in Drive A.

3. At the C> prompt, enter these commands:
COPY A:MOUSE.SYS C:
COPY A:CLOCKSET.EXE C:
COPY A:CLOCKGET.EXE C:

If you later want to see the demonstration program used in
Chapter 6, enter this command, also:

COPY A:PIANO.BAS C:

The hard disk now contains all mouse/calendar files provided.
Remove the DIGI-Mouse Controller/Calendar Utilities Diskette
from Drive A and store it in a safe place. Then proceed to the next
chapter to learn how to create CONFIG.SYS on the hard disk—or
how to add to it, if it already exists—so that you can use the mouse
with all programs on your hard disk whenever you wish.

18

Chapter 4

INITIALIZING
THE MOUSE AUTOMATICALLY

To use the mouse and the clock, the current disk must contain a
CONFIG.SYS file that has in it this line:

DEVICE=MOUSE.SYS

If the current disk (Drive C for hard disk users or the diskette
currently in Drive A for floppy disk users) already contains
CONFIG.SYS, add to the existing file. If it does not, create the file.
The procedures for doing both are described below.

Creating CONFIG.SYS
To create CONFIG.SYS on the current disk, type (at the system
prompt):

COPY CON CONFIG.SYS
DEVICE=MOUSE.SYS

To be sure the file is created and contains the proper command,
type:

TYPE CONFIG.SYS

MS-DOS displays the command in the file.

Adding to CONFIG.SYS
To add to an existing CONFIG.SYS file, follow these steps:
1. Type:

EDLIN CONFIG.SYS

2. MS-DOS displays:
End of input file

*

To enter the insert text mode, type I

MS-DOS displays the line number and the asterisk prompt:
1:*

19

Chapter 4

3. Type this line:

DEVICE=MOUSE.SYS

DEVICE=MOUSE.SYS is the only line required for mouse
use. If, however, your application program(s) require other
lines not already in the file, insert them too.

4. After typing the line(s), exit the insert mode by pressing
.

5. Then type E to end the file and save all old and new
lines.

To be sure the file now contains the proper command(s), type:
TYPE CONFIG.SYS

MS-DOS displays the commands in the file.
After adding to CONFIG.SYS, you must reset the system. Each
time you start up from a disk that contains such a CONFIG.SYS
and the file MOUSE.SYS, the mouse device driver loads
automatically.
Notice that the driver requires approximately 4000 bytes of RAM.
If you have an application program that requires all of RAM and
does not require the mouse, delete the line DEVICE=MOUSE.SYS
from CONFIG.SYS; then reset the system.

20

Chapter 5

USING THE SYSTEM CLOCK

With the Mouse Controller/Calendar PLUS Upgrade Board, you
have the option of having the system read the real-time clock
automatically upon each startup and system reset and then set the
MS-DOS system clock accordingly.

Initializing the Clock Automatically
If you want to use this option, MOUSE.SYS must be loaded and the
current disk must contain the CLOCKGET.EXE command in a file
called AUTOEXEC.BAT. If the current disk already contains an
AUTOEXEC.BAT file, add the command to the existing file. If
AUTOEXEC.BAT does not exist, create the file. The procedures
for doing both are described below. They are similar to the
procedures for creating and adding to CONFIG.SYS.

Creating AUTOEXEC.BAT
To create AUTOEXEC.BAT on the current disk, type (at the sys-
tem prompt):

COPY CON AUTOEXEC.BAT
CLOCKGET.EXE

Now that AUTOEXEC.BAT contains the CLOCKGET command,
the system automatically reads (initializes) the real-time clock upon
each startup or reset. Although you need to execute the command
only once after each reboot, you can execute it at any time by
typing CLOCKGET at the system prompt.

Adding to AUTOEXEC.BAT

To add to an existing AUTOEXEC.BAT file, follow these steps:
1. Type:

EDLIN AUTOEXEC.BAT

2. MS-DOS displays:
End of input file
*

21

Chapter 5

Type I to enter the insert mode. Then type the
CLOCKGET command line so that your screen looks like this:

1:* CLOCKGET.EXE

This is the only line required for this real-time clock function. If,
however, your application program(s) require other auto
commands not already in the file, insert them too.

3. When finished typing the line(s), exit the insert mode by
pressing

4. Then type E to end the file and save all old and new
lines.

Note: For more information about batch files such as
AUTOEXEC.BAT, see the Tandy 1000 MS-DOS Refer-
ence Manual.

Setting the System Clock
As long as the MOUSE.SYS device driver is loaded, you can set the
real-time clock on the Mouse/Calendar Board at any time by
running CLOCKSET.

To do so, type CLOCKSET at the system prompt.
This causes the current system date and time to be written to the
Mouse/Calendar Board. (See the DATE and TIME commands in the
Tandy 1000 MS-DOS Reference Manual.) The clock is accurate to
the nearest minute.
The clock cannot save the year; so CLOCKSET writes a file called
YEAR.DAT that maintains the year. Whenever you run
CLOCKGET, YEAR.DAT should be in the default (current)
directory so that CLOCKGET can read it. We suggest, therefore,
that you always run CLOCKGET and CLOCKSET from the root
directory.

22

Chapter 6

USING THE MOUSE

It takes only a few minutes to learn to use the DIGI-Mouse. To help
you get started, this chapter includes a demonstration run of PIANO,
the sample program provided on the DIGI-Mouse Con-
troller/Calendar Utilities Diskette.

Note: The Mouse/Calendar Board uses IR3 for com-
municating with the CPU. You cannot use the mouse
while running an application program that uses the
secondary communications channel.

Mouse Anatomy
Before using the mouse, examine its working parts.
The buttons permit you to make selections when an application
program presents you with a choice. When you press and release a
button, the mouse passes this information to the program. A button's
definition depends on the current program's definition of it.
When you slide the mouse across a hard, flat surface, the ball on the
bottom of the mouse rolls in its socket. The mouse translates this
rolling into directional data and passes it to the mouse software to
move the cursor on the screen.

Mouse Surface Requirements
Use the mouse on any flat, hard surface, such as a desk. We rec-
ommend placing the mouse right beside the keyboard because most
programs that use the mouse require a combination of mouse and
keyboard input.
The mouse depends on free movement in all directions; so be sure
there is adequate space for uninterrupted movement of the mouse
and your arm. For most programs, a clear space of 10 by 10 inches
(25.4 cm by 25.4 cm) is sufficient.
For the best performance, be sure that the surface is free of dirt,
moisture, and lint. A sticky surface can prevent the ball from rolling
freely. A wet surface can lead to a short in the internal circuitry,
damaging the mouse. To keep the mouse as clean as possible, you
may want to place a piece of paper underneath.

23

Chapter 6

Notice that some accumulation of dirt and lint is unavoidable. See
the DIGI-Mouse Operation Manual for cleaning instructions. Be
sure to turn off your computer and disconnect the mouse before
cleaning it.

Moving the Mouse
The mouse lets you move the cursor up, down, left, right and—
unlike the keyboard—even diagonally on the screen. See the DIGI-
Mouse Operation Manual for an illustration of how to use the
mouse to control cursor movement.
Notice that the cursor moves only when the mouse moves. The
location of the mouse does not matter. Thus, you can lift the mouse
off the surface and return it to its starting point without returning the
cursor to its starting point. This feature is useful when you are
moving the cursor all the way across the screen. The move can be an
accumulation of short strokes instead of one long stroke.

Using the Mouse with PIANO
If your computer is not already on, turn it on.

Floppy Diskette Users with 1-Drive Systems: Start up your system
from a backup of the MS-DOS/BASIC diskette, and copy the mouse
software and PIANO.BAS to that diskette. Run the program by
typing BASIC PIANO

Floppy Diskette Users with 2-Drive Systems: Start up your system
with a backup of the MS-DOS/BASIC diskette in Drive A and a
backup of the DIGI-Mouse Controller/Calendar Utilities Diskette in
Drive B. At the system prompt, switch to Drive B by typing B:

. Then, load BASIC by typing A:BASIC Run the
program by typing RUN PIANO
Hard Disk Users: Be sure that Drive C contains the BASIC
Interpreter—as well as the operating system, PIANO.BAS, and the
mouse software—and that the system is operating under hard disk
control. To load BASIC and run the program, type:
BASIC PIANO
Remember, if BASIC, the PIANO program, and the mouse software
are not in the default drive, you must precede the filename with a
drive specification.

24

Using the Mouse

Note: To run PIANO, you must have a Tandy 1000
Monochrome Monitor or Color Monitor. If you have the
monochrome monitor, change Lines 1140 and 1150, by
typing:

1140 SC=1:SCREEN SC,1
1150 COLOR 0,1

You can now run the program.
PIANO lets you create music at a video keyboard. The screen
consists of a keyboard (21 "white" keys and 15 "black" keys) and a
"quit" box in the lower right corner.
The cursor is in the middle of the screen just below the keyboard.
Practice moving the cursor by moving the mouse from side to side.
Notice how even a small motion of the mouse moves the cursor
quickly and accurately. With only a little practice you can pinpoint
even the smallest objects on the screen.
Don't be afraid to move the cursor to the edge of the screen. The
screen edge forms a boundary beyond which the cursor cannot pass.
The notes of the "white" keys range from low C on the left to high B
on the right. The "black" keys are the sharps and flats between these
notes. To play a note, use the mouse to move the cursor over the key
that you want; then press the left button. Notice that the tip of the
cursor must be within the boundaries of the key.
For example, to play middle C, move the cursor to the eighth
"white" key from the left and press the left button. The computer
plays a middle C as long as you hold the button down and stops as
soon as you release the button.
Play another note by moving the cursor to another key and pressing
the left button. Notice that if you move the cursor off the piano
keyboard and press the button, no note sounds.
Moving the cursor to a key and pressing the button is a method of
selection. Many programs use this method to allow you to choose a
program action from a menu of commands. You simply move the
cursor to the word, command, or symbol that represents the action,
and press the button. This method is faster and easier than typing
command letters or names at the keyboard.

25

Chapter 6

Now return the cursor to middle C. To play an octave higher, you
can either move the cursor to the right 8 "white" keys or leave it
where it is and press the mouse's right button. In PIANO, the right
button always plays a note 1 octave higher than the current note.
Choosing to press one button instead of another is a method of
selecting options within a given action—in this case, choosing to
play the octave above instead of the note itself. Many programs use
this method to permit you to select options in a command.
Starting at low C (the "white" key on the far left), press the left
button and hold it down while you move the cursor across the
keyboard. As the cursor moves from one key to the next, the notes
change instantly and you hear a rapid series of notes. Try the right
button too.
Holding a button down while moving the cursor is a method of
extending an action across the screen—in this case, extending the
action "play" from one key to the next. Many programs use this
method to allow you to mark the range of a specific action. For
example, if the action is drawing a line, you can mark the starting
point, the line's path, and the ending point.
When finished playing PIANO, move the cursor to the quit box and
press either button. The computer exits PIANO and displays the
system prompt.

26

Chapter 7

PROGRAMMING FOR THE MOUSE

This chapter provides an overview of how to incorporate the DIGI-
Mouse into your application programs. The first section describes
the interface between the mouse software and the Tandy 1000
screen. The second section describes the steps required to make
mouse system calls from BASIC, assembly, and high-level language
programs.
Read all of this chapter carefully before using any of the mouse
functions in your application programs.

Mouse Interface
The mouse software works with all graphics and text screen modes
available with the Tandy 1000. To use the color modes, you must
have a color monitor. Other than that, you can use any modes you
want. (See Chapter 8, "Displaying Color and Graphics," in the
Tandy 1000 BASIC Reference Manual.)
In describing the interface between the mouse software and the
screen, this section defines the following:
• Virtual screen
• Types of cursors that you can create for use with the mouse—

including graphics, software text, and hardware text cursors
• Mouse buttons
• Mouse unit of distance
• Internal cursor flag
For your convenience, details on how to create the cursors are
broken up into separate chapters. Chapter 8 includes the general
procedure for creating a graphics cursor. Chapters 9, 10, and 11 give
specific examples for creating black-and-white, 4-color, and 16-
color graphics cursors. Chapter 12 explains how to create a software
text cursor or a hardware text cursor. Chapters 8 and 12 are based on
many of the same concepts; therefore, you should read both
chapters, regardless of the type of cursor you wish to create.

27

Chapter 7

Virtual Screen
Par simplicity, the mouse software operates on the Tandy 1000
screen as if it were a virtual screen of 128,000 points arranged in a
matrix of 640 horizontal by 200 vertical points, as shown here:

0,0.....................................639,0
0,1.....................................639,1
0,2.....................................639,2
. .
. .
. .
. .
0,199.................................639,199

Figure 6. Coordinate System of Virtual Screen.

A pixel in the upper left corner of the screen has the virtual screen
coordinates (0,0) and a pixel at the center of the screen has the
virtual screen coordinates (320,100). (The horizontal coordinate is
given first.)
Do not confuse the virtual screen with the screen sizes of the
various screen modes. Changing the screen mode does not
change the virtual coordinates. It merely sets a limit on which of
them you can specify. The limits and the causes of them are
explained in detail in the "Graphics Modes" and "Text Modes"
subsections.
Because the mouse software uses virtual coordinates when referring
to an object on the screen, any application program that you write
for the mouse must also use virtual coordinates. When making a
mouse function call, be sure all coordinates you specify are legal
for the given screen mode. (Legal coordinates are defined in
"Graphics Modes" and "Text Modes" below.) The coordinates
returned by the mouse software are always legal for the given
mode.
The following table summarizes the screen mode attributes. Before
proceeding, study it carefully, taking particular note of the number
of bits per pixel for the graphics modes.

28

Programming for the Mouse

BASIC
Mode

BIOS
Mode

Screen
Size

Color Cursor Size
(pxls x scan
lines)

Bits per
Pixel
(bits/pxl)

Actual
Cursor
Size
(bits)

Bytes
Per
Line

Graphics
Memory

0 0 40x25 b/w N/A (alpha) — — — 2k
0 1 40x25 color N/A (alpha) — — — 2k
0 2 80x25 b/w N/A (alpha) — — — 2k
0 3 80x25 color N/A (alpha) — — — 2k
1,4 4 320x200 4 8x16 2 256 80 16k
1,4 5 320x200 4(b/w) 8x16 2 256 80 16k
2 6 640x200 2(b/w) 16x16 1 256 80 16k

Not
valid

7

3 8 160x200 16 8x8 4 256 80 16k

5 9 320x200 16 8x8 4 256 160 32k

6 10 640x200 4 8x16 2 256 160 32k

Table 1. Screen Modes.

Note: The number of available colors determines the
number of bits per pixel for a graphics mode. For
example, a 16-color mode requires 4 bits to define each
pixel.

Graphics Modes
Depending on the graphics mode you choose, you might be able to
use all pairs of virtual coordinates or you might be restricted to every
other or every fourth pair. This is because the number of bits per
pixel varies with the screen mode, as you can see from studying
Table 1.

In BASIC Screen Modes 2 and 6, each pixel on the actual screen
corresponds to 1 point on the virtual screen. Therefore, the full range
of coordinates from (0,0) to (639,199) is permitted.
In BASIC Screen Modes 1, 4, and 5, the number of pixels on the
screen is 1/2 that on the virtual screen (320 x 200 = 64000). Thus,
each pixel on the screen corresponds to 2 points on the virtual
screen. To compensate, the mouse software uses even-numbered
horizontal coordinates only.
In BASIC Screen Mode 3, the number of pixels is 1/4 that on the
virtual screen (160 x 200 = 32000). Thus, each pixel on the screen
corresponds to 4 points on the virtual screen. To compen-

29

Chapter 7

sate, the mouse software uses every other even-numbered hori-
zontal coordinate only.

Text Modes
In 80-column text mode (BASIC Screen 0), only characters are
permitted on the screen. There are still 128,000 pixels on the screen,
each corresponding one-to-one with the points on the virtual screen,
but the individual pixels in a character cannot be accessed. Because
of this, the mouse software uses only 1 pair of coordinates, that of
the pixel in upper left corner of the character, to refer to a character.
Since each character in this mode is an 8- by 8-pixel group, both the
horizontal coordinate and the vertical coordinate are multiples of 8.
For example, the character in the upper left corner of the screen has
the coordinates (0,0), the next character to the right has the
coordinates (8,0), and so on.
In 40-column text mode (BASIC Screen 0), the mouse software
again uses the coordinates of only 1 pixel in a character to refer to
the location. But the number of pixels is 1/2 that in 80-column text
mode. To compensate, the mouse software uses horizontal
coordinates that are multiples of 16. For example, the character in
the upper left corner of the screen still has the coordinates (0,0), but
the character next to it has the coordinates (16,0). The vertical
coordinates are still multiples of 8.

Cursors
The mouse has 3 cursors—a graphics cursor, a software text cursor,
and a hardware text cursor. The graphics cursor is a shape (for
example, an arrow) that moves over the images on the screen. The
software text cursor is an alphanumeric character or other character
attribute, such as an underscore, that moves from character to
character on the screen. The hardware text cursor is a flashing
block, half-block, or underscore that moves from character to
character.
Although only 1 cursor can be on the screen at a time, you can
switch back and forth among the various cursors.
Chapter 8 discusses the graphics cursor in detail and includes the
general procedure for creating a graphics cursor. Chapters 9, 10,
and 11 include procedures for creating sample graphics cursors in
black and white, 4 colors, and 16 colors.

30

Programming for the Mouse

Chapter 12 discusses the text cursors.

Buttons
The mouse functions read the status of the buttons on the mouse and
keep a count of the number of times the buttons are pressed and
released.

The button's status is pressed if the button is down and released if
the button is up. When a function returns the status of the buttons, it
returns an integer value in which the first 2 bits are set or cleared. Bit
0 represents the status of the left button, and Bit 1 represents the
status of the right button. If a bit is set (equal to 1), the button is
down. If a bit is clear (equal to 0), the button is up.
The mouse software has internal counters to keep track of the
number of times a button is pressed and released. The software
increments a counter each time the corresponding button is pressed
or released. The software sets a counter to zero after a reset
(Function 0) or after a counter's contents are read (Functions 5 and
6).

Mouse Unit of Distance: The Tick
The mouse hardware translates the motion of the ball in the mouse
into values that express the direction and duration of the motion. The
values are given in a unit of distance called a tick, which is
approximately 1/80 of an inch (0.32 mm).
When you slide the mouse across a desk top, the mouse hardware
passes the software a horizontal and a vertical tick count (the number
of ticks the mouse ball has rolled horizontally and vertically). The
software uses the tick count to move the cursor a certain number of
pixels on the screen.
The number of pixels moved does not have to correspond one-to-one
with the number of ticks the ball rolled. The mouse software defines
a sensitivity for the mouse, which is a ratio of the number of ticks
required to move the cursor 8 pixels on the screen. The sensitivity
determines the rate at which the cursor moves on the screen.
You can define the sensitivity of the mouse by passing a tick count
to Function 15 of the mouse system calls. The count can be any
value from 1 to 32767. For example, if you send a count of

31

Chapter 7

8, the sensitivity is 8 ticks per 8 pixels. That is, the cursor moves 1
pixel for each tick the ball rolls, or 1 character for every 8 ticks the
ball rolls.

Internal Cursor Flag
The mouse software maintains an internal flag that determines
whether the cursor is visible or not. When the flag's value is 0, the
cursor is displayed. When the flag's value is any other number, the
cursor is hidden. Initially, the flag's value is - 1.
The flag is not directly accessible to your program. To change the
flag's value, you must use FlagInc and FlagDec (Functions 1 and 2)
in the mouse system calls. FlagInc increments the flag's value by 1;
FlagDec decrements it by 1.
You can call FlagInc and FlagDec any number of times. Remember,
however, that each call to one function requires a subsequent call to
the other to restore the flag's previous value. For example, suppose
the cursor is on the screen and you make 1 call to FlagDec to remove
it and then you make 4 more FlagDec calls. You must make 5 calls
to FlagInc to get the cursor back on the screen.
Using GetMouseStat/Reset (Function 0) resets the flag to -1, as does
changing the screen mode.

Making Mouse System Calls
This section describes how to make mouse system calls from the
BASIC Interpreter, from assembly-language programs, and from
programs in a high-level language compilers such as COBOL,
FORTRAN, Pascal, and BASIC. The statements and/or instructions
required to make the calls depend on the language of your
application program.

You can also let the mouse software call a subroutine in your
program whenever a specific condition occurs. When this capability
is enabled, the mouse software interrupts whatever process is going
on and passes execution control to the subroutine that you have
specified in Function 12 of the mouse system calls. For details, see
the description of Function 12.

32

Programming for the Mouse

From the BASIC Interpreter
To make a mouse system call from a BASIC program running under
the BASIC Interpreter, you must:
1. Assign the offset and segment address of the mouse software

to a pair of integer variables in your program. The mouse
entry offset and segment address are in memory. To get these
values, insert the following statements into your program:
10 DEF SEG = 0

20 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2)

30 MOUSE=256*PEEK(51*4+1)+PEEK(51*4)+2

40 IF MSEG AND MOUSE THEN 60

50 PRINT "Mouse Driver not found": END

60 DEF SEG=MSEG

Be sure that the statements appear before any calls to mouse
functions.

2. Use the CALL statement to make the call. The statement
should have the form:
CALL MOUSE(M1%,M2%,M3%,M4%)

MOUSE is the variable containing the entry offset of the mouse
software, and Ml%, M2%, M3%, and M4% are the names of the
integer variables you have chosen for the parameters in this call.
All 4 parameters must appear in the CALL statement even if no
value is assigned to 1 or more of them. These must be integer
variables. Constants and noninteger variables are not allowed.
To ensure that the variables are integer variables, use the per
cent sign (%) as the variable name. You may also use the
DEFINT statement at the beginning of your program. For
example, this statement defines all variables as integers:
10 DEFINT A-Z

With this statement at the beginning of the program, the per
cent sign is optional.

33

Chapter 7

Example:
Assuming that the variable MOUSE has the mouse software offset,
use the following statements to set the cursor position to 320
(horizontal) and 100 (vertical):

100 '

200 ' Set cursor position to (320,100)

300 '

400 M1% = 4 ' function number is 4

500 M3% = 320 ' horizontal coordinate

600 M4% = 100 ' vertical coordinate

700 CALL MOUSE(M1%,M2%,M3%,M4%)

From Assembly-Language Programs
To make mouse system calls from an assembly-language program,
you must:
1. Load the AX, BX, CX, and DX registers with the parameter

values.
2. Execute software interrupt 51 (33H).
The AX, BX, CX, and DX registers correspond to the Ml%, M2%,
M3% and M4% parameters defined for the BASIC program.
Values returned by the mouse functions are placed in the registers.

Example:
Use the following instructions to set the cursor position to 320
(horizontal) and 100 (vertical):

*

* Set Cursor to Location (320,100)
*

MOV AX,4 ;function #4

MOV CX,320 ;set horizontal to 320

MOV DX,100 ;set vertical to 100

INT 51 ;interrupt to mouse

This call has the same effect as the call from the BASIC program
shown in the previous example.

34

Programming for the Mouse

Note: When making a mouse system call in assembly
language, Functions 9 and 12 expect a somewhat dif-
ferent value for the fourth parameter than when calling
from a BASIC program. See the description of these
functions for details.

From High-Level Languages
You can make calls from compiled COBOL, FORTRAN, Pascal,
and BASIC language programs. To do so, follow these steps:
1. Write an assembly-language subroutine to call the mouse

driver (as explained in the preceding section).
2. Call the routine from the desired high-level language. (For

more information, refer to the manual provided with the high-
level language.) The assembly-language routine passes argu
ments between the high-level language routine and the mouse
driver.

Sample Program
To help you learn how to use the mouse system calls, Appendix A
contains the listing of the PIANO demonstration program described
in Chapter 6. We recommend that you read the listing and refer to
Chapter 13 for details on the operation of each function. The PIANO
program listing is also in the file PIANO.BAS on the DIGI-Mouse
Controller/Calendar Utilities Diskette. To use the program, load and
run it as described in Chapter 6.

35

Chapter 8

DEFINING GRAPHICS CURSORS

The graphics cursor is the cursor used when the computer is in
graphics mode. It is a block of 256 bits. The shape of the block is
the product of the cursor size and the number of bits per pixel.
Thus, for BASIC Screen Modes 3 and 5, it is a 32- by 8-bit block.
Ear all other graphics modes, it is a 16- by 16-bit block.

Here is the general procedure for creating a graphics cursor.
1. Select the BASIC screen mode, based on the resolution and

the number of colors you want. Notice the number of bits per
pixel for that screen mode.
The number of available colors determines the number of bits
per pixel. A 16-color set requires that the screen have 4 bits per
pixel. A 4-color set requires 2 bits per pixel. A 2-color set (black
and white) requires only 1 bit per pixel.

2. Select the colors that you want to use; then, determine the
binary equivalents of their color numbers.
In black-and-white mode, black has the binary value of 0 and
white has the binary value of 1.
In 4-color mode, Colors 0 through 3 are available, as follows:

Table 2. Binary Values for 4-Color Mode.

37

Color
Number

Binary
Value

Default
Color

0 00 Black
1 01 Cyan
2 10 Magenta
3 11 White

Chapter 8

In 16-color mode, Colors 0 through 15 are available, as follows:

Color
Number

Binary
Value

Default
Color

0 0000 Black
1 0001 Blue
2 0010 Green
3 0011 Cyan
4 0100 Red
5 0101 Magenta
6 0110 Brown
7 0111 Gray
8 1000 Dark gray
9 1001 Light blue

10 1010 Light green
11 1011 Light cyan
12 1100 Light red
13 1101 Light magenta
14 1110 Yellow
15 1111 White

Table 3. Binary Values for 16-Color Mode.

In the 4- and 16-color modes, you can use the PALETTE and
PALETTE USING statements to change the colors in the palette.
(See the Tandy 1000 BASIC Reference Manual for more
information.)

38

Defining Graphics Cursors

3. If you are using Screen Mode 3 or 5, sketch a 32 by 8 grid. If
you are using any other graphics mode, sketch a 16 by 16 grid.
On this grid, fill in the binary values needed to produce the
colors you want.
For example, to produce a solid white cursor (binary 1) with a
narrow black (binary 0) border in Screen Mode 2, your cursor
block must contain the following values:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Figure 7. Sample Cursor Block for B/W Mode.

Note: The sample cursor blocks are shaded to help you
visualize the cursor. You may want to do this yourself
when sketching cursor blocks.

39

Chapter 8

To produce a cursor that has white (binary 11) and magenta
(binary 10) vertical stripes and a black (binary 00) border in
Screen Mode 1, your cursor block must contain the following
values, assuming the palette contains the default colors:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8. Sample Cursor Block for 4-Color Mode.

4. Calculate the screen mask and the cursor mask values needed to
arrive at the cursor you sketched.
The screen mask and the cursor mask are 2 arrays that the mouse
software operates on to produce a cursor. They are either 32 bits
by 8 bits or 16 bits by 16 bits, depending on the screen mode.
Each bit in each mask corresponds to a bit in the cursor block.
Here is how the software operates on the masks. First, the
software logically ANDs the screen mask with the original 256
bits that make up the screen. Then, it logically XORs the cursor
mask with the result of the AND operation.
Tables 4 and 5 summarize the results of all possible AND and
XOR operations. Table 6 is an example of how the operations
affect individual screen bits.

40

Defining Graphics Cursors

Operand 1 Operand 2 Result
0 0 0
0 1 0
1 0 0
1 1 1

 Table 4. AND Operations.

Operand 1 Operand 2 Result
0 0 0
0 1 1
1 0 1
1 1 0

 Table 5. XOR Operations.

Screen
Bit

Screen
Mask Bit
(AND)

Result of
AND

Cursor
Mask Bit
(XOR)

Result
of XOR

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

1
1

0
1

1
1

0
1

0
0

0
1

0
1

1
1

0
1

1
1

1
0

Table 6. Mask Bit Values and Screen Results.

41

Chapter 8

A close look at Table 6 reveals that you can essentially ignore
the value of the original screen bit. The screen masks and cursor
masks always interact as follows, regardless of the value of
original screen bit:

If the screen
mask bit
(AND) is:

And the cursor
mask bit (XOR)
is:

The result after the
AND and XOR
operations is:

0 0 0

0 1 1
1 0 the same as the original

screen bit value (1 if the
original value is 1; 0 if it
is 0)

1 1 the opposite of the original
screen bit value (1 if the
original value is 0; 0 if the
original value is 1)

Table 7. Mask Bit Value and Screen Result (Condensed).

Now that you know the results of the particular combinations of
screen mask bit values and cursor mask bit values, you can
easily work backward from your sketched cursor to determine
the mask bit values needed to arrive at it.
Consider again the black, white, and magenta cursor described
in Step 3. Each black pixel has the binary value 00. Therefore,
each corresponding screen mask pixel (2 bits) must contain the
value 00, and each corresponding cursor mask pixel must
contain the value 00. The screen mask and cursor mask values
needed to produce a white pixel are 00 and 11, respectively.
Those needed to produce a magenta pixel are 00 and 10. Thus,
the masks for this example are as shown:

42

Defining Graphics Cursors

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9. Screen Mask for Cursor in 4-Color Mode.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10. Cursor Mask for Cursor in 4-Color Mode.

43

Chapter 8

5. Define the masks as array(s) in your program and pass them as
parameters in a call to Function 9 of the mouse system calls. In
BASIC, make the array 2 columns wide and use each column to
represent a mask. In assembly language, make 2 contiguous
arrays. (See Function 9 in Chapter 13 and the sample programs
in Appendix B.)

For sample cursor shapes, see Function 9 and Appendix B.

Graphics Cursor Hot Spot
Whenever a mouse function refers to the graphics cursor location, it
gives the point on the virtual screen that lies directly under the
cursor's hot spot. The hot spot is the point in the cursor block that
the mouse software uses to determine the cursor coordinates.
You can define which point in the cursor block will be the hot spot
by passing the horizontal and vertical coordinates of the point to
Function 9. The coordinates, which must be within the range -16 to
16, are relative to the upper left corner of the cursor block. The hot
spot value should define 1 pixel within the cursor. The pixel, as you
know, may include 1, 2, or 4 bits, depending on the screen mode.
(See Table 1.)

44

Chapter 9

BLACK-AND-WHITE
GRAPHICS CURSORS

Chapter 8 introduced the general procedure for determining mask bit
values when creating graphics cursors. This chapter gives an
example of how to apply that procedure when creating a cursor
specifically for the black-and-white mode, BASIC Screen Mode 2.
This mode is the only one that has 1 bit per pixel.
For ease of reference, here is a list of the attributes for Screen Mode
2:

Screen size: 640 x 200
Color set: 2 (b/w)
Cursor size: 16 x 16
Bits per pixel: 1
Actual cursor size (bits): 256
Bytes per line: 80
Graphics memory: 16k

Example
Suppose you want to create a white cross, outlined in black. First,
sketch the resulting cross on a 16 by 16 grid, shading the different
areas. (See below.) In this example, white indicates that the area will
be white, light gray indicates that it will be unchanged, and dark
gray indicates that it will be black.
Then, fill in the binary equivalents of the colors (0 for black, 1 for
white). Use periods to represent bits that are unchanged.

45

Chapter 9

The grid now looks like this:
. 0 0 0 0
. 0 1 1 0
. 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
. 0 1 1 0
. 0 1 1 0
. 0 0 0 0
.
.
.
.
.
.
.

Figure 11. Cursor Block for B/W Cross.

Screen Mask
Bit (AND)

Cursor Mask
Bit (XOR)

Result after
AND and XOR

0 0 0 (black)

0 1 1 (white)

1 0
the same as the original
screen bit value (1 if the
original value is 1; 0 if it is 0)

1 1
the opposite of the original
screen bit value (1 if the
original value is 0; 0 if the
original value is 1)

Table 8. Mask Bit Values for B/W Mode.

46

Black-and-White Graphics Cursors

Referring to Table 8, determine the mask bit values needed to
achieve the resulting values. They are as follows:

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1] 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Screen Mask

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cursor Mask

Figure 12. Mask Bit Values for B/W Cross.

47

Chapter 9

Now you can define the masks as arrays in your program and pass
them as parameters in a call to Function 9.

Note: The sample cursor in this chapter includes areas
that are black, white, or unchanged from the original
screen bits. For an example of a cursor area that is the
inverse of the original, see the cursor definitions in the
PIANO program in Appendix A.

48

Chapter 10

4-COLOR GRAPHICS CURSORS

Chapter 8 introduced the general procedure for determining mask
bit values when creating graphics cursors. This chapter gives an
example of how to apply that procedure when creating a cursor
specifically for a 4-color mode (BASIC Mode 1, 4, or 6). These
modes all have 2 bits per pixel.

Screen Modes 1 and 4 have the following attributes:
Screen size: 320 x 200
Color set: 4
Cursor size: 8 x 16
Bits per pixel: 2
Actual cursor size (bits): 256
Bytes per line: 80
Graphics memory: 16k

Screen Mode 6 has these attributes:
Screen size: 640 x 200
Color set: 4
Cursor size: 8 x 16
Bits per pixel: 2
Actual cursor size (bits): 256
Bytes per line: 160
Graphics memory: 32k

Example
Suppose you want to create a cursor the left half of which is white
and the right half of which is magenta. First, sketch the resulting
cursor on a 16 by 16 grid, shading one half. (See below.) In this
example, white indicates the area that will be white, and gray
indicates the area that will be magenta.
Then, referring to Table 9, fill in the binary equivalents of the
colors.

49

Chapter 10

Screen
Mask Bits

Cursor
Mask Bits

Result after
AND and XOR

Color
Number

Default
Color

00 00 00 0 Black
00 01 01 1 Cyan
00 10 10 2 Magenta
00 11 11 3 White

Table 9. Mask Bit Values for 4-Color Mode.

The grid now looks like this:

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1] 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

Figure 13. Cursor Block for Cursor in 4-Color Mode.

Determine the values for the screen mask and the cursor mask. This
is easy. If you use 0's in the screen mask, the cursor mask values are
the same as the resulting values.
Now you can define the masks as arrays in your program and pass
them as parameters in a call to Function 9.

50

Chapter 11

16-COLOR GRAPHICS CURSORS

Chapter 8 introduced the general procedure for determining mask
bit values when creating graphics cursors. This chapter gives an
example of how to apply that procedure when creating a cursor
specifically for a 16-color mode (BASIC Mode 3 or 5). These
modes all have 4 bits per pixel.
Screen Mode 3 has these attributes:

Screen size: 160 x 200
Color set: 16
Cursor size: 8x8
Bits per pixel: 4
Actual cursor size (bits): 256
Bytes per line: 80
Graphics memory: 16k

Screen Mode 5 has these:
Screen size: 320 x 200
Color set: 4
Cursor size: 8x8
Bits per pixel: 4
Actual cursor size (bits): 256
Bytes per line: 160
Graphics memory: 32k

Example
Suppose you want to create a cursor that has vertical stripes in a
spectrum of colors (red, light red, cyan, light green, green, light
blue, blue, and magenta).
First, sketch the resulting cursor on a 32 by 8 grid, filling in the
binary equivalents of the colors. Refer to Table 10 for the binary
equivalents.

51

Chapter 11

Screen
Mask Bits
(AND)

Cursor
Mask Bits
(XOR)

Result after
AND and
XOR

Color
Number

Default
Color

0000 0000 0000 0 Black
0000 0001 0001 1 Blue
0000 0010 0010 2 Green
0000 0011 0011 3 Cyan
0000 0100 0100 4 Red
0000 0101 0101 5 Magenta
0000 0110 0110 6 Brown
0000 0111 0111 7 Gray
0000 1000 1000 8 Dark gray
0000 1001 1001 9 Light blue
0000 1010 1010 10 Light green
0000 1011 1011 11 Light cyan
0000 1100 1100 12 Light red
0000 1101 1101 13 Light magenta
0000 1110 1110 14 Yellow
0000 1111 1111 15 White

Table 10. Mask Bit Values for 16-Color Mode.

The grid should look like this:
1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1

Figure 14. Cursor Block for Cursor in 16-Color Mode.

Determine the values for the screen mask and the cursor mask. This
is easy. If you use 0's in the screen mask, the cursor mask values are
the same as the resulting values.
Now you can define the masks as arrays in your program and pass
them as parameters in a call to Function 9.

52

Chapter 12

DEFINING TEXT CURSORS

In addition to the graphics cursor, you can create 2 kinds of text
cursors for use with the mouse. This chapter describes how to do
this. To understand it well, you should also read Chapter 9, which
contains a detailed explanation of screen masks and cursor masks.

Software Text Cursor
The software text cursor is used when the computer is in 40- or 80-
column text mode. The text cursor affects the appearance of the
characters on the screen. Unlike the graphics cursor, the text cursor
usually does not have a shape of its own. Instead, it changes
character attributes such as the foreground and background color,
intensity, and underscoring of the character directly under it. If the
cursor does not have a shape of its own, it is one of the 256 ASCII
characters listed in the Tandy 1000 BASIC Reference Guide.
The effect of the text cursor on the character under it is defined by
two 16-bit values called the screen mask and the cursor mask. The
screen mask determines which attributes of the character on the
screen are to be preserved. The cursor mask determines how these
attributes are to be altered to yield the cursor.
To create the cursor, the mouse software operates on the data that
defines each character on the screen. The software first logically
ANDs the screen mask and the 16 bits of screen data for the
character under the cursor. It then logically XORs the cursor mask
and the result of the AND operation.

53

Figure 15. Format for Software Text Cursor.

The screen and cursor masks are divided into the same fields as
shown above; so, the value of these fields in the screen and cursor
masks defines the new attributes of the character when the cursor is
over it.
For example, to invert the foreground and background colors but
keep the cursor character the same, the results of the AND and XOR
operations must be as given in the table below. Therefore, the mask
bit values must be as given. (See Table 7 in Chapter 8 for
information on the interaction of screen mask and cursor mask bits.)

Table 11. Mask Bit Values for Inverted Software Text Cursor.

Note: For your convenience, the table includes the
hexadecimal forms of the screen mask and cursor mask
values needed to produce the character.

To specify a blinking, high-intensity 0 as the software text cursor,
the results and mask bit values must be these:

54

Chapter 12

In both the 40-column and 80-column text modes, the 16 bits of
screen data for each character take the following form:

b sets blinking (1) or nonblinking (0) character
bckgd sets the background color
i sets high (1) or medium (0) intensity
foregd sets the foreground color
char

specifies the ASCII value of the character, in
binary form

Table 12. Mask Bit Values for Blinking 0 Software Text Cursor.

You can define the value of the screen mask and the cursor mask by
passing their values as parameters in Function 10 of the mouse
system calls. For an example, see the description of Function 10 in
Chapter 13.
Whenever a mouse function refers to the text cursor location, it
gives the coordinates of the character under the cursor. The text
cursor does not have a hot spot.

Hardware Text Cursor
The hardware text cursor is another cursor you can use when the
computer is in text mode. It is actually the computer's own cursor,
the one that follows the system prompt on the screen. The mouse
software lets you adapt this cursor for your own use.
The hardware cursor is 8 pixels wide and from 1 to 8 pixels tall.
Each horizontal set of pixels forms a line, called a scan line. There
are from 1 to 8 scan lines. A scan line can be on or off. If a line is
on, it appears as a flashing bar on the screen. If it is off, it has no
effect on the screen. You may turn on any number of adjacent scan
lines. Gaps between scan lines are not allowed. This gives the
hardware text cursor a characteristic box or underscore shape.
You can define which lines are on and which are off by passing the
number of the first and last lines in the cursor to Function 10 of the
mouse system calls.

55

Defining Text Cursors

Chapter 13

FUNCTION DESCRIPTIONS

This chapter describes the input, output, and operation of the 16
Tandy 1000 mouse functions. The following is a list of the functions:

Number Function
0 Get Mouse Installation Status/Reset
1 Increment Cursor Flag
2 Decrement Cursor Flag
3 Get Mouse Position and Button Status
4 Set Mouse Cursor Position
5 Get Button Press Information
6 Get Button Release Information
7 Set Minimum and Maximum Horizontal Position
8 Set Minimum and Maximum Vertical Position
9 Set Graphics Cursor Block

10 Set Text Cursor
11 Read Mouse Motion Counters
12 Set User-Defined Subroutine Input Mask
13 Reserved
14 Reserved
15 Set Tick/Pixel Ratio

Each description specifies the parameters required to make the call
(entry conditions) and the expected return values (exit conditions),
any special considerations to be taken, and an example. All examples
show BASIC program segments.
In the function descriptions, the parameter names Ml%, M2%, M3%,
and M4% are dummy variable names. When making a call, use the
names of the variables that you want to pass.
The dummy variable names include the per cent sign (%) to
emphasize that only integer variables can be used as parameters.
Constants, single-precision variables, and double-precision variables
are not allowed.
If the function description does not specify an entry condition for a
parameter, you need not supply a value before making the call. If the
function description does not specify an exit condition value for a
parameter, the parameter's value after the call is the same as before
the call.

57

Chapter 13

Caution: The mouse software does not check entry
condition values; so, be sure that the values you assign
to the parameters before making a call are correct for the
given screen mode. If you assign incorrect values, you
receive unpredictable results.

58

Function Descriptions

GetMouseStat/Reset Function Call 0

Get Mouse Installation Status/Reset

Returns the current installation status of the mouse hardware and
software and resets the mouse driver to the following default
parameters:
Function Parameter
Cursor position Screen center
Internal cursor flag -1
Graphics cursor shape/hot spot Arrow/(-l,-l)
User-defined call mask All zeroes
Horizontal tick to pixel ratio 8 to 8
Vertical tick to pixel ratio 16 to 8
Horizontal min./max. cursor position 0/639
Vertical min./max. cursor position 0/199

Entry Conditions
Ml% = 0

Exit Conditions
Ml% = mouse status

Ml% = 0: not installed
Ml% = -1: installed

M2% = number of buttons (always 2)

Example
To find out if the mouse hardware and software are installed, and to
reset the mouse driver to its default values, you can use these lines
at the beginning of your program:

000
100 ' Is Mouse present? If not, error.
200
300 M1% = 0
400 CALL M0USE(M1%,M2%,M3%,M4%)
500 IF NOT(M1%)THEN PRINT "Mouse not
installed.":END

59

Chapter 13

FlagInc Function Call 1

Increment Cursor Flag/Show Cursor

Increments the internal cursor flag by 1. The maximum value you
can increment to is 0. Whenever the flag value is 0, the cursor is
visible. Whenever it is any negative value, the cursor is invisible.
The current value of the internal cursor flag depends on the number
of calls you have made to FlagInc and FlagDec (Function 2). (See
"Internal Cursor Flag" in Chapter 7.) Whenever you make a call to
GetMouseStat/Reset (Function 0), the flag returns to its default
value of -1. Thus, one way to cause the cursor to appear is to make
a call to GetMouseStat/Reset and then immediately make a call to
FlagInc. The other is to make the same number of calls to FlagInc
as you have made to FlagDec since the cursor was last visible.

Entry Conditions
M1% = 1

Exit Conditions
None

Example
If the flag value is -1, you can use these statements to display the
cursor:

100 '
200 ' Show the cursor.
300 '
400 M1% = 1
500 CALL MOUSE(M1%,M2%,M3%,M4%)

60

Function Descriptions

FlagDec Function Call 2

Decrement Flag/Hide Cursor

Decrements the internal cursor flag by 1. Whenever the cursor flag
value is negative, the cursor is invisible, although it still tracks the
movement of the mouse. Whenever the flag value is 0, the cursor is
visible. Thus, if the flag is 0, a call to Function 2 removes the cursor
from the screen.
Remember that each call to FlagDec requires a subsequent call to
FlagInc (Function 1) to restore the flag to its previous value. (See
"Internal Cursor Flag" in Chapter 7.)
Use this function before modifying any position of the screen
containing the cursor. This prevents the cursor from possibly af-
fecting the data written to the screen.

Entry Conditions
Ml% = 2

Exit Conditions
None

Example
If the cursor flag value is 0, you can use these statements to hide the
cursor:

100 '
200 ' Hide the cursor
300 '
400 M1% = 2
500 CALL MOUSE(M1%,M2%,M3%,M4%)

61

Chapter 13

GetPos Function Call 3

Get Mouse Position and Button Status

Returns the status of the left and right buttons and the horizontal
and vertical positions of the cursor.
The button status is a single integer value. Bits 0 and 1 represent the
left and right buttons, respectively. A bit value is 0 if the button is
released and 1 if it is pressed.

Entry Conditions
Ml% = 3

Exit Conditions
M2% = button status

M2% = 0: button released
M2% = 1: button pressed

M3% = horizontal cursor position
M4% = vertical cursor position
The cursor positions are always within the range of minimum and
maximum values of the virtual screen. (See "Virtual Screen" in
Chapter 7.)

Example
100
200 ' Get current cursor positions, check
button status.
300 '
400 M1% = 3
500 CALL MOUSE(M1%,M2%,M3%,M4%)
600 IF M2% AND 1 THEN PRINT "Left button down."
700 IF M2% AND 2 THEN PRINT "Right button
down."

62

Function Descriptions

SetPos Function Call 4

Sets the cursor to the specified horizontal and vertical screen po-
sitions.
If the screen is not in high resolution mode, the values are rounded
to the nearest horizontal or vertical values permitted for the current
screen mode. (See "Virtual Screen" in Chapter 7.)

Entry Conditions
Ml% = 4
M3% = new horizontal cursor position
M4% = new vertical cursor position
The new values must be within the horizontal and vertical ranges of
the virtual screen.

Exit Conditions
None

Example
Assume that HMAX and VMAX contain the maximum horizontal
and vertical positions values for the virtual screen. To set the cursor
to the center of the screen, use these statements:

100
200 ' Put cursor in center of screen
300
400 M1% = 4
500 M3% = INT(HMAX/2)
600 M4% = INT(VMAX/2)
700 CALL MOUSE(M1%,M2%,M3%,M4%)

63

Chapter 13

GetButtonPress Function Call 5

Get Button Press Information

Returns the current button status, a count of button presses since the
last call to this function, and the horizontal and vertical position of
the cursor at the last press of the button.

Entry Conditions
Ml% = 5
M2% = button checked

M2% = 0: left button
M2% = 1: right button

Exit Conditions
Ml% = button status

Ml% = 0: button released
Ml% = 1: button pressed

M2% = count of button presses
M3% = horizontal position at last press
M4% = vertical position at last press
The button status is a single integer value. Bits 0 and 1 represent the
left and right buttons, respectively. A bit value is 0 if the button is
released and 1 if it is pressed.
The count of button presses is always in the range 0 to 32767;
overflow is not detected. The count is set to 0 after the call.
The horizontal and vertical values are in the ranges defined by the
virtual screen. Notice that these values represent the cursor position
at the last press of the button, not the current cursor position.

64

Function Descriptions

Example
100 '
200 ' Get cursor position at last button
press .
300 '
400 M1% = 5
500 M2% = 0 ' left button
600 CALL MOUSE(M1%,M2%,M3%,M4%)
700 IF (M1% AND 1) THEN PRINT "Left button
down."

65

Chapter 13

GetButtonRelease Function Call 6

Get Button Release Information

Returns the current button status, a count of button releases since
the last call to this function, and the horizontal and vertical position
of the cursor at the last release of the button.

Entry Conditions
Ml% = 6
M2% = button checked

M2% = 0: left button
M2% = 1: right button

Exit Conditions
Ml% = button status

Ml% = 0: button released
Ml% = 1: button pressed

M2% = count of button releases
M3% = horizontal position at last release
M4% = vertical position at last release
The button status is a single integer value. Bits 0 and 1 represent
the left and right buttons, respectively. A bit value is 1 if a button is
pressed, and 0 if it is released.
The count of button releases is always in the range 0 to 32767;
overflow is not detected. The count is set to zero after the call.
The horizontal and vertical values are in the ranges defined by the
virtual screen. Notice that these values represent the cursor position
at the last release of the button, not the current cursor position.

66

Function Descriptions

Example
100
200 ' Get cursor position at last button
release.
300 '
400 M1% = 6
500 M2% = 1 ' right button
600 CALL MOUSE(M1%,M2%,M3%,M4%)
700 IF (M1% AND 2) THEN PRINT "Right button
down . "

67

Chapter 13

SetHorizontal Function Call 7

Set Minimum and Maximum Horizontal Positions

Sets the minimum and maximum horizontal cursor positions on the
screen. Subsequent cursor motion is restricted to the specified area.
The minimum and maximum values are defined by the virtual
screen. (See "Virtual Screen" in Chapter 7.)
If the cursor is outside the area when the call is made, it moves to
just inside the area. If the minimum value is greater than the
maximum, the two values are swapped.

Entry Conditions
M1% = 7
M3% = minimum position
M4% = maximum position

Exit Conditions
None

Example
100 '
200 ' Limit cursor to horizontal positions
below 150
300 '
400 M1% = 7
500 M3% = 0
600 M4% = 150
700 CALL MOUSE(M1%,M2%,M3%,M4%)

68

Function Descriptions

SetVertical Function Call 8

Set Minimum and Maximum Vertical Positions

Sets the minimum and maximum vertical cursor positions on the
screen. Subsequent cursor motion is restricted to the specified area.
The minimum and maximum values are defined by the virtual
screen. (See "Virtual Screen" in Chapter 7.)
If the cursor is outside the area when the call is made, it moves to
just inside the area. If the minimum value is greater than the
maximum, the two values are swapped.

Entry Conditions
Ml% = 8
M3% = minimum position
M4% = maximum position

Exit Conditions
None

Example
100 '
200 ' Limit cursor to vertical positions
300 ' between 100 and 150
400 '
500 M1% = 8
600 M3% = 100
700 M4% = 150
800 CALL MOUSE(M1%,M2%,M3%,M4%)

69

Chapter 13

SetCursorBlock Function Call 9

Set Graphics Cursor Block

Defines the shape, color, and center of the cursor when in graphics
mode.
The function uses the values found in the screen mask and the
cursor mask to build the cursor shape and color. (See Chapter 8,
"Defining Graphics Cursors.")
To pass the screen mask and the cursor mask in BASIC, assign
their values to an integer array and use the first element of the array
as the fourth parameter in the call. (See the example.)
To pass the screen and cursor masks in assembly language, assign
their values to 2 contiguous arrays and pass the address of the first
array in register DX. Be sure to load the segment address of the
arrays in the ES register before making the call.
The cursor hot spot values must define 1 pixel within the cursor.
(See "Graphics Cursor Hot Spot" in Chapter 8.) The values must be
in the range -16 to 16.

Entry Conditions
Ml% = 9
M2% = horizontal cursor hot spot
M3% = vertical cursor hot spot
M4% = pointer to screen and cursor masks

Exit Conditions
None

70

Function Descriptions

Example
To define a cursor in high-resolution graphics mode, first define the
values to the cursor array and then make the call:

100 '
200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&HFFFF '1111111111111111
500 CURSOR(1,0)=&HFFFF '1111111111111111
600 CURSOR(2,0)=&HFFFF '1111111111111111
700 CURSOR(3,0)=&HFFFF '1111111111111111
800 CURSOR(4,0)=&HFFFF '1111111111111111
900 CURSOR(5,0)=&HFFFF '1111111111111111
1000 CURSOR(6,0)=&HFFFF '1111111111111111
1100 CURSOR(7,0)=&HFFFF '1111111111111111
1200 CURSOR(8,0)=&HFFFF '1111111111111111
1300 CURSOR(9,0)=&HFFFF '1111111111111111
1400 CURSOR(10,0)=&HFFFF '1111111111111111
1500 CURSOR(11,0)=&HFFFF '1111111111111111
1600 CURSOR(12,0)=&HFFFF '1111111111111111
1700 CURSOR(13,0)=&HFFFF '1111111111111111
1800 CURSOR(14,0)=&HFFFF '1111111111111111
1900 CURSOR(15,0)=&HFFFF '1111111111111111
2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&H8000 '1000000000000000
2400 CURSOR(1,1)=&HE000 '1110000000000000
2500 CURSOR(2,1)=&HF800 '1111100000000000
2600 CURSOR(3,1)=&HFE00 '1111111000000000
2700 CURSOR(4,1)=&HD800 '1101100000000000
2800 CURSOR(5,1)=&H0C00 '0000110000000000
2900 CURSOR(6,1)=&H0600 '0000011000000000
3000 CURSOR(7,1)=&H0300 '0000001100000000
3100 CURSOR(8,1)=&H0000 '0000000000000000
3200 CURSOR(9,1)=&H0000 '0000000000000000
3300 CURSOR(10,1)=&H0000 '0000000000000000
3400 CURSOR(11,1)=&H0000 '0000000000000000
3500 CURSOR(12,1)=&H0000 '0000000000000000
3600 CURSOR(13,1)=&H0000 '0000000000000000
3700 CURSOR(14,1)=&H0000 '0000000000000000
3800 CURSOR(15,1)=&H0000 '0000000000000000
3900 '
4000 ' Define cursor shape, color, and center
4100 '
4200 M1% = 9
4300 M2% = 0 ' Horizontal hot spot
4400 M3% = 0 ' Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

71

Chapter 13

SetText Function Call 10

Set Text Cursor

Selects the software or hardware text cursor. If you select the
software text cursor, this function defines the character attributes of
the cursor when in text mode. If you select the hardware text cursor,
this function defines the first and last scan lines to be shown on the
screen.

Entry Conditions
Ml% = 10
M2% = cursor type

M2% = 0: software text cursor
M2% = 1: hardware text cursor

M3% = screen mask value (for software text cursor) or
number of first scan line (for hardware text cursor)

M4% = cursor mask value (for software text cursor) or
number of last scan line (for hardware text cursor)

The scan line numbers (M3% and M4%) for the hardware text
cursor are in the range 0 to 7.

Exit Conditions
None

Example
To create a blinking 0 software text cursor, use these statements:

100 M1% = 10
110 M2% = 0 ' Select text cursor
120 M3% = &H7700 ' Screen mask
130 M4% = &H8830 ' Cursor mask
140 CALL MOUSE(M1%,M2%,M3%,M4%)

72

Function Descriptions

ReadCounters Function Call 11

Read Mouse Motion Counters

Returns the horizontal and vertical tick count since the last call to
this function. The tick count is the distance in 1/80 inch increments
(0.32 mm increments) that the mouse has moved. (See "Mouse Unit
of Distance: The Tick" in Chapter 7.)

Entry Conditions
Ml% = 11

Exit Conditions
M3% = horizontal count
M4% = vertical count
The tick count is always within the range -32768 to 32767. A
positive horizontal count specifies a motion to the right. A positive
vertical count specifies a motion to the bottom of the screen.
Overflow is ignored.
The tick count is set to 0 after the call is completed.

Example
100 '
200 ' Get the tick count
300 '
400 M1% = 11
500 CALL MOUSE(M1%,M2%,M3%,M4%)

73

Chapter 13

SetCallMask Function Call 12

Set User-Defined Subroutine Input Mask

Sets the call mask and subroutine address for the mouse software
interrupts. The mouse software interrupts automatically stop
execution of your program and call the specified subroutine
whenever 1 or more of the conditions defined by the call mask oc-
cur. On completion of the subroutine, your program continues ex-
ecution at the point of interruption.

Entry Conditions
Ml% = 12
M3% = call mask
M4% = address offset to subroutine
The call mask, a single integer value, defines which conditions will
cause an interrupt. Each bit in the call mask corresponds to a
specific condition as shown here:

Mask Bit Condition
0 cursor position changes
1 left button pressed
2 left button released
3 right button pressed
4 right button released

5-15 not used

To enable an interrupt for a given condition, set the corresponding
call mask bit to 1 and pass the mask as parameter M3%. To disable
a condition, set the corresponding bit to 0 and pass the mask. All
conditions are automatically disabled by Function 0.

74

Function Descriptions

Exit Conditions
None
When the mouse software makes a call to the subroutine, it loads the
following information into the CPU registers:

Register Information
AX

Condition mask (similar to the call mask except a bit
is set only if the condition has occurred)

BX Button status
CX Cursor position (horizontal)
DX Cursor position (vertical)

To use this function with the BASIC Interpreter, first load an
assembly-language subroutine into memory. (Use the same segment
as the BASIC Interpreter.) Then assign the entry address of the
subroutine to an integer variable and pass this variable to Function
12 as the fourth parameter.
To use this function in assembly language, load the ES register with
the subroutine's segment address, and load the DX register with the
subroutine's offset.

Example
Assuming that a subroutine is loaded into memory and that the
integer variable SKETCH is assigned the subroutine's entry address,
use the following statements to set up calls on any press of the left
button.

100 '
200 ' Call subroutine SKETCH on left button
press
300 '
400 M1% = 12
500 M3% = &H0002
600 M4% = SKETCH
700 CALL MOUSE(M1%,M2%,M3%,M4%)

75

Chapter 13

SetTickPixel Function Call 15

Set Tick/Pixel Ratio

Sets the tick to pixel ratio for mouse motion. (See "Mouse Unit of
Distance: The Tick" in Chapter 7.) The horizontal and vertical ratios
specify a number of ticks per 8 pixels. The values must be in the
range 1 to 32767.

Entry Conditions
Ml% = 15
M3% = horizontal tick/pixel ratio

Default = 8/8
M4% = vertical tick/pixel ratio

Default = 16/8
In the default setting, 8.0 inches (20.3 cm) of mouse travel moves
the cursor all the way across the screen, and 5.0 inches (12.7 cm) of
travel moves it all the way down the screen.

Exit Conditions
None

Example
100
200 ' Set tick/pixel ratio at 1G to 8 and 32
to 8
300 '
400 M1% = 15
500 M3% = 16 ' horizontal ratio
600 M4% = 32 ' vertical ratio
700 CALL MOUSE(M1%,M2%,M3%,M4%)

76

Appendix A

PIANO PROGRAM LISTING

This appendix presents the complete source to the PIANO Dem-
onstration program. The program is written for the Tandy 1000's
BASIC Interpreter. The following is an explanation of the program
details:

Line
Numbers

Comments

1000-1060 Copyright message.

1070-1160 Set up music, clear graphics screen to blue.

1170-1250 Read in the frequencies for the various piano
keys.

1260-1380 Link the mouse software and the program.

1390-1430 Function 15 sets the mouse sensitivity. With
this setting, a horizontal movement of 4 inches
(10.2 cm) moves the cursor across the entire
screen. This relatively high sensitivity permits
songs to be played rapidly. Accuracy is no
problem since the piano keys are large.

1440-1620 The integer array CURSOR contains the
screen mask and the cursor mask. The masks
define the shape and color of the cursor. These
statements define the screen mask; the mask is
set to all l's. The mask will be logically
ANDed with screen under the cursor.

1630-1810 These statements define the cursor mask. The
values will be exclusively ORed with the
result of the AND operation to create the
cursor shape and color. In this case, the cursor
shape is an upward-pointing arrowhead. Its
color is different from whatever is below it.

77

Appendix A

1820-1860 Function 9 sets the cursor shape. It also defines
the cursor hot spot. In this case, the hot spot is
the tip of the arrowhead. The mouse software
will automatically prevent the cursor hot spot
from leaving the screen.

1870-1990 These statements initialize the keyboard size
parameters.

2000-2150 These statements draw the "white" and "black"
piano keys.

2160-2200 These statements draw the "quit" box in the
lower right corner.

2210-2240 Function 4 centers the cursor to just under the
piano keys.

2250 Function 1 turns on the cursor. The cursor
appears on the screen and can be moved by
using the mouse.

2260-2290 Function 3 gives the status of the 2 mouse
buttons and the location of the cursor. This is
probably the most common mouse function
used in applications.

2300-2370 Some decision making is performed. If both
mouse buttons are up, or if the mouse is not on
the piano keyboard, then any sound that might
be playing is turned off.

2380-2430 At this point, the mouse button is down over the
quit box. The program turns off the mouse
cursor, clears the screen, then quits.

2440-2510 The program has determined a button is down
over the piano keyboard. These statements
determine which key the mouse cursor is over.

78

PIANO Program Listing

2520-2570 The note is played by the SOUND statement set
with the correct frequency. This note is played
in the background as the program loops back to
Line 2090.

2580-2630 This data contains the correct frequency to play
the musical notes.

79

Appendix A

1000 '
1100 ' THE VIRTUAL PIANO
1020 '
1030 ' COPYRIGHT CO 1983 BY MICROSOFT CORPORATION
1040 ' WRITTEN BY CHRIS PETERS
1050 '
1060 '--
1070 '
1080 ' INITIALIZE
1090 '
1100 DEFINT A-Z
1110 DIM CURSOR(15,1),FREQ(27,2)
1120 KEY OFF
1130 PLAY"MF"
1140 SC=1: SCREEN SC
1150 COLOR 1,1
1160 CLS
1170 '
1180 ' Read in the flat, normal, and sharp note
frequencies
1190 '
1200 FOR J=0 TO 2
1210 FOR I=0 TO 6
1220 READ K
1230 FREQ(I,J)=K : FREQ(I+7,J)=K*2 :
FREQ(I+14,J)=K*4 : FREQ(I+21,J)=K*8
1240 NEXT
1250 NEXT
1260 '
1270 ' Determine Mouse Driver location, if not
found, quit.
1280 '
1290 DEF SEG=0
1300 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2)
' Get mouse segment
1310 MOUSE=256*PEEK(51*4+1)+PEEK(51*4)+2
' Get mouse offset
1320 IF MSEG AND MOUSE THEN 1370
1330 PRINT"Mouse driver not found"
' Not found so print error.
1340 PRINT
1350 PRINT"Press any key to return to system"
1360 I$=INKEY$: IF 1$="" THEN 1360 ELSE SYSTEM
1370 DEF SEG=MSEG ' Set mouse segment
1380 M1 = 0 : CALL M0USE(M1,M2,M3,M4)
' Initialize the mouse
1390 '
1400 ' Set mouse sensitivity
1410 '
1420 M1=15 : M3=4 : M4=8
1430 CALL MOUSE(M1,M2,M3,M4)
1440 '

80

PIANO Program Listing

1450 ' Define the "logical and" cursor mask
1460 '
1470 CURSOR(0,0)=&HFFFF ' Binary 1111111111111111
1480 CURSOR(1,0)=&HFFFF ' Binary 1111111111111111
1490 CURSOR(2,0)=&HFFFF ' Binary 1111111111111111
1500 CURSOR(3,0)=&HFFFF ' Binary 1111111111111111
1510 CURSOR(4,0)=&HFFFF ' Binary 1111111111111111
1520 CURSOR(5,0)=&HFFFF ' Binary 1111111111111111
1530 CURSOR(6,0)=&HFFFF ' Binary 1111111111111111
1540 CURSOR(7,0)=&HFFFF ' Binary 1111111111111111
1550 CURSOR(8,0)=&HFFFF ' Binary 1111111111111111
1560 CURSOR(9,0)=&HFFFF ' Binary 1111111111111111
1670 CURSOR(10,0)=&HFFFF ' Binary 1111111111111111
1580 CURSOR(11,0)=&HFFFF ' Binary 1111111111111111
1590 CURSOR(12,0)=&HFFFF ' Binary 1111111111111111
1600 CURSOR(13,0)=&HFFFF ' Binary 1111111111111111
1610 CURSOR(14,0)=&HFFFF ' Binary 1111111111111111
1620 CURSOR(15,0)=&HFFFF ' Binary 1111111111111111
1630 '
1640 ' Define the "exclusive or" cursor mask
1650 '
1660 CURSOR(0,1)=&H300 ' Binary 0000001100000000
1670 CURSOR(1,1)=&H300 ' Binary 0000001100000000
1680 CURSOR(2,1)=&HFC0 ' Binary 0000111111000000
1690 CURSOR(3,1)=&HFC0 ' Binary 0000111111000000
1700 CURSOR(4,1)=&H3FF0 ' Binary 0011111111110000
1710 CURSOR(5,1)=&H3FF0 ' Binary 0011111111110000
1720 CURSOR(6,1)=&HFCFC ' Binary 1111110011111100
1730 CURSOR(7,1)=&HC00C ' Binary 1100000000001100
1740 CURSOR(8,1)=&H0 ' Binary 0000000000000000
1750 CURSOR(9,1)=&H0 ' Binary 0000000000000000
1760 CURSOR(10,1)=&H0 ' Binary 0000000000000000
1770 CURSOR(11,1)=&H0 ' Binary 0000000000000000
1780 CURSOR(12,1)=&H0 ' Binary 0000000000000000
1790 CURSOR(13,1)=&H0 ' Binary 0000000000000000
1800 CURSOR(14,1)=&H0 ' Binary 0000000000000000
1810 CURSOR(15,1)=&H0 ' Binary 0000000000000000
1820 '
1830 ' Set the mouse cursor shape
1840 '
1850 M1 = 9 : M2 = 6 : M3 = 0
1860 CALL MOUSE(M1,M2,M3,CURSOR(0,0))
1870 '
1940 '
1950 ' Initialize keyboard size parameters
1960 '
1970 YL = 60 : WKL = 80 : BKL=45 : KW = 15 : WKN = 21
1980 XL = 320-KW*WKN : YH = YL + WKL : XH = 319 :
BKW2=KW\3
1990 QX = 272 : QY = 176
2000 '

81

Appendix A

2010 ' Draw the "white" keys
2020 '
2030 LINE(XL,YL)-(XH,YH),3,BF
2040 FDR I=XL TO XH STEP KW
2050 LINE(I,YL)-(I,YH),0
2060 NEXT
2070 '
2080 ' Draw the "black" keys
2090 '
2100 C=6
2110 FOR X=XL TO XH STEP KW
2120 C=C+1 : IF C=7 THEN C=0
2130 IF C=0 OR C=3 THEN 2150
2140 LINE(X-BKW2,YL)-(X+BKM2,YL+BKL),2,BF
2150 NEXT
2160 '
2170 ' Draw the quit box
2180 '
2190 LINE(QX,QY)-(319,199),3,B
2200 LOCATE 24,36 : PRINT"Quit";
2210 '
2220 ' Set mouse cursor location, then turn on cursor
2230 '
2240 M1=4 : M3=320 : M4=160 : CALL
 MOUSE(M1,M2,M3,M4)
2250 M1=1 : CALL MOUSE(M1,M2,M3,M4)
2260 '
2270 ' M A I N L O O P
2280 '
2290 M1=3 : CALL MOUSE(M1,BT,MX,MY)
 ' Get mouse location and button status
2300 IF (BT AND 2) THEN OTV=7: GOTO 2340
 ' If right button down, set high octave
2310 IF (BT AND 1) THEN OTV=0: GOTO 2340
 ' If left button down, set lower octave
2320 SOUND 442,0 ' If both buttons up, turn off
 sound
2330 GOTO 2290 ' Keep looping...
2340 MX = MX\2 ' Correct for medium
 resolution screen
2350 IF MX <= XL OR MY < YL THEN 2320
 ' If above keyboard, turn off sound
2360 IF MY <= YH THEN 2470
 ' If on keyboard, play sound
2370 IF MY < QY OR MX < QX THEN 2320
 ' If above quit box, turn off sound
2380 '
2390 ' Button down inside the quit box
2400 '

82

PIANO Program Listing

2410 M1=2: CALL MOUSE(M1,M2,M3,M4)
' Turn off mouse cursor

2420 CLS ' Clear screen
2430 SYSTEM ' Quit
2440 '
2450 ' Button down over keyboard, determine which
 key
2460 '
2470 WKY = (MX-XL)\KW+OTV :R = 1

' Get which "white" key cursor is over
2480 IF MY > YL+BKL THEN 2560

' Is it lower than the "black" keys?
2490 MK=(MX-XL) MOD KW

' No, get which side of key
2500 IF MK <= BKW2 THEN R+0 : GOTO 2560

' Is it the left "black" key?
2510 IF MK >= KW-BKW2 THEN R=2

' Is it the right "black" key?
2520 '
2530 ' Play the note. For BASIC interpreter
 duration = 2
2540 ' For BASIC compiler
 duration = 1
2550 '
2560 SOUND FREQ(WKY,R),2
2570 GOTO 2290

'Continue looping
2580 '
2590 ' Musical note frequencies
2600 '
2610 DATA 131,139,156,175,185,208,233
2620 DATA 131,147,165,175,196,220,247
2630 DATA 139,156,165,185,208,233,247

83

Appendix B

SAMPLE CURSORS

This appendix describes 8 sample graphics cursors. These sample
cursors illustrate the wide variety of cursor shapes that you can
define for use in BASIC application programs.
The sample cursors are designed for high-resolution graphics mode.
Each cursor is a white shape with a black outline on a transparent
field. The shape typically suggests the type of action you can take
with the mouse. For example, an arrow usually means "make a
selection by pointing at an item."
To use a sample cursor in your own BASIC program, copy the
BASIC statements presented for the cursor directly to your program.
Type the statements exactly as shown, using line numbers that are
consistent with your program's numbering scheme.
To use a sample cursor in an assembly or high-level language
program, define an array in your program and assign the values
given for each cursor to the array elements. Assign the values in a
way that makes their storage order identical to their storage order in
a BASIC program.
The statements in this appendix define only the cursor's shape. It is
up to you to define the action associated with the cursor by
including the necessary statements in your program.

85

Appendix B

Standard Cursor
The standard cursor is a solid arrow that points up and to the left.
The hot spot is directly beyond the arrow's tip; so you can point to
an item without covering it. The standard cursor is the most
convenient shape when using the mouse to choose items from the
screen.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&H3FFF 'Binary 0011111111111111
 500 CURSOR(1,0)=&H1FFF 'Binary 0001111111111111
 600 CURSOR(2,0)=&H0FFF 'Binary 0000111111111111
 700 CURSOR(3,0)=&H07FF 'Binary 0000011111111111
 800 CURSOR(4,0)=&H03FF 'Binary 0000001111111111
 900 CURSOR(5,0)=&H01FF 'Binary 0000000111111111
1000 CURSOR(6,0)=&H00FF 'Binary 0000000011111111
1100 CURSOR(7,0)=&H007F 'Binary 0000000001111111
1200 CURSOR(8,0)=&H003F 'Binary 0000000000111111
1300 CURSOR(9,0)=&H001F 'Binary 0000000000011111
1400 CURSOR(10,0)=&H01FF 'Binary 0000000111111111
1500 CURSOR(11,0)=&H10FF 'Binary 0001000011111111
1600 CURSOR(12,0)=&H30FF 'Binary 0011000011111111
1700 CURSOR(13,0)=&HF87F 'Binary 1111100001111111
1800 CURSOR(14,0)=&HF87F 'Binary 1111100001111111
1900 CURSOR(15,0)=&HFC3F 'Binary 1111110000111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H4000 'Binary 0100000000000000
2500 CURSOR(2,1)=&H6000 'Binary 0110000000000000
2600 CURSOR(3,1)=&H7000 'Binary 0111000000000000
2700 CURSOR(4,1)=&H7800 'Binary 0111100000000000
2800 CURSOR(5,1)=&H7C00 'Binary 0111110000000000
2900 CURSOR(6,1)=&H7E00 'Binary 0111111000000000
3000 CURSOR(7,1)=&H7F00 'Binary 0111111100000000
3100 CURSOR(8,1)=&H7F80 'Binary 0111111110000000
3200 CURSOR(9,1)=&H78C0 'Binary 0111111111000000
3300 CURSOR(10,1)=&H7C00 'Binary 0111110000000000
3400 CURSOR(11,1)=&H4600 'Binary 0100011000000000
3500 CURSOR(12,1)=&H0600 'Binary 0000011000000000
3600 CURSOR(13,1)=&H0300 'Binary 0000001100000000
3700 CURSOR(14,1)=&H0300 'Binary 0000001100000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=-1 'Horizontal hot spot
4400 M3%=-1 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

86

Sample Cursors

Upward Arrow
The upward-pointing arrow is a solid arrow with the hot spot at the
tip. It is useful when directing a motion on the screen with the
mouse.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&HF9FF 'Binary 1111100111111111
 500 CURSOR(1,0)=&HF0FF 'Binary 1111000011111111
 600 CURSOR(2,0)=&HE07F 'Binary 1110000001111111
 700 CURSOR(3,0)=&HE07F 'Binary 1110000001111111
 800 CURSOR(4,0)=&HC03F 'Binary 1100000000111111
 900 CURSOR(5,0)=&HC03F 'Binary 1100000000111111
1000 CURSOR(6,0)=&H801F 'Binary 1000000000011111
1100 CURSOR(7,0)=&H801F 'Binary 1000000000011111
1200 CURSOR(8,0)=&H000F 'Binary 0000000000001111
1300 CURSOR(9,0)=&H000F 'Binary 0000000000001111
1400 CURSOR(10,0)=&HF0FF 'Binary 1111000011111111
1500 CURSOR(11,0)=&HF0FF 'Binary 1111000011111111
1600 CURSOR(12,0)=&HF0FF 'Binary 1111000011111111
1700 CURSOR(13,0)=&HF0FF 'Binary 1111000011111111
1800 CURSOR(14,0)=&HF0FF 'Binary 1111000011111111
1900 CURSOR(15,0)=&HF0FF 'Binary 1111000011111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H0600 'Binary 0000011000000000
2500 CURSOR(2,1)=&H0F00 'Binary 0000111100000000
2600 CURSOR(3,1)=&H0F00 'Binary 0000111100000000
2700 CURSOR(4,1)=&H1F80 'Binary 0001111110000000
2800 CURSOR(5,1)=&H1F80 'Binary 0001111110000000
2900 CURSOR(6,1)=&H3FC0 'Binary 0011111111000000
3000 CURSOR(7,1)=&H3FC0 'Binary 0011111111000000
3100 CURSOR(8,1)=&H7FE0 'Binary 0111111111100000
3200 CURSOR(9,1)=&H0600 'Binary 0000011000000000
3300 CURSOR(10,1)=&H0600 'Binary 0000011000000000
3400 CURSOR(11,1)=&H0600 'Binary 0000011000000000
3500 CURSOR(12,1)=&H0600 'Binary 0000011000000000
3600 CURSOR(13,1)=&H0600 'Binary 0000011000000000
3700 CURSOR(14,1)=&H0600 'Binary 0000011000000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=5 'Horizontal hot spot
4400 M3%=0 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

87

Appendix B

Left Arrow
The left-pointing arrow is a solid arrow with the hot spot at the tip.
This shape is useful when directing a motion on the screen with the
mouse. To generate a right arrow, reverse the binary bit pattern for
each array element and move the hot spot to the new tip. For
example, the first element, Binary 11111111000011111 (&HFE1F),
becomes Binary 1111100001111111 (&HF87F).

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&HFE1F 'Binary 1111111000011111
 500 CURSOR(1,0)=&HF01F 'Binary 1111000000011111
 600 CURSOR(2,0)=&H0000 'Binary 0000000000000000
 700 CURSOR(3,0)=&H0000 'Binary 0000000000000000
 800 CURSOR(4,0)=&H0000 'Binary 0000000000000000
 900 CURSOR(5,0)=&HF01F 'Binary 1111000000011111
1000 CURSOR(6,0)=&HFE1F 'Binary 1111111000011111
1100 CURSOR(7,0)=&HFFFF 'Binary 1111111111111111
1200 CURSOR(8,0)=&HFFFF 'Binary 1111111111111111
1300 CURSOR(9,0)=&HFFFF 'Binary 1111111111111111
1400 CURSOR(10,0)=&HFFFF 'Binary 1111111111111111
1500 CURSOR(11,0)=&HFFFF 'Binary 1111111111111111
1600 CURSOR(12,0)=&HFFFF 'Binary 1111111111111111
1700 CURSOR(13,0)=&HFFFF 'Binary 1111111111111111
1800 CURSOR(14,0)=&HFFFF 'Binary 1111111111111111
1900 CURSOR(15,0)=&HFFFF 'Binary 1111111111111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H00C0 'Binary 0000000011000000
2500 CURSOR(2,1)=&H07C0 'Binary 0000011111000000
2600 CURSOR(3,1)=&H7FFE 'Binary 0111111111111110
2700 CURSOR(4,1)=&H07C0 'Binary 0000011111000000
2800 CURSOR(5,1)=&H00C0 'Binary 0000000011000000
2900 CURSOR(6,1)=&H0000 'Binary 0000000000000000
3000 CURSOR(7,1)=&H0000 'Binary 0000000000000000
3100 CURSOR(8,1)=&H0000 'Binary 0000000000000000
3200 CURSOR(9,1)=&H0000 'Binary 0000000000000000
3300 CURSOR(10,1)=&H0000 'Binary 0000000000000000
3400 CURSOR(11,1)=&H0000 'Binary 0000000000000000
3500 CURSOR(12,1)=&H0000 'Binary 0000000000000000
3600 CURSOR(13,1)=&H0000 'Binary 0000000000000000
3700 CURSOR(14,1)=&H0000 'Binary 0000000000000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=0 'Horizontal hot spot
4400 M3%=3 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

88

Sample Cursors

Checkmark
The checkmark is a solid figure with the hot spot in the center of the
"V" formed by the check. It's useful when checking off items from a
list with the mouse or while a program is checking some aspect of
its operation.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&HFFF0 'Binary 1111111111110000
 500 CURSOR(1,0)=&HFFE0 'Binary 1111111111100000
 600 CURSOR(2,0)=&HFFC0 'Binary 1111111111000000
 700 CURSOR(3,0)=&HFF81 'Binary 1111111110000001
 800 CURSOR(4,0)=&HFF03 'Binary 1111111100000011
 900 CURSOR(5,0)=&H0607 'Binary 0000011000000111
1000 CURSOR(6,0)=&H000F 'Binary 0000000000001111
1100 CURSOR(7,0)=&H001F 'Binary 0000000000011111
1200 CURSOR(8,0)=&HC03F 'Binary 1100000000111111
1300 CURSOR(9,0)=&HF07F 'Binary 1111000001111111
1400 CURSOR(10,0)=&HFFFF 'Binary 1111111111111111
1500 CURSOR(11,0)=&HFFFF 'Binary 1111111111111111
1600 CURSOR(12,0)=&HFFFF 'Binary 1111111111111111
1700 CURSOR(13,0)=&HFFFF 'Binary 1111111111111111
1800 CURSOR(14,0)=&HFFFF 'Binary 1111111111111111
1900 CURSOR(15,0)=&HFFFF 'Binary 1111111111111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H0006 'Binary 0000000000000110
2500 CURSOR(2,1)=&H000C 'Binary 0000000000001100
2600 CURSOR(3,1)=&H0018 'Binary 0000000000011000
2700 CURSOR(4,1)=&H0030 'Binary 0000000000110000
2800 CURSOR(5,1)=&H0060 'Binary 0000000001100000
2900 CURSOR(6,1)=&H70C0 'Binary 0111000011000000
3000 CURSOR(7,1)=&H1D80 'Binary 0001110110000000
3100 CURSOR(8,1)=&H0700 'Binary 0000011100000000
3200 CURSOR(9,1)=&H0000 'Binary 0000000000000000
3300 CURSOR(10,1)=&H0000 'Binary 0000000000000000
3400 CURSOR(11,1)=&H0000 'Binary 0000000000000000
3500 CURSOR(12,1)=&H0000 'Binary 0000000000000000
3600 CURSOR(13,1)=&H0000 'Binary 0000000000000000
3700 CURSOR(14,1)=&H0000 'Binary 0000000000000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=6 'Horizontal hot spot
4400 M3%=7 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

89

Appendix B

Pointing Hand
The upward-pointing hand is a solid figure with the hot spot at the
tip of the extended finger. The pointing hand is another convenient
shape to use when selecting items from the screen, especially if the
items are represented by symbols such as the keys
of a piano.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&HE1FF 'Binary 1110000111111111
 500 CURSOR(1,0)=&HE1FF 'Binary 1110000111111111
 600 CURSOR(2,0)=&HE1FF 'Binary 1110000111111111
 700 CURSOR(3,0)=&HE1FF 'Binary 1110000111111111
 800 CURSOR(4,0)=&HE1FF 'Binary 1110000111111111
 900 CURSOR(5,0)=&HE000 'Binary 1110000000000000
1000 CURSOR(6,0)=&HE000 'Binary 1110000000000000
1100 CURSOR(7,0)=&HE000 'Binary 1110000000000000
1200 CURSOR(8,0)=&H0000 'Binary 0000000000000000
1300 CURSOR(9,0)=&H0000 'Binary 0000000000000000
1400 CURSOR(10,0)=&H0000 'Binary 0000000000000000
1500 CURSOR(11,0)=&H0000 'Binary 0000000000000000
1600 CURSOR(12,0)=&H0000 'Binary 0000000000000000
1700 CURSOR(13,0)=&H0000 'Binary 0000000000000000
1800 CURSOR(14,0)=&H0000 'Binary 0000000000000000
1900 CURSOR(15,0)=&H0000 'Binary 0000000000000000
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H1E00 'Binary 0001111000000000
2400 CURSOR(1,1)=&H1200 'Binary 0001001000000000
2500 CURSOR(2,1)=&H1200 'Binary 0001001000000000
2600 CURSOR(3,1)=&H1200 'Binary 0001001000000000
2700 CURSOR(4,1)=&H1200 'Binary 0001001000000000
2800 CURSOR(5,1)=&H13FF 'Binary 0001001111111111
2900 CURSOR(6,1)=&H1249 'Binary 0001001001001001
3000 CURSOR(7,1)=&H1249 'Binary 0001001001001001
3100 CURSOR(8,1)=&HF249 'Binary 1111001001001001
3200 CURSOR(9,1)=&H9001 'Binary 1001000000000001
3300 CURSOR(10,1)=&H9001 'Binary 1001000000000001
3400 CURSOR(11,1)=&H9001 'Binary 1001000000000001
3500 CURSOR(12,1)=&H8001 'Binary 1000000000000001
3600 CURSOR(13,1)=&H8001 'Binary 1000000000000001
3700 CURSOR(14,1)=&H8001 'Binary 1000000000000001
3800 CURSOR(15,1)=&HFFFF 'Binary 1111111111111111
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=5 'Horizontal hot spot
4400 M3%=0 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

90

Sample Cursors

Diagonal Cross
The diagonal cross is a solid figure with the hot spot at the center of
the cross. This shape is useful as a pointer in a game or
when canceling an operation or deleting an item from a list.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&H07E0 'Binary 0000011111100000
 500 CURSOR(1,0)=&H0180 'Binary 0000000110000000
 600 CURSOR(2,0)=&H0000 'Binary 0000000000000000
 700 CURSOR(3,0)=&HC003 'Binary 1100000000000011
 800 CURSOR(4,0)=&HF00F 'Binary 1111000000001111
 900 CURSOR(5,0)=&HC003 'Binary 1100000000000011
1000 CURSOR(6,0)=&H0000 'Binary 0000000000000000
1100 CURSOR(7,0)=&H0180 'Binary 0000000110000000
1200 CURSOR(8,0)=&H07E0 'Binary 0000011111100000
1300 CURSOR(9,0)=&HFFFF 'Binary 1111111111111111
1400 CURSOR(10,0)=&HFFFF 'Binary 1111111111111111
1500 CURSOR(11,0)=&HFFFF 'Binary 1111111111111111
1600 CURSORC12,0)=4HFFFF 'Binary 1111111111111111
1700 CURSOR(13,0)=&HFFFF 'Binary 1111111111111111
1800 CURSOR(14,0)=&HFFFF 'Binary 1111111111111111
1900 CURSOR(15,0)=&HFFFF 'Binary 1111111111111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H700E 'Binary 0111000000001110
2500 CURSOR(2,1)=&H1C38 'Binary 0001110000111000
2600 CURSOR(3,1)=&H0660 'Binary 0000011001100000
2700 CURSOR(4,1)=&H1C38 'Binary 0000001111000000
2800 CURSOR(5,1)=&H700E 'Binary 0000011001100000
2900 CURSOR(6,1)=&H0000 'Binary 0001110000111000
3000 CURSOR(7,1)=&H0000 'Binary 0111000000011100
3100 CURSOR(8,1)=&H0000 'Binary 0000000000000000
3200 CURSOR(9,1)=&H0000 'Binary 0000000000000000
3300 CURSOR(10,1)=&H0000 'Binary 0000000000000000
3400 CURSOR(11,1)=&H0000 'Binary 0000000000000000
3500 CURSOR(12,1)=&H0000 'Binary 0000000000000000
3600 CURSOR(13,1)=&H0000 'Binary 0000000000000000
3700 CURSOR(14,1)=&H0000 'Binary 0000000000000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=7 'Horizontal hot spot
4400 M3%=4 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

91

Appendix B

Rectangular Cross
The rectangular cross is a solid figure with the hot spot at the center
of the cross. The shape is useful as a pointer in a game or when
inserting items into a list.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&HFC3F 'Binary 1111110000111111
 500 CURSOR(1,0)=&HFC3F 'Binary 1111110000111111
 600 CURSOR(2,0)=&HFC3F 'Binary 1111110000111111
 700 CURSOR(3,0)=&H0000 'Binary 0000000000000000
 800 CURSOR(4,0)=&H0000 'Binary 0000000000000000
 900 CURSOR(5,0)=&H0000 'Binary 0000000000000000
1000 CURSOR(6,0)=&HFC3F 'Binary 1111110000111111
1100 CURSOR(7,0)=&HFC3F 'Binary 1111110000111111
1200 CURSOR(8,0)=&HFC3F 'Binary 1111110000111111
1300 CURSOR(9,0)=&HFFFF 'Binary 1111111111111111
1400 CURSOR(10,0)=&HFFFF 'Binary 1111111111111111
1500 CURSOR(11,0)=&HFFFF 'Binary 1111111111111111
1600 CURSOR(12,0)=&HFFFF 'Binary 1111111111111111
1700 CURSOR(13,0)=&HFFFF 'Binary 1111111111111111
1800 CURSOR(14,0)=&HFFFF 'Binary 1111111111111111
1900 CURSOR(15,0)=&HFFFF 'Binary 1111111111111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H0180 'Binary 0000000110000000
2500 CURSOR(2,1)=&H0180 'Binary 0000000110000000
2600 CURSOR(3,1)=&H0180 'Binary 0000000110000000
2700 CURSOR(4,1)=&H7FFE 'Binary 0111111111111110
2800 CURSOR(5,1)=&H0180 'Binary 0000000110000000
2900 CURSOR(6,1)=&H0180 'Binary 0000000110000000
3000 CURSOR(7,1)=&H0180 'Binary 0000000110000000
3100 CURSOR(8,1)=&H0000 'Binary 0000000000000000
3200 CURSOR(9,1)=&H0000 'Binary 0000000000000000
3300 CURSOR(10,1)=&H0000 'Binary 0000000000000000
3400 CURSOR(11,1)=&H0000 'Binary 0000000000000000
3500 CURSOR(12,1)=&H0000 'Binary 0000000000000000
3600 CURSOR(13,1)=&H0000 'Binary 0000000000000000
3700 CURS0R(14,1)=&H0000 'Binary 0000000000000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=7 'Horizontal hot spot
4400 M3%=4 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

92

Sample Cursors

Hourglass

The hourglass is a solid figure with the hot spot at the center of the
glass. You can use this shape to show that the operation in progress
takes some time to complete.

 100'
 200' Define the screen mask
 300'
 400 CURSOR(0,0)=&H0000 'Binary 0000000000000000
 500 CURSOR(1,0)=&H0000 'Binary 0000000000000000
 600 CURSOR(2,0)=&H0000 'Binary 0000000000000000
 700 CURSOR(3,0)=&H0000 'Binary 0000000000000000
 800 CURSOR(4,0)=&H8001 'Binary 1000000000000001
 900 CURSOR(5,0)=&HC003 'Binary 1100000000000011
1000 CURSOR(6,0)=&HE007 'Binary 1110000000000111
1100 CURSOR(7,0)=&HF00F 'Binary 1111000000001111
1200 CURSOR(8,0)=&HE007 'Binary 1110000000000111
1300 CURSOR(9,0)=&HC003 'Binary 1100000000000011
1400 CURSOR(10,0)=&H8001 'Binary 1000000000000001
1500 CURSOR(11,0)=&H0000 'Binary 0000000000000000
1600 CURSOR(12,0)=&H0000 'Binary 0000000000000000
1700 CURSOR(13,0)=&H0000 'Binary 0000000000000000
1800 CURSOR(14,0)=&H0000 'Binary 0000000000000000
1900 CURSOR(15,0)=&HFFFF 'Binary 1111111111111111
2000'
2100' Define cursor mask
2200'
2300 CURSOR(0,1)=&H0000 'Binary 0000000000000000
2400 CURSOR(1,1)=&H7FFE 'Binary 0111111111111110
2500 CURSOR(2,1)=&H6006 'Binary 0110000000000110
2600 CURSOR(3,1)=&H300C 'Binary 0011000000001100
2700 CURSOR(4,1)=&H1818 'Binary 0001100000011000
2800 CURSOR(5,1)=&H0C30 'Binary 0000110000110000
2900 CURSOR(6,1)=&H0660 'Binary 0000011001100000
3000 CURSOR(7,1)=&H03C0 'Binary 0000001111000000
3100 CURSOR(8,1)=&H0660 'Binary 0000011001100000
3200 CURSOR(9,1)=&H0C30 'Binary 0000110000110000
3300 CURSOR(10,1)=&H1998 'Binary 0001100110011000
3400 CURSOR(11,1)=&H33CC 'Binary 0011001111001100
3500 CURSOR(12,1)=&H67E6 'Binary 0110011111100110
3600 CURSOR(13,1)=&H7FFE 'Binary 0111111111111110
3700 CURSOR(14,1)=&H0000 'Binary 0000000000000000
3800 CURSOR(15,1)=&H0000 'Binary 0000000000000000
3900'
4000' Define cursor shape, color, and hot spot
4100'
4200 M1%=9
4300 M2%=7 'Horizontal hot spot
4400 M3%=7 'Vertical hot spot
4500 CALL MOUSE(M1%,M2%,M3%,CURSOR(0,0))

93

INDEX

AND and XOR results 41
black and-white mode 46
4-color modes 50
16-color modes 52

application programs
incorporating the mouse 27-35
secondary communications channel 23

assembly-language programs, mouse system calls from 34-35
AUTOEXEC.BAT 15

adding to 21-22
creating 21

BASIC programs, mouse system calls from 33-34
BASIC screen modes see screen modes
battery 7, 8-9, 14
binary equivalents of colors

black-and-white mode 37, 45, 46
4-color modes 37, 50
16-color modes 38, 52

bits per pixel 29
black-and-white graphics cursors 45-48
button 31

get press information (Function 5) 64-65
get release information (Function 6) 66-67
get status (Function 3) 62

CLOCKGET.EXE 15
copying 17, 18

CLOCKSET.EXE 15
copying 17, 18

clock, setting 22
color, relationship to bits per pixel 29, 37
colors, numbers and binary equivalents

black-and-white mode 37
4-color mode 37
16-color mode 38

CONFIG.SYS 15
adding to 19-20
creating 19

95

Index

cursor 30-31 see also graphics cursor, hardware text cursor,
software text cursor

rate of movement 31-32
set mouse cursor position (Function 4) 63

cursor blocks, samples 39-40
cursor mask

graphics cursor 40-44, 50, 52
text cursor 53, 54, 55

date and time 22
DIGI-Mouse

anatomy 23
buttons 31
connecting 13
moving 24
sensitivity 31
surface requirements 23-24
tick 31-32

DIGI-Mouse Controller/Calendar Utilities Diskette 15, 17, 18
dummy variable names 57

FlagDec 61
FlagInc 60
floppy diskette procedure for copying the software 17
function calls

0 (GetMouseStat/Reset) 59
1 (FlagInc) 60
2 (FlagDec) 61
3 (GetPos) 62
4 (SetPos) 63
5 (GetButtonPress) 64-65
6 (GetButtonRelease) 66-67
7 (SetHorizontal) 68
8 (SetVertical) 69
9 (SetCursorBlock) 70-71
10 (SetText) 72
11 (ReadCounters) 73
12 (SetCallMask) 74-75
15 (SetTickPixel) 76

graphics cursor block, setting (Function 9) 70-71
hot spot 44
sample cursors see sample graphics cursors

96

GetButtonPress 64-65
GetButtonRelease 66-67
GetMouseStat/Reset 59
GetPos 62

hard disk procedure for transferring the software 18
hardware text cursor 27, 55
high-level language programs, mouse calls from 35
horizontal position, setting (Function 7) 68
hot spot 44

initializing the mouse 19-20
initializing the system clock 21-22
input mask, set (Function 12) 74-75
installing Mouse/Calendar Board 7-13
interface 27-32

buttons 31
cursors 30-31
internal cursor flag 32
screen modes 27, 29-30
tick 31-32
virtual screen 28-29

internal cursor flag 32
decrementing 32, 61
incrementing 32, 60
resetting 32, 59

IR3 23

mask bit values
black-and-white mode 46
4-color modes 42, 50
16-color modes 52

mouse
anatomy 23
cursor position, set (Function 4) 63
functions see function calls
interface see interface
marking the range of an action 26
motion counters, read (Function 11) 73
moving 24
selecting options with 26

Index

97

Index

sensitivity 31
surface requirements 23-24
system calls 32-35 see also function calls
using with PIANO.BAS 24-26

Mouse Controller/Calendar PLUS Upgrade Board,
installing 7-13

mouse driver 15
copying 17, 18
memory requirements 20

MOUSE.SYS 15
copying 17, 18

PIANO.BAS 35
copying 17, 18
exiting 26
explanation of program details 77-79
program listing 80-83
running 24-26

programming for mouse 27-35

ReadCounters 73

sample graphics cursors
black-and-white cross 45-48
checkmark 89
diagonal cross 91
hourglass 93
left arrow 88
pointing hand 90
rectangular cross 92
standard 86
upward arrow 87

screen mask
graphics cursor 40-44, 50, 52
software text cursor 53-55

screen mode attributes 29
screen mode, legal virtual coordinates 29-30
SetCallMask 32, 74-75
SetCursorBlock 70-71
SetHorizontal 68
SetText 72
SetTickPixel 76
SetVertical 69

98

software 15
copying to a system diskette 17
transferring to hard disk 18

software text cursor 30, 53-55
static charge buildup 7
system calls 57-76 see also function calls

from assembly-language programs 34-35
from BASIC interpreter 33-34
from high-level languages 35

system cursor see text cursor

text cursor 30
hardware 27, 55
software 53-55

text modes 30
tick 31-32
tick/pixel ratio, set (Function 15) 76

vertical position, setting (Function 8) 69
virtual coordinates for various modes 29-30
virtual screen 28-29

XOR and AND results 41, 42

YEAR.DAT 22

Index

99

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA BELGIUM U. K.

91 KURRAJONG AVENUE
MOUNT DRUITT, N.S.W. 2770

RUE DES PIEDS D'ALOUETTE, 39
5140 NANINNE (NAMUR)

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

8749584-9/85-BCo Printed in U.S.A.

	Contents
	Introduction
	Chapter 1 - Installing the Hardware
	Chapter 2 - Learning About the Software
	Chapter 3 - Copying the Mouse/Calendar Software
	Chapter 4 - Initializing the Mouse Automatically
	Chapter 5 - Using the System Clock
	Chapter 6 - Using the Mouse
	Chapter 7 - Programming for the Mouse
	Chapter 8 - Defining Graphics Cursors
	Chapter 9 - Black-and-White Graphics Cursors
	Chapter 10 - 4-Color Graphics Cursors
	Chapter 11 - 16-Color Graphics Cursors
	Chapter 12 - Defining Text Cursors
	Chapter 13 - Function Descriptions
	Appendix A - Piano Program Listing
	Appendix B - Sample Cursors
	Index

