ARCNET Adapter (260-6505)

LEGEND

S1	1 - 8	Node ID Select
S2	1 - 3	I/O Base Address Select
	4 - 6	Memory Base Address Select
	7 – 8	RAM Offset Select
EXT		Extended Timeout Select
IRQ		Interrupt Select
ROM		Enable Auto-boot PROM

SETTING SWITCHES AND JUMPERS

- A. Each switch is equivalent to a logical zero (0) when set to set to the ON or CLOSED position and a logical one (1) when set to the OFF or OPEN position.
 - 1. For lever-type switches, push the switch up (towards the OFF position) to set it to a logical one, or down to set it to a logical zero.
 - 2. For slider-type switches, DOWN is the same of OFF.
 - 3. For rocker-type switches, press in as far as possible on the side of the switch labeled ON to set it to the ON position.
 - 4. To select a jumper, connect the two pins of the jumper with a shorting plug.
- C. SETTINGS FOR NETWARE
 - The most common switch settings are:

 A. I/O base address
 B. RAM memory address
 D0000
 C. IRQ
 2
 - 2. In the S2 bank of switches, the OFF position would be for switches 2,5, and 6. Switches 1,3,4,7, and 8 are ON.
 - 3. With different hardware configurations or other software, other switch settings may be required.
- D. SETTING THE NODE ID
 - 1. The eight switches in group S1 are used to set the PC identification number of node ID.
- A. Each node attached to the network must have a unique node ID. A node ID of zero (0) is not permitted.
- B. Switch 1 serves as the least significant bit (LSB) for the node ID.
- C. The following chart shows how to set the node ID to a decimal number.

SWITCHES

		1	2	3	4	5	6	7	8		
Sw Gr	itch oup S1	- x	– x	– x	x -	– x	х -	x -	x -	On/Closed Off/Open	= 0 = 1
Va	lue	1	2	4	8	16	32	64	128		
Ex	ample:	No De	de I cima	D 23 1 =	1 +	2 +	4 +	16	= 1110)1000 Binary	
Afte ID c of t	r sett: n the : he boa:	ing iden rd.	thes tify	e sw ing	itcl labe	nes, el lo	be s bcate	sure ed o	to wi n the	rite the nod outer edge	.e

E. Setting the I/O Base Address

D.

1. Switches 1 - 3 in switch group S2 are mapped to the table of eight hexadecimal I/O base addresses shown below.

I/O Address Hex	Switches 1 - 3	I/O Address Hex	Switches 1 - 3
260	0 0 0	300	1 0 0
290	0 0 1	350	1 0 1
2E0	0 1 0	380	1 1 0
2F0	0 1 1	3E0	1 1 1

2. Remember 0 = On/Closed 1 = Off/Open

- F. Setting the Base Memory (RAM) Buffer Address
 - 1. The memory buffer requires only 2K of a 16K block of RAM. The base of this 16K block can be located in any one of eight positions.
 - 2. S2 switches 4 6 select the base address of the 16K block. Within that 17K address space, the buffer may be assigned any one of four positions, determined by the offset, S2 switches 7 - 8.

Base	Address	>	Offset	t
		2K	0	
		2K	1	
		2K	2	
		2K	3	
		8K	ROM	

- 3. These switches are mapped to the table of 32 hexadecimal base memory buffer addresses for the board shown below. For example, for D0000, set S2, 4-8 to 011 00.
- 4. Three additional expansion cards may utilize the three unused 2K blocks of memory. The remaining 8K is reserved for ROM.

RAM	Switches	RAM	Switches
-----	----------	-----	----------

Address	4 - 8	Address	4 - 8
C0000	000 000	D4000	100 00
C0800	000 01	D4800	100 01
C1000	000 10	D5000	100 10
C1800	000 11	D5800	100 11
C4000	001 00	D8000	101 00
C4800	001 01	D8800	101 01
C5000	001 10	D9000	101 10
C5800	001 11	D9800	101 11
CC000	010 00	DC000	110 00
CC800	010 01	DC800	110 01
CD000	010 10	DD000	110 10
CD800	010 11	DD800	110 11
D0000	011 00	E0000	111 00
D0800	011 01	E0800	111 01
D1000	011 10	E1000	111 10
D1800	011 11	E1800	111 11

- G. Setting the Timeouts and Interrupts
 - 1. The jumper set labeled EXT is used to determine the timeout parameters. The two jumpers in this set are normally left open.
 - IRQ jumper set is used to select the interrupt level. The numbers next to each of the five jumpers correspond the interrupts.

Jumper	Function
2	IRQ2
3	IRQ3
4	IRQ4
5	IRQ5
7	IRO7

INSTALLING THE AUTO-BOOT PROM

- A. This option allows a diskless PC to access the network by booting from the network disk. The PROM can also be used in PCs having floppy and/or hard disk drives.
- B. The PROM requires 8K of memory space on the board. To enable the PROM, the jumper labeled ROM must be selected by connecting the staking pins with a jumper.
 - 1. Position the notch on the PROM over the notch on the socket.
 - 2. Check to make sure each pin of the PROM is aligned with the receptacles on the socket.
 - 3. Push the PROM into the socket gently, but firmly, making

sure not to bend the pins on the PROM.

(dkh-08/03/93)