LEGEND

S1	$1-8$	Node ID Select
S2	$1-3$	I/O Base Address Select
	$4-6$	Memory Base Address Select
	$7-8$	RAM Offset Select
EXT		\quad Extended Timeout Select
IRQ		Interrupt Select
ROM		Enable Auto-boot PROM

SETTING SWITCHES AND JUMPERS
A. Each switch is equivalent to a logical zero (0) when set to set to the ON or CLOSED position and a logical one (1) when set to the OFF or OPEN position.

1. For lever-type switches, push the switch up (towards the OFF position) to set it to a logical one, or down to set it to a logical zero.
2. For slider-type switches, DOWN is the same of OFF.
3. For rocker-type switches, press in as far as possible on the side of the switch labeled ON to set it to the ON position.
4. To select a jumper, connect the two pins of the jumper with a shorting plug.
C. SETTINGS FOR NETWARE
5. The most common switch settings are:
A. I/O base address 2E0
B. RAM memory address D0000
C. IRQ

2
2. In the $S 2$ bank of switches, the OFF position would be for switches 2,5, and 6. Switches 1,3,4,7, and 8 are ON.
3. With different hardware configurations or other software, other switch settings may be required.
D. SETTING THE NODE ID

1. The eight switches in group $S 1$ are used to set the PC identification number of node ID.
A. Each node attached to the network must have a unique node ID. A node ID of zero (0) is not permitted.
B. Switch 1 serves as the least significant bit (LSB) for the node ID.
C. The following chart shows how to set the node ID to a decimal number.
```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \\
\hline Switch & - & - & - & x & - & X & X & X & On/Closed \\
\hline Group S1 & x & X & x & - & x & - & - & - & Off/Open \\
\hline
\end{tabular}
Example: Node ID 23
    Decimal = 1 + 2 + 4 + 16 = 11101000 Binary
D. After setting these switches, be sure to write the node ID on the identifying label located on the outer edge of the board.
E. Setting the I/O Base Address
1. Switches 1 - 3 in switch group \(S 2\) are mapped to the table of eight hexadecimal I/O base addresses shown below.
\begin{tabular}{lccc} 
I/O & I/O \\
\begin{tabular}{c} 
Address \\
Hex
\end{tabular} & \begin{tabular}{c} 
Switches \\
\(1-3\)
\end{tabular} & \begin{tabular}{c} 
Address \\
Hex
\end{tabular} & \begin{tabular}{c} 
Switches \\
1
\end{tabular} \\
& & & \\
260 & 0 & 0 & 0
\end{tabular}
2. Remember \(0=\) On/Closed \(1=\) Off/Open
F. Setting the Base Memory (RAM) Buffer Address
1. The memory buffer requires only 2 K of a 16 K block of RAM. The base of this 16 K block can be located in any one of eight positions.
2. S2 switches \(4-6\) select the base address of the 16 K block. Within that 17 K address space, the buffer may be assigned any one of four positions, determined by the offset, s2 switches 7 - 8.
Base Address --> \begin{tabular}{ccc} 
& Offset \\
& 2 K & 0 \\
2 K & 1 \\
& 2 K & 2 \\
& 2 K & 3 \\
& 8 K & ROM
\end{tabular}
```

3. These switches are mapped to the table of 32 hexadecimal base memory buffer addresses for the board shown below. For example, for D0000, set S2, 4-8 to 01100.
4. Three additional expansion cards may utilize the three unused 2 K blocks of memory. The remaining 8K is reserved for ROM.

Address	$4-8$	Address	$4-8$	
C0000	000	00	D4000	100
C0800	000	01	D4800	100
C1000	000	10	D5000	100
C1800	000	11		100
			D8000	
C4000	001	00	D8800	101
C4800	001	01	D9000	101
C5000	001	10	D9800	101
C5800	001	11		101
			DC000	
CC000	010	00	DD000	110
CC800	010	01	DD800	110
CD000	010	10	E0000	110
CD800	010	11	E0800	111
			E1000	111
D0000	011	00	E1800	111
D0800	011	01	111	11
D1000	011	10		
D1800	011	11		

G. Setting the Timeouts and Interrupts

1. The jumper set labeled EXT is used to determine the timeout parameters. The two jumpers in this set are normally left open.
2. IRQ jumper set is used to select the interrupt level. The numbers next to each of the five jumpers correspond the interrupts.

Jumper	Function
2	IRQ2
3	IRQ3
4	IRQ4
5	IRQ5
7	IRQ7

INSTALLING THE AUTO-BOOT PROM
A. This option allows a diskless PC to access the network by booting from the network disk. The PROM can also be used in PCs having floppy and/or hard disk drives.
B. The PROM requires 8 K of memory space on the board. To enable the PROM, the jumper labeled ROM must be selected by connecting the staking pins with a jumper.

1. Position the notch on the PROM over the notch on the socket.
2. Check to make sure each pin of the PROM is aligned with the receptacles on the socket.
3. Push the PROM into the socket gently, but firmly, making
sure not to bend the pins on the PROM. (dkh-08/03/93)
