
Addendum for DeskMate 3.05
Cat. No. 25-1351

To make the best use of DeskMate’s new font capabilities in Draw the follow-
ing information should be noted:

If you are using a hard drive system, all fonts must be stored in a single
directory. DeskMate’s Install program automatically copies all fonts to
the same directory, but if you add additional fonts, be sure they are in
that directory.

If you are using a diskette-based system, the diskette containing the
fonts must be in the drive so that Draw can access them. (If you are
using data diskettes, you can copy your font files (*.fI) to your data
diskettes. You should also copy your printer driver (drnpdxxxx.res and
drnpexxxx.r-es) to these diskettes.)

I f Draw cannot find a font, the application substitutes large, block let-
ters on the screen. These are your indication that the requested font
was not accessible.

If you are using MS-DOS version 2.11, you must add the following com-
mand to your autoexec. bat program so that you can use Draw’s font ca-
pabilities:

@

set dmfont=deskmate font path
(If you need information about creating or changing your autoexec.bat
file, refer to your MS-DOS documentation.)

For best results, the point size you use for fonts should create charac-
ters that are no larger than the size of the screen.

When you access the Text option from the Options Menu, the dialog
box that appears contains choices for Printer or O u t l ine. Use the fol-
lowing criteria to make your choice:
Choose the Pri nter button to use the fonts built into your printer. This
will allow you to print more quickly and with higher quality. You cannot,
however, change the point size, width, or color of the characters.
Choose the O u t l i ne button if you want the flexibility to make point
size, width, or color modifications to your font characters.

9

In the Setup option from the F10 Menu, please note the following information
about your mouse setting:

The COM setting you set for your mouse will supersede a COM setting
you have previously set for your Communications option. When you ac-
cess your Communications option, the COM port setting currently used
by the mouse will be shadowed so that it is not available for your Com-
munications option.

4

875-8508

1

The page printing function allows mixing of System text and graphics on a page. Currently
10,12, and 16.7 characters per inch printing is supported. The driver controls the adjusting of
graphics on a page to reflect the current cpi - shrinking the graphics to maintain the same aspect
ratio as the system text.

General User Functions Resource (DMGUF) :

miscellaneous file handling calls, such as error messages, dialog boxes routines, file-checks, disk
queries, etc..

The lowest level supports direct file access such as seeks, reads, and wries but performs no
user interaction or error handling other than the processing of criiical VO errors.

The second level supports applications which keep data in a single contiguous block (less
than 64K) of memory. This level of file I/O is simple and complete, managing all disk I/O, all
possible errors, and full interaction with the user.

files to disk as well as their in-memory management.

DataBase Resource (DMDB) :

add, modify, and delete records, fetch single and multiple records, query, sort (stored index &
secondary temporary index), and merge data.

The files are made up of application defined "tables" which are defined by their "columns"
(fields) and "rows" (records). Each table has its own stored index, columns may contain numeric
or character ASCII data which may be labeled as being unique (two records may not contain the
same data in the same field).

The database also provides easy access to the Workgroup shared database sewer for
support of multi-user database applications.

Autoload Resource (AUTOLOAD) :

Applications which need a resource to be loaded when Desk is executed use the Autoloader
to register the resource's information - resource name, initialization information, and load priority -
in the configuration file. Desk uses the Autoloader to load the requested resources. Desk uses
the priority information when deciding when the resource should be loaded and unloaded.

Spell Checker Resources (SPELL, SPL) :

proof selected text. The spell engine resource, Spl, is the actual spell checker and dictionary
which must be licensed separately from the Microlytics company.

o

GUF provides two levels of file VO as well as the Environment functions and some

The Environment Manager handles the creation, loading, and writing of configuration data

The DataBase provides an indexed record manager which contains functions to create files,

0

The Spell resources is used by the Spell Checker accessory and by application which wish to

c_

Addendum for DeskMate Users
Cat. No. 25-1350

Please note the following changes to your DeskMate Getting Started
magazine:

The “Starting DeskMate” section indicates that the introductory tutorial
appears automatically the first time you run DeskMate. This no longer
occurs.

However, we highly recommend that you run the introductory tutorial
before you begin using DeskMate. To access the tutorial, press TAB until
the Teach Me box is highlighted, and then press ENTER. When the list of
tutorials appears, the introductory tutorial, DeskMate: An Introduction, is
highlighted. Simply press ENTER to begin.

For Hard Disk Users - You need to use the following procedure
(instead of the one described in your Getting Started magazine) to install
DeskMate on your hard disk.
1. Turn on your monitor and computer.

2. Insert the DeskMate Diskette 1 into any drive.

3. If necessary, change to the appropriate drive. For example, if you
insert the diskette into Drive A, simply type a : and press ENTER.

4. Type install and press ENTER.

5. Follow the instructions as they appear on the screen.

-.a

875-8359

DeskMate

Environment

EeskMate
Applications User and
Accessories

MS-DOS -

Memory Map Example

DeskMate runs in a range of system memory configurations from a minimum of 384K on a
RAM machine to the maximum of 640K on a ROM machine. The following picture illustrates the
memory map for a 640K RAM system configuration.

Tandy 4OOO using MS-DOS 3.2, WOK of memory, and EGA video :

0

a O w n e r S i z e i n B v t e g

DMDB .RES 60768
DMCSR. RES 4896 *Screen Save B u f f e r
DMMDSERI .RES 1824
DMVDEGA. RES 22368 * V i d e o Driver
DMGUF .RES 30416
DMCSR. RES 76896
C l i p b o a r d 16400 (8K i n 384K configuration)
DESK. EXE 18528

* S c r w Save FUffer S i z e s *V-er Sizes
CGA 3048 DMVDCGA 2 1K
1000 6048 DMVDlOOO 22K
EGA 4896 DMVDEGA 22K
HERC 6064 DMVDHERC 2 4K
TC16 12096 DMVDTC 16 2 OK
VGA 0 DMVDVGA 2 1K

0

I

DeskMate Functions

Executive (DESK or RUNTIME) :

The Executive handles the DeskMate system level tasks such as loading and unloading of
resources, applications, and accessories.

The Clipboard allows the user to transfer data from one DeskMate application to another, or
solely within an application. The DeskMate Clipboard can contain any type of ASCII, binary, or
mixed data which the application requires. The Clipboard remains intact at all times while
DeskMate is active and is available at the application's request.

execute after the current application terminates.

Core Services Resource (DMCSR) :

(graphics, system and stroke font text, and components), keyboard and mouse input, printing,
and communications.

are automatically mapped to the resolution of the video device by the currently loaded video
driver so that one version of an application can be written to tun on any video resolution.
Normalized world coordinates allow the application to perform exact pixel-by-pixel graphics.

savinghestoring, scrolling, filling, and clearing functions are provided.

character attributes are currently supported. Graphics functions include point, line, rectangle,
beveled rectangle, ellipse, polygon, polyline, arc, and bitmaps. Color, line style, and pattern
attributes are supported. The "Forms Manager provides the functionality required to store,
display, and manipulate (move, size, find, change, reorder, etc.) graphics elements on the screen
as well as transfer the information via the clipboard to other applications.

Currently the Tandy 1000, CGA, EGA, VGA, MCGA, and Hercules video modes are
supported. The video mode is automatically detected and the appropriate driver loaded or the
user may override the automatic detection by selecting the driver to load (dmvid.exe).

The Component, Window, and Event Managers process the applications components,
funneling the user actions back to the application as events.

The Dialog Box Manager controls execution of dialog boxes, returning to the application as
necessary for information updating. Cursoring through the components, redrawing components,
and handling pushbuttons are all done by the resource.

Message Boxes display word-wrapped messages, saving and restoring the screen under the
box for the application.

Thn nrintnr 11 Indinnq allow both Daae Drintinq, handling printing to the screen, printer, Or file

0

Application chaining is supported through the capability of setting the next application to

The CSR handles the user interface portion of an application including video output

All video graphics are drawn onto an 8000 x 5500 world coordinate plane. World coordinates

Windows, viewports, and clipping regions are supported by the CSR. Screen

Character (system and stroke font) and graphic outputs are supported. Bold and underlined

0

0

1

General Design of a DeskMate Application

DeskMate applications are typically "transaction centers", user inputs are processed and
results are displayed. The application usually contains its initialization phase, its "event-ioop"
where user input is accepted, and its clean-up phase when the user chooses to exit the
application.

The application is always in control, it decides when it is ready to receive input and call the
event read function. For example, when the user selects a command from the application
menubar, the system handles the user interface and returns the selected item to the application
for processing.

e

The following is a general outline of a DeskMate application's main processing loop.

main ()
(

/* Initialization Phase * /
bind to any resources;
create any child windows in the work area;
draw the menubar and any default information;
open any file passed on the parameter line;

do
(

read the event;
switch(type of event)
(

case is command event :
/* the user selected a menu option, * I
ProcessCommand(event parameter 1;
break;
I* pushed a button, etc. * I

case is character event :
I* the user entered an alpha-numeric */
ProcessKeystroke(event parameter 1;
break;

I)

case is mouse event :
/* the user positioned the mouse * I
I* started a selection, double-cricked *I
ProcessMouse (event 1 ;
break;

case is an application event :
/ * the user selected an accessory or task switching * /
run the accessory or task switch;
break;

} / * end of switch on type of event */
} while (user has not chosen quit 1;

/ * Clean Up Phase *I
release any resources;
exit;

) / * end of application main module * /

- . -
RESEARCH AND DEVELOPMENT

Fort Worth. TX 76102
P 1300 Two Tandy Center kTi Tandy Electronics Fc i A DIVISION OF TANDY CORPORATION Telephone (817) 390-2181 - Fax (8 17) 8788575

0

November 20,1989

Dear DeskMate Developer,

We are building the new DeskMate Development System, the kit, and would like to give you an
opportunity to review some of the new information presented in the kit that may affect your
development efforts. The enclosed documentation appears in the new About This Kit and
DeskMate Development Guide manuals. Please review this documentation and make any
comments as soon as possible.

You may mail your responses to:

Attn: DeskMate Support Services
Tandy Electronics
1300 Two Tandy Center
Fort Worth, Texas 76102

or FAX your responses to: (81 7) 390-2964. 0

Sincerely,

Rac el McKenzie
Manager, DeskMate Support Services

*/if m7$w

cc: S. Cutler
H. Elias
D. Tanner
G. Schenberg

System Overview

DeskMate 3 was introduced in the fall of 1988. This version of DeskMate enabled developers to
wriie applications for the interface and environment. This software is referred to as DeskMate
3.0 (or simply 3.0) and was not compatible with previous versions of the DeskMate product.
DeskMate 3.0 includes the following versions:

@

1000 SL DeskMate 03.00.00
1000 TL DeskMate 03.00.00
Retail
Runtime DeskMate 03.02.01

DeskMate 03.00.00 and DeskMate 03.02.00

This year’s DeskMate 3 product is version 3.3 which is DeskMate 3.0 compatible. DeskMate 3.3
includes the following versions:

1000 SU2 DeskMate 03.03.00
1000 TU2 DeskMate 03.03.00
Retail DeskMate 03.03.01
Runtime DeskMate 03.03.01

Technical Overview

The DeskMate 3 environment consists of the executive and the resources that contain the
system functions. These resources provide the user interface, three levels of file input and
output including a database, and printing support for the application.

DESK. EXE, the executive, loads and unloads DeskMate programs - applications, accessories,
and resources, as well as non-DeskMate applications. The executive expects DeskMate
programs to contain specific information in the program header used when the program is loaded.
Refer to the DESKHDR. EXE documentation in the DeskMate Development Guide, Tools and
Utilities section for more information.

DeskMate applications (.PDM extension) are the controlling modules in the environment.

Accessories (.ACC extension) are mini-applications which can pop-up over an application.
Accessories are small programs that perform very specific tasks for the user and have
functionality in several applications.

DeskMate resources (.RES extension) are the work-horses of the environment. They provide the
common functionality required by most applications - user interface, file i/o, communications,
printing, etc.. These resources are terminate and stay-resident (TSR) programs which have a
focused scope of functionality. They may be shared by more than one program at a time.
Resources are also used to provide device-specific functionality determined at execution time,
such as, video and printer drivers.

All DeskMate programs must link with a DeskMate library to make use of functionality in the
executive or any of the resources. The DeskMate libraries, DM.LIB and DMMED.LIB, contain
the bindings, or bridge, used by a program to call a function in the resource.

-a

‘2-2 \\I a rnenlirt-n it hinrlc tn t h o rncniirro hv rallinn . . I,. . . . _ _ _ - - .___ 1 --*.---,.* . ---.

resource and 2) inform the application of where the resource was loaded. When the executive
loads the resource it resolves the resource's service request vector (srqv) in the bindings - the far
address of the resource's entry point, and increments the resource's use count.. The vector is
used to make far calls from the application into the resource. The use count allows the executive
to determine how many programs are using the same resource. When the program no longer
requires the resource, it frees the resource. The executive decrements the resources' use count.
The resources is not unloaded until all programs using the resource have freed the resource (its
use count is zero) and the memory is needed to load another program.

The DeskMate 3.0 system used different file extensions to distinguish between the product
resources (RES) and the runtime resources (RRS). Which resource was loaded is determined by
the executive, DESK. EXE or customized RUNTIME. EXE, respectively.

The DeskMate 3.3 system uses the same file extension (RES) for both the product and the
runtime resources. DeskMate system resources which must be used by the 3.3 system use the
R89 extension to differentiate them from the 3.0 resources. The executive determines which
resource to load.

These file conventions only affect developers who write their own resources. Resources
developed for the 3.0 system have to be shipped with RES and RRS extensions for installation on
a product or DeskMate 3.2 runtime. Resources developed for the DeskMate 3.3 system use the
RES extension.

The executive, resources, and Setup, Page Setup, and Help accessories are distributed in the
DeskMate runtime. These files are referred to as the DesklMate system files. Chapter 5 of this
manual details how to obtain the runtime software.

The DeskMate executive and resources include:

0

0
DESK.EXE The Executive handles the system level tasks for the environment and

the applications.

DESK Managers include:
Clipboard Manager
Desk Executive

DBBUILD.RES

DBREAD.RES

This Database Resource allows applications to create database files.

This Database Resource allows applications to open and read database
files.

This Database Resource allows applications to open, read, and update
database files.

DBUPDATE.RES

.

.
DM CS R. R89 The Core Services Resource handles the user interface and "core"

This resource is always used by a functionality for applications. b DeskMate application.

CSR Managers include:
Communication Manager
Component Manager
Configuration Manager
Dialog Box Manager
Event Manager
Information Box Manager
Keyboard Manager
Menu bar Manager
Message Box Manager
Mouse Manager
Print Managers
Titleline Manager
Video Manager
Window Manager

DM DB. R89 This Database Resource provides database file access for applications
developed with the 3.2 development system on a 3.3 system.

The General User Functions Resource provides high- and low-level file
I/O functionality. See the Executive section for details on what
functionality each GUF resource provides.

GUF Managers include:
Environment Manager
File I/O Manager

The Form Manager Resource provides vector graphics and stroke font
support for applications.

The pointing device drivers JOY (Tandy 1000 joystick), SERl (serial
mouse), P (Micro-Channel mouse)

LASR (Laserjet-compatible), 1 (DMP 105), 2 (DMP 200, 420, 430)

The 80 column video drivers CGA, 1000 (TGA), TC16 (ETGA), EGA,
VGA, MCGA, and HERC. The 40 column video drivers LRES, TC40,
T256, H (Hercules), E (EGA), and M (Monochrome EGA)

The Power and Run General User Functions Resource, provides a
subset of the GUF functionality. See the Executive section for details on
what functionality each GUF resource provides.

DMGU F.R89

0

DMFORM.RES

DMMD*.RES

DMPD*.RES The printer drivers ASCI (ASCII), IBMM (IBM-compatible graphics),

DMVS*.RES

PRGUFAES

The DeskMate libraries contain functionality which is linked into the application. The Library
Manager lists all functions available in the libraries.

DeskMate 3.3 Modifications and Enhancements

The DeskMate 3.3 system added the following modifications or enhancements to the user
interface and environment. For more information about how these changes affect your
application's compatibility on all DeskMate 3 systems, refer to the DeskMate Development Guide,
Getting Started section. For more information about the user interface changes refer to the
DeskMate Style Guide. For more information about the enhanced calls, see the appropriate
section in the DeskMate Technical Reference; the new calls are clearly marked as "1989
DeskMate 03.03.0~ ONLY". For information on the new utilities mentioned, refer to the
Deskhhate Development Guide, Tools and Utilities section.

U s e r Interface

\

a

The title-line was rearranged to have the Help F1 prompter appear at the far left over the
function key on the keyboard. The time indicator was moved to the far right.

In dialog boxes and message boxes, the default push button - button which will be
pressed by the Enter key - appears with a dashed box around it to notify the user.

The "Sticky Menu" interface was added to the user interface. See the Development
Guide, Getting Started section for more information if your application was predicting
menu bar events.

Grayed menu items can be highlighted by the user, although they are not selectable
(enhancement added for new help).

The busy icon is now animated, it cycles through a pattern.

An About menu option standard was adopted for all applications. 0
The "arrow algorithm" used in dialog boxes was optimized to eliminate "dead spots",
components in a dialog box that could not be accessed via the arrow keys.

Environment

Applications written with the DeskMate 3.0 system used SETHEAP .EXE to set their
minimum and maximum load size requirements. DeskMate 3.3 applications should use
the new DESKHDR. EXE utility which also contains the program's split allocation, code
shed size, and version number. The 3.3 executive will use the information stored in the
new header when loading a program and when deciding how much code to shed when
more space is needed to load an accessory. The 3.0 executive will ignore the extra
information.

Additional accessories can now be accessed through the More option on the F10 Menu.

Context-sensitive help is now available in all pop-ups, dialog boxes, message boxes, and
accessories, and on menu items.

The Form Manager which was part of the Core Services Resource, DMCSR.RES, was
split out as a resource, DMFORM.RES. The CSR on a DeskMate 3.3 system will
ai ttnmatimllv Inad tho resource on a form open call for a 3.0 application.

.
The General User Functions Resource was split into two resources, DMGUF . R89 and
PRGUF .RES.

The Core Services Resource, CSR, only saves the first six (6) colors in the configuration
file. Colors 7 through 16 are now considered to be application specific. The application
must decide whether to save the colors with the data file or in its own configuration file.

The dm-file-search function honors diskette label files created with DMLABEL . PDM, a
DeskMate utility.

The dm-file-search function no longer prompts the user to search the entire system
before doing so.

The printer drivers were enhanced to support new line style widths, the patterns were
changed to match the video drivers, the maximum number of characters printed on a line
was increased, and several printing problems were fixed. For a complete list of changes,
see the DeskMate Development Guide, Getting Started section.

A set of new video drivers was added, allowing applications to "video swap" into a 40
column screen resolution. These drivers require a DeskMate 3.3 system.

The Runtime executive now supports parameter passing to the runtime application and
the execution of the runtime module from a DeskMate 3.0 DeskTop. This feature is
important to applications which require the DeskMate 3.3 system to operate.

e

Application Data Files

In data files for the DeskMate 3.3 product have the same format as was used in the
previous DeskMate 3 versions. The Address Book data file lengthened the Title and
Address fietds. Refer to Appendix A, DeskMate 3 File Formats in the DeskMate
Development Guide for details.

e

&

Introduction

After reading About This Kit, reviewing the DeskMate Style Guide, and installing your DeskMate
3 product and development system you are ready to develop a DeskMate application. Before you
begin development, we should review the key information discussed so far and introduce some
new topics which you should find beneficial in the development of your application.

The Kit contains the 1) development files, 2) samples, and 3) tools and utilities need to
develop a DeskMate applications. The DeskMate Technical Reference defines every
function call available in the DeskMate libraries.

DeskMate applications are primarily written in C but may also be written in assembly
language. Programs may be written in any of the memory models but only the small and
medium memory models have DeskMate libraries. Refer to Memory Models and
Development Tools, in this section, for a detailed discussion of memory models, and
compiling, linking, and debugging of DeskMate applications.

The DeskMate Style Guide defines the DeskMate User Interface. DeskMate applications
use menus, dialog boxes, message boxes, and interface components to communicate
with the user. DeskMate applications support both a keyboard and mouse interface. Your
application should meet the DeskMate standards defined in this guide.

From the System Overview in About This Kit, you learned about DESK, the DeskMate
Executive, and the key DeskMate resource - Core Services Resource (Core or CSR),
and the other resources available in the DeskMate environment. Applications
communicate with these resources through the DeskMate libraries.

There are now two versions of DeskMate 3 in distribution, DeskMate 3.0 (includes 3.2)
and DeskMate 3.3. Your application should check the system version number, when it is
initially loaded, by calling dm-inquirejroduct to determine which version of the
environment the application is running on.

0

e
Now, let's introduce some new DeskMate programming topics.

DeskMate uses a world coordinate system to access the video. In the programming
examples and the function call descriptions in the DeskMate Technical Reference you
will often see the defines, CHAR XEXT and CHAR YEXT used. These defines allow the
programmer to reference points% the screen ascharacter locations. DeskMate also
allows the video to be accessed at a pixel or device level. See DeskMate Coordinate
Systems for a detailed discussion about world and device coordinates.

DeskMate applications are event-driven, they wait for the user to perform an action and
then act upon the action. The CSR provides an Event Interpreter or Manager which
translates the user's actions into events the application can process. Applications can
write their own event interpreters to capture events before and after the CSR's Event
Manager has handled them. For more information, see the Event Manager section of the
DeskMate Technical Reference.

DeskMate allows mini-applications, called accessories, to pop-up over the current
application. When there is not enough available memory to load the accessory, Desk will
try to make room for the accessory by getting rid of part of the application's code and
moving the rest. This process is referred to as code shedding. The following criteria is
used to determine if your application can be code shed to run an accessory. If your
application cannot be code shed then it MUST call dm-exec-dont-shed when initially
loaded to insure that it is not code shed to run an accessory. Your application should
also set the code shed size using the DeskMate utility DESKHDR. EXE.

a

1) An overlaid application cannot be code shed since it cannot be guaranteed
that it will be restored from the disk in the same configuration it was in before
the accessory was run.

2) An Application which uses event interpreters or intempt handlers cannot be
code shed because the interpreters and handlers are address dependent.
When the application is moved during the code shed, the handlers are moved
and may no longer function correctly.

Note: On a DeskMate 3.3 system the application may be able to code
shed if the handlers are placed in the IMPURE segment which is
not altered during a code shed. Refer to the detailed information
for DESKHDR. EXE in the Tools and Utilities section of this guide for
more information about splitting applications.

0

3) A medium or large model application which has too many fix-ups (more than
200), cannot code shed in a DeskMate 3.0 system but can on a 3.3 systems
which supports unlimited fix-ups.

Note: This deficiency in the 3.0 system can be overcome by naming the
code segments and limiting the number of code segments used to
a smaller number. Refer to your compiler documentation for more
information about overriding the default code segment name.

0

The executive and the resources often use the application's stack. The CSR and its
drivers require the application stack for busy icon and mouse processing. A packed
executable has a very small temporary stack while it is being loaded before the stack is
expanded. This stack can be overflowed during the loading of the application if the busy
icon or mouse processing consume more of the stack than is available. You should not
pack your DeskMate executable and should allow at least 2048 bytes of stack space for
the executive and DeskMate resources, and 4096 bytes if the Form Manager Resource
is used.

Compatibility and Programming Issues

Runtime Executive 0
The 3.3 runtime executive allows an application to be launched from a 3.0 DeskTop as a
runtime. This enhancement was added for applications which - the 3.3
environment to operate in but still want to be launched from 3.0 DeskMate products. An
application making use of the new 40 column video drivers would be an example of an
application requiring the 3.3 system.

To run from a 3.0 DeskTop your application can provide a small "compatibility"
application which checks the current system and then runs the application. The
compatibility check should also be performed within your application in case the user
executes the application from the DeskTop. If your application is large, you should
consider providing the compatibility application since it will take less time to load and
unload it rather than your application.

The function dm-compat, a DeskMate Library function, checks the version of desk
currently running and decides if the application

can run on the system.
cannot run because the user 'is task-switched.
needs to run from the new runtime.

The compatibility application calls dm-compat, sending it the name of your customized
runtime module, and checks the return code and handles it as follows:

m main ()
I

int product info;
char Runtimemame [] = VENDOR.EXE";

product - info = dm - compat(&RuntimeName[O]);
if ((product - info & DM - VERSION) == 0)
I

if ((product info & DM COMPAT FLAG) == 0) - - -
csr init();
disFlay "Cannot run while task-switched."
csr - end0 ;

} I* running on a 3.0 system *I
else

I

1

/ * running on a 3.3 system *I
dm - SetNextApp(to VENDOR.PDM 1;

exit (1 ;

} / * end of compatibility application *I

If the application is running on a DeskMate 3.0 system and is not in a task-switched context, then
dm-compat will call dm-SetNextApp to your application's 3.3 runtime. The compatibility
application will either cause the application to run on the current system or as a runtime or inform

i

The Help System

DeskMate 3.0 Operation

Help is provided through an accessory. Application help is therefore only available when
an accessory can be executed. The application always knows when the user requests
help. Applications can write their own event interpreters to capture the F1 key and
provide the user with the level of context-sensitive help they deem appropriate.

DeskMate 3.3 Operation

Context-sensitive help is now provided through an Intelligent Help Manager which
captures the context of the application and gives specific and general help, specific to the
application state. Help is now available in pop-ups, including accessories, and while the
menu bar is being accessed. Help may be given at any time, for instance while the user
is in a dialog box, and the application is not always aware of when the user requests
help. The application can register call-back functions which will be called prior to and
after help is given. Refer to the Help Manager section of the Technical Reference for
more information.

Compatibility issues

For applications written for the DeskMate 3.0 system, running on a 3.3 system:

In applications which are not providing any context-sensitive help (by trapping the F1
key), or are not providing help for all the new context possibilities, the user will get a
message stating that help is not available. The developer can decide if this is acceptable
or do one of following to ensure the user is always presented with help in any DeskMate
3 system.

‘a

0
1) Distribute a Help Compatible System consisting of:

a) An application help data file.
b) The help compatibility accessory, DMHELP 8 8 . ACC .
c) The DeskMate 3.3 Intelligent Help Manager, DMHELP.ACC and

DMHELPENG. RES.

Upgrade DeskMate 3.0 user’s DMHELP .ACC file with the new Intelligent Help
Manager, see the Distributing Your Application section in this manual for
more information. The new help accessory will chain to the compatibility
accessory and provide general application help from the help data file on the
upgraded 3.0 system and context-sensitive help on a DeskMate 3.3 system.

2) Handle the new areas of context-sensitive help by using an event interpreter
and trapping the F1 key. Refer to the Event Manager section of the Technical
Reference for details about writing an event interpreter.

The F10 Tandy Menu

The user can now run new accessories from the More option on the F10 menu or from .-.- *Bn-vmAfiA C-tman e,-finccnmr Tn m a n afionrrnrinc nn 3 1 1 nnclrhlatn ‘2 cvctnmc vmir

C

f

system to system depending on the capabilities of the DeskMate system. Your
application should not make any exceptions or assumptions when running accessories, it
should simply run the accessory the user requested. 0

Code Shedding when Running Accessories

DeskMate 3.0 Code Shed Operation

In this environment when an accessory does not fit, the executive code sheds 32K of the
application. Applications which can not have their code shed and replaced from disk
called dm-exec-dont-shed. See the discussion of code shedding in the Introduction of
this section for a discussion of code shed criteria.

DeskMate 3.3 Code Shed Operation

In this environment the amount of code shed space for an application is stored in the
application's header built by DESKHDR.EXE, the DeskMate utility. The executive looks at
this information to determine how much, if any, of the application to shed in order to load
the accessory. If the code shed size is less that 32K, applications should call
dm-exec-dont-shed to register that information with the DeskMate 3.0 executive.

Programming and Compatibility Issues

Your application may not function properly if the application cannot be code shed
and it does not inform the executive by either setting the code shed size using
DESKHDR . EXE and/or by calling dm-exec-dont-shed.

Your application will not function properly if does its own code shedding to make 0
room for an accessory for the following reasons.

1) The DeskMate 3.0 accessories were generally less than 32K, so most
accessories would run if that amount of memory was available. In the
3.3 system, most of the accessories use more than 32K. Freeing a
specific amount of memory will probably not cover all cases.

2) Accessories can load one or more resources when they run.
Depending on the function of the accessory, the resource may stay
loaded after the accessory exits. For instance, the Spell Checker
allows the user to turn on auto-proofing and exit the accessory. The
spell resource stays resident to handle the auto-proof function. Your
application will not be able to recover the memory it freed for the
accessory.

3) New accessories may be executed through the new More option, your
application cannot predict how these new accessories will operate or
how much memory they will require.

-

If there isn't enough room to load an accessory, the executive will warn the user.
It is better not to run an accessory, than to run an accessory and not recover
properly.

b

,

To run accessories on all DeskMate 3 systems, your application should do the
following:

1) Set the code shed size (0 up to code size) for your application using

2) If the code shed size is less than 32K, call dm-exec-dont-shed on a

3) For applications which use all available memory and cannot be code

a) shed data which can be regenerated after returning from the
accessory.

b) shrink the unused data size to free memory for the accessory.
Your application must handle not being able to expand out
the data if the memory is no longer available.

c) free resources which can be reloaded after returning from the
accessory. Your application must handle not being able to
reload the resources if the memory is no longer available.

a
DESKHDR. EXE.

DeskMate 3.0 system.

shed, consider doing one or more of the following:

"Sticky Menus" and Selectable Grayed Menu Items

Since the menu bar processing is done within the DeskMate environment, this
enhancement is transparent to the application. Applications which use their own event
interpreters and are predicting the state of the menu bar based on the mouse or arrow
events are affected by this change.

In the DeskMate 3.0 system, a single mouse click did not affect the state of a menu bar.
In the 3.3 system, a single mouse click can cause a menu to drop or will change the
selection of a menu item.

In the 3.0 system, the up and down arrows skipped over grayed menu items. In the 3.3
system, the up and down arrows do not skip grayed menu items.

To be compatible on all DeskMate 3 systems, applications which predict user events
must handle the differences in the menu bar user interface in each system. To aid the
developer, the new mb-get-status call was added to get menu bar status information.

0

Animated Busy Icon

The Tandy busy icon is now animated. The icon processing can cause problems for
applications which are accessing video memory directly and are making timing
assumptions about the busy icon. If your application meets this criteria, make sure your
application disables the busy icon while it is accessing video memory.

L

Form Manager and GUF Resource

Loading of the Resources for 3.0 Applications 0
The DMFORM.RES is automatically loaded on the first form-open call. Both GUF
resources, DMGUF . R89 and PRGUE' .RES are loaded with the guf-bind-init call.

If the resource does not fit in available memory or the resource file could not be
found, the form-open and guf-bind-init calls will return an error. You should
ensure your application is checking the return code from both call and handles
the conditions properly.

If your application uses all available memory, the form-open call should be
made BEFORE all of memory is allocated.

Loading of the Resources for 3.3 Applications

The new binding call for the Form Manager resource, csr-form-bind-lnit will return
an informative error DM - EXISTS if the application is running on a 3.0 system.

Both GUF resources, DMGUF . R8 9 and PRGUF . RES are loaded with the guf-bind-lnit
call. To load only the PRGUF . RES resource, call prguf-bind-init.

Video Drivers

Driver Names

The DeskMate 3.0 video drivers used the D m prefix, the 3.3 drivers use the DMVS
prefix. The video drivers must match the version of the CSR being used, mixing of
systems is not allowed. Applications using the CfgAet-vid-driver call to determine what
video driver is loaded are affected by this change and should handle the differences in
the systems.

Video Detection

The VGA video driver, DMVDVGA.RES, incorrectly returned VID EGA in the
VID DEVICE. card element when the vid-inquire-device call was made. In order to
determine i f the video was in fact VGA, the calling program compared the
VID DEVICE.& yext element to 480. The VGA video driver, DMVSVGA.RES,
corr&ly returns ?ID VGA from the vid-inquire-device call. If your application makes
use of the vid-inquire-device call, you should ensure you handle the differences
appropriately.

Palettes

The DMVSVGA driver uses different palettes than those used by the DMVDVGA driver. If
your application accesses the palette information directly, then your application will
exhibit different default color settings in the 3.0 and 3.3 environments.

0

Printer Drivers

0 Line Styles

The line widths, LINEWIDTH1 and LINEWIDTH2 are now supported for the dotted,
dashed, and dotdash line styles. These widths were only supported for LINEWIDTH1
which exhibited printing problems when a line crossed a print band.

The line style DENSE-DASHED is now supported by the printer drivers.

The thickness of the wider line widths was changed to match the world coordinate width
used by the video drivers.

LINEWIDTH1 1 pixel wide
LINEWIDTH2 "best look", normally 2 pixels wide
LINE-WIDTH3 50 world coordinates wide
LINEWIDTH4 75 world coordinates wide
LINEWIDTH5 100 world coordinates wide

Print regions

The 132 character maximum line has been removed and now as many characters as will
fit into the width of the print band will be printed. The width of the print band for printers
with a wide carriage is 13200 world coordinates. This translates to the following number
of characters depending on the current character per inch setting:

10 CPI 132 characters
12 CPI 158 characters
condensed 220 characters

The dimensions of the printable region for the 3.0 printer drivers was sometimes less
than 8 x 11 1/2 inches. The 3.3 printer drivers now print exactly to 8 x 11 1/2 inches. This
apply to IBM-compatible graphics printers. The Tandy 21 OOP with micro line-feed control
prints a page 11 3/8 inches instead of 11 1/2. Other non-Tandy printers exhibit the same
incompatibility.

The quarter-inch on the left and right side of the paper is the default "unprintable region"
for printers. The laser printer has its own specific unprintable region.

0

Landscape printing

The DeskMate 3.0 drivers did not do a form feed at the end of a landscape printed page,
the new drivers do.

The DeskMate Checklist

Programs that will be sold by Radio Shack as DeskMate applications must meet these
requirements:

1. The program must be implemented using the DeskMate Development System and use
the DeskMate environment.

2.. The program must be installable using the DeskTop's F7 Menu, Install option. Refer to
the Installation and Upgrade Procedures section which follows this Checklist for more
informat ion.

0

3. The program must support the DeskMate 3.2 and use the DeskMate 3.3 help system.

4. The program should run all accessories (including "More...") and have the F10 menu
button on its menu bar.

5. The program must permit task switching from the F10 menu.

6. If the program uses a cut/copy/paste function, the program should support the DeskMate
clipboard as its cut/copy/paste buffer. If the program has graphics capabilities, it should
use the DeskMate Forms Manager to permit the data to be transferred in the DeskMate
graphics format.

7. The program must have the F9 notification menu button enabled.

8. If the program changes the user-defined colors, the program must restore the colors to
those specified by the user when the program terminates.

9. The program must not use DOS overtays. If new portions of code must be overlaid onto
an executing program, the program should use DeskMate Resources instead of overlays.

*-> 10. The program should use the DeskMate printer drivers. If a specific driver is not available,
the printer development kit should be used to write the necessary driver.

11. The product must be submitted to Radio Shack Computer Merchandising for interface
and style guide approval before the application can bear the trademarked DeskMate
User Interface logo.

0

12. The product package should display the trademarked DeskMate User Interface logo.

5

Installation and Upgrade Procedures

All DeskMate applications should have an installation program which is itself a DeskMate
application. The installation program should be easy to use and not alter the user's system
without the user being notified.

The installation program should not perform DOS commands which might alter the user system
(other than creating directories and copying files), such as setting the date and time, deleting
AUTOEXEC. BAT or CONFIG. SYS files, modifying AUTOEXEC. BAT or CONFIG. SYS files such that
the user cannot easily recover.

Whenever appropriate, the user should be given a choice to continue the process or cancel. For
instance, if the installation is about to delete all system files from a previous version of your
product, the program should inform the user giving the option to approve or cancel the process.

Every application must:

0

Have an INSTALL. EXE program which launches the application's INSTALL. PDM file
from a DeskMate 3.3 runtime. This program is used to install stand-alone versions of a
product. Use the INSTLBLD . PDM program to build your customized INSTALL. EXE
program. This file must be on the same diskette as the application's customized version
of RUNTIME. EXE.

Have an INSTALL. PDM application which copies files to the user's hard disk using the
following guidelines:

Create a directory for the user in which the files are installed. Present the user
with a default pathname which can be modified.

When installing on a DeskMate product, do not copy the DeskMate system files
unless an upgrade has been recommended or your product requires the version
of your runtime. The installation program should determine the DeskMate version
by the method outlined in the Determing the DeskMate Product Version section
which follows.

To install as stand-alone system copy the DeskMate system files along with your
application's files to the directory.

If your product uses the DeskMate Help system, copy the application help file to
the directory along with the application.

Neither the INSTALL. PDM nor INSTALL. EXE files should be copied to the hard
disk.

For 40 column applications, the 1NSTALL.PDM must also be a 40 column
application.

Do not install the DeskMate system files in a directory which contains a .
DeskMate product or another vendor's runtime, unless Tandy has recommended
you upgrade a system due to an incompatibility or to fix a known problem. A

0

. a , _ . I _ - - - A - n --,... ^ I^ ̂-I..

."
the version number of a file before upgrading the user to ensure the user's
product is not mistakenly downgraded.

Provide a DESKTOPD .CFG configuration file which is used by the Desktop install function.
This file should be copied along with the other application files during the installation.

e
Create this file using the DeskTop Menu (F7) Createauto option.

DESKTOPD .CFG is used by the AUTOCONFIG application box on the DeskTop.
When the user changes directories to your directory, the box will change to show
your application and list of data files.

Have a diskette label file, LABEL.LBL, created with DMLABEL.PDM which contains
diskette information used in file searching and for diskette prompts. The file also
contains instruction flags for each file which tell the installation program how to copy the
file. The diskettes must also have unique volume id's used by your customized
INSTALL. EXE and the file search function to prompt for diskettes. The diskette label file
should not be copied to the hard disk.

To provide help during the installation process, an 1NSTALL.HLP help file can be
supplied with the product. This file must reside with INSTALL. PDM and should not be
copied to the hard disk. If you choose not to provide help during the installation process
then this file is not needed.

The user documentation for installation on a DeskMate DeskTop should give the
following directions:

1) The user should be told to insert the diskette (use the name from the label 0
program) which contains INSTALL. PDM into any floppy drive.

application on the DeskTop.
2) Direct the user to use the Desktop Menu (F7) Install option to install your

3) The user should then follow the prompts given by your installation program.

To reinstall or upgrade on a DeskMate 3.2 system, the user should be instructed to use
the Desktop Menu (F7) Delete option to remove the application's definition and then
follow the installation directions outlined above.

The user documentation for installation or upgrade of a stand-alone system should direct
the user to:

1) The user should be told to insert the diskette (use the name from the label
program) which contains INSTALL. EXE into any floppy drive.

2) Direct the user to change to that drive.

3) The user should then run INSTALL. EXE to do the installation.

If your application allows the user to make backups of the product diskettes, then the
-n tha nmliimn irl'c prn . * . ., ----*-*-.* . _ _ _ _ _ _ _ I I _ .__

i

Determining DeskMate Product Versions

Installation launched from the DeskTop

The installation program, INSTALL.PDM, can detect if it was invoked from the DeskTop through
the F7 Install option by calling env-open with the following ENVDATA structure.

0

ENVDATA your - env =

' "USER. CFG" ,
"DMCONFIG" I
"ENV NO CREATE",
"USER" ,-
(char far *) 0,
0,

I

1;

If env-open does not return DM - ERROR, then install was invoked from the DeskTop.

If invoked from the Deskto , do the !allowing to determine the DeskMate version:
ret code = 8 n inquire product () ;
i f -('(ret code-& DM VERSION) != 0)

useT has DeskPIate 3.3
else

user has DeskMate 3.2 or less

Before copying the necessary files (based on the DeskMate version) to a directory you must
make sure the DeskMate product is not in that directory. If none of these files are found, then
DeskMate is not in the directory.

1) Ensure DESK. EXE is not present.

2) If it is not present, then check for a Tandy ROM machine in which the file is in ROM.
Check that at least three of the following files are not in the directory, since it is possible
that one of these applications may be in ROM:

0

ADDRESS. PDM
CALENDAR. PDM
FORMSET.PDM
FILER. PDM
DRAW. PDM
TEXT. PDM

If your runtime executive and application files are present, you can consider this installation to be
an upgrade and copy the files.

If your executive and application files are not present, see if any DeskMate 3.0 runtime resource,
.RRS extension, or your runtime files are present. If so, there is another runtime application in that
directory and you should not install in this directory.

Installation launched from the 1NSTALL.EXE

If 1NSTALL.EXE invoked INSTALL.PDM, you have to search the system to determine if
DeskMate is present.

@
ret code = dm file search("DESK.EXE", pPathbuffer, 0) ;
if Tret code E= 1)-

else
The-file was found and the path is in pPathbuffer

The file was not found, so call dm file search for the
DeskMate application files listed ZboveT

If none of these files are found, the user does not have the DeskMate product.

i o w to get the file version

As long as your application, accessory, and resource files use the DESKHDR. EXE utility, you can
determine the version of your files in the manner described below. Do the following to determine
the version of the file:

1) Open the file, refer to this FileHeader structure for variable offsets.
- s t r u c t F i l eHeade r -

(i n t Ma i c B y t e s [121;
i n t ReTocSeek;
i n t Ver s i onNum;
c h a r DM89Key [41;

I ;

0 2) The element RelocSeek must be greater than 25H.

3) The element DM8 9Key must contain the fpur bytes "DM89".

If items 2 and 3 are meet, then the DeskMate file is version 3.3 or greater. This method can
be used by your 1NSTALL.PDM for upgrading only files with prior versions. The element
VersionNum contains the DeskMate 3.3 (or greater) version number. The format of this
element is file dependent, for DeskMate resource files, '.RES, the version number is binary.
DeskMate application and accessory files use ASCII version numbers.

.

i

>

Runtime Distribution Guidelines

Only distribute files listed in Exhibit A of the DeskMate Distrbution License. Files marked for non-
distribution should not be distributed.

Do not distribute mixed versions of the DeskMate system files. For instance, do not distribute the
3.2 versions of any of the accessories with the 3.3 resources or vice versa.

Files which MUST be distributed with your product:

e

RUNTIME.EXE Executive - Distribute your customized version

INSTALL.TEM Runtime Installation Launcher - Distribute your customized
INSTALL.EXE version. You must wriie the INSTALL.PDM program
which is launched by this program.

DeskMate application which installs your application onto a hard disk. INSTALL. PDM

DMSETUP.ACC Setup Accessory
DMSETUP.HLP Setup Accessory Help File

DMCSR.R89 Core Services Resource

PRGUF. RES

DMMDJOYAES Tandy 1000 Joystick Driver
DMMDP.RES Micro-Channel Serial Mouse Driver

Power & Run General User Functions Resource

0 DMMDSERLRES Serial Mouse Driver

DMVl D. EXE
DMVID.DOC Video force utility documentation.

DeskMate video force utility.

Distribute the video driver resolution set which is required by your application. If your application
is a standard 80 column application, distribute ONLY these drivers:

DMVS1000.RES
DMVSCGARES
DMVSEGA.RES
DMVSHERC.RES
DMVSVGA.RES
DMVSTC16.RES
DMVSMCGA.RES

Tandy 1000 (TGA), 4 color video driver
CGA, 2 color video driver
EGA, 16 color video driver
Hercules, 2 color video driver
VGA, 16 color video driver
Tandy TUSL (ETGA), 16 color video driver
MCGA, 2 color video driver

If your application is a 40 column application, distribute ONLY these drivers:

40 column, low resolution video driver
40 column, vga video driver
40 column, Tandy 1 OOOflUSL video driver
40 column, Hercules video driver
40 column, EGA video driver
40 column, Monochrome EGA video driver

DMVSLRES.RES
DMVST256.RES
DMVSTC40.RES
DMVSH.RES
DMVSEBES
DMVSM .RES

1

<

Files which must be distributed ONLY if your applications uses the specific function or resource: s
DMPGSET.ACC DeskMate Page Setup Accessory
DMPGSET.HLP

DMHELP.ACC Help Accessory
DMHELP88.ACC
DMHLPENGRES DeskMate Intelligent Help Resource

DMG U F. R89

DMDB.R89
DBBUILD.RES Database File Build Resource
DBREADAES
DBUPDATERES Database File Update Resource

DMFORM.RES Form Manager Resource

DMTH ES. R ES Thesaurus resource (see local dealer).

DMPDASCI.RES Daisy-wheel, or other non-supported printer, printer driver
DMPDIBMM.RES IBM-compatible graphics printer driver
DMPD1 .RES Tandy DMP 105 printer driver (Tandy mode)
DM PD2. RES Tandy DMP 200,420, or 430 printer driver (Tandy mode)
DMPDLASR.RES HP Laserjet Plus or Laserjetcompatible printer driver

PLAY.PDM Play application, launches tutorial or demo
DMPLAY.RES Play resource
DM U NPACK. R ES Tutorial Decompression Resource
DEMO.PDM Customized Runtime Demo Launcher
TUTKBDAES Keyboard Layout Resource

DeskMate Page Setup Accessory Help File

DeskMate 3.0 Compatible Help Accessory

General User Functions Resource

Database Control Resource, is required by the DeskMate Help System

Database File Read Resource, is required by DeskMate Help System

@

-
I - m Tandy Electronics r c 1 A DIVISION OF TANDY CORPORATION

RESEARCH AND DEVELOPMENT
1300 Two Tandy Center
Fort Worth, TX 76102
Telephone (817) 390-2181
Fax (817) 878-6575

April 20, 1990
0-

Dear DeskMate Developer,

Tandy is pleased to let you know that the development of the DeskMate 03.04.00 product is well
underway. LIM and shadow ram support for DeskMate applications and resources are among
this year's product enhancements, both of which will be provided in the DeskMate retail and
runtime products.

System requirements for using DeskMate in LIM are:

Expanded memory with an EMM driver (TEMM.EXE, QEMM.EXE, etc.).

Hardware expanded memory such as Rampage or AboveBoard.
OR - --

Using DeskMate in Shadow RAM requires an XMS driver.

Tandy is providing this feature in the retail and runtime products to compliment the memory
savings available on our DeskMate ROM machines. With the basic DeskMate environment in
LIM, an additional 90K is available for your application. The basic environment includes
DESK.EXE, DMCSR.R89, DMGUF.R89, and PRGUF.RES. With the environment in Shadow
RAM as well as LIM, an additional 89K of system memory is available - total 179K. The amount
of memory required by the XMS and/or EMM driver used is not included in this calculation and
will reduce the total amount of memory available.

To ensure your DeskMate applications run successfully in this new configuration, we are making
Beta versions of the product available for your testing needs. To receive your copy, simply
complete the enclosed Order Form and return it to Tandy as soon as possible.

We also encourage developers to take advantage of the DeskMate LIM support in their own
DeskMate applications and resources. Coding changes to your application or resource may not
be required if your program follows these general guidelines.

0

o The program does not use overlays.
o The program can be split between its pure segments, codeldata which does

not change, and impure segments, code/data which does change.
o The code segment(s) is 64K or smaller and does not contain interrupt routines

or DeskMate event handlers. The code segment must also be at the
beginning of the program.

If you are interested in supporting LIM in your DeskMate program, simply check the box
labeled "LIM Support Technical Information" on the Order Form.

Thank you for your support of the DeskMate environment and development. We wish you
continued success in your DeskMate development efforts.

Sincerely,

OAJ* B 44 dA

e

c 3) Wt I f\ 3
0 3.5 (/wr ioYL . 7.0s

diA , 6 J - D(j;-IJ 0

L h P 4 -r,,lk;.t iJ

I 1.
___ bibLC/ a n d e __--

- 4 - ----s -__.- -.. _ - - - r _ - - - - _

I

- r d Tandy Electronics
I c w A OlVlSlON OF TANOY CORPORATION

RESEARCH AND DEVELOPMENT
1300 Two Tandy Center
Fort Worth, TX 76102
Telephone (817) 390-2181
Fax (817) 8788575 fl.. c 1 b

April 19, 1990

Dear Software Developer,

This is your opportunity to join the growing number of software developers that are helping create
an industry-standard user interface for MS-DOS software. This interface which is part of the
DeskMate Development System, can help you create friendly, easy-to-use software.

Tandy is offering a two-day technical seminar, with a wide range of both introductory and
advanced topics, to expand your knowledge of DeskMate and the DeskMate Development
System. Come and find out just how easy itis to develop-DeskMate-app!ications.

Some of the companies currently using the DeskMate Development System include Lotus,
Symantec, Logitech, and The Software Toolworks.

You should make plans to attend this seminar if you are a software developer:
o currently developing DeskMate applications
o interested in developing new applications using the DeskMate User Interface
o interested in simply learning more about the DeskMate Interface

See the attached information and registration form to sign up!

Hopejo see you in Fart Worth, 0
<W*L Terry Taylor

DeskMate Support Services

Attachment A: PC-LINK

Follow the steps outlined below to make u f the on-line technical

1) Follow the steps outlined in you -Link Connect Guide,

@ support service.

enclosed in your DeskMate 3 box familiarize yourself and
register with the servi omer Service,
informing them you are
up the approval process

2) Call the DeskMate Suppo at 817-390-3664 to
notify us that you are message with your
name, company name, and . We will contact
PC-Link to give you acc

3) Once you are cleared, use the "deskhq" keyword to get access to
the DeskMate Center. Please register in the "Vendor Directory"
area in Information Exchange so others can identify you by
screen name.
0

4) Read the welcome message and the News from Tandy to familiarize

5) Send confidential problems through E-Mail to TCTerryT or

6) Post general problems in the Q&A sections.

7) Software updates are made through the Software Exchange and

8) Important messages will be broadcast by E-Mail to insure YOU

yourself with the system.

TCMikeH.

will be announced in News from Tandy.
0

receive them. The names appearing in the vendor directory will
be sent the mail, be sure to register.

-
m L T ~ Tandy Electronics RESEARCH AND DEVELOPMENT

1300 Two Tandy Center

Telephone Fort Worth, (817) TX 76102 390-2181
Fax (817) 878-6575

I C .I A DIVISION OF TANDY CORPORATION

October 23, 1989
a-

Dear DeskMate Developer,

Tandy provides on-line technical support, through PC-Link, for
software developers writing DeskMate applications. The copy of
DeskMate 3 which accompanied your development system includes a copy
of PC-Link, the program used to access the service. The DeskMate
Support Services group provides on-line support in the DeskUate Center
forum through E-Mail, a Software Library for software updates, and
message boards -for problem reporting. We encourage all DeskMate
developers to register and use this on-line service. Refer to
attachment A for details about accessing PC-Link.

problem reports.
FAX. Scheduled software and documentation updates and news of
importance will be made to you by regular mail. Please fill in and
return the enclosed registration form to ensure the correct address
information is used in our distribution list.

For software developers unable to use PC-Link, we recommend FAXing
Use the attached problem sheet to report problems by

a Fax Problem Reports to:
DeskMate Support Services
Attn: Problem Reports

Tandy also provides telephone support, for assistance call

817-390-2964

817-390-3664. Your call will be answered 24-hours a day by a
voice-mail system. Leave a message, stating your name, company name,
phone number, and the nature of your problem or question. Refer to
Attachment B, the Problem Report Guidelines for suggestions on what
information to include in your message. Your call will be returned
between 9 a.m. and 5 p.m. CST and will be handled within one business
day.

problems, use one or more of the methods described above.
forward to supporting you in the future in your DeskMate development
efforts.

For timely and effective responses to your technical questions and
We look

Sincerely,
DeskMate Support Services

Consultant Liaison Program (817) 390-2900
1400 One Tandy Center, Fort Worth, Texas 76102

Uadre /haeli
A Division of Tandy Corporation a

Service and Solutions ...

... that’s what the personal computer industry is all about. As a consultant or software developer,
you’re working daily to keep your clients “up and running,” and still keep your business profitable.

Radio Shack‘s Consultant Liaison Program will help do that in more ways than one.

Tana‘y Computers: The broadest line of PCs in America Radio Shack Computer Centers
carry the full line of Tandy computers from our #1 selling PC-compatibleTandy 1000 family
to our state-of-the-art Tandy 5000 MC.

We service what we sell: No more headaches from clients with “hardware” problems. Tandy
Service Plans provide either on-site or carry-in service, freeing you from the hardware/
service loop. Clients deal directly with Radio Shack factory trained representatives.

No “Information Overload”: The Radio Shack CLP believes in providing you important
information, like new product announcements, as quickly as possible. We’ll also keep you
up to speed with COM1: The Radio Shack Newsletter for Consultants. Published quarterly,
a copy of this valuable newsletter is enclosed.

Nationwide Distribution Network: Over 290 Computer Centers nationwide, and an additional
400 Radio Shack PLUS Computer Centers dedicated to serving small and medium sized
business, the home office and education.

- -- -_ . - - - . __. - _ _ .- -_ - _ - - - - - - - _ _ - _ - - - - - - _ _

0

Consultant Liaison Program members enjoy other benefits from the program including business
and technical support, use of Computer Center facilities for consultant-sponsored seminars and a
Finder’s Fee Agreement.

Providing the best service and solutions for our customers has made Radio Shack a leader in our
industry. Working together with industry specialists, like yourself, we make an unbeatable team.

Fill out and return the enclosed postage paid application. Or stop by a Radio Shack Computer
Center for more information. Let’s get started working together.

_ _ _ --- -- - _____ ~__- - - _. - -. - - ..- ____I _ _ ~ -

Yours truly,
.... . . *

7
RESEARCH AND DEVELOPMENT
1300 Two Tan@ Center
Fort Worth, TX 76102
Telephone (817) 390-2181
Fax (817) 8788575

rn V - 2 Tandy Electronics
g c q A DIVISION OF TANDY CORPORATION

DeskMate Developers
0-

To :

From : Rachel McKenzie

cc : Radio Shack, Customer Service

Subject : DeskMate 03.02.00 Addendum - Logitech Mouse Problem
Date : October 27, 1988 ..

It has come to our attention that a bug in the Logitech mouse
click.exe program causes the 03.02.00 versions of DeskMate and the
runtime to lock up after displaying the copyright message.
found a way to work around the problem for users, with non-ROM
machines, which require the program exist for their system to work.
Users with the Tandy 1000 TL and SL models will have to remove the
word "click" from their autoexec.bat file and may not use the command
if they intend to run DeskMate.

Tandy has

We recommend you include the following information in your
application documentation or contact your customer service group with
the information so they can pass it on to your customers.

from their autoexec.bat file. Those customers which require the click
program should use the following procedure to fix their copies of
DESK.EXE or RUNTIME.EXE :

We recommend customers (and developer's) remove the word "click" 0

Use the patch.com MS-DOS command to implement the following
program changes to your DeskMate 03.02.00 executive.

PATCH DESK.EXE,2B64,Cl,C6 (retail version)
PATCH DESK.EXE,2B7B,Cl,C6

or

PATCH RUNTIME.EXE,2BB8,Cl,C6 (runtime version)
PATCH RUNTIME.EXE,2BCF,Cl,C6

Sincerely,

c;3ad.d flc+
Rachel McKenzie
Senior Project Leader
DeskMate Vendor Support

http://patch.com

Attachment B: Problem Report Guidelines

1) State the nature of the report
I have a question about DeskMate . . .
I am having a problem with my DeskMate application ...
I need more information about the function call ...
I have a suggestion to make...
I want to report a bug in DeskMate ...
I would like to register a complaint ...

0

2) If you need more information on a DeskMate function or function
call, state the name of the function or the function you
require and what information you desire.

3) If you think the problem you are encountering might be a bug in
the DeskMate system, note the following:

a) Versiodtype of DeskMate environment exhibiting the problem,
for instance DeskMate 03.00.00 or Runtime 03.03.01.

b) Date and model of DeskMate library linked with your
application, for instance DM.LIB dated 6/15/89.

c) Whether or not you can duplicate the bug with a Tandy
DeskMate application. If only your application exhibits the
problem, note your application's memory requirements (code
and data), memory model used, and whether or not its
overlayed or packed.

d) Function call causing the bug and parameters passed to the
call along with a duplication sequence.

e) Machine configurations on which bug occurs (DOS version,
memory, video, any TSRs used, etc.)

0

4) Fill out the attached problem report, having your problem in
writing will help when recording your message.

DeskMate Support Services
Problem Report

Date Submitted:

Company Name: Number:! 1

Contact Name: FAX:! 1

Address:

Product/Project Name:

Circle One: Question / Suggestion / Bug Report / Complaint / Other

0

a

Dear DeskMate Developer,

This kit contains all of the necessary information to update your DeskMate Development System
version 03.03.00 to version 03.05.00.

The items contained in this update kit are explained below.

1. DeskMate Development Guide Replacement Pages. These pages replace existing pages in
your Development Guide. There is a completely new section About This Kit which explains in
detail all of the new features of the DeskMate Development Kit version 03.05.00.

2. DeskMate Technical Reference Replacement Pages. There are two parts to this section.
The first part, labeled 03.05 Replacement Pages, replace existing pages in your Technical
RekiSiiCS. The secorrd pait, labeled 03.05 Updates, is an update Ifst. The Update lists minor
changes to the Technical Reference. Replacement pages were not printed due to the number of
pages required and the significance of the change .

3. Diskettes. All of the 03.05.00 Development Files are included. Also there are new
SAMPLE.EXE and TOOLS.EXE to reflect the new sample programs and the updated
development tools.

We have tried to make this Development Update Kit easy to understand and easy for you to
assemble. As always we want to make your DeskMate Development effort as easy as possible.

Thank you for your continued support,

DeskMate Support Services

1

a-

DeskMate Development System
03.05.00 Updates

il)i,

DeskMate Development Guide
Replacement Pages

~~

Changes to the DeskMate 3.03 Development Guide

About This Kit
This entire section is replaced by a new About This Kit.

DeskMate Development Guide
Title Page is replaced by new title page

Existing Pages 1-9 thru 1-10 are replaced by new Pages 1-9 thru 1-10.

Existing Pages 2-57 thru 2-64 are replaced by new Pages 2-57 thru 2-64.4.

Existing Pages 3-17 thru 3-20 are replaced by new Pages 3-17 thru 3-20.

Existing Pages 3-25 thru 3-26 are replaced by new Pages 3-25 thru 3-26.

Existing Page 4-1 is replaced by new Page 4-1.

Existing Pages 4-3 thru 4-9 are replaced by new Pages 4-3 thru 4-9.

Existing Pages 6-3 thru 6-4 are replaced by new Pages 6-3 thru 6-4.

Existing Pages 6-43 thru 6-44 are replaced by new Pages 6-43 thru 6-44.

Existing Pages 6-65 thru 6-68 are replaced by new Pages 6-65 thru 6-68.

Existing Pages 6-81 thru 6-82 are replaced by new Pages 6-81 thru 6-82.

Existing Pages 6-105 thru 6-106 are replaced by new Pages 6-105 thru 6-106.

e

2 w

e

3)'

DeskMate Development System
03.05.00

About This Kit

s

Contents
a

Chapter 1 - Introduction 1

Contents of the Kit ..l

Using the Kit ...5

Chapter 2 System - Overview
Technical Overview ..6

6

DeskMate 3.05 Modifications and Enhancements 10
DeskMate 3.03 Modifications and Enhancements 10

Chapter 3 - Getting Started 12

Install DeskMate ..12

Identify your Development System 12

Chapter 4 - Registration and Technical Support
PC-Link Information ...l 5

Problem Report Guidelines 16

14 4D
...................................

Chapter 5 - The DeskMate Runtime License 17

Appendices 18

’ A - Duplication License
B - Registration Form

C - Problem Report

e

DeskMate Development System
03.05.00

DeskMate Development Guide

e

Chapter 1 @ Introduction

The DeskMate Development System (The Kit) allows software developers to write applications
which run in a DeskMate environment. The DeskMate environment is provided by the DeskMate
3 product and runtime. This kit contains the documentation and software needed to develop a
DeskMate application as well as a copy of the latest DeskMate 3 products. The DeskMate 3
products are included so programmers can acquaint themselves with the user interface, and
execute and test their applications. The DeskMate 3.2 product should be used for compatibility
testing. The DeskMate 3.03 product can be delivered up request. The runtime software is
licensed and obtained separately, see Chapter 4 of this manual for more information.

The documentation in this kit is intended for experienced programmers who may or may not be
experienced with DeskMate. Developing an application requires a proficiency in either the C
programming language or assembly language on IBM PC-compatible machines. C and
assembly language are the only languages Tandy currently supports for DeskMate development.

Contents of the Kit

The Kit includes two volumes of documentation. The first, DeskMate Development System
03.05.00 Development Guide contains three sections: About This Kit, DeskMate Style Guide, and
the DeskMate Development Guide. The DeskMate Technical Reference is the reference for all
function calls available in the environment and includes the Tandy Sound Toolkit I documentation
and all of the new 3.05 information.

In addition to the documentation, the Kit includes three 3 1!2 diskettes which contain the
development files, samples, tools, and utilities used in writing DeskMate applications and the
Tandy Sound Toolkit I.

3 112" Package:

Disk #1 DeskMate Development System 03.05.00
Development Diskette

AUTOL0AD.H Autoload Resource header file
CSR6ASE.H Header file for the Core Services Resource
CS RC FG.H CSR Configuration header file
CSRCMPS.H CSR Components header file
CSRF0RM.H CSR Form Manager header file
CSRKEYS.H CSR Keyboard header file
CSRPRT.H CSR Print header file
CSRV1D.H CSR Video header file
DM DECL.H
DMDB.H Database Resource header file
DMEXEC.H Desk Executive header file
DMGUF.H
DMTHES.H Thesaurus header file
SPELLH Spell Checker header file
VEND0R.H Vendor header file

9

DeskMate Function Prototype header file

General User Functions Resources header file

a CSRCFG.INC CSR' Configuration header file
CSRCMPS.INC CSR Components header file
CSRFORM.INC
CS RK EY S. I NC
CSRPRT.INC CSR Print header file
CSRVID.INC CSR Video header file
DMDBJNC Database Resource header file
DMEXEC. INC
DMGU F.INC
DMTHES. INC Thesaurus header file
SPELL.INC Spell Checker header file
THES.INC Thesaurus Resource header file

DM.LIB SMALL Module DeskMate Library
DMMED.LIB MEDIUM Module DeskMate Library

CSR Form Manager header file
CSR Keyboard header file

Desk Executive header file
General User Functions Resources header file

Note: Large model programs are not supported through the

Map file for DESK.EXE used in DeskMate 3 product shipped

DeskMate library.

DESK.MAP

Disk #2 DeskMate Development System 03.05.00
Samples, Tools, and Utilities

SAMPLES.EXE
TOOLS.EXE

Sample programs in a packed, self-extracting file
Tool and utility programs in a packed, self-extracting file

Disk #3 DeskMate Development System 03.05.00
Tandy Sound Toolkit I e

DEMO1 .EXE
DEMO1 .C
DEMO1 .H

DEM02.EXE

DEM02.C
DEM02.H

DEM03.EXE

DEM03.C
DEM03.H

DGETBUF.C

DSETUP.C

DREC0RD.C

DPLAY.C

Executable demo #1 which records a sound and plays it back.
Main source file for demo #l .
Main include declaration file for demo #l.

Executable demo #2 which records a sound, compresses it and
stores it to disk.

Main source file for demo #2.
Main include declaration file for demo #2.

Executable demo #3 which reads a compressed sound from a
file, decompresses it and plays it.

Main source file for demo #3.
Main include declaration file for demo #3.

Allocates buffers for the SOUND and SNDHDR structures.

Initializes the buffers for the sound library.

Records a sound into allocated memory.

Plays back a sound from memory.
.. .

e DL0AD.C

S0UND.H

DS ETU P.H

DGET6UF.H

DREC0RD.H

DPLAY.H

DSAVE.H

DL0AD.H

DEMO Make file.

SOUND.LIB Tandy Digital Sound Library.

BUILD . BAT

The disk also contains a DeskMate sub-directory which contains a demonstration program
utilizing the DeskMate interface.

DMDEMO.PDM

Decompresses a sound and loads it into the sound buffers.

Main include file for use with the Tandy Digital Sound Library.

Include file for initialization.

Include file for buffer allocation.

Include file for the record function.

Include file for the playback function.

Include file for the compress and save function.

Include file for the decompression and load function.

Batch file for compiling all 3 demos if make is not available.

DeskMate executable which records a sound and plays it back,
compresses and stores a sound to disk, reads a compressed
sound from a file, decompresses it and plays it.

Main source file for DeskMate demo.

DeskMate allocation of buffers for the SOUND and SNDHDR
structures.

DeskMate initialization of the buffers for the sound library.

Records a sound into DeskMate allocated memory.

Plays back a sound from memory utilizing DeskMate.

Takes a sound saved in the DeskMate allocated buffers,
compresses it and writes it to a file.

Decompresses a DeskMate sound and loads it into the
DeskMate sound buffers.

Sets and resets the Int 33 vector for the joystick.

Make file for the DeskMate applications.

DMDEM0.C

DMGET6UF.C

DMSETUP.C

DMRECORD.~

DMPLAY.C

DMSAVEC

DML0AD.C

DMJOY.ASM

DMDEMO.MKE
a . . _ _ _ I - - - L - n - - t . h 4 = + , ,

c DEM0DLG.H Contains all of the defines and structures for the DeskMate
dialog boxes.

All other '.H files are the same as the ones used in the non-DeskMate demos.

DMSEGS.1 NC

DMDEMO.LNK

DMDEMO.MAP

SOUND.LIB Tandy Digital Sound Library.

Include file for DMJOY.ASM.

The link file which is called by the DeskMate make file.

The map file for the DMDEMO.PDM program.

@

Using the Kit

About This Kit, this manual, orients the programmer to the kit and how to use it. The System
Overview which follows, describes the DeskMate operating environment and introduces most of
the terminology used in DeskMate. It also highlights the changes made from the DeskMate 3.0
system through the current DeskMate 3.05 system. The Getting Started chapter discusses
required development tools and installing the software. Registration, technical support, and the
runtime license are discussed in Chapters 4 and 5. This manual should be read first since it
answers many of the general questions you might have about DeskMate and developing for the
environment.

The DeskMate Style Guide describes the DeskMate User Interface standards and guidelines that
your application should follow. Conforming to the DeskMate standard is important since
DeskMate users will expect your application to "look and feel" like the other DeskMate
applications they already use. You should read this manual before and during the application
design phase, especially while designing the application menus, dialog boxes, and screens.
Review the guide again when the application is complete to ensure it meets the DeskMate
standards.

The DeskMate Development Guide takes the programmer through the development life cycle of
an application from getting started to distributing the software, including the development of help
files, tutorials, and demos for the application. The manual includes an extensive set of
programming examples that can be used as templates for your application. Also included in the
guide is the documentation for the tools and utilities provided in the kit, including the help and
tutorial tools.

The DeskMate Technical Reference is divided by functional entities and includes a description of
every function call available to an application. The reference makes up the bulk of the
documentation in the kit. The reference is divided by resources and managers within a resource.
Refer to the Technical Overview which follows to identify a resource or manager.

The Development Diskettes contain the header files (* . H and * . INC) and libraries (DM. LIB
and DMMED-LIB) needed to build a DeskMate application. DeskMate does not support large
model programs through these libraries. Refer to the DeskMate Development Guide, Getting
Started section for a discussion of the implementation of large model programs under DeskMate.

The Samples and Tools Diskettes contain the sample programs and the tools and utilities
supplied with the kit. The documentation for using these tools is also included in the DeskMate
Development Guide.

The Tandy Sound Toolkit I diskette contains the header files, the Tandy Digital Sound Library (or
simply sound library), and sample code (DeskMate and MS-DOS programs) needed to add
sound to your application. The sound library includes a compression and decompression
algorithm which produces results identical to that used in DeskMate 3 Sound and Music
applications. For more information about the Sound Toolkit, see the Sound Library section of the
DeskMate Technical Reference. Demo programs, for MS-DOS and DeskMate, are included on
the Tandy Sound Toolkit I diskettes, for use as program templates.

e

@

Chapter 2

System Overview c.
DeskMate 3 was introduced in the fall of 1988. This version of DeskMate enabled developers to
write applications for the interface and environment. This software is referred to as DeskMate
3.0 (or simply 3.0) and was not compatible with previous versions of the DeskMate product.
DeskMate 3.0. DeskMate 3.03 was later released as an update to the 3.0 system. The following
is a list of previously released versions:

1000 SL DeskMate 03.00.00
1000 TL DeskMate 03.00.00
Retail DeskMate 03.00.00,03.02.00, 03.03.01
Runtime DeskMate 03.02.01,3.03.01
1000 SU2 DeskMate 03.03.00
1000 TU2 DeskMate 03.03.00
1000 RL DeskMate 03.04.00,03.04.01

The latest DeskMate 3 product is version 3.05 which is compatible with earlier DeskMate 3
versions. DeskMate 3.05 includes the following versions:

Retail DeskMate 03.05.00
Runtime DeskMate 03.05.00

Technical Overview

The DeskMate 3 environment consists of the executive and the resources that contain the
system functions. These resources provide the user interface, three levels of file input and
output including a database, and printing support for the application.

DESK. EXE, the executive, loads and unloads DeskMate programs - applications, accessories,
and resources, as well as non-DeskMate applications. The executive expects DeskMate
programs to contain specific information in the program header used when the program is loaded.
Refer to the DESKHDR.EXE documentation in the DeskMate Development Guide, Tools and
Utilities section for more information.

DeskMate applications (.PDM extension) are the controlling modules in the environment.

Accessories (.ACC extension) are mini-applications which can pop-up over an application.
Accessories are small programs that perform very specific tasks for the user and have
functionality in several applications.

DeskMate resources (.RES extension) are the work-horses of the environment. They provide the
common functionality required by most applications - user interface, file ilo, communications,
printing, etc.. These resources are terminate and stay-resident (TSR) programs which have a
focused scope of functionality. They may be shared by more than one program at a time.
Resources are also used to provide device-specific functionality determined at execution time,
such as, video and printer drivers.

All DeskMate programs must link with a DeskMate library to make use of functionality in the
n.~ n-bb'late lihrarips nM T.TR and DMMED . L : 5, contain

e

-.' -8 *L- ----..--A-

When a program requires functionality provided by a resource, it binds to the resource by calling
the executive and requesting the resource. The program binds to the resource once, before
calling any functions in the resource. The bind call requests the executive to 1) find and load the
resource and 2) inform the application of where the resource was loaded. When the executive
loads the resource it resolves the resource's service request vector (srqv) in the bindings - the far
address of the resource's entry point, and increments the resource's use count.. The vector is
used to make far calls from the application into the resource. The use count allows the executive
to determine how many programs are using the same resource. When the program no longer
requires the resource, it frees the resource. The executive decrements the resources' use count.
The resource is not unloaded until all programs using the resource have freed the resource (its
use count is zero) and the memory is needed to load another program.

The DeskMate 3.0 system used different file extensions to distinguish between the product
resources (RES) and the runtime resources (RRS). Which resource was loaded is determined by
the executive, DESK. EXE or customized RUNTIME. EXE, respectively.

The DeskMate 3.05 system uses the same file extension (RES) for both the product and the
runtime resources. DeskMate system resources which must be used by the 3.05 system use the
R89 extension to differentiate them from the 3.0 resources. The executive determines which
resource to load.

These file conventions only affect developers who write their own resources. Resources
developed for the 3.0 system have to be shipped with RES and RRS extensions for installation on
a product or DeskMate 3.2 runtime. Resources developed for the DeskMate 3.05 system use the
RES extension.

The executive, resources, and Setup, Page Setup, and Help accessories are distributed in the
DeskMate runtime. These files are referred to as the DeskMate system files. Chapter 5 of this
manual details how to obtain the runtime software.

The DeskMate executive and resources include:

8

DESK. EXE The Executive handles the system level tasks for the environment and
the applications.

DESK Managers include:
Clipboard Manager
Desk Executive

DMDBBLDAES

DMDBRD.RES

This Database Resource allows applications to create database files.

This Database Resource allows applications to open and read database
files.

This Database Resource allows applications to open, read, and update
database files.

DMDBUPDAES

DMCSR.R89 The Core Services Resource handles the user interface and "core"
functionality for applications. This resource is always used by a
DeskMate application.

CSR Managers include:

c
Communication Manager
Component Manager
Configuration Manager
Dialog Box Manager
Event Manager
Information Box Manager
Keyboard Manager
Menu bar Manager
Message Box Manager
Mouse Manager
Print Managers
Titleline Manager
Video Manager
Window Manager

DMDB.R89 This Database Resource provides database file access for applications
developed with the 3.2 development system on a later system.

The General User Functions Resource provides high- and low-level file
I/O functionality. See the Executive section for details on what
functionality each GUF resource provides.

DMGUF.R89

GUF Managers include: Q
Environment Manager
File I/O Manager

The Form Manager Resource provides vector graphics and stroke font
support for applications.

The pointing device drivers J (Tandy 1000 joystick), S (serial mouse), P
(Micro-Channel mouse)

The printer drivers ASCI (ASCII), IBMM (IBM-compatible graphics),
LASR (Laserjet-compatible), 1 (DMP 105), 2 (DMP 200, 420, 430), S
(24-pin)

The resident font definition files needed for the video and printer drivers
ASCI (ASCII), IBMM (IBM-compatible graphics), LASR (Laserjet-
compatible), 1 (DMP 105), 2 (DMP 200,420,430), S (24-pin)

The enhanced printer drivers ASCI (ASCII), IBMM (IBM-compatible
graphics), LASR (Laserjet-compatible), 1 (DMP 105), 2 (DMP 200, 420,
eo) , S (24-pin)

The 80 column video drivers CGA, 1000 (TGA), TC16 (ETGA), EGA,
VGA, MCGA, and HERC. The 40 column video drivers _ _ - . LRES, TC40,

DMFORM.RES

DMM D'.RES

DMPD'.RES

DMPD'.RFD

DMPE'.RES

DMVS'AES

DMVE*.RES The 80 column enhanced video drivers CGA, 1000 (TGA), TC16
(ETGA), EGA, VGA, MCGA, and HERC.

The Power and Run General User Functions Resource, provides a
subset of the GUF functionality. See the Executive section for details on
what functionality each GUF resource provides.

The DeskMate libraries contain functionality which is linked into the application. The Library
Manager lists all functions available in the libraries.

e
PRGU F.RES

a

DeskMate 3.05 Modifications and Enhancements

The DeskMate 3.05 system added the following modifications or enhancements to the user
interface and environment. For more information about how these changes affect your
application's compatibility on all DeskMate 3 systems, refer to the DeskMate Development Guide,
Getting Started section. For more information about the user interface changes refer to the
DeskMate Style Guide. For more information about the enhanced calls, see the appropriate
section in the DeskMate Technical Reference; the new calls are shown as "DeskMate 03.03 and
later" in the Special Notes section of each call.

Environment

ab

Font support has been provided to add new type faces through the use of the Form
Manager.

Communications support now includes COM3 and COM4.

Extended memory support is now provided that adheres to the LIM standard.

Additional printer support is available, including the Epson 24-pin color printer.

DeskMate 3.03 Modifications and Enhancements
e f

The DeskMate 3.03 system added the following modifications or enhancements to the user
interface and environment. For information on the new utilities mentioned, refer to the DeskMate
Development Guide, Tools and Utilities section.

User Interface
e

The title-line was rearranged to have the Help F1 prompter appear at the far left over the
function key on the keyboard. The time indicator was moved to the far right.

In dialog boxes and message boxes, the default push button - button which will be
pressed by the Enter key - appears with a dashed box around it to notify the user.

The "Sticky Menu" interface was added to the user interface. See the Development
Guide, Getting Started section for more information if your application was predicting
menu bar events.

Grayed menu items can be highlighted by the user, although they are not selectable
(enhancement added for new help).

The busy icon is now animated, it cycles through a pattern.

An About menu option standard was adopted for all applications.

The "arrow algorithm" used in dialog boxes was optimized to eliminate "dead spots",
components in a dialog box that could not be accessed via the arrow keys.

Environment

Applications written with the DeskMate 3.0 system used SETHEAP .E= to set their
minimum and maximum load size requirements. DeskMate 3.03 applications should use
the new DESKHDR.EXE utility which also contains the program's split allocation, code
shed size, and version number. The 3.03 executive will use the information stored in the
new header when loading a program and when deciding how much code to shed when
more space is needed to load an accessory. The 3.0 executive will ignore the extra
information.

Additional accessories can now be accessed through the More option on the F10 Menu.

Context-sensitive help is now available in all pop-ups, dialog boxes, message boxes, and
accessories, and on menu items.

The Form Manager which was part of the Core Services Resource, DMCSR.RES, was
split out as a resource, DMFOF.M.RES. The CSR on a DeskMate 3.03 system will
automatically load the resource on a form-open call for a 3.0 application.

The General User Functions Resource was split into two resources, DMGUF . R8 9 and

The Core Services Resource, CSR, only saves the first six (6) colors in the configuration
file. Colors 7 through 16 are now considered to be application specific. The application
must decide whether to save the colors with the data file or in its own configuration file.

The dm-file-search function honors diskette label files created with DMLABEL . PDM, a

.
PRGUF .RES.

Q) DeskMate utility.

The dm-file-search function no longer prompts the user to search the entire system
before doing so.

The printer drivers were enhanced to support new line style widths, the patterns were
changed to match the video drivers, the maximum number of characters printed on a line
was increased, and several printing problems were fixed. For a complete list of changes,
see the DeskMate Development Guide, Getting Started section.

A set of new video drivers was added, allowing applications to "video swap" into a 40
column screen resolution. These drivers require a DeskMate 3.03 system.

The Runtime executive now supports parameter passing to the runtime application and
the execution of the runtime module from a DeskMate 3.0 DeskTop. This feature is
important to applications which require the DeskMate 3.03 system to operate.

Application Data Files

Data files for the DeskMate 3.05 product have the same format as was used in previous
DeskMate 3 versions. The Address Book data file lengthened the Tile and Address fields
in DeskMate 3.03. Refer to Appendix A, DeskMate 3 File Formats in the DeskMate
Development Guide for details.

* Chapter 3
Getting Started

Install DeskMate

If you have not already done so, install the DeskMate product now. If you are not familiar with
DeskMate, now is a good time to try out the product. The documentation in this kit often
references the product when giving examples or explaining a concept.

Refer to the DeskMate Getting Started magazine for instructions on how to install and operate
the software. DeskMate 3 operates on standard PC-compatible computer using MS-DOS 2.1 1 or
later. The product requires a minimum of 384K of system memory to operate.

ldent if y your Develop men t System

DeskMate applications are primarily wriien in C but may also be written in assembly language.
The Kit does not contain the development tools necessary to write software, an editor, compiler,
assembler, linker, or debugger, only those required to write a DeskMate application. Tandy
recommends you use one of the following development systems for DeskMate development.

Compilers/Assemblers/Lin kers
Microsoft C 4.0, 5.0, or 5.1 with Microsoft MASM 5.0
Microsoft C 6.0
Microsoft Quick C
Turbo C and Assembler 2.0 at

Debuggers
Microsoft's SYMDEB from MASM 4.0
Microsoft's CodeView
Periscope
Turbo Debugger

The kit supports small and medium model programs through its DeskMate libraries. It is possible
to write a large model program by linking with the medium model library, DMMED-LIB, and
managing your data model correctly. The T u b C compiler requires modification to as startup
code before it can be used for DeskMate development. Refer to the DeskMate Development
Guide, Getting Started section for more information on both of these topics.

Install the DeskMate Development System

The Development Diskettes contain the header files and libraries needed to build an application.
You may want to put the C header files (+.H) in your INCLUDE directory and the libraries in your
LIB directory. If you are doing assembly language development, also place the header files
(*.INc) in the INCLUDE directory.

The Samples and Tools Diskettes contain two packed files, SAMPLES .E= and TOOLS. EXE.
Each file is self-extracting and contains the sub-directory structure information within the file. To
build the DeskMate samples and tools directories do the following:

@
>mkdir c:\desk\samples
>a:samples -d c:\desk\samples

>mkdir c:\desk\utility
>a:tools -d c:\desk\utility

The entire development system requires approximately 2 Meg of hard disk space for the
development files, samples, and tools.

e

\ 0 Chapter 4
Registration and Technical Support

Tandy provides on-line technical support, through PC-Link, for software developers writing
DeskMate applications. The copy of DeskMate 3 which accompanied the kit includes a copy of
PC-Link, the program used to access the service. The DeskMate Support Services group
provides on-line support in the DeskMate Center forum through E-Mail, a Software Library for
software updates, and message boards for problem reporting. We encourage all DeskMate
developers to register and use this on-line service. Refer to the PC-Link information which
follows for details about accessing PC-Link.

For software developers unable to use PC-Link, we recommend FAXing problem reports. Use
the enclosed problem sheet to report problems by FAX. Scheduled software and documentation
updates and news of importance will be made to you by regular mail. Please fill in and return the
registration form to ensure the correct address information is used in our distribution list.

Fax Problem Reports to:
DeskMate Support Services
Attn: Problem Reports
81 7-390-2964

Tandy also provides telephone support, for assistance call 817-390-3664. Your call will be
answered 24-hours a day by a voice-mail system. Refer to the Problem Report Guidelines which
follow for suggestions on what information to include in your message. Your call will be returned
between 9 a.m. and 5 p.m. CST and will be handled within one business day.

the methods described above. We look forward to supporting you in the future in your DeskMate
development efforts.

For timely and effective responses to your technical questions and problems, use one or more of e\

PC-Link Information

Follow the steps outlined below to make use of the on-line technical support service.
e

1) Follow the steps outlined in your PC-Link Connect Guide, enclosed in your DeskMate
3 box, to familiarize yourself and register with the service. Contact PC-Link's
Customer Service at 800-458-8532, informing them you are a DeskMate developer.
This will speed up the approval process if you experience any delays.

2) Call the DeskMate Support Services hotline at 817-390-3664 to notify us that you
are registered. Leave a message with your name, company name, and PC-Link
screen name. We will contact PC-Link to give you access to the DeskMate Center.

3) Once you are cleared, use the "deskhq" keyword to get access to the DeskMate
Center. Please register in the "Vendor Directory" area in Information Exchange so
others can identify you by screen name.

4) Read the welcome message and the News from Tandy to familiarize yourself with the
system.

5) Send confidential problems through E-Mail to TCTerryT or TCBobT.

6) Post general problems in the Q&A sections.

7) Software updates are made through the Software Exchange and will be announced in

Important information and announcements will be provided in the Information

News from Tandy.

Exchange section.
8) e

e Problem Report Guidelines

1) State the nature of the report
I have a question about DeskMate ...
I am having a problem with my DeskMate application ...
I need more information about the function call ...
I have a suggestion to make ...
I want to report a bug in DeskMate ...
I would like to register a complaint ...

of the function or the function you require and what information you desire.

system, note the following:

2) If you need more information on a DeskMate function or function call, state the name

3) If you think the problem you are encountering might be a bug in the DeskMate

a) Version/type of DeskMate environment exhibiting the problem, for instance

b) Date and model of DeskMate library linked with your application, for instance

c) Whether or not you can duplicate the bug with a Tandy DeskMate application.
If only your application exhibits the problem, note your application's memory
requirements (code and data), memory model used, and whether or not its
overlaid or packed.

duplication sequence.

any TSRs used, etc.)

recording your message.

DeskMate 03.00.00 or Runtime 03.05.00.

DM.LIB dated 6/15/89.

d) Function call causing the bug and parameters passed to the call along with a 4@
e) Machine configurations on which bug occurs (DOS version, memory, video,

4) Fill out the attached problem report, having your problem in writing will help when

Chapter 5

The DeskMate Development System allows software developers to write DeskMate applications.
These applications will run from the DeskMate DeskTop. To run these applications in a stand-
alone environment (for customers who do not own the DeskMate 3 product), the software
developer must use and distribute the DeskMate Runtime. To obtain a copy of the runtime
software the software developer should sign and return the DeskMate Runtime Duplication
License supplied in this kit. The license should be returned to

a The DeskMate Runtime License

Dennis Tanner
Radio Shack
1600 One Tandy Center
Fort Worth, Texas 76102

Tandy will in turn sign the agreement and return a copy of the license to the developer along with
a copy of the runtime software. The software is distributed in the 3 1 / 2 diskette format.

Refer to the DeskMate Development Guide, Distributing Your Application section for more
information about how to distribute your DeskMate product.

Q

a t

Appendices

ab

IMPORTANT NOTICE:

READ THE TERMS AND CONDITIONS OF THE LICENSE AGREEMENT BELOW
CAREEULLY BEFORE OPENING THE SEALED D I S K PACKAGE CONTAINING
THE SOFTWARE. BY OPENING THE D I S K PACKAGE YOU AGREE TO BE
BOUND BY THE TERMS AND CONDITIONS, INCLUDING THE SOFTWARE
LICENSE DISCLAIMER OF WARRANTIES AND LIMITATIONS OR
LIABILITY CONTAINED THEREIN. I F YOU DO NOT AGREE TO THE
TERMS AND CONDITIONS OF THE LICENSE AGREEMENT, YOU MUST
RETURN THE PRODUCT WITH THE D I S K PACKAGE UNOPENED TO THE
PLACE OF PURCHASE WITHIN THREE (3) DAYS OF RECEIPT FOR A
FULL REFUND.

a

TERMS AND CONDITIONS OF THE LICENSE AGREEMENT

I . SOFTWARE LICENSE
TANDY CORPORATION, its divisions and any
associated subsidiary (hereinafter referred to as
"LICENSOR"), grant to the original customer
(hereinafter ref erred to as "LICENSEE" 1 a
non-exclusive paid-up license, to use the Software
on one computer, subject to the following
provisions.

A. Except as otherwise provided in this Software
License, applicable copyright law shall apply to
the So€ tware.

B. Title to the medium on which the Software is
recorded (cassette or diskette) or stored (ROM) is
transferred to LICENSEE, but not title to the
Software.

C. LICENSEE may use the Software on a multiuser or
network system o n l y if the Software is expressly
labeled to be for use on a multiuser or network
system or if one copy of the Software is licensed
for each node or terminal on which the Software is
to be used simultaneously.

D . LICENSEE agrees not to use, make, manufacture or
produce copies of the Software except for use on
one computer or as specifically provided in the
Software License. LICENSEE is expressly
prohibited from disassembling the Software.

the Software only for backup or archival purposes
3r if additional copies are required in the
operation of one computer with the Software but
only to the extent the Software allows a backup
copy to be made.

nnrtv Drovided that all oriqinal disks and

a

E. LICENSEE is permitted to make additional copies of

F. LICENSEE may transfer the Software to a third

agrees to be bound by the terms and conditions of
this License Agreement.

copies of the Software.
a G . A l l copyright notices shall be retained on all

11. LIMITED WARRANTY; OBLIGATIONS OF LICENSEE
A. LICENSOR makes no warranty as to the design,

capability, capacity or suitability for use of the
Software, except as provided in this section.
Software is licensed on an "AS IS" basis without
warranty.

receipt of the Software, LICENSOR warrants to
LICENSEE that the Software is properly stored on
the medium and that the medium itself is free froin
defects in materials and workmanship. This
warranty is void if the Software has been
subjected to improper or abnormal use. Defective
Software must be returned to the place of purchase
within the warranty period accompanied by a copy
of the original receipt. LICENSEE'S exclusive
remedy, in the event of a Software manufacturing
defect, is repair or replacement at LICENSOR'S
election.

C. LICENSEE agrees to assume Eull responsibility that
the Software meets the specifications, capacity,
capabilities, versatility and other requirements
of LICENSEE. LICENSEE agrees to assume full
responsibility for the condition and eEfectiveness
of the operating environment in which the Software
is to function, and for its installation.

D . LICENSEE agrees to perform backups of all data on
a daily basis and assumes full responsibility for
any loss of data or other consequences arising in
whole or in part from the failure to do so .

dealer, distributor, or other person is authorized
to give any wirranties of any nature on behalf of
LICENSOR.

EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF

PURPOSE I S LIMITED I N I T S DURATION T O THE DURATION
OF THE WRITTEN LIMITED WARRANTIES SET FORTH
HEREIN.

B. For a period of Ninety (90) days from the date of

a

E. Except as provided herein, no employee, agent,

F. EXCEPT AS PROVIDED HEREIN, LICENSOR MAKES NO

MERCHANTABILITY OR FITNESS FOR A PARTICULAR

111. LIMITATION OF LIABILITY
A. EXCEPT A S PROVIDED HEREIN, LICENSOR SHALL HAVE

NO LIABILITY OR RESPONSIBILITY TO LICENSEE OR
ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY
LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO
BE CAUSED DIRECTLY OR INDIRECTLY BY THE

INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR
ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES
RESULTING FROM THE USE OR OPERATION OF THE
SOFTWARE. IN NO EVENT SHALL LICENSOR BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF ANY BREACH OF WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE LICENSE,
USE OR ANTICIPATED USE OF THE SOFTWARE.
NOTWITHSTANDING THE ABOVE LIMITATIONS AND
WARRANTIES, LICENSOR'S LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY LICENSEE OR OTHERS SHALL
NOT EXCEED THE AMOUNT PAID BY LICENSEE FOR THE
LICENSE.

a

B. No action arising out of any alleged breach of
warranty, express or implied, may be brought
more than one (1) year after the cause of
action has accrued or more than two (2) years
after the date of receipt of the Software,
whichever first occurs.

IV. SEVERABILITY
Where a determination is made in any
jurisdiction that any term or condition of
this Agreement is invalid, unenforceable,
illegal, or contrary to public policy, that
provision shall be deleted but the remaining
terms and conditions shall continue in full
force and effect.

a
V. STATE LAW RIGHTS

A. Some states do not allow limitations on how
long an implied warranty may last, or the
limitation or exclusion of incidental or
consequential damages, so the above
limitation(s) or exclusion(s) may not apply to
LICENSEE.

original LICENSEE specific legal rights, and
the original LICENSEE may have other rights
which vary from state to state.

B. The warranties contained herein give the

@

Tandy D e s k M a t e R u n t i m e V e r s i o n 03 .03 .01
E x h i b i t A

E x e c u t i v e F i l e s and A c c e s s o r i e s :
RUNTIME.EXE R u n t i m e E x e c u t i v e , D i s t r i b u t e C u s t o m i z e d F i l e
DMSETUP .ACC S e t u p A c c e s s o r y
DMPGSET .ACC D e s k M a t e Page S e t u p A c c e s s o r y

D e s k M a t e H e l p :
DMHELP .ACC H e l p A c c e s s o r y
DMHELP88 .ACC D e s k M a t e 3.0 C o m p a t i b l e H e l p A c c e s s o r y
DMHLPENG . R E S D e s k M a t e I n t e l l i g e n t H e l p R e s o u r c e
DMSETUP . H L P S e t u p A c c e s s o r y H e l p F i l e
DMPGSET . H L P D e s k M a t e Page Se tup A c c e s s o r y H e l p F i l e

R e s o u r c e s :
DMCSR.R89 C o r e S e r v i c e s R e s o u r c e
DMGUF. R 8 9 G e n e r a l User F u n c t i o n s R e s o u r c e
PRGUF. R E S Power & R u n G e n e r a l U s e r F u n c t i o n s R e s o u r c e
DMDB.R89 D a t a b a s e C o n t r o l R e s o u r c e r e q u i r e d by D e s k M a t e H e l p
DBBU I L D . R E S D a t a b a s e F i l e B u i l d R e s o u r c e
DBREAD . R E S D a t a b a s e F i l e R e a d R e s o u r c e required by D e s k M a t e H e l p
DBUPDATE. R E S D a t a b a s e F i l e U p d a t e R e s o u r c e
DMFORM. RES Form Manager R e s o u r c e
DMTHES . R E S T h e s a u r u s resource (d i s p l a y s see l o c a l dealer m e s s a g e) .

0

J o y s t i c k and Mouse D r i v e r s :
DMMDJOY.RES Tandy 1 0 0 0 J o y s t i c k D r i v e r
DMMDP . R E S M i c r o - C h a n n e l Se r i a l Mouse D r i v e r
DMMDSERI . R E S Ser ia l Mouse D r i v e r

P r i n t e r D r i v e r s :
DMPDASCI . R E S D a i s y - w h e e l , or other non-supported p r i n t e r , p r i n t e r d r i v e r
DMPDIBMM.RES I B M - c o m p a t i b l e g r aph ic s p r i n t e r d r i v e r
DMPDl . R E S Tandy DMP 1 0 5 p r i n t e r d r i v e r (Tandy mode)
DMPDZ .RES Tandy DMP 2 0 0 , 420, or 430 p r i n t e r d r i v e r (Tandy mode)
DMPDLASR. R E S HP L a s e r j e t P l u s or Laser je t -compatible p r i n t e r d r i v e r

D M V S 1 0 0 0 . R E S Tandy 1 0 0 0 (T G A) , 4 color video d r i v e r
V i d e o D r i v e r s :

a

DMVSCGA. RES CGA, 2 color video driver
DMVSEGA. RES EGA, 16 color video driver
DMVSHERC .RES Hercules, 2 color video driver
DMVSVGA. RES VGA, 16 color video driver
DMVSTC16 .RES Tandy 1000 TL/SL (ETGA), 16 color video driver
DMVSMCGA. RES MCGA, Mulit-color video driver
DMVSLRES .RES 40 column, low resolution video driver
DMVST256 .RES 40 column, VGA video driver
DMVSTC4O .RES 40 column, Tandy 1000 TL/SL video driver
DMVSH. RES 40 column, Hercules video driver
DMVSE .RES 40 column, EGA video driver
DMVSM . RES 40 column, Monochrome EGA video driver

Tutorial and Demo Technology:
PLAY. PDM Play application, launches tutorial or demo
DMPLAY. RES Play resource
DMUNPACK .RES Tutorial Decompression Resource
TUTKBD .RES Keyboard Layout Resource
DEMO. PDM Demo Laucher, Distribute Customized File

a
Others:

DMVID .EXE DeskMate video force utility
DMVID .DOC Video force utility documentation
1NSTALL.TEM Runtime Installation Launcher, Distribute Customized File
RUNTIME .MAP* Runtime Executive Symbol Map File
RUNTMBLD . PDM* Customize Runtime Utility
INSTLBLD. PDM* Customize Installation Launcher Utility

* File is NOT for distribution.

142\5\88-51a.msg
11-151k

DeskMate Support Services
Problem Report 0

Date Submitted:

Company Name: Number:

Contact Name: Fax:

Address:

ProducVProject Name:

Circle One: Question / Suggestion / Bug Report / Complaint / Other

a

-"ii*>

, *i) . . I

DeskMate Style Guide

a

a-

Contents

Chapter 1 . Introduction

How to Use This Manual ... 2
Before You Begin .. 3

Chapter 2 - The Keyboard and the Mouse

Special Keys .. 5
Accelerators .. 5

Basic Mouse Operation .. 7
Cursors and Pointers 8

Cursors ... 8
Pointer Images ... 9

Selecting Data ... 9

-!e
...

Terminology ... 9
Selecting Graphics .. 11
Keyboard Interface ... 12
Mouse Interface .. 13

Scrolling .. 13
Keyboard interface ... 13
Mouse Interface .. 14
Cursor Movement and Scrolling 14

Arrow Keys .. 15
Home, End, Page Up, Page Down 15

Text Entry and Editing ... 17

i

DeskMate Style Guide

Chapter 3 . Screen Design

General Guidelines .. 19
Parts ofthe DeskMate Screen ... 20

Help Prompter ... 21
Date ... 21
Application Name .. 22
Data File Name ... 22

The Work Area ... 24
Graphics ... 24
Windows ... 24

Some Special-Purpose Screens ... 25

The Default Screen ... 25
The Working Screen ... 26

Screen Design for 40-Column Applications 28

Chapter 4 - Menus and Menu Bars

What Are Menu Bars and Menus? ... 29
When to Use a Menu Bar .. 31
General Rules and Guidelines for Menu Bars 31

Menu Operation .. 31
Keyboard Interface .. 31
Mouse Interface ... 33

Menu Button Titles ... 33

Accelerators and Selectors ... 35

Extended Command Options 37

The Title Line ... 21

Time ... 23
The Application or Accessory Menu Bar 23

Monochrome and Color Support 25

The Welcome Screen ... 25

*-
Menu Option Names ... 34
Choosing and Using Menu Options 35

Enabled and Disabled Options 37
Classes of Menu Options ... 37

Check Options .. 37
Menu Option Groups ... 38

..
ll

Rules and Guidelines
for Application Menu Bars .. 40

Usage and Location .. 40
Contents ... 40

On-Line Help ... 41
Exit. Run. and About ... 41
The Message Menu .. 42
The Accessories Menu ... 43

Rules and Guidelines
for Accessory Menu Bars ... 44

Contents ... 44
Rules and Guidelines
for Menu Bar Components ... 44

Usage and Location .. 45
Contents ... 45

Menu Bar Examples .. 46

0

Chapter 5 . The Interface Components

General Rules and Guidelines ... 49
Component Classes .. 50
Interactive Components .. 51

Check Boxes .. 51
When to Use Check Boxes 52
Rules and Guidelines for Check Boxes 53

List Boxes ... 54
When to Use List Boxes .. 54
Rules and Guidelines for List Boxes 54

Edit Fields .. 56
When to Use Edit Fields ... 56
Rules and Guidelines for Edit Fields 57

Edit FieldList Box Combinations 58
When to Use Edit Field/List Box Combinations 58
Rules and Guidelines for Edit FieldList Box Combinations 5
8

a
...

...
111

@ DeskMate Style Guide

Push Buttons .. 59
When to Use Push Buttons .. 59
Rules and Guidelines for Push Buttons 59
Special Push Buttons . OK and CANCEL 61

Radio Buttons ... 61
When to Use Radio Buttons ... 62
Rules and Guidelines for Radio Buttons 62

Icon Buttons .. 64
When to Use Icon Buttons ... 65
Rules and Guidelines for Icon Buttons 65

Scroll Bars .. 65
When to Use Scroll Bars .. 65
Rules and Guidelines for Scroll Bars 66

Text ... 67
When to Use Text .. 67
Rules and Guidelines for Text 68

Icons .. 68
When to Use Icons ... 68
Rules and Guidelines for Icons 68

Boxes ... 68
When to Use Boxes .. 69
Rules and Guidelines for Boxes 69

69
List Boxes 69
Edit Fields .. 70
Push Buttons .. 70
Icon But tons .. 70

.................................... e ...
Using Components in the Work Area

Chapter 6 - Pop-ups

When to Use a Pop-up ... 71
Types of Pop-ups ... 72

Message Boxes .. 73
Dialog Boxes ... 74
Accessories .. 75

iv

a
Rules and Guidelines for Pop-ups ... 75

Size and Position .. 75
Size and Position of Dialog Boxes 76
Size and Position of Message Boxes 76

Titles .. 76
Dialog Box Titles ... 77
Message Box Titles .. 77

Message Text .. 77
Pop-up Operation .. 78

Default States ... 78
Disabled Components ... 78

Assigning Default States .. 80
Removing Dialog Boxes .. 81

User Interfaces to Pop-up Windows 81
Keyboard Interface ... 81
Mouse Interface .. 83

Component Behavior .. 79
Push Buttons in Message Boxes 79

Chapter 7 . Special Menus

Message ... 85
Accessories ... 85
File 86
Edit .. 91

a
..

V

0

Chapter 1

Introduction

The Tandy DeskMate User Interface enables communication
between users and DeskMate applications. It is a graphic
interface that uses pop-up windows, pull-down menus, and a
variety of other interface components to communicate with the
user.

This manual provides the information you need to design and
develop applications that meet the Tandy DeskMate User
Interface standard. It presents rules (requirements) and guidelines
(strong recommendations) for achieving the "look and feel" that
users expect of DeskMate applications.

The main goal of the DeskMate standard is to help produce
applications that are predictable and therefore easy to use.
However, ease of use is only one benefit you receive from
following the DeskMate standard.

The graphic nature of the DeskMate interface is a benefit to you
and your users. You can use the graphic components to focus the
user's attention where you want it. From the user's point of view,
a graphic interface is appealing, not intimidating. It helps the
user to feel comfortable with the application and confident about
learning how to use it.

Using standardized components and interface techniques enables
you to concentrate on improving your application, not on deciding
how the interface components should operate.

e

1

a Application Style Guide

The standard is flexible enough to support all the functionality
you want in an application. It allows the freedom to implement
unique features and functions. By following the standard, you can
avoid forcing the user to learn a new interface with every
DeskMate application.

How to Use This Manual

Read this manual before beginning development of a DeskMate
application. It will help you select the interface components most
appropriate for your application. If you have already started
developing a DeskMate application, read this manual to ensure
that your application conforms to the DeskMate standard.

This manual includes a large number of examples to help you
understand the rules and guidelines in the standard. It includes
subjects such as:

- screendesign

- keyboard and mouse support

-

- menus and menu bars

- special menus and functions

-

e how to use components in pop-up windows

special requirements for 40-column applications and
accessories

This manual describes the look and feel of a DeskMate
application. We recommend that you use DeskMate resources and
functions in your application. K you create an application without
using the DeskMate functions, the appearance and operation of
your application should not violate any of the rules in this
standard. For example, if your application uses pull-down menus,
it is not essential that they all be sticky menus, but they must be
consistent. Do not mix sticky menus and non-sticky menus.

2

Introduction

If you use DeskMate functions to create and display the
components your application uses, the application will
automatically conform to a large portion of the standard.

a

Before You Begin

If you are not familiar with the DeskMate product, we recommend
that you spend some time exploring the copy that is shipped with
this kit. Understanding how to use DeskMate will help as you
develop your application.

Most of the examples used in this manual are taken from the
DeskMate product itself. If you are familiar with DeskMate, you
will more quickly understand the context of the examples.

a

3

0

Chapter 2

The Keyboard and the Mouse

The keyboard is the standard input device for any DeskMate
application. Some users prefer working with a mouse, however, so
mouse support should be included whenever possible. All
DeskMate applications should accept input from the keyboard, a
mouse, or both.

This chapter describes the rules and guidelines that apply to
using the keyboard or a mouse. It is organized according to the
major tasks for which the mouse or keyboard is used. In addition,
it includes a summary of basic mouse operation, and a summary
of special keys and key combinations.

Special Keys
0

The keys and key combinations described in this section have
special meaning in specific environments. Do not use these keys
or key combinations for other purposes.

Accelerators

You can assign a combination of keystrokes, called an accelerator,
to a particular function in your application. Accelerators provide
quick access to menu options and other functions. Assign
accelerators only to the most commonly used functions. Avoid
accelerating every menu option, because the user cannot
remember a large number of accelerators.

5

0 Application Style Guide

ESC
Esc, the Escape key, is the accelerator for the CANCEL
button in dialog boxes and message boxes. It is also the
accelerator for the Exit option in applications and accessories
when a menu is not displayed. When a pull-down menu is
displayed, Esc retracts the menu.

Enter
Enter is the accelerator for the currently highlighted push
button in a dialog box.

Spacebar
Select objects such as a radio button, push button, and entry
in a list box, or a graphic object.

Del
In a text entry window, Del deletes any selected text or the
character to the right of the cursor. It can also be used as an
accelerator. For example, in Text’s Edit Menu, Del is the
accelerator for the Clear option.

Function Keys
F1 is the accelerator for on-line help. F2 through F8 are
accelerators to menu buttons. F9 is the accelerator for the
Message Menu, and F10 is the accelerator for the Accessories
Menu. Do not assign any other use to these keys.

a
Alt+key

You can use Alt+key combinations as accelerators. AZt+first
letter is the standard accelerator for any push button. You can
also use Alt with other keys as accelerators for menu options.

For example, in the Calendar accessory, Alt+P is the
accelerator for the Rev (previous month) push button, and
Alt+N is the accelerator for the Next (next month) push
button.

You can also use Alt + special keys for cursor movement. For
example, A l t + - b could move to the end of a word in a text
entry window.

6

The Keyboard and the Mouse a
ctrz+ key

Ctrl+key combinations are menu option accelerators. For
example, Ctrl+Ins selects the Copy option on the Edit Menu.

You can also use Ctrl + special keys for cursor movement. For
example, Ctrl++ could move to the end of a line in a text
entry window.

Shift+ key
You can use Shift with other keys as menu option
accelerators. You can also use the Shift key with Home, End,
Page Up, Page Down or the arrow keys to select text or
graphics in the work area. For example, Shift+Up Arrow is
used to select items in a multi-select list box. See the
"Selecting Data" section of this manual for specific key
combination standards.

Shift+key is often related to the function of key. For example,
Shift+Del selects the Cut option on the Edit Menu. This
deletes currently selected text from the editing window and
transfers it to the clipboard. Shift+Ins selects the Paste option
on the Edit Menu. This inserts text from the clipboard into
the current text window, at the current cursor location.

Shift+key may reverse the action of key. For example, Tab
moves the highlight forward in a window; Shift+Tab moves
the highlight backward in a window.

a
Basic Mouse Operation

We use the term mouse to refer to a pointing device. A pointing
device can be either a mouse or a joystick. Using a mouse can
expedite data selection and scrolling.

The DeskMate mouse interface requires only one button. If your
mouse has more than one button, use the left one to interact with
DeskMate applications. This section describes the basic actions of
a mouse.

7

@ Application Style Guide

Click
Press and quickly release the mouse button once. This action
re-posi$ions the text cursor or selects an object.

Double Click
Click the mouse button twice in rapid succession. Used to
select and immediately execute an option.

Shift Click
Press the Shift key and the mouse button at the same time.
Used to make discontiguous selections.

Drag
Press the mouse button and hold it down while moving the
mouse. Release the mouse button when the pointer rests at
the desired location. Used to make contiguous selections.

Cursors and Pointers

The cursor indicates the point where activity will occur in a
DeskMate application. For example, in a text application, the
cursor indicates the location at which text can be inserted,
deleted, or changed.

The pointer indicates the presence of the mouse. When you move
the mouse, the pointer moves. When you click the mouse, the
cursor moves to the position of the mouse pointer.

a

Cursors

Standard DeskMate functions provide three predefined text
cursors: a block, a bar, and a line. If you prefer, you can define a
custom cursor and use it instead.

Use the block cursor or the bar cursor in a text entry window.

Use the line cursor to focus on a component or an application-
defined object.

8

The Keyboard and the Mouse a
Pointer Images

DeskMate defines a standard mouse pointer image that is
available for use by all applications. An application can define
other images for the mouse pointer and use them as long as the
application is running. When the user exits the application, it
must redefine the mouse cursor to the standard DeskMate mouse
cursor.

Selecting Data

The DeskMate user interface is action-oriented. The user selects
data, then performs some action on that data. When data is not
selected, the actions in the applications should be disabled.

DeskMate applications can support selection of text, graphics, or
any other kind of data that is appropriate for the application.

If an application supports the selection of any kind of data, it
must support the clipboard. The clipboard is a temporary storage
area for data. Your application can use the clipboard to move data
from one location in a file to a Merent location in the same file,
or to a different file.

Terminology

Some important terms that relate to text selection are defined
below. These terms apply whether you use the mouse interface or
the keyboard interface. Understanding these terms will help you
understand the mouse and keyboard descriptions later in the
chapter.

Anchor Point

0

The point where an extended text selection begins. The
anchor point must be the top or bottom of the selected text; it
cannot be in the middle of the selected text. The user makes
extended text selection with Shift+key combinations on the
keyboard, or by dragging the mouse. For the keyboard, the

9

a Application Style Guide

anchor point is the position of the cursor at the time the first
Shifk+key combination is invoked. For the mouse, the anchor
point is the position of the first character selected when the
user begins the drag operation.

Character
Any single character, including a space or a punctuation
mark.

Word
A group of characters separated from other characters on
either side by a space, a tab character, or a new-line
character.

Line
One row of characters with application-defined boundaries on
each end. For example, the characters within an edit field
frame are a line, according to this definition. The screen
border can also serve as a line boundary.

Extended selection
Expansion of the current selection to include additional
characters, words, or lines. e Dismntiguous selection
Selection of two or more items that are not adjacent.

Deselected data
A selection is deselected when the user moves the cursor
without extending or contracting the current selection.

Whenever possible, the application should deselect data for
the user, rather than requiring the user to do so. For example,
after executing the Copy option to store the information on
the clipboard, the application should deselect the data and
position the cursor at the anchor point.

The application should position the cursor at the anchor point
aRer completing an operation involving the data.

10

8 - r

- -

@ Application Style Guide

Keyboard Interface

The key combinations described in this section move the cursor
and select text.

Shift+ Up Arrow
Moves the cursor up one line and scrolls if necessary.
Selects/deselects data from the original cursor location to the
new cursor location.

Shift+ Down Arrow
Moves the cursor down one line and scrolls if necessary.
Selectddeselects all text from the current cursor location to
the new cursor location.

Shift+ Right Arrow
Moves the cursor to the right one character and scrolls if
necessary. Selects/deselects the character. At the end of a line,
the cursor moves down one line and to the left edge of the new
line.

Shift + Left Arrow

0
Moves the cursor to the left one character and scrolls if
necessary. Selects/deselects the character. At the end of a line,
the cursor moves up one line and to the right edge of the new
line.

Shift+ Home
Selects all text from the current cursor location to the
beginning of the current line and scrolls if necessary.

Shift+ End
Selects from the current cursor location to the end of the
current line and scrolls if necessary.

Shift+ Ctrl+Home
Selects from the current cursor location to the beginning of
the file and scrolls if necessary.

12

The Keyboard and the Mouse

Shift+ Ctrl+ End

0
Selects fkom the current cursor location to the end of the file
and scrolls if necessary.

Shift+ Page Up
Selectddeselects text and scrolls if necessary. The cursor
positioning and scrolling rules for Page Up apply.

Shift+ Page Down
Selects/deselects text and scrolls if necessary. The cursor
positioning and scrolling rules for Page Down apply.

Shift+ Ctrl+ Page Up
Selectddeselects text and scrolls if necessary. The cursor
positioning and scrolling rules for Ctrl+Page Up apply.

Shift+ Ctrl+ Page Down
Selectddeselects text and scrolls if necessary. The scrolling
rules for Ctrl+Page Down apply here.

Mouse Interface

Pointing, pressing the mouse button, and then dragging the
mouse selects or deselects text or graphics. At window boundaries,
scrolling occurs as necessary.

0
Scrolling

When data does not fit in the available space on the screen or in a
window, the application must support scrolling. This section
describes the keys and mouse actions used while scrolling.

Keyboard interface

DeskMate uses a variety of keys and key combinations to support
scrolling through a file. Refer to "Selecting Data" for information
about the effects of these keys on cursor positioning and scrolling.

13

0 Application Style Guide

Mouse Interface

The mouse supports scrolling with arrow buttons on the menu bar
or a scroll bar component. This section describes mouse operations
that are equivalent to pressing the keys listed in the last section.

Clicking on an arrow button in a menu bar or on a scroll bar
is equivalent to pressing the corresponding arrow key.

Clicking in the gray area above or below the vertical scroll
bar elevator is equivalent to pressing the Page Up or Page
Down key.

Clicking in the gray area to the left or right of the horizontal
scroll bar elevator is equivalent to pressing the Ctrl+Page Up
or Ctrl+Page Down key combination.

Dragging the scroll bar elevator moves the cursor quickly
through the file. The cursor the same relative distance from
the top of the file as the elevator is from the top of the gray
area in the scroll bar.

a Cursor Movement and Scrolling

DeskMate uses a variety of keys to move the cursor on the screen.
You can also use most of the keys in this section to select data.
Refer to "Selecting Data" for more information.

Tab
Moves the highlight (cursor) forward to the next component or
field.

Shift+ Tab
Moves the highlight backward to the next component or field.

14

The Keyboard and the Mouse a
Arrow Keys

The arrow keys (Up, Down, Left, and Right) provide rapid motion
through a file. You can use these keys as described in this section.

Up Arrow
Moves the text cursor directly up one line. If the cursor is at
the top of a window that scrolls up and down, pressing the up
arrow scrolls the text down one line without moving the
cursor.

Down Arrow
Moves the text cursor directly down one line. If the cursor is
at the bottom of a window that scrolls up and down, pressing
the down arrow scrolls the text up one line without moving
the cursor.

Right Arrow
Moves the text cursor right one character on the same line.
Scrolls the text to the right if the cursor is at the far right of a
side-scrolling window.

Left Arrow
Moves the text cursor left one character on the same line.
Scrolls the text if at the far left of a side-scrolling window. a

Home, End, Page Up, Page Down

You can use Home, End, Page Up, and Page Down alone, or
paired with the Ctrl key to position the cursor. This section
describes the effect of each of these keys.

Home
Moves the text cursor to the beginning of the current line and
scrolls the text if necessary.

End
Moves the text cursor to the end of the current line and scrolls
the text if necessary.

15

0 Application Style Guide

CtrZ+Home
Moves the text cursor to the first character in the first line of
the file (also called homing the cursor).

Ctrl+ End
Moves the text cursor to the last character in the last line of
the file.

page UP
Re-positions the text cursor and scrolls the text if necessary.
When the cursor is not on the top line of the screen, the cursor
moves to the top of the current screen. When the cursor is
already at the top of the screen, it moves one screen toward
the beginning of the file each time the user presses the key.
The top line of each screen becomes the last line of the next
screen, so the user always sees one line from the previous
screen of text.

Page Down
Re-positions the text cursor and scrolls the text if necessary.
When the cursor is not at the bottom of the screen, the cursor
moves to the bottom of the current screen. When the cursor is
already at the bottom of the screen, it moves one screen
toward the end of the file each time the user presses the key.
The bottom line of each screen becomes the first line of the
next screen, so the user always sees one line from the previous
screen of text.

a
Ctrl+Page Up

Repositions the text cursor and scrolls the text if necessary.
When the cursor is not at the left edge of the screen, the
cursor moves to the far left edge of the screen, in the current
line of text. When the cursor is already at the left edge of the
screen, it moves one screen toward the left edge of the file
each time the user presses the key sequence. The first column
of one screen appears as the last column of the next screen, so
the user always sees one column from the previous page of
text.

16

The Keyboard and the Mouse

Ctrl-kPage Down

0
Re-positions the text cursor and scrolls the text if necessary.
When the cursor is not at the right edge of the screen, the
cursor moves to the right edge of the screen, in the current
line of text. When the cursor is already at the right edge of
the screen, it moves one screen toward the right edge of the
file each time the user presses the key sequence. The last
column of one screen appears as the first column of the next
screen, so the user always sees one column from the previous
page of text.

Text Entry and Editing

Entering and editing text is largely a keyboard activity. This
section describes the keys that DeskMate uses to support text
entry and editing.

Del
Deletes any selected text or the character to the right of the
text cursor.

Enter
Inserts a line feed and a carriage return, which moves the
cursor to the left margin. If text is selected, it is replaced
with a line feed and carriage return.

a
Space bar

Inserts a space in the text. If text is selected, it is deleted and
replaced with a space.

Tab
Moves the text cursor forward one tab stop.

Shift+ Tab
Moves the text cursor back one tab stop.

17

a

Chapter 3

Screen Design

This chapter describes the major areas of the screen and the rules
and guidelines that apply to each area. In addition, it defines a
few special types of screens used in many DeskMate applications,
and includes a section on 40-column applications.

General Guidelines

Screen design is a broad topic, and the guidelines are
correspondingly broad

Keep the screen organized to minimize confusion.

Use screen areas consistently to maintain familiarity and
help the user locate information quickly. For instance, try to
position the OK and CANCEL buttons in the same place in every

a
dialog box.

Use dialog and message boxes effectively. Be sure the dialog
is organized and contains all the information the user needs.
Too much information at once will confuse users; a lack of
needed information will frustrate them.

19

a Application Style Guide

Parts of the DeskMate Screen

The DeskMate screen is divided into three major parts:

The title line, the first line of the application screen

The application menu bar or accessory menu bar, which
appears immediately below the title line

The work area, the space below the menu bar, in which all the
application’s functions are performed

Help F! Jul 6, 1989 Desklkte - C \DESK89 12:57 p

+ TEXT t + PROCRWS t
~ ~ J ! i - . D 5 l I l l 4 ! l = l ~ * p q ~ [~] [(q p q WID. DOC DESKTOP. PUR

m[F)[
IWIRO. Doc D I M PDN

e

Each of these parts serves a specific purpose, and each has its own
set of design rules and guidelines.

20

Screen Design

The Title Line

a
All applications must include a title line at the top of the main
screen. The title line contains:

the Help prompter

the current date

thecurrenttime

If you use DeskMate functions to display your title line, the title
line will automatically be formatted to conform with the rules in
this section.

the name of the application

the name of the current data file

Help Prompter

A prompter is a display of a particular task’s accelerator in a
DeskMate application. F1 always provides on-line help; the
prompter is Help F1. Display this prompter at the left end of the
title line.

0
Date

Display the current date as the second element in the title line.
The date appears in the format mmm dd, yyyy, as in Aug 24,
1989.

21

a Application Style Guide

Application Name

The application name is the third element in the title line.

Center the name horizontally.

Use a maximum of 16 characters for the name.

Capitalize the first letter of each word (for example, Text,
Worksheet, Address Book, Form Setup).

Insert a hyphen (-) between the application name and the data
file name (described next).

Data File Name

If an application or accessory uses a data file, display the data file
name to the right of the application name.

use uppercase characters, such as EXAMPLE. DOC.

If the drive, path, and data file name exceed 28 characters,
display only the drive and data file name, as in
C : \ . . .\EXAMPLE.DOC.

If the application or accessory does not use a data file, display
Untitled inplace of a data file name.

Some applications, such as Address Book, use only one data
file. When this is the case, the application can use the data
file name location for some other purpose.

a

22

Screen Design e
For instance, Address Book uses this location to display the
name of the current address list.

0 Time

Display the current time as the last element in the title line, at
the right end of the title line. The time appears in the format
hh : mm, followed by a m or pm.

The Application or Accessory Menu Bar

All full-screen applications must include an application menu bar
immediately below the application's title line. This menu bar
must provide access to application functions, the DeskMate
Accessories Menu and the DeskMate Message Menu. See Chapter
4, "Menu Bars and Menus," for detailed rules and guidelines on
the application menu bar.

23

e Application Style Guide

The title line and menu bar usually appear together. If an
accessory uses a title line, it must include an accessory menu bar.
However, an accessory that uses an accessory menu bar is not
necessarily required to use a title line. See Chapter 4, "Menus
and Menu Bars," for details.

The Work Area

The application work area is immediately below the menu bar.
Developers can use graphics, windows, and color to focus the
user's attention on the current task. Any DeskMate interface
component can be used in the work area.

The rules that apply to the work area depend on how you use the
area. See Chapter 2 if you are using the work area for data
selection. See Chapter 5 if you are using interface components in
the work area. Some guidelines are provided here.

Graphics

Graphics can be used to make the work area look like a familiar
object. For example, the Address Book work area looks like a page
from an address book. Users know automatically what to do with
the form; little explanation is needed.

We realize this is not as simple in all applications as it is in
Address Book. In general, simpler screen designs are easier to
use. Make your screens as recognizable and usable as possible.

a

Windows

Windows can be used to concentrate the user's attention on a
specific action. In DeskMate applications, windows can be used to
get information from the user or just to send a message to the
user. DeskMate applications use tiled windows and pop-up
windows. Both types of windows are described in Chapter 6.

24

Screen Design 0
Monochrome and Color Support

DeskMate runs in a variety of video, color, and resolution modes.
DeskMate applications must support monochrome (2-color), 4-
color, and 16-color resolution environments.

Some Special-Purpose Screens

The following sections describe three special screens that help
create the look and feel users expect in a DeskMate application:

The welcome screen

The default screen

The working screen

The Welcome Screen

Use a welcome screen to convey any information that the user
should read before using the application. Copyright information,
which can also be displayed with the About option, is an example. a
The Default Screen

Applications should have a default screen that is displayed as
soon as the user starts the application.

Create a default screen that represents the function of your
program. For instance, the Address Book screen looks like an
address book entry page with an index pad on the side.

25

a Application Style Guide

Data entry, editing, and viewing are all done on this screen.

e The Working Screen

If your application includes more than one "mode" of operation,
create a working screen for each mode. Working screens should
visually identify the current mode of operation. For example,
Calendar has daily, weekly, monthly, and yearly viewing modes.
The current mode is easily identified by the screen's design.

26

Screen Design a
The following examples illustrate the monthly mode and a daily
schedule planner.

Help F1 Jul 6, 1989 Calendar - CONTEREKE Rn 1:m pm

Calendar - CONFEREKE M a
12:88 Pl l - 1:88 PH Lunch

Depart for hons

27

a Application Style Guide

Screen Design for 40-Column Applications

Screen design rules for 40-column applications are the same as for
full-screen applications, with the following exceptions:

Include only the Help prompter, the application name, and
the current time on the title line. do not include the current
date or the data file name.

Do not include the Accessories Menu or the Message Menu on
the accessory menu bar.

m

28

a

Chapter 4

Menu Bars and Menus

This chapter introduces menu bars and menus and defines the
requirements of each of DeskMate’s classes of menu bars. In
addition, it discusses the appearance, design, operation, and
interface support required for each class of menu bar.

In addition, this section discusses the rules and guidelines that
apply to menu options, and discusses the types of commands that
can be included in a menu.

What Are Menu Bars and Menus?

A menu bar is a group of rectangular buttons, always displayed
horizontally across the screen. Each button has a title, and each
button activates (pulls down) a menu that has the same title. A
menu is a group of related commands or settings. Each entry in a
menu is called a menu option.

For DeskMate versions 3.03 and higher, all DeskMate menus are
sticky men=. This means that a menu, once selected, remains
displayed until the user selects an option from that menu, selects
another menu, or cancels the current operation. If the user selects
another menu, the first menu is erased from the screen and the
second one is displayed instead.

DeskMate uses three types of menu bars. The first type is called
the application menu bar. Each DeskMate application has a unique
application menu bar.

a

29

a Application Style Guide

The following illustration shows DeskMate’s application menu
bar. The Accessories Menu is pulled down.

e The application menu bar allows access to all application menus,
and the DeskMate menus.

The second type of menu bar is the accessory menu bar. An
accessory menu bar serves the same purpose in an accessory that
the application menu bar serves in an application.

The third type of menu bar is a menu bar component. Any menu
bar that is included in a pop-up window, such as a dialog box, is a
menu bar component.

30

Menu Bars and Menus

When to Use a Menu Bar

a
Use a menu bar to present groups of related commands to the
user. The menu bar interface is preferred over a series of push
buttons because:

It is the standard interface for presenting commands (actions)
to the user.

It is easier to access with the keyboard than a series of
buttons, which must be cycled through or accelerated.

General Rules and Guidelines for Menu Bars

The rules and guidelines in this section apply to all menu bars.
Rules and guidelines that apply specifically to a particular type of
menu bar component are presented later in this chapter.

Menu Operation

Applications must provide access to menu options through the
keyboard or the mouse. DeskMate functions support both
interface devices as described in this section. The descriptions
given here are general. Specific requirements for the various
types of menu bars are given later in this chapter.

a
Keyboard Interface

To display an application menu, the user must press the
appropriate function key, F2 through F10. If an application menu
is already displayed, the user can retract it and display another
by pressing a different function key or the left or right arrow key.
The Esc key retracts a displayed menu without displaying
another.

Function keys enable the user to display a menu from the menu
bar. The Enter key, the alphabetic keys, and the up and down

31

a Application Style Guide

arrow keys allow the user to highlight an option from the current
menu.

A brief description of each mqjor part of the keyboard interface
follows:

F2 through F10
Pulls down a menu. Retracts the current menu if one is
displayed.

ESC (Escape)
Retracts the pull-down menu without displaying another.

Right Arrow
Retracts the current menu and displays the one on its right. If
the current menu is on the right end of the menu bar, displays
the menu on the left end.

Left Arrow
Retracts the current menu and displays the one on the left. If
the current menu is on the left end of the menu bar, displays
the menu on the right end.

a Enter
Executes the highlighted option and retracts the menu.

A through Z
Highlights the first option in the current menu that begins
with the pressed letter. For example, pressing P while in the
Edit Menu highlights Paste.

Up Arrow
Moves the highlight up one option in the current menu. If the
first option in the menu is highlighted, moves the highlight to
the last option in the menu.

Down Arrow
Moves the highlight down one option in the current menu. If
the last option in the menu is highlighted, moves the
highlight to the first option in the menu.

32

Menu Bars and Menus a
Mouse Interface

To display an application menu, the user must click on the
appropriate menu button, F2 through F10. If a menu is already
displayed, the user can click on a different button to retract the
menu and display another.

If the application supports scrolling and does not use a scroll bar,
the application menu bar must support arrow buttons. Menu bar
components must not support arrow buttons.

A brief description of supported mouse actions follows:

Clicking on a menu button
pulls down the corresponding menu. This is equivalent to
pressing a function key.

Clicking a menu button and dragging the mouse to an option
Selects and executes the option, and retracts the menu. This is
equivalent to pressing a function key, a series of down arrows,
and the Enter key.

Double clicking on a menu option
selects and executes the menu option, and retracts the menu.
This is equivalent to pressing the Enter key. a

Clicking on a point that is not in the menu or menu bar
Retracts the current menu without displaying a new one. This
is equivalent to pressing the Esc key.

Menu Button Titles

Each menu button must have a title, or name, stating its purpose
as clearly as possible. When titling a menu button:

Make short titles. Use a single word or a short phrase.

The title can be a noun (such as File, Text, or Picture) or a
verb (such as Edit, Search, or Zoom).

33

a Application Style Guide

Do not include numbers.

Do not pad the titles with spaces.

Capitalize the first letter of the title.

Menu Option Names

Menu options should always relate to the menu title.

For example, the Page setup, Save, and Save options in the
File Menu all relate to the current application data file, as the
word File implies.

Menu option names must be unique within a menu; however,
the same name can be used in different menus.

If the menu name is a noun, the menu option names must be
verbs, for example:

File Menu options are Open, Save, and Merge.

Text Menu options are Bold and Underline.

picture Menu options are Move, Size, Hide, and Show.

If the menu name is a verb, the menu option names must be
verbs or adjectives, for example:

Edit Menu options are Cut, Copy, and Paste.

Search Menu options are Find, Find next, and Substitute.

Zoom Menu options are Normal, Twice, and All.

If the menu name is a phrase, the menu option names should
complete the phrase. For example:

Sort by Menu options are Date, Type, and Name.

a

34

Menu Bars and Menus

Spell out option names in full, and capitalize the first letter of
the first word.

Examples of proper option names are: New, Open, Page setup,
Save as, and Select all.

Do not repeat the name of the menu in the menu option.

For example, if the menu name is File, the menu option
should be Open, not Open file or File open.

a

Choosing and Using Menu Options

The DeskMate User Interface provides quick, easy access to
application functions and data. This section describes some of the
features that provide easy access to menu options.

Accelerators and Selectors

Accelerators provide quick keyboard access to menu buttons or
menu options. Menu button accelerators are function keys. Menu
option accelerators are usually a sequence of keys, although a
single key can be used in some instances. Pressing a menu button
accelerator displays the associated menu. Entering a menu option
accelerator is equivalent to displaying the menu, choosing the
option, and pressing Enter.

Selectors also provide access to menu options. Selectors are single
keys, usually the first letter of the option name. A selector
highlights an option, but the user still must press Enter to start
the option.

Accelerators are required for all buttons on a menu bar. Display
the accelerator to the right of the menu name on each menu
button, If you use DeskMate functions to create and display your
menu bar, menu button accelerators will be assigned and
displayed automatically.

0

35

e Application Style Guide

Accelerators are not required for menu options. If you assign
accelerators to menu options, display each accelerator sequence to
the right of the appropriate option name. The following example
illustrates the use of accelerators in a menu.

Records F4
First Ctrl+F
Next Ctrl+N
Previous Ctrl +P
Last Ctrl+L

The displayed accelerator sequence is called the prompter.

Capitalize the first letter of each word in the prompter.

Use a plus sign to connect the words in a prompter. Do not
insert spaces between the plus sign and the words.

Use Shift to indicate the Shift key, Ctrl to indicate the Ctrl
key, and Alt to indicate the Alt key.

All prompters must begin one character beyond the longest
option name on the menu. If you use standard DeskMate
functions, DeskMate can automatically format the menu as
required by this standard. The following example, Calendar’s
Edit Menu, illustrates accelerator prompters.

a
Edi t F3

c u t Shi fttDel
Ctrl +Ins

Paste Shift+Ins
C1 ear Del

COPY

36

Menu Bars and Menus

Enabled and Disabled Options

0
Whenever using a menu option is not appropriate, the
application must disable the option. Display disabled option
names in gray type. For example, in the Text application, the
user must select text before assigning attributes to it.
Therefore, all character attribute options in the Text Menu
(Plain, Bold, and Underline) are grayed until text is selected.

If the user presses F1 while a grayed option is highlighted,
the application should display help infomation about the
option.

Classes of Menu Options

When the user selects a menu option, the application might
simply perform a task, as indicated by the name of the option,
without requiring any further action from the user. This section
describes two special classes of menu options, extended options
and check options. Using extended or check options can make
your application more powerfid, more flexible, and easier to use.

0 Extended Command Options

An option that will request more information from the user is
referred to as an extended command. When an extended command
is chosen, a dialog or message box appears. This box provides the
user with information needed for further input. Include an ellipsis
(... 1 after the name of an extended command.

Check Options

A check option (also known as a toggle option) has two possible
states, on and off. A check mark in front of a menu option
indicates that the option is active (selected). The application
automatically toggles the state of the option whenever a user
selects the option. Check options are often used in groups.

37

a Application Style Guide

Menu Option Groups

When two or more menu options are related, or provide similar
functions, display the options as a group. To visually separate
groups within a menu, draw a solid line between groups.

In the Draw application, for example, the Flip horizontal, Flip
vertical, and Rotate options on the Actions Menu are related; each
of these commands changes the orientation of a selected object.
These commands are listed together on the menu and are
separated from other commands or groups by a solid line, as
illustrated in the following example. Similarly, the Move to top
and Move to bottom options appear together, in a separate
grouping; these commands move an object to the top or bottom of
the print queue. All menu options are left-aligned. Related
options are grouped, and groups are separated by solid lines.

Example: The Actions Menu from Draw

Actions F4
Dupl i cate

Move to top
Move to bottom

F1 i p hori zontal
F l i p vertical
Rotate

Make object
Break object

e

In some cases, the options within a group are mutually exclusive.
For instance, the options on Draw’s Zoom Menu are mutually
exclusive. Only one mom ratio can be used at any given time. If a
user selects an option in such a group, the application must
automatically deselect all the other options in the group. A group
of mutually exclusive options is analogous to a group of radio
buttons (see Chapter 5) in a dialog box.

38

Menu Bars and Menus e
When a user selects an option in a non-mutually exclusive group,
the application must not change the state of any other option in
the group. Options in the group must be individually selected to
change from on to off, or from off to on. A group like this is
analogous to a group of check boxes (see Chapter 5) in a dialog
box.

For example, Form Setup’s Text Menu allows the Bold and
Underline options to be active simultaneously.

Do not mix mutually exclusive and non-mutually exclusive
options within a single option group.

a

39

0 Application Style Guide

Rules and Guidelines for Application Menu Bars

The application menu bar is the interface component that
provides access to the options defined in an application It can
include up to nine rectangular buttons. Seven of these buttons are
available for custom application menus. The other two are
reserved for special DeskMate menus.

Usage and Location

All applications, 80-column and 40-column, must use include a
title line and application menu bar. Place the application menu
bar immediately beneath the application’s title line. The menus
on the application menu bar must provide access to all the major
functions of the application.

Contents

Each element that can be included in an application menu bar is
discussed in the following sections. This section outlines the
requirements for application menu bars in 80-column and 40-
column applications.

If your application interfaces with the clipboard, its application
menu bar must include an Edit Menu. See Chapter 7 for more
information about the Edit Menu.

The application menu bar in an 80-column application must
contain the following elements:

The Message Menu (F9)

The Accessories Menu @lo)

a

Support for on-line help cF1)

40

Menu Bars and Menus

Exit and Run options on the F2 menu (usually the File Menu).
If the application includes an About option, it must also be
included on the F2 menu in its own group.

a

The application menu bar in a 40-column application must
include:

Support for on-line help (Fl)

an Exit option on the F2 menu (usually the File Menu). If the
application includes an About option, it must also be included
on the F2 menu in its own group.

The application menu bar in a 40-column application must not
include:

The Message Menu (F9)

The Accessories Menu (F10)

On-Line Help

On-line help is accessed by pressing F1. Do not assign an
application menu to F 1.

If on-line help is not available about the application, the F1 key
accesses DeskMate’s on-line help. The Help prompter is displayed
on the title line above the application menu bar. It is not a button
on the application menu bar or a menu option within a menu.

a

Exit, Run, and About

All applications must provide Exit and Run commands on the
menu accessed by F2. Usually, this menu is called File.

If your application includes an About command, it must also be
included on the F2 menu. An About command is recommended
but not required. About displays copyright information and other

41

a Application Style Guide

general information about the application. See Chapter 7 for more
information on the File Menu.

The Message Menu

The Message Menu, accessed by F9, displays messages to the user
from Calendar, Workgroup, and PC-Link. For example, it notifies
the user if an alarm goes off in the Calendar application.

Do not include the Message Menu in 40-column applications.

i Iho \ HO PR? s y j i + g t? ‘;z

m

42

Menu Bars and Menus a
The Accessories Menu

The Accessories Menu, which is accessed by pressing F10, allows
task switching and provides easy access to all currently installed
accessories.

Set up

Spell Checker
Calculator
Phone L i s t
Corkboard
Month
Alarm
To Do L i s t
Task Switch

0
Do not include the Accessories Menu in 40-column applications or
in menu bar components.

43

a Application Style Gui&

Rules and Guidelines for Accessory Menu Bars

Accessories are not required to use either a title line or a menu
bar. If an accessory uses a title line, it must also use a menu bar,
and if a menu bar is used, it must meet all the requirements of an
application menu bar. However, the converse is not true; an
accessory is not required to use a title line simply because it uses
the menu bar.

Con tents

The accessory menu bar must include:

Support for on-line help (F1)

Exit and About commands on the F2 menu (usually the File
Menu)

The accessory menu bar must not include:

The Run option

The Accessories Menu (F10) 0
Rules and Guidelines for Menu Bar
Components

A menu bar component can be used in any pop-up. Menu bar
components are not required in any application, but they are the
preferred presentation technique in some circumstances. This
section describes those circumstances along with the rules and
guidelines for using menu bar components.

Rules concerning application menu bars and accessory menu bars
are presented in the preceding section.

44

Menu Bars and Menus a
Usage and Location

A menu bar component can be used in a dialog box. When you use
a menu bar component, place it at the top of the dialog box.

Do not use a title line with a menu bar component.

You can include an Exit option in the F2 menu in a menu bar
component. This option will provide closure to the dialog box and
is an alternative to using the OK and CANCEL buttons in the dialog
box.

Con tents

Menu bar components must not include:

the F1 (Help) prompter

NOTE: If the dialog box uses an Exit option in a menu rather
than a CANCEL push button, pressing F1 must still access
on-line help, even though the prompter is not explicitly shown
in the dialog box.

0 the Message Menu

the Accessories Menu

NOTE: F9 and F10 should not be used for any purpose in
menu bar components.

45

a Application Style Guide

Menu Bar Examples

Example: Extended Command Options

The following menu includes extended command options. The
ellipsis after an extended command option signals the user that
the application requires more information before it can complete
the command. Esc, the accelerator for Exit, is printed one space
beyond the longest command name, Page Setup.

File F2
New
Open.. .
Save
Save as. . .
Merge.. .
Page setup ...
Print...
E x i t Esc
Run.. .
About . . .

The ellipsis is part of an extended command name. If the longest
command is the name of an extended command, accelerators in
the menu must be printed one space beyond the ellipsis. If a menu
includes more than one accelerator, display the longest
accelerator one space beyond the longest command name, and left-
align all other accelerators with the longest one.

a

46

Menu Bars and Menus

Example: Check Options

The Text application’s Text Menu is an example of the
appropriate use of check (toggle) options. On the left, none of the
check options is active. On the right, selected options are active
(checked).

0

Text F5 Text F5
P1 ai n Plain

Bo1 d Bo1 d
Underl i ne
Ita1 i c Italic

Center Center
Un-Center Un-Center
Indent . . . Indent . . .

Underl i ne

The options in the first two groups describe the weight of printed
characters. The first option, Plain, is mutually exclusive with the
options in the second group. The options in the second group
mold, Underline, and Italic) are mutually exclusive with Plain
but not with each other. It is possible, for example, to have bold
and underline active simultaneously. If any option in the second
group is selected, Plain is automatically deselected.

a

47

a

Chapter 5

The Interface Components

This chapter defines each of the components in the DeskMate
User Interface. A section called "When to Use" is included for
each component. Read this section to determine whether a certain
component is appropriate for the task you are trying to
implement. Af'ter you decide which components to use, read the
rules and guidelines for those components.

All DeskMate interface components can be used in pop-up
windows and accessories. Some can also be used directly in the
work area. The last section of this chapter lists these components,
discusses their recommended usage in the work area, and gives an
example of a current DeskMate accessory that uses each
component in the work area. a
General Rules and Guidelines

Whether you use components in pop-ups or in the work area, you
can make the screen easier to read by distributing components
evenly and minimizing empty space around them. A margin of
one character-height or character-width is recommended

Between horizontally adjacent components

Between vertically adjacent components

On each side of a static box

49

0 Application Style Guide

Between components within a group

Between a component group and the box surrounding it

Components and component labels can be drawn in either a
normal state or a grayed state. Use the grayed state when the
component is disabled. Use the normal state when a component is
enabled, whether it is highlighted or not. A component must be
disabled whenever selecting it would produce an error condition.

In dialog boxes, components should appear three-dimensional. In
the work area, components should appear two-dimensional. Push
buttons and icon buttons are exceptions. They must always be
three-dimensional so that they can appear in raised (not pressed)
or lowered (pressed).

One exception applies to this rule. If the screen design is three-
dimensional, the components on the screen should match.

Component Classes

0
Interface components can be bro'adly classified as either
interactive or static. Interactive components convey information to
the user, and return information from the user to the application.
Static components simply convey information, such as a message,
to the user.

Interactive components include:

Checkboxes

List boxes

Editfields

Edit fieldhist box combinations

pushbuttons

50

The Interface Components 0
Radio buttons

Icon buttons

Scroll bars

Static components include:

Text

Icons

Boxes

Interactive Components

Interactive components send information to the user and allow
the user to send infomation back to the application. They are
used when the application needs information from the user to
complete a requested task.

A list box is an example of an interactive component. If the user
requests a file operation, such as Open, but does not specify a file
name, you can use a list box to allow selection of a file name. The
application sends the user a list of existing file names, and the
user selects a single file name from the list. After the file name is
received, the application continues with the task.

a
Check Boxes

A check box indicates the state (on or om of a toggle option. If the
toggle option is off, the check box is empty. If the option is on, the
box is marked with an X.

51

e Application Style Guide

When to Use Check Boxes

Use a check box whenever the option can be phrased as a yes-or-
no question. Examples are the Double space and Pause between
pages options in the Page Setup dialog box.

Printed l i n e uidth: m
Total l i n e s per page: w
Printed l i n e s per page: w

0

Use check boxes for short lists (five to six items) only. Jf you want
to present a long list, use a list box (described later) instead.

Check boxes are not recommended for use with lists of file names
for two reasons. First, a list of file names is usually too long.
Second, the list will probably change every time the application is
run Only static text or static icons can be used with check boxes.

Check boxes are not recommended for use in the work area. Since
the application menu bar is accessible from the work area, you

52

The Interface Components a
should use checked menu options instead.(See "Check Options" in
Chapter 4 for more information.)

Check boxes can also be used to select one or more options from a
group of non-mutually exclusive options. Such a group of options
is called a check box group.

If the options in a group are mutually exclusive, present them as
a radio button group, not as a check box group. (See "Radio
Buttons,'' later in this chapter, for more information..)

A user accesses a check box by clicking on the box with the
mouse, or by pressing Tab or an arrow key until the check box is
highlighted. After highlighting the check box, the user presses
the space bar to toggle the state of the check box.

Rules and Guidelines for Check Boxes

A check box must be labeled by text or an icon. The label or icon
must clearly identify the purpose of the option. Use and icon when
a picture describes the function more clearly and easily than
words.

When you use a text label:

Capitalize the first letter

Do not use a colon (9 as the last character

Make the label brief and descriptive

Place a static box around a check box group.

Keep some vertical space between check boxes that are arranged
in a column. A space equal to one-half the width of a character is
recommended.

a

53

e Application Style Guide

List Boxes

A list box is used to scan a list of text items, such as file names.
DeskMate supports two types of list boxes, single-select and multi-
select.

In a single-select list box, the user can select only one item at a
time. In a multi-select list, the user can select more than one
item. These items may or may not be adjacent in the list.

When to Use List Boxes

Use a list box when:

Many DeskMate applications are list-oriented. When a list is too
large for the available display space, the application should use a
scrolling list box. Scrolling can be performed with the mouse or
the keyboard.

List boxes can be used in the work area. Refer to "Using
Components in the Work Area," in this chapter, for details.

A list is too long for radio buttons or check boxes.

The items in the list are likely to change frequently.

0
Rules and Guidelines for List Boxes

The user should be able to select the title of a list box or any item
in the list. Selecting the title should produce a different result
from selecting a list item. For example, the desktop includes a list
box for the Text application. The application name appears at the
top of the list box, and the available data files appear in the list
box. If the user selects the application name, DeskMate executes
Text without a data file. If the user selects a file name, DeskMate
executes Text with that file as a data file.

54

The Interface Components

List boxes can be drawn in flat or raised (also called pyramid)
style. Flat style is recommended in the work area. F'yramid style
is recommended in pop-ups. DeskMate includes functions to draw
a list box in either style.

List box items can be displayed in one or two columns. If a single
column is used, the cursor should scroll up and down. If two
columns are used, the cursor should scroll from side to side.

A list box must be wide enough to display the longest item in the
list. The height of a list box should be appropriate to the size of
the dialog box and the length of the list. A list box should be tall
enough to display at least four items in the list.

In a single-select list box, the user highlights an item by:

0

Pressing an arrow key until the desired item is highlighted

or

Scrolling through the list with the mouse (by pressing the
arrow icons in the title line) until the desired item is
highlighted

To select the highlighted item, the user presses Enter or chooses
the OK button. The user can also double click on the item to select
it and invoke an action once an item is selected.

Deskmate provides a "select and go" feature that allows the user
to quickly invoke an action after it is selected. The user has two
options to select and go:

double-click on an item

In a multi-select list box, the user can:

0

press Enter after an item is highlighted

Use an arrow key or the mouse to highlight a single item, as
described for the single-select list box

55

0 Application Style Guide

Press Ctrl+arrow to move the cursor to an item without
selecting it. Pressing the space bar highlights the item.

Use Shift+arrow (or Shift click with the mouse) to highlight
more items.

Edit Fields

An edit field is a small text processing window through which the
application prompts the user for text input. DeskMate includes
edit field definitions for the following types of data:

Static text

Right-justified text

An edit field can be one line or more than one line. Single-line
edit fields can be alphanumeric, numeric, decimal numeric, or
expanding alphanumeric. Multi-line edit fields are always
alphanumeric. Single-line alphanumeric fields should support
side-to-side scrolling. Multi-line alphanumeric fields should
support side-to-side and up-and-down scrolling and can provide
automatic word-wrapping as well.

Numbers, with optional decimal places

0
When to Use Edit Fields

Use an edit field when you want the user to enter a specific kind
of data, such as a date or a time, or a specific amount of data.

Numeric edit fields can be used to verify data format during data
entry. Only numeric keys (0 through 9) are accepted during data
entry. This can simplify the process for the user and the
application.

You can insert static format characters in single-line edit fields to
simp= data entry. For instance, if the field will contain a date,

56

/

The Interface Components

the application can display dashes or slashes between month, day
and year values.

a

Rules and Guidelines for Edit Fields

The size of an edit field should always be appropriate to the area
in which it is used. Normally, this means that edit fields used in
dialog boxes and accessories are smaller than edit fields used in
the work area.

An edit field should not accept values that do not conform to the
format of the field. For example, if the user enters an invalid
date, the application should reject the entry and prompt the user
for a new entry.

When the user enters an edit field, all the data in the field should
be selected. To edit data in the field, the user should be able to
simply type over existing data; new data should replace the
contents of the edit field. When the user moves the cursor within
the field, the data is deselected. The user can select a character or
a group of characters with the mouse or arrow keys.

The following rules apply specifically to edit fields used in dialog
boxes:

Use only single-line edit fields.

Use a raised box border around the edit field.

Label each edit field with a static text string that identifies
the text to enter.

Capitalize the first letter of each word in the label.

Place a colon (9 at the end of the label. Do not insert a space
between the colon and the last character in the label.

57

a Application Style Guide

When edit fields appear in a column in a dialog box:

Insert a space one-half the height of a character between
fields.

Place each edit field to the right of its label. Align the left end
of all edit fields in a column.

Align edit fields one character beyond the longest label.

Multi-line edit fields can be used in accessories or in the work
area. They should not be used in dialog boxes. Refer to "Using
Components in the Work Area," in this chapter, for details on
using edit fields in the work area.

Edit Field/List Box Combinations

An edit field/list box combination includes an edit field and a list
box that work together. As the user scrolls through the contents of
the list box items, the currently highlighted item is displayed in
the edit field.

When to Use Edit FieldlList Box Combinations

Use an edit field/list box combination when the user either can
choose an item from a long list or can enter a value not currently
in the list.

e

Rules and Guidelines for Edit FieldlList Box Combinations

The list box title should be the based on the plural of the edit field
label. For example, if the edit field is called File name, use Files
as the list box title.

58

The Interface Components

Push Buttons

a
A push button is a graphic, interactive component that can be
placed in one of two states, selected or unselected. It is labeled
with text.

When to Use Push Buttons

A push button can be used to:

Close a dialog box and proceed with a task

Close a dialog box and cancel a pending task

Clear the contents of a dialog box

Invoke a commonly used action, for example, PREV and
NEXT buttons while paging through a file.

push buttons can be used in the work area. Refer to "Using
Components in the Work Area," in this chapter, for details.

a Rules and Guidelines for Push Buttons

Push buttons can be drawn in a raised or lowered position.

Draw push buttons in the raised state any time they are
unselected.

Draw a push button in the lowered (selected) position while
the application performs the action described by the button.
Re-draw the push button in its raised position when the action
is complete.

When a push button is disabled, draw it in the raised position.

59

@ Application Style Guide

The standard accelerator for a push button is Alt+ the first letter
of the push button label. For example, in Calendar, the
accelerator for Previous is Alt + P.

Use standard push button accelerators unless two push button
labels begin with the same letter.

If you use standard accelerators, do not display the
accelerator. If the accelerator is non-standard, display it as
part of the push button label.

If Ctrl is part of a push button accelerator, use the notation
* < letter> instead of Ctrl+ letter. The second notation is used
for menu option accelerators only.

Use only upper case letters in push button accelerators.

Make all push buttons in a dialog box (or a screen in the work
area) the same size. Push buttons should be two characters longer
than the longest push button label. For example, if CANCEL is the
longest label, make all the push buttons in the dialog box large
enough to hold an eight-character string.

Use action words or phrases to label push buttons. m
Capitalize all letters of action words, such as RESET.

Capitalize the first letter of action phrases, such as "Add to
sort."

In the DeskMate Environment, the functions that display
push buttons will automatically center the label in the button.
It is not necessary to pad the label with spaces.

To push a push button, the user can:

Use the arrow keys or the TAB key on the keyboard to
highlight the button, then press the Enter key

60

The Interface Components 0
Move the mouse pointer to that button on the screen, and then
click the mouse button

Use the push button accelerator

Special Push Buttons - OK and CANCEL

OK and CANCEL are usually used together in dialog boxes. OK closes a
dialog box and proceeds with the task that called the dialog box.
CANCEL closes the dialog box and returns to the application without
taking any action.

OK and CANCEL can also be used individually in message boxes, to
allow acknowledgment of a message or to halt an operation that
would cause an error.

When OK and CANCEL are used side by side, put the OK button to
the left of the CANCEL button, as viewed by the user.

When OK and CANCEL are used in a column, put the OK button
above the CANCEL button.

Use ENTER as the accelerator for the OK button.

Use ESCAPE as the accelerator for the CANCEL button.

' 0
Radio Buttons

A radio button is a component that selects one option from a
mutually exclusive group. The group of options is called a radio
button group.

A radio button works like the select buttons on a car radio. You
cannot tune the radio to more than one station at a time; you
cannot select more than one option in a radio button group.

61

0) Application Style Guide

When to Use Radio Buttons

Use a radio button group when only one of a small group of
options can be active at a time. Do not use radio buttons for large
groups of options. Use a single-select list box for a large list.

Rules and Guidelines for Radio Buttons

Do not use accelerators with radio buttons.

To enter a radio button group:

press the Tab key

To navigate within a radio button group:

use the arrow keys

or

use the mouse

To push a radio button: a
press the Enter key when the desired radio button is
highlighted

Or

click the button with the mouse

62

The Interface Components a
Use radio buttons to select options that are represented by icons,
such as the Patterns or Colors selections in Draw. The following
illustration shows the Colors radio box.

a

Do not use radio buttons if the options in the group might change.
For example, if you want the user to select a file name, do not use
radio buttons unless the file names will always be the same. If the
file names can change, use a list box instead. Radio buttons are
appropriate for selecting a device, such as a communications port.
A computer will always have the same ports, but the user might
not always want to use the same one.

63

a Application Style Guide

The group and each radio button in it should have a label.

Use static text to label the group. A static box around the
label is optional.

Use static text or static icons to label individual radio buttons.

If static text is used to label individual buttons, capitalize
each word in the label.

Do not use a colon (:) as the last character in the label.

Commonly recognized acronyms or abbreviations (such as
asap, AM/FM, or a.m./p.m.) can be spelled in either upper- or
lowercase letters.

Use static icons whenever text labels are awkward or long.
For example, the Patterns and Brush Shapes dialog boxes in
Draw use pictures of line styles and brush sizes rather than
descriptions of them. In the Text application’s Print Menu,
the Page Setup dialog box uses pictures to denote portrait and
landscape print modes.

a Enclose radio button groups in a static box. Do not include any
component that is not a member of the group inside the box.

Arrange radio buttons in rows and columns instead of a long list.
This way, the user can navigate the group with all four arrow
keys, instead of two.

Icon Buttons

An icon button functions the same as a push button with a static
icon label. A picture drawn on the top of an icon button identifies
the purpose of the button.

An icon button is different from a static icon. A static icon only
identifies a component, while an icon button is an interactive
component. For example, the Draw tools are icon buttons.

64

The Interface Components e
When to Use Icon Buttons

An icon button is used to select a state or mode for an application.
Icon buttons can be used wherever push buttons are appropriate.
Use icon buttons whenever a picture describes the button's action
more easily or more clearly than words.

Icon buttons can be used in the work area. Refer to "Using
Components in the Work Area" in this chapter for details.

Rules and Guidelines for Icon Buttons

Icon buttons can be drawn in raised or lowered position. When an
icon button is disabled or unselected, draw it in the raised
position, When an icon button is selected, draw it in the lowered
position.

Scroll Bars

A scroll bar allows quick movement through a list that will not fit
on one screen or in one window. Scroll bars are controlled by the
mouse, 86 described in this section. Scrolling can also be
performed from the keyboard; see Chapter 2 for details.

A scroll bar consists of:

Twoarrowbuttons

The scrolling region

The scroll elevator

a

When to Use Scroll Bars

Use a scroll bar when the information you want to display does
not fit on a single screen or window.

65

e Application Style Guide

Rules and Guidelines for Scroll Bars

Scroll bars can be drawn horizontally or vertically. Horizontal and
vertical scroll bars can be used together for very large lists. Place
horizontal scroll bars at the bottom of the screen; place vertical
scroll bars at the right.

The arrows on a horizontal scroll bar point to the left and right.
The arrows on a vertical scroll bar point up and down.

The distance of the elevator from the end of the scrolling region
indicates the relative distance of the cursor from the beginning of
the list. The beginning of the list is the upper left position in the
list. For example, if three-fourths of the scrolling region is above
the elevator, it means that three-fourths of the list is above the
cursor.

A scroll bar responds to the mouse as follows:

Clicking on an arrow button

Moves the cursor through the list one item at a time in the
direction indicated by the arrow. This is equivalent to
pressing one of the arrow keys on the keyboard. a

Clicking in the scrolling region

Moves the cursor through the list one page at a time in the
direction indicated by the arrow. This is equivalent to
pressing Page Up (up one page), Page Down (down one page),
Ctrl+Page up (left one page), or Ctrl+Page down (right one
page) on the keyboard.

66

The Interface Components a
Dragging the eleuator

Moves the cursor quickly through large sections of a list. This
is equivalent to pressing the Page Up or Page Down key.
Dragging the elevator to the top of the scrolling region has
the same effect as pressing Ctrl+Home. Dragging the
elevator to the bottom of the scrolling region has the same
effect as pressing Ctrl+End.

Static Components

Static components, unlike interactive components, simply send
information to the user. They do not return information to the
application The application will not take any action when static
components are selected. Use static components to make the user
aware of special circumstances, such as an error or an invalid file
type.

Text

Static text is a word, or a group of words, that labels an
interactive component or sends a message to the user. Printer i s
out of paper is an example of a message. Although such a message
calls for action by the user, the user is not required to furnish
information to the application before the task can be completed.

0

When to Use Text

Use text to:

Create labels for radio button groups, check boxes, and edit
fields

Give instructions for using an application, an accessory, or a
dialog box

Alert the user to error conditions

67

a Application Style Guide

Rules and Guidelines for Text

Text can be drawn in two states, normal and grayed. When text is
used as a component label, draw the text in grayed state if the
component is disabled. Draw the text in normal state if the
component is enabled.

Leave one space between a text label and the component.

Icons

A static icon is a picture that describes an option or setting. Icons
can be created by including graphics lists in the application code,
by creating a bitmap, or by creating any other graphic output
form that can be included in the program.

A static icon is Merent from an icon button. A static icon is
simply a label; selecting an icon button will invoke an action.

When to Use Icons

Use icons whenever a text label would be awkward or
unreasonably long. Icons are also useful when space is limited. (I)
Rules and Guidelines for Icons

Use icons with radio buttons and check boxes.

Boxes

A static box is used to surround a group of related components.
Static boxes help the user quickly identify component groups on
the screen.

68

The Interface Components

When to Use Boxes

Use boxes to surround radio button groups, check box groups, or
edit fields.

a

Rules and Guidelines for Boxes

Boxes can be drawn in flat or raised style.

Using Components in the Work Area

Most interface components are recommended only for use in
dialog boxes and accessories. List boxes, edit fields, push buttons
and icon buttons are the only components that are recommended
for use in the work area. This section describes the rules and
guidelines for using these components in the work area.

When interface components are used directly in the work area,
the application menu bar is not disabled. This means the user can
access menu options while components are active on the screen.
This is Merent from dialog boxes. While dialog boxes are open,
the menu bar and the rest of the screen are disabled. The user
must close the dialog box before using any menu option.

Static components can be freely used in the work area.

0

List Boxes

Use list boxes for long lists and lists that change frequently.

69

e Application Style Guide

Edit Fields

Use edit fields in the work area for text entry and editing.

The only real requirement in the work area is that the screen
must be well organized and easy to use. Edit fields used in the
work area should be labeled.

In accessories, edit fields must be clearly identified, but not
necessarily with a static text label. For instance, the edit fields
used in Address Book look like an address book entry. The user
can easily identify the expected entry from the graphic context of
the screen. A text label is not necessary.

Push Buttons

Push buttons follow the same appearance and operations rules in
the work area as in dialog boxes.

Icon Buttons

a Use icon buttons in the work area to change the state of the
application or accessory. For example, Draw uses icon buttons to
change the drawing mode or the drawing style.

70

0

Chapter 6

Pop-ups

This chapter defines A DeskMate pop-up, or pop-up window. It
describes the types of pop-ups supported, and describes the rules
and guidelines that apply to pop-ups.

A pop-up, or pop-up window, is a group of standard DeskMate user
interface components. A pop-up can be used to get information to
the user, send a message to the user, or enable the user to perform
a specialized task. A popup appears under specific circumstances,
accomplishes a specific goal, and then returns control to the
application. Any interface component described in Chapter 5 can
be used in a pop-up.

As long as a pop-up is active (displayed on the screen), the
application menu bar and the application work area are disabled.
The user must close the pop-up before the application will be
enabled again.

a

When to Use a Pop-up

Pop-ups are useful in a wide variety of circumstances, provided
your task meets a few basic criteria. If the task does not meet
these criteria, try another type of interface. It might be possible to
break your task into smaller subtasks, each of which can be
processed in a single pop-up window.

7 1

e Application Style Guide

Use a pop-up if:

A specific task needs to be performed during execution of an
application.

"he task does not require use of the application menu bar or
any of the work area outside the pop-up window. Both the
application menu bar and the rest of the work area are
disabled as long as the window is open.

All the information necessary to complete the task is
available inside the pop-up window.

Closing the pop-up window returns the user to the application.
If the pop-up is interactive, the state of the application might
be different after the pop-up is closed.

Closing the pop-up window does not terminate the
application. When a pop-up is closed, the application resumes
normal processing. A pop-up that returns to the application
but does not terminate the application is said to have closure.
Closure is a required property of all pop-ups.

Types of Pop-ups e
Pop-ups fall into three broad categories: message boxes, dialog
boxes, and accessories.

A message box is a non-interactive pop-up. It is used simply to
convey information to the user. The user acknowledges receiving
the information, but can take no further action before closing the
window. Message boxes are appropriate for cautions and error
messages (such as Fi 1 e not found) and status reports during lengthy
operations (such as Printing in progress).

A dialog box is an interactive pop-up. It enables the user to make
decisions and converse with the application before closing the
window. (Dialogue, or conversation, occurs between a user and an
application in a dialog box.) Depending on the decisions made by

72

Pop ups

the user, a dialog box might alter the state of the application
when it closes.

An accessory is an interactive pop-up that enables the user to
perform a specialized task. Accessories are the most elaborate
type of pop-up. Calculator and Phone LIst are examples of pop-up
accessories.

Message Boxes

Message boxes are the simplest pop-ups. Their only interface
components are static text and push buttons. Usually, they
contain only one button, the OK button, which is used to
acknowledge the message.

The following illustration shows a message box. Notice the OK
button centered at the bottom of the box.

~- _ _ a
4552704 bytes

Volume name:

~ - -- - - -- - I

73

a Application Style Guide

DeskMate applications must save screen background information
before displaying a pop-up and restore screen information after a
pop-up is closed.

Dialog Boxes

Dialog boxes focus the user’s attention on a specific task and
enable communication between the user and the application. All
information necessary to complete the task is presented in the
dialog box.

The following illustration shows one of the dialog boxes in the
Text application. This box is from the Spell Checker accessory
used in Text.

I

e

~ - . .--. ..

74

Pop- ups a
Dialog boxes are appropriate for a variety of tasks, such as
proofreading a document for spelling errors. A dialog box can
focus the user on spell-checking the document. While spell-
checking, the user cannot do anything but correct spelling errors.
When the user completes the task, all words are spelled correctly,
and the application returns to normal operation.

Accessories

Accessories ofken look like dialog boxes, but they are more like
miniature applications. They are not bound by the same
appearance and operation rules as dialog boxes. Use accessories to
complete concise, self-contained tasks. For example, a spell
checker in a word processing program is suitable for an accessory.
A spell checker can also be implemented as an application dialog
box. The advantage of an accessory spell checker is that you can
use it in any application that has access to the Accessories Menu.
If the spell checker is a dialog box within an application, it is not
accessible while that application is not running.

Rules and Guidelines for Pop-ups

Any DeskMate interface component can be included in a dialog
box or an accessory. The components that can be included in
message boxes are more limited. This section describes the rules
that apply to size, position, and usage of components within the
various types of pop-ups.

Size and Position

a

Always try to position pop-up windows in the same location on the
screen. They also must fit within the application work area. The
preferred location is the middle of the work area, centered
horizontally and vertically. A pop-up should not occupy the entire
work area unless absolutely necessary.

75

e Application Style Guide

Because they are focused tasks, all pop-ups should be visually
bounded by frames. The frame of a pop-up overlays the screen of
the application. Information beneath the pop-up should remain
visible to the greatest extent possible.

Size and Position of Dialog Boxes

Always try to display dialog boxes in the center of the screen.
Using a single location for dialog boxes gives your application a
consistent, predictable appearance. Display a dialog box in a
different location only if you have no alternative, for example, if
centering it will obstruct the user’s view of information needed to
complete the box.

Keep pop-ups (dialog boxes in particular) as small and simple as
possible. Since pop-ups are intended for very specific tasks, small,
simple presentation helps to focus the user’s attention on the task
at hand. Large, complicated boxes are M i c u l t to understand. Try
to group information from very large boxes into two or more small
boxes. For example, do not group printer information and page
layout information together in a single dialog box. Make two
boxes, one for printer information and one for page layout
information. a
Size and Position of Message Boxes

Message boxes must be centered, horizontally and vertically, on
the screen. If you use DeskMate functions, the size and position of
a message box is controlled by the system.

Titles

Use the title to describe the function of the pop-up as precisely
as possible.

Capitalize the first letter of each word in the title.

76

Pop- ups

Do not punctuate the title.

Do not provide instructions in the title.

0

Dialog Box Titles

Every dialog box must have a title, which appears in the dialog
box frame, that identifies the action or procedure the dialog box
performs. For example, the Open option in the File Menu displays
a dialog box titled Open File, and the Page setup option displays
the Page Setup dialog box.

If a dialog box requests additional information for an extended
command, repeat the menu option name in the dialog box title.
Extended commands are described in Chapter 4.

Message Box Titles

Every message box should also have an appropriate title.

If the message box was invoked by a menu option, use the option
name in the title of the message box.

Message Text

a
The message should describe the problem or the action taken as
clearly as possible.

The text must be no longer than three 30-character lines.
Messages are word-wrapped automatically.

Use complete sentences, including appropriate punctuation.

If a message notifies the user that a task, such as printing, is
taking place, the message should end with an ellipsis (...I.

For example, Printing in progress.. . , with a CANCEL button tells

77

a Application Style Guide

the user that printing is being done and the user can cancel
the task at any time while the message is displayed.

Do not u6e contractions. For example, use do not and cannot
instead of don't and can't.

Avoid punctuation such as colons and exclamation points.

Do not include the application name in the message.

Use all capital letters on file names in the message.

Capitalize the first letter of any key names in the message.

Use accelerators sparingly to avoid complicating the dialog
box interface. Refer to Chapter 5 for more information about
using and defuring accelerators.

Pop-up Operation

This section describes the general behavior that is expected from
pop-ups. It includes error handling procedures, and some
information about displaying and removing pop-ups during an
application.

Default States

m
Always provide a default state or value for each check box, list
box, radio button, and edit field in a dialog box.

Dialog boxes should "remember" previous settings whenever
possible.

Disabled Components

If a component is disabled, draw the component and its label in
the unselected state. Disable components when selecting the

78

Pop ups a
component is an invalid operation for the application. The
unselected state is:

Exception: If all buttons in a group are disabled, the default
button must be pressed.

Component Behavior

off, for a check box

Empty, for an edit field

Raised, for a push button or radio button

A list box is the only component in a dialog box that enables the
user to select an item and immediately terminate the dialog box.

When the user presses the Enter key or double clicks on a list box
item, the application should choose the highlighted item and
select the OK button

Draw a push button in its raised position initially. When the user
selects the button, draw the button in its lowered position Once
the application completes the process invoked by the button,
redraw the button in its raised position.

When an edit field/list box combination is used, display the
currently highlighted list item in the edit field.

a

Push Buttons in Message Boxes

The following push button combinations are supported in message
boxes:

OK
Enables the user to acknowledge a message.

79

e Application Style Guide

CANCEL
Enables the user to stop an operation.

OK, CANCEL
Enables the user to continue or cancel the operation.

YES, NO
Enables the user to answer a prompt with yes or no. The
prompt must be phrased as a question and end with a
question mark.

YES, NO, CANCEL
Enables the user to cancel the operation, or answer yes or no
and continue. The prompt must be phrased as a question and
must end with a question mark.

RETRY, CANCEL
Enables the user to cancel the operation or try it again.

Assigning Default States

Valid default settings should always be given to the components
within a dialog box, enabling the user to accept the information
(OK button) without causing errors to occur.

When the user selects (pushes) the OK button, the application
should verify the accuracy and format of data accepted from the
user. When the user enters invalid data, such as an invalid file
name in an edit field, the application should

1. Display a message box informing the user of the error and
giving the user the option to retry or cancel.

2. Highlight the invalid data or the component that contains the
invalid data.

0

3. Raise the pushed button.

4. Rerun the dialog box, enabling the user to try again.

80

Pop ups

Removing Dialog Boxes

When memory permits, the application should save the screen
background and restore it later to remove the dialog box. If there
is insufficient memory, the application should redraw the screen
to remove a dialog box.

Pop-ups can be stacked, or layered, as long as they are unstacked
in reverse order. If the closure of one pop-up returns to a previous
pop-up, the second pop-up should completely cover the first pop-
up. This way, users will not be confused into thinking that some
components in the first pop-up are available while the second pop-
up is active.

a

User Interfaces to Pop-up Windows

The user must be able to access pop-ups with the keyboard as well
as with the mouse. This section describes the required elements of
each interface.

Keyboard Interface

Esc (Escape)
Selects the Cancel button to terminate the pop-up with no
action taken.

a
Enter

If the highlighted component is not a push button, pressing
Enter presses the OK button to terminate the pop-up with
affirmative action. If the highlighted component is a push
button, pressing Enter pushes the button.

If the highlighted component is a list box, pressing Enter
selects the component and immediately executes the task.

Space bar
If the highlighted component is a check box, pressing the
space bar toggles the state of the check box.

81

@ Application Style Guide

If the highlighted component is a push button, icon button, or
radio button, pressing the space bar selects the button.

Tab
Moves the highlight forward to the next component or
component group.

Shift+ Tab
Moves the highlight backward to the next component or
component group.

Up Arrow
Highlights the nearest component above the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the up arrow highlights
the previous element of the component. The state of a
component does not change when the user arrows out.

Down Arrow
Highlights the nearest component below the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the down arrow
highlights the previous element of the component. The state
of a component does not change when the user arrows out. a

Right Arrow
Highlights the nearest component to the right of the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the right arrow
highlights the previous element of the component. The state
of a component does not change when the user arrows out.

Left Arrow
Highlights the nearest component to the left of the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the left arrow
highlights the previous element of the component. The state
of a component does not change when the user arrows out.

82

Pop- ups a
Mouse Interface

The effect of clicking the mouse button on a component depends
on the type of component:

Click
Clicking on a check box toggles the state of the box.

Clicking on a radio button, an icon button, or a push button
selects the button.

Clicking on an edit field activates the edit field as if the user
pressed the Tab key or an arrow key to enter the field.

Double Click
Selects and immediately executes a list box item.

Drag
Dragging the mouse selects a group of characters in an edit
field.

a

83

a

Chapter 7

Special Menus

This chapter describes some particular functions you can include
in your application and the DeskMate menus that you must
include to support those functions.

Message

DeskMate uses the Message to relay messages from the system to
the mer. Include the Message Menu as part of the application
menu bar of all 80-column applications. Do not include the
Message Menu in IO-column application menu bars. The Message
Menu is optional in menu bar components used in dialog boxes,
and in accessory menu bars. a
Accessories

The Accessories Menu is a list of all DeskMate accessories
currently loaded on the system. Include the Accessories Menu in
80-column application menu bars. Do not include it in accessory
menu bars, 40-column application menu bars, or menu bar
components.

85

e Application Style Guide

File

The F2 menu, usually called File, provides access to file
management functions. All 80-column applications must include
Exit and Run options on the F2 menu. If your application includes
an About option, you should also include it on the F2 menu. Some
examples of other options you may want to include are:

New, Save, Save as, and Open, if the application involves
creating and using new files

Print, if the user can print files from the application

Page setup, if printing will require special formatting

Merge, if the user might combine multiple files for a single
operation

Other special file functions in your application might suggest
other options that can be included in the File Menu.

A typical File Menu follows:

a F i l e F2
New
Open.. .
Save
Save as.. .
Merge.. .
Page setup ...
Print.. .
Exit Esc
Run.. .
About . . .

The rest of this section describes the operation of each option
included in the preceding example.

86

Special Menus Q
NeW

The New option must be enabled whenever the user can create a
new file. If a data file is already in use, it prompts the user (with
a YES/NO/CANCEL message) to save any unsaved, modified data.

If the user selects Yes, the data is saved to the current file. If
the file is untitled, the Save as dialog box will appear. See
'Save as" option description which follows for more
information. After the file is saved, the application clears
working memory and gets ready for a new file.

If the user selects No, the current data is not saved, the
application clears memory and gets ready for new data.

If the user selects C a n c e l , the New option is terminated and
the application retains the current data file.

The New option sets the application to its default state, or the
Untitled state, and "Untitled" is displayed as the file name.

If the application does not allow the Untitled state (such as in
some database applications), the application should prompt the
user for a valid file name. In this case, the New option appears
with an ellipsis (...) because the user must supply additional
information (the file name).

a
Open..

The Open option must be enabled whenever a file can be loaded.
If a file is already in use, the application prompts the user (with a
YES/NO/CANCEL message) to save any unsaved, modified data.

The option's responses to YES, NO, and CANCEL are similar to the
responses of the New option. The option will proceed if the user
selects YES or NO, and will terminate if the user selects CANCEL.

After the message is answered, the application displays an Open
File dialog box and prompts the user for a file name. The user

87

e Application Style Guide

must select OK or CANCEL in the Open dialog box. If the user selects
OK, the file is opened and loaded into memory. If the user selects
CANCEL, the application returns to its prior state.

Applications that automatically update files as data is entered do
not need to prompt the user to save changes before displaying the
Open File dialog box.

SaVe

Save must be enabled whenever the current file can be saved
without first prompting the user for more information. It is
disabled when the application is in an Untitled state.

Do not include this option if data updates will occur automatically
without a specific user request. Include it if the user will be
allowed to make periodic updates to data on the disk.

save as...

The Save as option must be enabled whenever the user can
change the data in an existing file and then save the changed
data in a different file. The application displays a Save File dialog
box and prompts the user for a file name.

If the user selects OK in the Save File dialog box, the application
should verify the file name. If the specified file already exists, the
application should display a yes/no/cancel message box, to ask
whether the user wants to overwrite the existing file.

If the user selects CANCEL in the Save File dialog box, the
application should return to its prior state.

a

88

Special Menus

Merge..

The Merge option enables the user to combine the information in
one file with the information in another file. It displays a Merge
File dialog box and prompts the user for the file to merge in.

If the application enables the user to merge data from another
source into the current file, the application should display a
dialog box that prompts the user for information about the source.

Merge operations should move specified data into the current file.
Do not move the'current file into some other file.

I.

Page setup ...
The Page setup option enables the user to define the printed page
layout for the current file. The application displays the Page
Setup dialog box, prompting the user for information such as
margins, total lines per page, printed lines per page, and printed
line width.

Print. ..
The Print option enables the user to print the current screen or
file to the printer, the screen, or a file. The application uses the
print File dialog box to get print information from the user.

If you want to customize printing options, you can use a phrase to
identify this option, such as Print Page, or Print Drawing. In this
case, the phrase identifies clearly what will be printed. It is not
required that a printing option support screen, printer and file as
output destinations. You can choose to support some of them and
omit others, as appropriate to your application. If you want to use
a name other than Print, always begin the name with "Print."

The accelerator for this option is the Print key. It is not noted in
the menu since it is a machine-specific accelerator.

0

a9

c Application Style Guide

Exit

The Exit option is required for all applications. This option closes
the current application and returns to the desktop. If the
application was started from a Runtime rather than from the
desktop, Exit returns to DOS. The Esc key is the accelerator for
Exit.

Before closing the application, Exit checks to see whether the
data in memory has been modified since the last save operation. If
it has been modified, Exit prompts the user to save the changes. If
the user cancels the operation, the application returns to its
previous state.

RUTL..

The Run option enables the user to run a different application
without first returning to the desktop or DOS. This option
displays the Run dialog box. After the user fills in the box and
selects OK, Run exits the current application and starts the
application specified in the Run dialog. If the user selects
CANCEL, Run returns to the current application.

If a data file is open under the current application and that file a/
contains unsaved changes, the Run option prompts the user to
save the file before proceeding.

About.. .
The About option displays a dialog box that contains the
application’s name, version number, and copyright information.
Capitalize the first letter of each word in the application name.
This option is recommended for all applications and accessories.

The About option should be placed in a separate menu option
group-

90

Special Menus a
Edit

Applications that use the DeskMate clipboard must have an Edit
Menu. The Edit Menu enables the application to transfer data to
and from the DeskMate clipboard.

Edit F3
cut Shift+Del
COPY CtrltIns
Paste Shi ft+Ins
Clear Del

Your application should include an Edit Menu if the user can
move or copy data to another area of the same file or to a different
file. For instance, figures from a spreadsheet could be transferred
to a word processor for a business forecast report.

Applications that enable the user to move and copy selected data
between files or to other applications must use the DeskMate
clipboard instead of a data buffer. Information in a data buffer
cannot be t r d e r r e d to other files or other applications.

When the user starts an application or performs a task switch, the
application should check the clipboard contents. If the clipboard
contains data that is valid in the application, the application
should enable the Paste option.

DeskMate applications that interface with the clipboard should
provide a way for the user to %elect" the information. Highlight
selected text in reverse video. Outline graphics with a handle box.

The Edit Menu should contain the following options, in the
following order:

a

91

e Application Style Guide

Cut

The Cut option is enabled only when data is highlighted. It
removes the selected data from the file and places it on the
clipboard. Shift+Del is the accelerator for Cut.

Selecting the Cut option disables Cut, Copy, and Clear, and
enables Paste.

COPY

The Copy option must be enabled only when data is highlighted.
It copies the selected text to the clipboard without removing it
h m the current location, and deselects the data. The user must
select the text again if the text is required for another operation.
Ctrl+Ins is the accelerator for Copy.

Selecting the Copy option disables Cut, Copy, and Clear and
enables Paste and Select all.

e Paste

The Paste option must be enabled whenever the clipboard
contains data that is valid in the current application. Paste copies
the clipboard contents to the current cursor position or to a
position specified by the current application, and deselects the
data in its new location. Shift+Ins is the accelerator for Paste.

For example:

The CLIP-DRAW data type is not supported by the
Worksheet application, so the Paste option in Worksheet is
grayed when CLIP-DRAW data is on the clipboard.

The CLIP-DRAW type is supported by the Form Setup and
Text applications, so the Paste option in either application is
enabled when CLIP-DRAW data is on the clipboard.

92

Special Menus

If the data can appear more than once in the file, the option
remains enabled after the Paste operation is complete. If the data
can appear only once in the file, the option is grayed and the
contents of the clipboard are cleared by the application.

a

C l e w

The Clear option must be enabled when data is selected. It
removes the selected data from the screen and the file without
affecting the contents of the clipboard. Clear is accelerated with
Del.

Selecting Clear disables Cut, Copy, and Clear and enables Paste
(if the data is valid in the current application) and Select all.

a

93

\e

DeskMate Development System
Deve I o p me n t G u i de

03.05.00

;I)

About the Guide

This guide covers all aspects of DeskMate development, from choosing a development system
and memory model, through the implementation of the application by using the examples and
tools, and finally the distribution of your application and providing help, tutorials, and demos for
your product.

Getting Started contains the preliminary information needed before development begins.
Important decisions made early on can effect your development schedule and the success of
your product when it is complete. This section introduces several concepts important to
DeskMate development and covers compatibility and programming issues which you should be
aware of. You should read this section before development begins and refer to it during the
development process.

Programming Examples, describes each of the samples provided in the kit and covers some
special programming topics of interest. We recommend using one of the samples as a template
or starting point when developing a DeskMate application.

Tools and Utilities provides user documentation on how to actually use the tools provided with the
development system. These tools help reduce the time it takes to create a working application.
You can create menus, dialog boxes, bitmaps, custom fonts, and pictures with these utilities. You
can also analyze the memory requirements of your application.

Distributing Your Application covers the DeskMate Checklist and how to write your installation
programs. It also provides guidelines you should use when determining what your runtime
diskette file distributions should be.

DeskMate Help Systems describes the help available in a DeskMate environment and how your
application provides help to the user. The new Intelligent Help Manager which provides context-
sensitive help is described in great detail. Writing Tutorials and Demos describes how to use the
DeskMate Tutorial Technology to author tutorial scripts and demos for distribution with your
product. The documentation for the tools and utilities provided for each of these systems is
included in the discussion.

0

.

Contents
0

About the Guide

Part 1 . Getting Started
Introduction ... 1-1
Memory Models and Development Tools 1-5
DeskMate Coordinate Systems 1-13
Compatibility and Programing Issues 1-23
Overview of the Tools, Utilities, and Examples 1-29

Part 2 - Programing Examples
A DeskMate Shell ... 2-1
Using the DeskMate Coordinate Systems 2-7
DeskMate File Handling 2-13

Using the Graphics Form Manager 2-57
Special Topics ... 2-65
Writing a 40 Column Application 2-77
Writing a DeskMate Resource 2-79
Writing a DeskMate Accessory 2-89

Printing ... 2-47 *
............................

Part 3 - Tools and Utilities
Menu bar Builder ... 3-1
Dialog Box Builder ... 3-3
Bitmap Editor .. 3-7

Clipart File Builder 3-11
Stroke Font Editor ... 3-13
Memory Map Generator 3-15
Desk Header .. 3-17
Disk Label Generator 3-21
Customized Runtime Utility 3-25

Graphics Form Generator 3-9

0 Part 4 . Distributing Your Application
The DeskMate Check l i s t 4-1

I n s t a l l a t i o n and Upgrade Procedures 4-3
Determining DeskMate Product Versions 4-5
Runtime D i s t r i b u t i o n Guidel ines 4-7

Part 5 . DeskMate Help Systems
Overview .. 5-1

Wri t ing t h e Appl ica t ion Help F i l e 5-5
Crea t ing t h e Sample Help F i l e VIDEO.HLP 5-13
Help Rule Base U t i l i t y 5-25
DeskMate Help E d i t o r 5-29

Help F i l e Compression U t i l i t y 5-31
Help F i l e Format ... 5-33

Part 6 - Writing Tutorials and Demos
The DeskMate T u t o r i a l Technology 6-1

................................. Authoring a T u t o r i a l S c r i p t 6-3

The DeskMate In t roduc to ry T u t o r i a l 6-5
S c r i p t Command Reference 6-41
T u t o r i a l P l aye r ... 6-105
Demo Launcher .. 6-106
Event Recorder ... 6-107
S c r i p t F i l e I n t e r p r e t e r and Compiler 6-108

' T u t o r i a l Compression Tools 6-109

m

Appendix A - DeskMate 3 Application File Formats
I n t r o d u c t i o n ... A-1

Address Book/Phone L i s t A-3

Calendar ... A-5

Fi le r /Form Setup ... A - 1 1

Text ... A-.5

Draw ... A-9

Worksheet .. A - 2 1

0

Part 1
Getting Started

a

e Contents
Introduction ... 1-1

Memory Models and Development Tools 1- 5
Memory Models ... 1-5
Development Tools 1-5

Compiling .. 1-5
Linking .. 1-6

Using Turbo Debugger 1-6
Using SYMDEB 1-8
Using CodeView 1-9
Using Periscope 1-11

DeskMate Coordinate Systems 1-13
About World Coordinates 1-13
Using World Coordinates 1-14
Using World Extents 1-14
World Coordinates - General 1-15
Normalized World Coordinates 1-15
Point to Point vs . Origin Extent 1-16
Origin Independent Extents 1-16
Finding Adjacent Pixels 1-17
Finding the Nth Pixel 1-17
World, Viewport, Clip 1-19

World and Viewport Relationship 1-21

Debugging under DeskMate 1-6

a

Clip Regions ... 1-21
Window Manager 1-21

Compatibility and Programming Issues 1-23
Runtime Executive 1-23

The Help System ... 1-24
DeskMate 3.0 Operation 1-24
DeskMate 3.3 Operation 1-24
Compatibility Issues 1-24 .

.. -.. - . . . 1 - 7 A

..................... DeskMate 3 .0 Code Shed Operation 1-25 m
DeskMate 3 .3 Code Shed Operation 1-25

P r o g r a m i n g and Compat ib i l i ty I s sues 1-25
"S t i cky Menus" and S e l e c t a b l e Grayed Menu Items 1-26
Animated Busy Icon 1-26

Form Manager and GUF Resource 1-27
........ 1-27

Loading of t h e Resources f o r 3 .3 Appl ica t ions 1-27

Video Drivers ... 1-27

Dr ive r Names ... 1-27
Video Detec t ion 1-27
P a l e t t e s ... 1-27

P r i n t e r Dr ive r s ... 1-28
Line S t y l e s .. 1-28

Landscape p r i n t i n g 1-28
Overview of t h e Tools, Util i t ies. and Examples 1-29

Loading of t h e Resources f o r 3 .0 Appl ica t ions

P r i n t r eg ions .. 1-28

m

Introduction

After reading About This Kit, reviewing the DeskMate Style Guide, and installing your DeskMate
3 product and development system you are ready to develop a DeskMate application. Before you
begin development, we should review the key information discussed so far and introduce some
new topics which you should find beneficial in the development of your application.

The Kit contains the 1) development files, 2) samples, and 3) tools and utilities need to
develop a DeskMate applications. The DeskMate Technical Reference defines every
function call available in the DeskMate libraries.

DeskMate applications are primarily written in C but may also be written in assembly
language. Programs may be written in any of the memory models but only the small and
medium memory models have DeskMate libraries. Refer to Memory Models and
Development Tools, in this section, for a detailed discussion of memory models, and
compiling, linking, and debugging of DeskMate applications.

The DeskMate Style Guide defines the DeskMate User Interface. DeskMate applications
use menus, dialog boxes, message boxes, and interface components to communicate
with the user. DeskMate applications support both a keyboard and mouse interface. Your
application should meet the DeskMate standards defined in this guide.

From the System Overview in About This Kit, you learned about DESK, the DeskMate
Executive, and the key DeskMate resource - Core Services Resource (Core or CSR),
and the other resources available in the DeskMate environment. Applications
communicate with these resources through the DeskMate libraries.

There are now two versions of DeskMate 3 in distribution, DeskMate 3.0 (includes 3.2)
and DeskMate 3.3. Your application should check the system version number, when it is
initially loaded, by calling dm-inquiregroduct to determine which version of the
environment the application is running on.

0

a
Now, let's introduce some new DeskMate programming topics.

DeskMate uses a world coordinate system to access the video. In the programming
examples and the function call descriptions in the DeskMate Technical Reference you
will often see the defines, CHAR XEXT and CHAR YEXT used. These defines allow the
programmer to reference po in tsk the screen as-character locations. DeskMate also
allows the video to be accessed at a pixel or device level. See DeskMate Coordinate
Systems for a detailed discussion about world and device coordinates.

DeskMate applications are event-driven, they wait for the user to perform an action and
then act upon the action. The CSR provides an Event Interpreter or Manager which
translates the user's actions into events the application can process. Applications can
write their own event interpreters to capture events before and after the CSR's Event
Manager has handled them. For more information, see the Event Manager section of the
DeskMate Technical Reference.

a DeskMate allows mini-applications, called accessories, to pop-up over the current
application. When there is not enough available memory to load the accessory, Desk will
try to make room for the accessory by getting rid of part of the application's code and
moving the rest. This process is referred to as code shedding. The following criteria is
used to determine if your application can be code shed to run an accessory. If your
application cannot be code shed then it MUST call dm-exec-dont-shed when initially
loaded to insure that it is not code shed to run an accessory. Your application should
also set the code shed size using the DeskMate utility DESKHDR. EXE.

1) An overlaid application cannot be code shed since it cannot be guaranteed
that it will be restored from the disk in the same configuration it was in before
the accessory was run.

2) An Application which uses event interpreters or interrupt handlers cannot be
code shed because the interpreters and handlers are address dependent.
When the application is moved during the code shed, the handlers are moved
and may no longer function correctly.

Note: On a DeskMate 3.3 system the application may be able to code
shed if the handlers are placed in the IMPURE segment which is
not altered during a code shed. Refer to the detailed information
for DESKHDR. EXE in the Tools and Utilities section of this guide for
more information about splitting applications.

3) A medium or large model application which has too many fix-ups (more than
200), cannot code shed in a DeskMate 3.0 system but can on a 3.3 systems
which supports unlimited fix-ups. m
Note: This deficiency in the 3.0 system can be overcome by naming the

code segments and limiting the number of code segments used to
a smaller number. Refer to your compiler documentation for more
information about overriding the default code segment name.

The executive and the resources often use the application's stack. The CSR and its
drivers require the application stack for busy icon and mouse processing. A packed
executable has a very small temporary stack while it is being loaded before the stack is
expanded. This stack can be overflowed during the loading of the application if the busy
icon or mouse processing consume more of the stack than is available. You should not
pack your DeskMate executable and should allow at least 2048 bytes of stack space for
the executive and DeskMate resources, and 4096 bytes if the Form Manager Resource
is used.

After reviewing the Memory Models and Development Tools section, review the DeskMate
Coordinate Systems if your application will be accessing the video to do graphics or if you
want to access the video at the pixel level. You will want to review these sections again once
you actually start development and are more familiar with the system.

If you have developed or are developing an application using the DeskMate 3.2 Development
System, you should read the section on Compatibility and Programming Issues for important
information which could affect your application. New developers should also review this section _._ - - .* .-*---I ___-- _^^.. .--:-- ... I.:-b.:.-.I.+ n((nr.) \,e,,* ~nnI;r.~tifin

The next step is to review the Overview of the Tools, Utilities, and Examples to get a good
picture of the overall development system. Start with one of the examples, the one that matches
your application the best, and expand on it using the tools and utilities supplied with the kit. You
are now ready to begin your DeskMate development.

a

a

Memory Models and Development Tools

Memory Models
.e

Small and medium memory models are supported through the DeskMate libraries,
DM.LIB and DMMED.LIB. Applications are limited to 64K of data space. The data
segment and the stack segment must be the same (DS == SS).

Large model DeskMate applications are not directly supported through a library and
require additional coding by the programmer. A large model application uses the medium
model library, DMMED . LIB, to communicate with the executive and resources. The
application's DeskMate data and stack must be in the default data segment, DGROUP,
when the application makes a DeskMate function call.

Certain calls store the address of the application's data for use by other function calls.
For instance, the mb-draw call saves the menu bar address for use with by the event-*
function calls. For this reason, the menu bar should not be moved to a different memory
location between calls to mb-draw and event-'. If the menu bar is moved, it must be
restored at exactly the same location for the program to function correctly.

Whenever possible, all DeskMate data, the menu bar, dialog boxes, messages, etc.,
should be defined in the default data segment and the other application's data should be
defined in alternate data segments to insure the data used by a DeskMate functions is in
the correct data segment.

Development Tools

The Kit does not contain the development tools necessary to write software, an editor,
compiler, assembler, linker, or debugger. It only contains those required to write a
DeskMate application. We recommend you use one of the following development
systems for DeskMate development.

Compilers/Assemblers/Linkers
Microsoft C 4.0, 5.0, or 5.1 with Microsoft MASM 5.0
Microsoft Quick C
Turbo C and Assembler 2.0

a

Debuggers
Microsoft's SYMDEB from MASM 4.0
M icrosoft's CodeView
Periscope
Turbo Debugger

Compiling

The system resources assume data structures used by their functions are
packed or byte aligned. Make sure that you use the pack structures option, /Zp,
for Microsoft C when compiling your DeskMate source modules. The default data
alignment is byte for Turbo C code generation.

a assumes that a DeskMate application will not change the graphics mode without
using a DeskMate video call.

To use the Turbo tools in creating a DeskMate application, the Turbo C startup
code (in CO .OBJ) must be reassembled with the symbol OLDCONIO defined
before using the compiler with DeskMate. The routines that are definezwith this
symbol leave the video mode intact.

For small-model startup code, at the command line type:
tasm CO,COS.OBJ /D SMALL /D OLDCONIO - /MX - - -

The startup code object file COS.OBJ to be linked with your application is
created. If you wish to use a unique name for the object file for DeskMate,
change COS. OBJ to the name you want in the command line.

For medium-model startup code, the command ent is.

The medium-model startup object file COM. OBJ is created.

tasm CO,COM.OBJ /D - MEDIUM - - /D OL~CO;NIO - /MX

Linking

When linking your application code with the Turbo startup code and the
DeskMate libraries, DM.LIB or DMMED.LIB, you must use the /N option with
TLINK. EXE. DM. LIB and DMMED. LIB were created using Microsoft tools, the
/N option will tell TLINK not to search for symbols defined in the libraries in the
default Turbo libraries.

Debugging under DeskMate

a
Using Turbo Debugger

If you are compiling using the Microsoft C Compiler:

1. Compile the program using the compile switches:
/Zi - create an object file for use with CodeView debugger
/Od - do not optimize

2. Link the program using the link switches:
/CO - prepare for debugging with CodeView debugger

Note: It is not necessary to compile or link with switches associated
with creating line numbers or generating map tables since this
is accomplished by running TDCONVRT . EXE .

3. To convert you application linked with Microsoft Link into a format suitable
for use with Turbo Debugger, run TDCONVRT.EXE as outlined in your
Turbo debugger documentation. The application is now ready for
debugging.

If you are compiling using the Turbo C Compiler:

1. Make sure that the startup code for Turbo C 2.0 is set for DeskMate
a

development (see prior Compiling discussion).

2. Compile the program using the compile switch:
-v - create an object file for use with Turbo debugger

/v - prepare for debugging with Turbo debugger
3. Link the program using the link switch:

To run a DeskMate application under Turbo Debugger you must use a setup with
a remote machine for the program's output and a local machine to display source
code. To debug the application:

1. Rename TDREMOTE . EXE to TDREMOTE . PDM
2. On the remote machine from the DeskTop, run TDREMOTE . PDM.
3. On the local machine (in the same directory as your source code), run

TD . EXE with the "4' (for remote) option.

The Turbo Debugger documentation will describe in detail the sort of messages
the remote debugging environment should generate. It is important to note that
since screen swapping cannot be used to debug DeskMate applications under
Turbo Debugger, the remote method is the only one recommended. a

a Using SYMDEB

Compile the program using the compile switches:
/Zd - include line-numbers for source-level debugging
Od - do not optimize

Link the program using the link switches:
/LI - uses the line numbers generated by the Zd compile option.
/M - creates a map table with line numbers.

A symbol file must then be created by using the MAPSYM utility:

Note: It is important that you not run the DESKHDR. EXE extended header utility
before debugging the application. Refer to the DeskMate Development
Guide, Tools and Utilities section for more information about the header
utility.

mapsym yourapp.map

Now you are ready to enter a debugging session. At the command line, type:
symdeb /s <&.in desk.sym yourapp.sym desk.exe

The /s option tells symdeb to swap screens. If you are debugging using a
remote terminal, do not use this option.

DB. I N is an input file which contains all of the commands and symbol-
loading which are needed to get to the break-points in the application. A
typical DB. I N file has the following: a

bp bp new task
g
g
xo yourapp! TEXT
z TEXT estTO
z DGROUP DGROUPt - TEXT
<con

- -

The break-point bp-new-task will be encountered twice to load the default
application. The DeskTop will appear after the second go, select your
application from the DeskTop. The break-point will be encountered when
your application is loaded. Load your application's symbol table. Set the
code and data segments. Return control to the console.

Now you should be able to examine your code and set any break points you
wish, including -main.

Screen swapping does not properly restore color information. If this
information is important, you must use a remote terminal for debugging.
You may also set your DeskMate screen mode to CGA by using DMVID . EXE
with CGA as the mode. This minimizes screen problems using Symdeb.

Using CodeView

Copy cv. EXE to cv. PDM for DeskMate debugging.
a

Run SETHEAP on CV. PDM with the following switches:

SETHELP CV-PDM /MIN 0 /MAX 0

Compile the program using the compile switches:
/Zd - include line-numbers for source-level debugging
Od - do not optimize
/Zi - instructs the compiler to include line-number and symbol information

in the .OBJ file. You only need to use this option on the modules
you wish to debug. Using the /Zd option will include less symbolic
information, thus reducing disk space and memory required.

Link the program using the link switches:
/LI - uses the line numbers generated by the Zd compile option.
/M - creates a map table with line numbers.
K O - for codeview instead of line numbers.

In order to enter a debugging session, it is important that all of the resources
needed by the application be pre-loaded in memory. To do this, you must run an
application that simply loads and initializes all the necessary resources and exits,
leaving the resources in memory. This example loads the GUF resource and the
database resource, then exits:

main()

{

0
MSGBOX message;

if (guf-bind-init () == CSR - ERROR)
exit(1 1;

if (db - bind-init () == CSR-ERROR)

(
/ * data base couldn't initialize */
guf-bind-end0;
exit(1) ;

1

message.pString = "Resource Loader";
message.btn-combo = MSG COMBO-OK;
message .pMessage = "Res&ces loaded successfully.";
msg-run (&message) ;
exit(0 1 ;

1 /* end of resource loader */

d To enter a debugging session in Codeview:

Rename YOURAPP.PDM to YOURAPP.EXE I

Run the DeskMate DeskTop

Run the application above that loads resources and exits (if necessary).

Use the "Run" option from the File menu (F2) to run CV.PDM with the
data file name as / s /w YOURAET . EXE:

/s - use screen swapping
/w - windowing

You may also want to disable the mouse driver during debugging by
using the /m option.

\a

Using Periscope

Compile the program using the compile switches:
a

/Zd - include line-numbers for source-level debugging
Od - do not optimize
/Zi - instructs the compiler to include line-number and symbol information

in the .OBJ file. You only need to use this option on the modules
you wish to debug. Using the /Zd option will include less symbolic
information, thus reducing disk space and memory required.

Link the program using the link switches:
/LI - uses the line numbers generated by the Zd compile option.
/M - creates a map table with line numbers.
/CO - for codeview instead of line numbers.

ts yourapp.map / s /e

/s - Create a symbol file from those in .MAP file
/e - Read Codeview-able info from executable file for source code

display while debugging. Only use this option if the application was
compiled with /Zi and linked with KO.

A symbol file must then be created by using the Periscope TS utility:

Now you are ready to enter a debugging session. At the command line,
type:

run desk.exe

RUN instructs Periscope to execute. You must now set your first break-point in
Periscope with:

a
>bc bp new task
>g
>g
/ * select the application from the main menu, or utilize

>Is est10 yourapp

- -

the "Run" option from the F2 Menu. * /

You are now ready to examine code and set further break-points.

Tandy has a set of Periscope macros, developed internally by our programmers,
which make DeskMate debugging easier. If you use Periscope for debugging,
contact DeskMate Support Services for more information.

..a DeskMate Coordinate Systems

All video coordinates within the core services are in coordinate points and extents (length). Each
is represented in world, device, normalized world, or character coordinates or units. Although
most references are in terms of world coordinates and extents, there are a few references to
device coordinates and extents and to character extents as parameters for a particular service or
a structure element. No core service requires the use of normalized coordinates, however a
normalized world coordinate may always be substituted for a world coordinate.

About World Coordinates

A world coordinate maps onto an arbitrary grid of pixels that is usually a much higher resolution
than any device which it is intended to represent. Under the DeskMate core, this high resolution
grid is defined as 64K x 64K with an origin of (32678, -32768). World coordinate 0,O is the center
of the CSR grid and defaults to the upper-left corner of the currently active window (base
window).

With default core definition, the video display surface x extent is 8000 world units and its y extent
is 5500 world units. Although the application may change this, it is recommended that the default
extents be used when using any of the core user interface services, such as the Dialog Box
Manager, the Component Manager, or the Event Manager. Changing the default will scale all
origins for core images and text and scale most video images. However, the size of characters
and certain images (radio buttons, menu buttons, etc) will not be scaled.

A device coordinate represents the physical device display surface in pixels. Device coordinates
range from 0 to the device extent minus 1 (ie., 0-639 x 0-199). All device coordinates outside this
range will be clipped. The mapping to a particular device may be redefined through the
vid-set-viewport call. This viewport call may be used for special scaling, or remapping
functions. However, the size of characters and certain images (radio buttons, menu buttons,
etc.) will not be scaled.

Under normal usage, several world coordinates refer to the same device coordinate. This is
because the number of world coordinates is considerably higher than the number of device
coordinates. A normalized world coordinate is defined as the world coordinate reference
which maps to the upper-left corner of the device pixel. Normalized world coordinates or extents
should be used when device pixel accuracy is critical. It IS irnDortant to note that a world
Coordinate is not normalized unless it is actua Ilv con verted to a no rmali7ed wo rld coo rdinate ;it
sun time. In other words, on a particular video device a world coordinate which is specified as a
constant may be equal to the normalized world coordinate for that pixel. However, that very
same coordinate may not be a normalized world coordinate on another device of different
resolution. A coordinate can only be considered to be normalized if, at the time of it's usage, it is
converted to a normalized world coordinate for that particular video device.

The DeskMate core occasionally requires character extents as a unit reference. Character
extents are character units described in world units.

Using the world screen defaults, the DeskMate screen is defined as 80 characters in the x
direction by 25 characters in the y direction. The x extent of a character is CHAR XEXT world
units and the y extent is CHAR YEXT world units. CHAR - XEXT and CHAR - YEXT are defined in
the CSRBASE.INC and CSRBkE.H include file. €bnaina the core world fkfwlts will C k U E

a

. .

I I .. . I *L - _ L - _ _ _ I _ _ _ L... L l h T *I--!.. -I-..-:--1 A*..:,.- .,-:, ..:-,-

e The origin of the currently active window begins with a default world coordinate 0,O at the time it
is opened. All output which falls outside the clip region (normally the window) will be clipped.
Characters which fall only partially within the active window will not appear at all.

Using World Coordinates

The simplest application of world coordinates is positioning on character boundaries. To specify
a coordinate which is to represent a character position, multiply the desired character position by
CHAR XEXT or CHAR YEXT. For example, to move the cursor to character position 40, 12
(approximately the center of the video dis lay surface) use the followin method (example in C):

Remember. if the core default coordinates are ch- the CHAR - XEXT and CHAR - YEXT
i22-

To specify a coordinate other than on character boundaries, the accuracy of the desired
coordinate must be evaluated. Basically, if the desired position is not intended to represent a
point immediately adjacent to another point, then constants in world coordinates may be used to
specify the coordinate. As an aid to determining these constants, use the character extents to
determine the general area and add an offset to that value to specify the position within that
character. Keep in mind that the coordinate derived may not give the exact same results from
one video device to another.

To specify a coordinate which must be immediately adjacent to or must have a fixed number of
device scans between it and another point, a normalized world coordinate must be used. There
are four video services provided to perform these calculations for normalized world coordinates.

vid - move - cursor (40 * CZAR - XEXT, 12 * CHAR - YEfT) ;

. .

vid-get-next-nwcx - returns the normalized world coordinate of the next device pixel to the _1 m right of a specified world coordinate x.

vid-get-next-nwcy - returns the normalized world coordinate of the next device pixel below a
specified world coordinate y.

vid-getjrev-nwcx - returns the normalized world coordinate of the next device pixel to the left
of a specified world coordinate x.

vid-getjrev-nwcy - returns the normalized world coordinate of the next device pixel above a
specified world coordinate y.

Using World Extents

The number of device pixels that a world coordinate/extent combination encompasses will vary
from device to device. If the origin of the extent is normalized than the number of device pixels
encompassed by a given extent will always be the same within any single device. However, if
the origin and the extent are not normalized, the number of device pixels will vary by one pixel
based on whether the origin happens to refer to the normalized world origin for that device or not.
Remember, a world coordinate is not normalized unless it has actually been converted to a
normalized world coordinate at run time.

This is where the difference between character and graphic output must be considered. All
nh-r -~f i - -ll+-lI+ ;c ~IItnmaticaIIv normalized bv the core video services. All graphic output is

be encompassed by a character output and a graphic output with the same extent. A character
will always encompass the same number of device pixels, regardless of the normalization or non-
normalization of the origin of the character. A rectangle which has the same extent as a
character will encompass a number of device pixels which is dependent on the normalization or
non-normalization of the origin of the rectangle. Consider the following example: The string "AB"
is output on two different lines of the video display surface, one with a normalized world origin in
both x and y, and the other with a non-normalized world origin in both x and y. Also, two
rectangles are drawn with the same origins and their x2 and y2 coordinates are calculated from
the world extent of a single character. The expected result may be that the rectangle would
encompass the same portion of the string on both line. However, because of the above
differences in character and graphic output, the string and rectangle output using normalized
world origins would result in the rectangle being drawn completely within the character cell of the
character " A in the string. Any portion of the " A which was at any edge of it's character cell
would be overwritten by the rectangle. However, the string and rectangle output using non-
normalized world origins would result in the rectangles top and left edges being drawn within the
character cell of the " A , the right edge in the character cell of the "B", and the bottom edge on
the first device pixel below the character cell of the "A.

World Coordinates - General

World coordinates are a method by which all video screens can be given the same dimensions
regardless of the actual pixel resolution of a particular monitor.
First, be sure that you understand the following definitions. The width or height of an item is
known as an extent. The reference point from which all measurements start is known as an
origin. The coordinates used as parameters in the routines that draw to the screen are world

. coordinates. The pixel coordinate of an item on your particular monitor is known as a device
coordinate.

Upon Initialization of the Personal DeskMate core the screen is defined to have a world
coordinate origin of (0,O) located in the upper left of the screen. The extent of the screen in the x
direction is 8000 world coordinates, while in the y direction the extent is 5500. This can be
expressed as follows:

a

a
wcxOrg = 0
wcyOrg = 0
WcxExt = 8000
WcyExt = 5500

A diagonal line can be drawn from the upper left to the lower right with the following:
vid-draw-line(0, 0,8000,5500)

Note that regardless of the resolution of your device, world coordinates instruct the routine to
draw a line on the screen that connects the upper left to the lower right. The ability to have the
same parameters draw to the same points on any device is known as device independence.

Normalized World Coordinates

The world coordinate which lies closest to the upper left corner of a particular device pixel is
known as the normalized world coordinate of that pixel. nwc is used to stand for "normalized
world coordinate".

II) coordinate maps to only one device coordinate. But each device coordinate may map to many
world coordinates. As an example let us consider a screen that is 640 pixels wide. The world
coordinate width is 8000. We can derive the following:

WcxExt = 8000 dcxExt = 640 1 dcx = 8000/640 = 12.5 wcx

dcx nwcx wcx range exac t nwcx i f w e had f r a c t i o n s
0 0 0 t h r u 12 0 . 0
1 13 13 t h r u 2 4 1 2 . 5
2 25 25 t h r u 37 25.0
3 38 38 t h r u 50 37.5

63 9 7988 7988 t h r u 7999 7987.5

Point to Point vs. Origin Extent

vid-draw-line is an example of point to point format. Two points are specified and the line is
drawn between the two points.

vid-clear-block is an example of origin extent format. The point of origin is given first, then the
extents are relative to that point.

Consider the case where a rectangular block has been cleared to a desired color with the
following call:
vid-clear-block(100, 200,300,400)

The following will always draw a diagonal line whose endpoints fall exactly on the upper left and
lower right corner of the rectangle.
vid-draw-line(100,200,399,599)

The upper left point of the line is the same as the origin of the block. The lower right point is the
sum of the origin and extent minus 1. This can be expressed as follows:

vid-clear-block(wcxorg, wcyOrg, wcxExt, wcyExt)
vid-draw-line(wcxOrg, wcy Org, (wcxOrg+wcxExt-1), (wcyOrg+wcyExt-1))

IMPORTANT: Do not forget the -1 in the line above!!!

Also note that the following 2 lines are equivalent.
vid-draw-line(100,200,399,599)
vid-draw-line(399,599,100,200)

However the following 2 lines are NOT equivalent.
vid-clear-block(100, 200, 300, 400)
vid-clear-block(300, 400, 100, 200)

Routines that use point to point format start with vid-draw.

Origin Independent Extents

The number of pixels that a particular world coordinate extent will span can change depending
upon the location of the origin.

m

wcxOrg wcxExt dcxExt
0 100 8
1 100 9

1 2 100 9
13 100 8
24 100 9
25 100 8

a

With wcxExt = 100 the only cases where dcxExt is 8 is when wcxOrg is a normalized origin, 100
is the x ext of a character. It turns out that for x extents which are multiples of 100, the dcxExt
will be constant for any normalized origin. However for x extents which are not multiples of 100
even normalized origins do not assure that the dcxExt will be constant.

For example assume a dcxExt of 13:

wcxOrg wcxExt dcxExt
0 13 1
1 13 2

1 2 13 2
13 13 2
2 4 13 2
25 13 1

with wcxExt = 13 the only cases where dcxExt is 1 is when wcxOrg maps exactly to a device
coordinate with no fraction. In the example above this will occur at even multiples of 25. Thus
for the general case, to assure origin independent extents, both the origin and extent need to be
normalized. The following is an example.
nwcxOrg = vid-wcx-to-nwcx(wcxOrg)
nwcxExt = vid-wcx-to-nwcx(wcxExt-1) + 1

It turns out that if the origin is on a character boundary then neither the origin or extent need to
be normalized to assure origin independent extents.

Finding Adjacent Pixels

If you desire a line to fall on the line adjacent to a given rectangle the world coordinate value of
that adjacent pixel must be calculated at run time.

If wcxOrg is known to be the origin, the next adjacent pixel to the right of wcxOrg is found as
follows:
nextpixel = vid-next-nwcx(wcxOrg)

The following will clear a rectangular block and then draw a rectangle around that block. The
rectangle will not cover up any of the block nor will it leave any gaps.
vid-clear-block(wcxOrg, wcyOrg, wcxExt, wcyExt)
wcxl = vidgrev-nwcx(wcxOrg)
wcxl = vid_prev-nwcy(wcyOrg)
wcx2 = vid-next-nwcx(wcxOrg+wcxExt-1)
wcy2 = vid-next-nwcy(wcyOrg+wcxExt-1)
vid-draw-rectangle(wcxl , wcyl , wcx2, wcy2)

Findina the Nth Pixel

a

m dcxOrg = vid-wcx-to-dcx(wcxOrg)
newDcxOrg = dcxOrg + n
newWcxOrg = vid-dcx-to-wcx(newDcxOrg)

n can be a positive or negative integer.
newWcxOrg will map to the nth pixel before or after wcxorg.

Note that when n = 1 the above method yields the same results as vid-next-nwcx, and when n
= -1 it yields the same results as vidjrev-nwcx.

m

World, Viewport, Clip

The routines that get or set the world, viewport or clip region are not commonly used by the
average application. Before attempting to use these routines please refer to the Window
Manager documentation. The Window Manager manages the world, viewport, clip region, and
other video states for you. It is strongly suggested that you use the following routines only if you
really need the extra versatility they can give you.

The world, viewport, and clip region all work within a 64K x 64K universe. The largest world that
can be viewed on the device at one time is a 32K x 32K rectangle within that universe. The
universe does wrap around and thus has no edges that the world could bump into.

A world coordinate is a coordinate relative to the origin of the universe. All values used for device
or world coordinates are signed integers. Extents are defined to be greater than zero. Origins
and point coordinates can be positive or negative. In summary:
Extents = 1 thru 32676 (-32678 thru 0 perform no action)
Origins = -32768 thru 32767
point coordinates = -32768 thru 32767

World and Viewport Relationship

Conceptually the world can normally be thought of as the region of the universe which is mapped
to fit onto the screen viewport. The world uses world coordinate units, and is a logical screen.
The viewport is measured in pixels or what is called device coordinate units. The viewport is a
physical screen.

If the viewport origin is zero then the world origin will map to the upper left comer of the device. If
the viewport extent equals the width of the device in pixels, then the world extent will exactly span
the width of the device.

However, the viewport origin could be non-zero and the extent could be smaller or bigger than
the pixel extent of the screen. The result however is normally undesirable.

Mathematically the mapping equations are:

dc = (wc - worldOrg) * (viewExt / worldExt) + viewOrg
' wc = (dc - viewOrg) (worldExt / viewExt) + worldOrg

where dc = device coordinate wc = world coordinate

Looking at the first equation it is seen that the scaling of the world to the screen is determined by
the ratio of viewExt:worldExt. This ratio controls the squashing necessary to fit the world into the
viewport. The worldOrg and viewOrg determine what point of the universe falls onto the upper
left point of the screen.

The following examples assume a device that is 640 pixels wide. Only the x direction is dealt
with. The y direction would be dealt with in the same manner.

a

a

G Let: worldOrgX = 0 viewOrgX = 0 worldExtX = 8000 viewExtX = 640

dcx 0 640

s c r e e n
viewport
world

I I -------- -------- --------
u n i v e r s e ...

I
t 3 2 7 67

I I
0 t 8 0 0 0

I
wcx -32768

Let: worldOrgX = 0 viewOrgX = 0 worldExtX =16000 viewExtX = 640

dcx 0 640
I I

s c r e e n
viewport
world

---------------- ---------------- ----------------
un ive r se ...

I
t 3 2 7 6 7

I
t 1 6 0 0 0

I
0

I
wcx -32768

Let: worldOrgX = 0 viewOrgX = 0 worldExtX = 8000 viewExtX =1280

dcx 0 1280

sc reen
viewport
world

I I ----

a -------- --------
un ive r se ...

I
t 3 2 7 6 7

I I
0 1-8000

I
wcx -32768

Let: worldOrgX =-4000 viewOrgX = 0 worldExtX = 8000 viewExtX = 640

dcx 0 640
I I

s c r e e n
viewport ~

world

I

-------- -------- --------
un ive r se ...

I
t 3 2 7 67

I
0 wcx -32768

Let: worldOrgX = 0 viewOrgX -320 worldExtX = 8000 viewExtX = 640

dcx 0 640 960

screen
viewport
world universe ...

I

I I I -------- -------- --------

, 1 1 7 r 1 I I

Let: worldOrgX =-8000 viewOrgX =320 worldExtX = 8000 viewExtX = 320

dcx 0 32 0 640

sc reen
viewport
wo r Id

m
I I I ---------------- - - - - - - - - - - - - - - - -

un ive r se ...
I

t 3 2 7 6 7

As the previous examples illustrate, changing the extent of the world and/or viewport changes the
scaling of items mapped to the screen. It is suggested that if changing the scaling is desired,
only the world extent should be changed. It normally works out best to leave the extent of the
viewport to be equal to the extent of the screen.

NOTE: Changing the extent of the world to a value other than the defaults of 8000x5500 will
change the scaling of routines such as vid-draw-point, vid-draw-line, vid-draw-ellipse,
vid-draw-rectangle, and stroke fonts, character out routines, and vidgut-image. Routines
which do not support changes in the scaling are: menu bars, push buttons, radio buttons, check
boxes, vid-clear-to-bot, vid-clear-to-eol, and vid-put-tty.

Clip Regions

Clip regions are expressed in world coordinates and are relative to the universe. A clip region
with the same origin and extents as the current world will encompass the same region as the
current world.

In the example below the screen coves a larger area than the world. A clip region with the same
origin and extent as the world would thus allow video routines to write only to pixels 320 to 640.
A clip region with an origin of -16000 and extent of 16000 would allow video writes to the entire
screen. Note that it is not useful to set the clip region to be larger than the screen, and indeed
the vid-set-clip routine does not allow you to do so.

Let: worldOrgX =-8000 viewOrgX =320 worldExtX = 8000 viewExtX = 320

dcx 0 320 640

sc reen
viewport
world
c l i p reg ion

I
0

I I
wcx -327 68 -16000

a

clipOrgX = -1 6000 clipExtX = 16000

I I I ---------------- -------- -------- ----------------
un ive r se ...

I
t 3 2 7 6 7

I
0

I
-16000

I
wcx -327 68

Window Manager

The window manager uses world coordinate origins and extents as input parameters. The origins
are positive offsets from the upper left corner of the screen. The extents set a clip region so as
to limit video output to the region starting at the window origin and extending thru the window
extent. To do this the window manager sets a world and clip region. The viewport is never . . _. . I . -rL- 1 -,I- ..!-- ?- -- - .*---I- .

The window is created by making the following calls: ma
vid-set-world(-winOrgX, -winOrgY, 8000,5500)
vid-set-clip(0, 0, winExtX, winExtY)

Consider the following graphic example:

Given: winOrgX = 2000 winExtX = 4000 viewOrgX = 0 viewExtX = 640
Results in: worldOrgX = -2000 worldExtX = 8000

clipExtX = 4000

dcx 0 640
I I

sc reen
viewport --------
world
window o r c l i p reg ion ----

clipOrgX = 0

u n i v e r s e ...
I I I I

wcx -32768 0 t 8 0 0 0 t 3 2 7 67

NOTE: the above example merely illustrates how the window manager uses the vid-set-world
and vid-set-clip routines. To use the window manager you do NOT make calls to
vid-set-world or vid-set-clip.

Compatibility and Programming Issues

Runtime Executive
c

The 3.3 runtime executive allows an application to be launched from a 3.0 DeskTop as a
runtime. This enhancement was added for applications which - the 3.3
environment to operate in but still want to be launched from 3.0 DeskMate products. An
application making use of the new 40 column video drivers would be an example of an
application requiring the 3.3 system.

To run from a 3.0 DeskTop your application can provide a small "compatibility"
application which checks the current system and then runs the application. The
compatibility check should also be performed within your application in case the user
executes the application from the DeskTop. If your application is large, you should
consider providing the compatibility application since it will take less time to load and
unload it rather than your application.

The function dm-compat, a DeskMate Library function, checks the version of desk
currently running and decides if the application

can run on the system.
cannot run because the user is task-switched.
needs to run from the new runtime.

The compatibility application calls dm-compat, sending it the name of your customized
runtime module, and checks the return code and handles it as follows:

main ()
I

in t product info;
char Runtimemame [I = "VENDOR.EXE";

product - info = dm - compat(&RuntimeName[O]);

if ((product - info & DM - VERSION) == 0)
{

a

if ((product info & DM COMPAT FLAG) == 0)
I

- - -
csr init();
disFlay "Cannot run while task-switched. I'
csr end0 ;

} / * running on a 3.0 system * /
else

-
1

/ * running on a 3.3 system * /
dm-SetNextApp(to VENDOR.PDM 1;

exit () ;

} / * end of compatibility application * /

If the application is running on a DeskMate 3.0 system and is not in a task-switched context, then
dm-compat will call dm-SetNextApp to your application's 3.3 runtime. The compatibility -.. +k- -....n-+ -.m+r.- A * n r CI m i n t i r n n nr infmrm _. .

0 The Help System
2-

DeskMate 3.0 Operation

Help is provided through an accessory. Application help is therefore only available when
an accessory can be executed. The application always knows when the user requests
help. Applications can write their own event interpreters to capture the F1 key and
provide the user with the level of context-sensitive help they deem appropriate.

DeskMate 3.3 Operation

Context-sensitive help is now provided through an Intelligent Help Manager which
captures the context of the application and gives specific and general help, specific to the
application state. Help is now available in pop-ups, including accessories, and while the
menu bar is being accessed. Help may be given at any time, for instance while the user
is in a dialog box, and the application is not always aware of when the user requests
help. The application can register call-back functions which will be called prior to and
after help is given. Refer to the Help Manager section of the Technical Reference for
more information.

Compatibility Issues

For applications written for the DeskMate 3.0 system, running on a 3.3 system:

In applications which are not providing any context-sensitive help (by trapping the F1
key), or are not providing help for all the new context possibilities, the user will get a
message stating that help is not available. The developer can decide if this is acceptable
or do one of following to ensure the user is always presented with help in any DeskMate
3 system.

a
1) Distribute a Help Compatible System consisting of

a) An application help data file.

c) The DeskMate 3.3 Intelligent Help Manager, DMHELP .ACC and
z & nflflf~[,/cc b) The help compatibility accessory, DMHELP88 .ACC.

DMHELPENG. RES. ,&odd AO/ 6e N c T P A .
[&I ,it+d in a subCAy
aAB f l & nerL, j n k & l ~

e ek/ n9
Upgrade DeskMate 3.0 user's DMHELP . ACC file with the new Intelligent Help
Manager, see the Distributing Your Application section in this manual for
more information. The new help accessory will chain to the compatibility
accessory and provide general application help from the help data file on the
upgraded 3.0 system and context-sensitive help on a DeskMate 3.3 system.

and trapping the F1 key. Refer to the Event Manager section of the Technical
Reference for details about writing an event interpreter.

2) Handle the new areas of context-sensitive help by using an event interpreter

i &en?, see p. 4-3,

The F10 Tandy Menu

The user can now run new accessories from the More option on the F10 menu or from - . - _ -

system to system depending on the capabilities of the DeskMate system. Your
application should not make any exceptions or assumptions when running accessories, it
should simply run the accessory the user requested.

a
Code Shedding when Running Accessories

DeskMate 3.0 Code Shed Operation

In this environment when an accessory does not fit, the executive code sheds 32K of the
application. Applications which can not have their code shed and replaced from disk
called dm-exec-dont-shed. See the discussion of code shedding in the Introduction of
this section for a discussion of code shed criteria.

DeskMate 3.3 Code Shed Operation

In this environment the amount of code shed space for an application is stored in the
application's header built by DESKHDR. EXE, the DeskMate utility. The executive looks at
this information to determine how much, if any, of the application to shed in order to load
the accessory. If the code shed size is less that 32K, applications should call
dm-exec-dont-shed to register that information with the DeskMate 3.0 executive.

Programming and Compatibility Issues

Your application may not function properly if the application cannot be code shed
and it does not inform the executive by either setting the code shed size using
DESKHDR . EXE and/or by calling dm-exec-dont-shed.

Your application will not function properly if does its own code shedding to make
room for an accessory for the following reasons.

a
1) The DeskMate 3.0 accessories were generally less than 32K, so most

accessories would run if that amount of memory was available. In the
3.3 system, most of the accessories use more than 32K. Freeing a
specific amount of memory will probably not cover all cases.

2) Accessories can load one or more resources when they run.
Depending on the function of the accessory, the resource may stay
loaded after the accessory exits. For instance, the Spell Checker
allows the user to turn on auto-proofing and exit the accessory. The
spell resource stays resident to handle the auto-proof function. Your
application will not be able to recover the memory it freed for the
accessory.

3) New accessories may be executed through the new More option, your
application cannot predict how these new accessories will operate or
how much memory they will require.

If there isn't enough room to load an accessory, the executive will warn the user.
It is better not to run an accessory, than to run an accessory and not recover
properly.

a To run accessories on all DeskMate 3 systems, your application should do the
following: - A

1) Set the code shed size (0 up to code size) for your application using
DESKHDR. EXE.

2) If the code shed size is less than 32K, call dm-exec-dont-shed on a

3) For applications which use all available memory and cannot be code

a) shed data which can be regenerated after returning from the
accessory.

b) shrink the unused data size to free memory for the accessory.
Your application must handle not being able to expand out
the data if the memory is no longer available.

DeskMate 3.0 system.

shed, consider doing one or more of the following:

c) free resources which can be reloaded after returning from the
accessory. Your application must handle not being able to
reload the resources if the memory is no longer available.

"Sticky Menus" and Selectable Grayed Menu Items

Since the menu bar processing is done within the DeskMate environment, this
enhancement is transparent to the application. Applications which use their own event
interpreters and are predicting the state of the menu bar based on the mouse or arrow
events are affected by this change.

In the DeskMate 3.0 system, a single mouse click did not affect the state of a menu bar.
In the 3.3 system, a single mouse click can cause a menu to drop or will change the
selection of a menu item.

In the 3.0 system, the up and down arrows skipped over grayed menu items. In the 3.3
system, the up and down arrows do not skip grayed menu items.

To be compatible on all DeskMate 3 systems, applications which predict user events
must handle the differences in the menu bar user interface in each system. To aid the
developer, the new mbAet-status call was added to get menu bar status information.

m

Animated Busy Icon

The Tandy busy icon is now animated. The icon processing can cause problems for
applications which are accessing video memory directly and are making timing
assumptions about the busy icon. If your application meets this criteria, make sure your
application disables the busy icon while it is accessing video memory.

Form Manager and GUF Resource

Loading of the Resources for 3.0 Applications
c

The DMFORM.RES is automatically loaded on the first form-open call. Both GUF
resources, DMGUF . R89 and PRGUF .RES are loaded with the guf-bind-init call.

If the resource does not fit in available memory or the resource file could not be
found, the form-open and guf-bind-init calls will return an error. You should
ensure your application is checking the return code from both call and handles
the conditions properly.

If your application uses all available memory, the form-open call should be
made BEFORE all of memory is allocated.

Loading of the Resources for 3.3 Applications

The new binding call for the Form Manager resource, csr-form-bind-init will return
an informative error DM - EXISTS if the application is running on a 3.0 system.

Both GUF resources, DMGUF . R89 and PRGUF .RES are loaded with the guf-bind-init
call. To load only the PRGUF .RES resource, call prguf-bind-init.

Video Drivers

Driver Names

The DeskMate 3.0 video drivers used the DMVD prefix, the 3.3 drivers use the DMVS
prefix. The video drivers must match the version of the CSR being used, mixing of
systems is not allowed. Applications using the cfg-get-vid-driver call to determine what
video driver is loaded are affected by this change and should handle the differences in
the systems.

Video Detection

The VGA video driver, DMVDVGA.RES, incorrectly returned VID EGA in the
VID DEVICE. card element when the vidjnquire-device call was made. In order to
determine if the video was in fact VGA, the calling program compared the
VID DEVICE.dc yext element to 480. The VGA video driver, DMVSVGA.RES,
corr&tly returns fID VGA from the vid-inquire-device call. If your application makes
use of the vid-inq&'e-device call, you should ensure you handle the differences
appropriately.

Palettes

The DMVSVGA driver uses different palettes than those used by the DMVDVGA driver. If
your application accesses the palette information directly, then your application will
exhibit different default color settings in the 3.0 and 3.3 environments.

0

e Printer Drivers

Line Styles

The line widths, LINE-WIDTH1 and LINE-WIDTH2 are now supported for the dotted,
dashed, and dotdash line styles. These widths were only supported for LINEWIDTH1
which exhibited printing problems when a line crossed a print band.

The line style DENSE-DASHED is now supported by the printer drivers.

The thickness of the wider line widths was changed to match the world coordinate width
used by the video drivers.

LINEWIDTH1 1 pixel wide
LINEWIDTH2 "best look", normally 2 pixels wide
LINEWIDTH3 50 world coordinates wide
LINE-WIDTH4 75 world coordinates wide
LINEWIDTH5 100 world coordinates wide

Print regions

The 132 character maximum line has been removed and now as many characters as will
fit into the width of the print band will be printed. The width of the print band for printers
with a wide carriage is 13200 world coordinates. This translates to the following number
of characters depending on the current character per inch setting:

10 CPI 132 characters
12 CPI 158 characters
condensed 220 characters u

The dimensions of the printable region for the 3.0 printer drivers was sometimes less
than 8 x 11 1/2 inches. The 3.3 printer drivers now print exactly to 8 x 11 1/2 inches. This
apply to IBM-compatible graphics printers. The Tandy 2100P with micro line-feed control
prints a page 11 3/8 inches instead of 11 1/2. Other non-Tandy printers exhibit the same
incompatibility.

The quarter-inch on the left and right side of the paper is the default "unprintable region"
for printers. The laser printer has its own specific unprintable region.

Landscape printing

The DeskMate 3.0 drivers did not do a form feed at the end of a landscape printed page,
the new drivers do.

Overview of the Tools, Utilities, and Examples

The tools and utilities included in the kit are provided as an aid to the programmer. Most of the
tools have not had the software quality assurance testing the DeskMate products and system
files have had. Tandy uses these tools internally for the development of the DeskMate product
and system files. We do not warrant these tools and utilities and recommend that you take the
precaution of backing up your work files when using the tools. User documentation on using the
tools is provided in the Tools and Utilities section of this manual.

The Menu Bar Builder and Dialog Box Builder are used to build the major portion of your
application's user interface are provided as time saving tools. You do not have to use these tools
to build either your menu bar or dialog box data structure definitions. Both of these tools have
been improved and we encourage that you use these tools.

We provide several graphics utilities - the Bitmap Editor, the Graphics Form Generator, the
Clipart File Builder, and the Stroke Font Editor. These tools are used to either import graphics
into your application or customize graphics files used by your application. The tools have varying
degrees of functionality.

The Memory Map Generator is used to determine how memory is being allocated (size and
distribution) under DeskMate. With all of the different environment possibilities, this tool is very
useful for determining how much memory your application has to work with and how it is
distributed. This tool allows you to determine the worst and best possible cases under which your
application will run.

The Desk Header Builder is used by all of our DeskMate product and system files. We strongly
recommend every developer use it to build the DeskMate application's file header.

The Disk Label Generator is used to build the diskette label files for all of the DeskMate 3
products. We strongly recommend using it to create diskette label files for your product also.
These labels are used by dm-file-search when prompting for a diskette and may be used by
your installation program.

The Customized Runtime Utility MUST be used to build your application's customized executive.

The Customized Install Utility is used to build your application's customized version of
INSTALL. EXE which must accompany your product diskette. This program launches your
INSTALL. PDM program as a stand-alone program using your customized runtime executive.

The Help Utilities must be used to create your application's help file if you make use of the
DeskMate Intelligent Help Manager. Tandy used these tools to create the help files distributed
with the DeskMate 3.3 products.

The Tutorial Technology Tools are used to build application tutorials and demos. The
DMEI . EXE, RECORD. PDM, and DMRECORD .RES tools are only needed if you choose to "record"
your initial tutorial or demo script. The other tutorial tools are needed to build tutorial files for
execution by the Play technology.

The sample programs include a Welcome program which is an example of a minimal DeskMate
application. The Video sample ~ shows how to use world and device coordinates when displaying

'm

a

. I ..I - ---- - ..--

-ed The File I/O and Printing examples are quite extensive. The low-level examples of both the file
i/o and printing actually reflect much of the processing done by GUF and the Print Manager in the
high-level examples. The High-Level File I/O example is a good start for an application user
interface prototype which uses canned data files. Once your data requirements are established
you can rewrite the file i/o portion of your application.

The Forms example shows the basic functions performed by the Form Manager for managing
graphics in an application. The full power of the Form Manager is not demonstrated by this
example. It is a good starting point and can be used as a template for graphics handling
applications.

The Special Topics section discusses some programming techniques which are part of the other
examples but were not discussed in the sample chapters, for instance Interfacing With the
Clipboard discusses the edit field functions used by the COMPS sample and the form manager
functions used by the FORMS sample that interface with the clipboard. Programming excerpts
are used to discuss Managing Multiple Windows and Events. The COMPS example shows how
to manage components in the work area instead of in dialog boxes as a means of interfacing with
the user.

The last three sections discuss the special programming requirements of 40 column applications,
DeskMate resources, and DeskMate accessories.

a

e

Part 2
Programming Examples

0

Contents m
A DeskMate Shell . WELCOME.PDM 2-1
Using the DeskMate Coordinate Systems . VIDEO.PDM 2-7
DeskMate File Handling 2-13

High-Level File 1/0 . FILEIOHL.PDM 2-13
Low-Level File 1/0 . FILEIOLL.PDM 2-19
Database File 1/0 . DBCARS.PDM 2-31

Printing ... 2-47
Page Printing . DEVICE.PDM 2-47
Direct Printing . DIRECT.PDM 2-53

Using the Graphics Form Manager . FORMS-PDM 2-57
Special Topics ... 2-65

Running Components in the Work Area . COMPS.PDM 2-65
Managing Windows and Events 2-69

.......................... 2-71
From an Editfield Component 2-71
When Using the Form Manager 2-71
Direct Interfacing with the Clipboard 2-75

To read the clipboard 2-75
To write t o the clipboard 2-75
Writing text with attributes to the clipboard 2-76

Interfacing with the Clipboard

a
...................

Writing a 40 Column Application 2-77
Writing a DeskMate Resource 2-79
Writing a DeskMate Accessory 2-89

General Guidelines 2-89
Accessory Chaining 2-90

WELCOME.PDM

WELCOME. PDM is an example of a minimal DeskMate application. It has an application menu bar,
places text in the work area, uses the About function, runs other applications through the File
Run option, and Exits. It is ideal for use as a template for beginning new DeskMate applications.
The source to the Welcome application is included in the SAMPLES\WELCOME directory.

inc lude "dmexec . h" / * Desk Executive header f i l e * /
inc lude "csrbase .h" / * Core Se rv ices Resource base header f i l e * /
inc lude "csrcmps.h" / * Core Se rv ices Resource components header f i l e * /
inc lude "cs rv id . h" / * Core Se rv ices Resource video header f i l e * /
inc lude "dmdecl . i"
inc lude "dmguf. h / * General User Functions * /
inc lude "dmgufdec.h" / * GUF's func t ion d e c l a r a t i o n s * /
inc lude "codestnd.;"
inc lude "we1come.h
inc lude llwelcodec.hl' / * Appl ica t ion d e c l a r a t i o n s * /

The Welcome application first includes the DeskMate header files it requires to compile. These
files reside on the Development Diskette. The following is a brief description of each file and why
it is included in this example application.

a

/ * DeskMate func t ion d e c l a r a t i o n s * /

/ * DeskMate Coding s tandards f i l e * /
/ * Appl ica t ion header f i l e * /

The DMEXEC. H file is the include file for the Desk Executive. All applications should
include this header file.

The CSRBASE . H file should also be included by all applications. This file is the standard
include file for the Core Services Resource. It defines many of the general structures
used by applications.

The CSRCMPS . H file contains the component data structures, including the menu bar
definitions. Source files accessing component, menubar, dialog box, and message box
data structures require this file.

The CSRVID . H file includes many of the structures and defines needed when accessing
the video functions of the CSR.

The DMDECL. H, and WELCODEC. H are function prototype files. These files are used by
the compiler to check the parameter(s) being passed to functions defined in the files.
Using these files often catches programming problems related to errors in calling the
function at the compile stage.

The DMGUF. H file is the standard include file for the DMGUF and PRGUF resources.
Applications using these resources to perform File I/O, use the Environment Manager, or
support the Run command need to include this file in their applications.

The CODESTND. H file describes the DeskMate coding standards used in these sample
applications. This file is for information purposes only.

The WELCOME. H file contains the data structures and defines used by this application.

0

int main()
(

EVENT Event;
int TSReturnCode;
int Done;
/ * Bind to the Core Services Resource * /
if (csr init() == CSR ERROR)

/ * fzilure to bind-to the CSR, could not find/load resource * /
exit (1);

if (gufbind-init. () == CSR-ERROR)
{

/ * failure to bind to the power & run General User Functions resource * /
csr end();
exi€(l);

1

Before any processing is done by your application, your application must bind to the resources it
will use during its execution. Notice that both binding calls check the return code. Although the
CSR is almost always guaranteed to be loaded when your application is loaded, it is good
programming practice to check the csr-init's, as well as all bind routine, return codes.

Your application should never make assumptions about the state of environment when your
application is loaded. For more information about resource binding routines, see the Desk
Executive section of the DeskMate Technical Reference.

/ * Draw the main screen * /
Welcome-Draw-Screen();

The next step in an application's processing is usually to draw the application menu bar and
default work area. This sample calls a subroutine Welcome - Draw - Screen to perform the task.
void Welcome-Draw-Screen()

/* Clear the base window (defaults to the entire screen) * /
I

vid-clear-screen () ;

/* Draw the application menubar in the base window * /
WelcomeMENUBAR.bRedraw = MB REDRAW;
mb - draw (&WelcomeMENUBAR) ;-
/ * Display the application's name on the title line * /
ttl-put-app-name (llWelcomell) ;

/ * Display the appligation's data file name on the title line * /
ttl put data - name(
Welcome-Draw-Message();

rn

1; - -

1

Welcome's draw screen processing, clears the entire screen, draws the application menu bar,
display's the application name, displays 'I (Untitled) 'I for the datafile name, and displays a
welcome message in the work area.

void Welcome-Draw-Message()
{

/ * Position the video cursor in the center of the base window * /
vid-move - cursor(30 * CHAR - XEXT, 12 * CHAR - YEXT) ;

/ * Display "Welcome to DeskMate!" in the center of the window * /
vid-put-string ("Welcome To DeskMate! 'I) ;

/ * Set the line color attributes to make sure when the * /
/! rectangle below is drawn, it shows up on all videos * /
vid - - set line - attr(LINE-SOLID, LINEWIDTHl, COLOR3) ;

/ * draw a rectan le in the center of the base window * /
vid-draw-rect(9 9 * CHAR XEXT, 11 * CHAR YEXT,

51 * C U A R - X F X T . 1 4 * C H A R Y F . X T .

The welcome message displayed in the work area uses video calls to reposition the cursor
(default location O , O) , display a text string at the current cursor location, and draw a box around
the text.

For more information about the function calls used here, see the Video Manager (vid-*), Menu
Bar Manager (mb-*), and Titleline Manager (ttl-*) sections of the DeskMate Techriical
Reference.

Now the application is ready to accept user input. DeskMate applications are usually written as
transaction centers (all of our samples are). The application executes in a loop until the user
chooses to exit the application (or an error condition requriing termination is encountered). In the
loop processing the application waits for a user event and then acts upon that event, usually
passing it on to a module which will process the event.

-a

I* i n i t i a l z e t h e do whi le c o n t r o l f l a g * I
Done = FALSE;

/ * Process t h e u s e r i n p u t s and a c t i o n s * I
do
(

I* read an event from an inpu t device * I
event-read (&Event) ;

The event-read call will not return until the user performs an action which is translated into an
event. For example, simply moving the mouse around the screen will not return an event. When
the user presses the mouse button, the function will return with the appropriate event in the
EVENT structure.

Command Events, EVENT COMMAND, are returned whenever the user selects a menu option or a
component in the work area. T&EYENT-..p_aram element-contains-the-value -assig.n_ed to t&
return-code eleme-nt-of_ttee_MENU.LTEM-s~iucture-f-o~e~ch menu option or in the CMP --- HEA-
structure for a-compone_nt.

a
swi tch (Event .msg)
{

case EVENT COMMAND:
I* check t5 see i f an op t ion was selected from the menu bar * /
/* process menu op t ion t h a t was selected * I

swi tch (Event .param)
(

d t t &d p m /s &ol cod- o f ~ ~ p . y o n e ~ ~ .
case FILE E X I T I D :

I* t h 8 use f wants t o e x i t * I
Done = TRUE;
break;

DeskMate applications should include the Run menu option and should use either the
fil-menu-run or dlgbox-Run calls to display the Run File dialog box. For more information
about the fil-menu-run function, see the File I/O Examples in this section.

case FILE R U N I D :
I* t h 8 us8r wants t o e x i t , then run another program * I
i f (dlgbox Run () == TRUE)

I* c l e a r t h e dlgbox Run d i a l o g box from t h e screen * I
v i d move c u r s o r (0 i CHAR-XEXT, 7 * CHAR - YEXT 1;
vidIcleaf to-bot () ;

/ * d i s p l a y t h e welcome message back on t h e screen * I
Welcome-Draw-Message();
break;

Done =-TRUE;

e Every DeskMate application should include the About menu option and should use the
about-versions call to display the information about the application. This function provides
information about all appliactions currently in memory along with the application. This information
is useful when customers call with a problem.

case FILE ABOUT ID:
/ * maKe the-DeskMate library call to * /
/ * display,an ABOUT. .. dialog box * /
about - versions(&WelcomeAPPL - VERSION) ;

/ * clear the dialog box from the screen * /
vid move cursor(0 * CHAR - XEXT, 3 * CHAR-YEXT) ;
vidIcleaT-to-bot () ;

/ * display the welcome message back up on the screen * /
Welcome-Draw-Message();
break;

break;
default:

) / * end of switch on type of application event * /
break;

Application Events, EVENT APPL, cause the application to turn over control to another process.
Applications which accessthe data file during operations should ensure that the file is on the disk
when running on a floppy system. The task switch or accessory may have caused the user to
swap disks. Make sure your data disk is in the driver before writing to the file.

The APPL ACCESS event is returned when the user chooses an accessory option from the F10
Accessori& Menu. The dm-acc-run call is used to actually run the accessory. Applications
should always redraw their entire screen (and check the clipboard if they have an Edit Menu)
when returning from running an accessory.

case EVENT APPL : m
switch7 Event.param)

/ * check for an accessory event * /
{

case APPL ACCESS:
/ * rui i the requested accessory * /
dm-acc-run (Event .x) ;

/ * redraw the screen when the accessory is finished * /
Welcome-Draw-Screen();
break;

The APPL TASK SWITCH event is returned when the user chooses the Task Switch option from
the F10 Menu oruses the A L T t = accelerator. The dmqrield call is used to do the actual task
switch. Task switching is not allowed in all environments, the application must check the return
code and handle the return code appropriately as specified here.

Applications which use the Clipboard should check the Clipboard contents and enable Paste if
necessary. Applications using Page Setup should sc3 the Page Setup information after a task
switch since the other application may have changed it.

/ * check for a task switch event * I
case APPL TASK-SWITCH:

/ * ateem t to execute a task switch * /
TSReturngode = dm-yield () ;

i f (TSReturnCode == DM NOT ALLOWED)
/ * task switching n5t bBing allowed * /
break;

: + I ~ c u o t l , r n r n ~ n == DM OK)

else
t

/ * t h e y i e l d (t a s k swi tch) f a + l e d * /
/* t h e r e i s bad t r o u b l e so e x i t program * /
Done = TRUE;

1
break;

d e f a u l t :
break;

0

} / * end of swi tch on type of Command * /
break;

d e f a u l t :
break;

) / * end of swi tch on type of event * /

1
/ * check t o see i f "EXIT" o r "RUN" menu opt ion has been selected * /
whi le (Done ! = TRUE) ;

As you can see, even a simple application requires the processing of several types of user
events or actions during its execution.

/ * inform t h e loaded r e sources t h a t t h e a p p l i c a t i o n i s e x i t i n g * /
guf-bind end () ;
csr end(T;
e x i f (0) ;

1

The last step before the application terminates is the freeing of the resources the application
used during its execution. The resources should be freed in the reverse order of the way they
were requested. The application then exits. Applications launched from the DeskTop will return
the user to the DeskTop when they exit. Applications launched from a runtime executive will
return the user to the DOS prompt when they exit. a

VIDEO.PDM

VIDEO.PDM is a slightly more advanced example of a DeskMate application. It introduces the
concept of device and world coordinates systems which DeskMate uses. The source to the
Video application is included in the SAMPLES\VIDEO directory.

a
#include "csrkeys.h"
#include "video. h"
#include "videodec.h"

/ * Core Services Resource keyboard header file * /
/ * Application header file * /
/ * Application's function declarations * /

The Video application includes the DeskMate header files it requires to compile, these files are
described in the preceding example, Welcome. The following is a brief description of the
additional files this application uses and why they are included in this example application.

The CSRKEYS . H file contains the key defines used in DeskMate.

The VIDEO. H file contains the data structures and defines used by this application.

The VIDEODEC . H file contains the function prototypes for functions in this application.

Like the Welcome application, this application first binds to the resources it will use. Before
drawing the menu bar, Video sets the menus to their default configuration. It sets all of the
options in the Shapes Menu to an unchecked state and then checks the rectangle option.

/ * check the first shapes menu item * /
Video Uncheck Shapes Menu();
VideoShapesMENUITEM[KECT-INDEX].bChecked = MB-CHECKED;

void Video - Uncheck-Shapes-Menu0
(

int i;

for(i = 0; i < NUM SHAPES MENU ITEMS; i++)

a
VideoShapesMENUTTEM[i]TbCheFked = MB-UNCHECKED;

1

The V i d e o - D r a w - Screen subroutine performs the same functions as Welcome's draw screen
routine.

I* Draw the main screen * /
Video-Draw-Screen();

This example uses a routine to draw objects in the work area. Notice that the routine is called to
draw a "default" object on the screen before the user does anything.

/ * Draw the first "default" object * /
Video-Draw-Object 0 ;

Several shapes are drawn by the routine, a rectangle, ellipse, line, and point. Each of these
graphics shapes as well as others are supported by the Video Manager in the CSR. All of the
functions use the world coordinate system to specify the location and size of the graphics object.
void Video-Draw-Object0

int ExtX = CurrentX;
{

int ExtY = CurrentY;

/ * Set the line color attributes to make sure when the * /
/ * object below is drawn, it shows up on all videos * /
vid set line attr(LINE SOLID, LINE WIDTH1, COLOR3 1;

a switch (Shapeswitch)
{

case SHAPE RECT ID:
ExtX t= 5 *-CHAR XEXT;
ExtY += 1 * CHAR-YEXT;
vid draw-rect(CiirrentX, CurrentY, ExtX, ExtY, VID-NO-FILL) ;
break;

vid_drZw-ellipSe(CurrentX, CurrentY, 2 * CHAR XEXT, 1 * CHAR - YEXT,
break;

ExtX += 5 *-CHAR XEXT;
ExtY += 1 : CHARTEXT;
vid draw line(CBrrentX, CurrentY, ExtX, ExtY) ;
break; -

vid drZw-poiEt(CurrentX, CurrentY) ;
break;

case SHAPE ELLIPSE ID:

VID NO FILL) ; - - -

case SHAPE LINE ID:

case SHAPE POINT ID:

1
Video-Draw-Coordinates() ;

1

The status area at the bottom of the work area shows the values of the Current X and Y location
of the cursor on the screen in World Coordinates. Notice that s p r i n t f is used to build the
display string and that the actual displaying of the text is done with vidjut-string. Some video
modes, Hercules for instance, do not support text operations when in graphics mode. Because
DeskMate applications operate in a graphics mode, text out operations need to be done through
the video manager to guarantee the text will appear in all video modes.

void Video-Draw-Coordinates()
char TempBuf [601 ;

(

/ * Display the value for CurrentX & CurrentY * /
vid move cursor(0 * CHAR XEXT, 24 * CHAR YEXT) ;
sprintf (-TempBuf, "World Coordinate X = %a'', CurrentX) ;
v+d-put-string(;empB;f) ;
vid put string() ; / * clear out old number * /
vid-movP cursor(30 * CHAR XEXT, 24 * CHAR YEXT) ;
sprTntf(-TempBuf, "World Csordinate Y = %dw, CurrentY) ;
vid put string (;empBtf) ;
vidIputIstring() ; / * clear out old number * /

a

1

Like Welcome, this application also uses an event loop to do its processing. Only the events
specific to this example are discussed here. Notice, this example was built by using the
Welcome template.

switch (Event .param)
{

case FILE UPDATE ID:
/ * rearaw the screen at the users request * /
Video Draw Screen (1 ;
Video-Draw-Object - 0;
break:

These are commands received from the user. Adding to and subtracting from the current X any
Y world coordinate.

/* 13 world coordinates = 1 pixel * /
case WORLD NEXTX ID:

Currennt t= T;
Video Draw-Ob ject (1 ;
break:

case WORLD NEXTY ID:
CurrenfY += I;
Video Draw-Object () ;
break:

CurrenEX -= I;
Video Draw-Object () ;
break:

CurrenfY -= I;
Video Draw-Object () ;
break?

case WORLD PREVX ID:

a
case WORLD PREVY ID:

This modifies header information in the edit field so that 4 characters are allowed to be entered.
After the dialog box is run the number entered in the edit field is added to or subtracted from the
Current X or Y and the current object is drawn at the newly specified location.

case WORLD NEXTNX ID:
VideoFKAME[O]TpString = VideoWorldNextNXStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (4 * CHAR XEXT);
VideoEDITF1ELD.pBuffer = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtZg)
(

1
break;

VideoFKAME[O]TpString = VideoWorldNextNYStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (4 * CHAR XEXT);
VideoEDITF1ELD.pBuffer = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtTg)
{

1
break;

VideoFKAME[O]TpString = VideoWorldPrevNXStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtZg)
{

I
break;

VideoFKAME[O],pString = VideoWorldPrevNYStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.pBuf€er = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if (DLGReturnCode == VideoOKtZg)

CurrentY -= atoi(VideoWorldEDITFIELDBuff) ;
{

Video-Draw-Object () ;
1
break;

CurrentX += atoi(VideoWorldEDITFIELDBuff) ;
Video-Draw-Object();

case WORLD NEXTNY ID:

CurrentY += atoi(VideoWorldEDITFIELDBuff) ;
Video-Draw-Object 0;

a
case WORLD PREVNX ID:

CurrentX -= atoi(VideoWorldEDITFIELDBuff) ;
Video-Draw-Object();

case WORLD PREVNY ID:

The device commands use the video routines to get the next and previous world coordinates,
then displays the object.

r i lw DEVTCE NEXTX ID:

0 case DEVICE NEXTY ID:
CurrentY = via next nwcy(CurrentY) ;
Video Draw - ObjPct () ?
break?

CurrentX = via prev nwcx(CurrentX) ;
Video Draw-ObjVct ()T
break?

CurrentY = via prev nwcy(CurrentY) ;
Video Draw-ObjPct () 7
break:

case DEVICE PREVX ID:

case DEVICE PREVY ID:

These modify the header info in the edit field of the dialog box so that only 3 characters are
allowed to be entered. After the dialog box is run successfully the number the user entered is
again sent to the get prev and next world coordinate video routines then the object is displayed.

case DEVICE NEXTNX ID:
VideoFRAME[O].pString = VideoDeviceNextNXStr;
VideoEDITF1ELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELDiedit maprect.xext = (3 * CHAR XEXT);
VideoEDITF1ELD.pBufTer = VideoDeviceEDITFIELWuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtZg)
(

CurrentX = vid-nextn nwcx(CurrentX,

Video-Draw-Object 0;
atoiVideoDeviceEDITFIELDBuff)) ;

1
break;

VideoFRAME[O].PString = VideoDeviceNextNYStr;
VideoEDITFIELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.edit maprecf.xext f (3 * CHAR XEXT);
VideoEDITF1ELD.pBuffer = VideoDeviceEDITFIELWuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtag)

case DEVICE NEXTNY ID:

0
CurrentY = vid-next? nwcy(CurrentY,
Video - Draw-Object () ;

(

atoiTVideoDeviceEDITFIELDBuff)) ;

1
break;

V+deoFRAME[O].pString = VideoDevicePrevNXStr;
VideoEDITFIELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITF1ELD.edit maprecf.xext f (3 * CHAR XFXT);
VideoEDITF1ELD.pBuffer = VideoDeviceEDITFIELIuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtag)
{

case DEVICE PREVNX ID:

CurrentX = vid-prevn nwcx(CuyrentX,

Video-Draw-Object 0;
atoiVideoDeviceEDITFIELDBuff)) ;

1
break;

VideoFRAME[O].pString = VideoDevicePrevNYStr;
VideoEDITF1ELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.edit maprecf.xext t (3 * CHAR XEXT);
VideoEDITF1ELD.pBuffer = VideoDeviceEDITFIELIuff;
DLGReturnCode = Video Process DialogO;
if(DLGReturnCode == VideoOKtag)
{

case DEVICE PREVNY ID:

CurrentY = vid-prevn nwcy(CurrentY,
Video - Draw - Object (1 ;

atoiVideoDeviceEDITFIELDBuff) 1;

1
break;

These commands uncheck all items in the shapes menu, then check the appropriate one.
case SHAPE RECT ID:

Video UncheFk Shapes Menu();
VideoShapesMEWUITEM[KECT INDEX].bChecked
Shapeswitch =,SHAPE RECT ID;
Video Draw - Object () ? -
break?

Video Uncheck Shapes Menu () ;
VideoShapesMENUITEM[ELLIPSE INDEX].bChecked
Shapeswitch = SHAPE ELLIPSE-ID;
Video Draw-Object () :
break?

Video UncheEk Shapes Men1>();
VideoShapesMEWUITEM[LINE-INDEX].bChecked

Shapeswitch = SHAPE LINE ID;
Video Draw - Object (): -
break?

Video UnchecK Shapes Menu();
VideoShapesMEWUITEM[POINT INDEX].bChecked

Shapeswitch = SHAPE POINT ID;
Video Draw Object () ? -
break? -

break;

= MB CHECKED; -

,e
-

case SHAPE ELLIPSE ID:

= MB CHECKED; -
-

case SHAPE LINE ID:

= MB - CHECKED;

case SHAPE POINT ID:

= MB CHECKED; -
-

default:

) / * end of switch on type of application event * /
break;

This routine, Video Process Dialog processes a dialog box. The first thing it does is pull up
the push buttons (for subsequent run) and initialize the focus index (defines which component
should should have the focus when the dialog box is run). The cursor offset is set so that any
data in the edit field will be selected. (Safeguard requirement). It then attempts to save the part
of screen that will be covered by the dialog box. Draws and runs the dialog box, until OK or
CANCEL is returned. Then redisplays the given portion that was saved, or redraws the entire
screen, then returns the OK or CANCEL return to the calling routine.
int Video-Process-Dialog()
{

a

unsigned int DLGReturnCode;
unsigned int Buffersize;
char *pBufferSize;
int RedrawFlag;

VideoPUSHBUTTON[O].bState = PB UP;
VideoPUSHBUTTON[l].bState = PB-UP;
VideoDIALOG BOX.focus index = 0;
VideoEDITFIELD.cursor-offset = EF SELECT-ALL;
Buffersize = vid-get rjuffer size(-

VideoFRAME[O].maprect.xorg - (2 * CHAR XEXT),
VideoFRAME[O].maprect.yorg - (2 * CHARTEXT),
VideoFRAME[O].maprect.xext t (3 * CHARTEXT),
VideoFRAME[O] .maprect.yext t (3 * CHARIYEXT)) ;

i f (Buffersize == CSR ERROR)

else
pBufferSize f (char *)malloc(Buffersize 1 ;
if(pBufferSize == (char *)0)

else

RedrawFlag = TRUE:
RedrawFlag = FALSE;

RedrawFlag = TRUE;

m vid - - get screen(VideoFRAME[O].maprect.xorg - (2 * CHAR XEXT),
VideoFRAME[O] .maprect.yorg - (2 * CHARYEXT) ,
VideoFRAME[O] .maprect.xext t (3 * CHAR-XEXT),
VideoFRAME[O] .maprect.yext t (3 * CHARTEXT) - ,
pBufferSize) ;

dlg draw(&VideoDIALOG-BOX) ;
do -

DLGReturnCode = dlg run(&VideoDIALOG BOX) ;
(

1
while ((DLGReturnCode ! = VideoCANCELtag)

& & (DLGReturnCode ! = VideoOKtag)) ;
vid-put-screen(VideoFRAME[O].rnaprect.xorg - (2 * CHAR XEXT),

VideoFRAME[O] .maprect.yorg - (2 * CHARTEXT) ,
VideoFRAME[O].rnaprect.xext t (3 * CHAR-XEXT),
VideoFRAME[O].maprect.yext t (3 * CHARTEXT), -
pRufferSize) ;

- -

free (pBufferSize) ;
if(RedrawFlag == TRUE)

Video-Draw-Screen();
else

Video Draw Coordinateso;
return(DLGRetErnCode) ;

I

a'

High-Level File I/O - FILEIOHL.PDM

FILEIOHL.PDM is an example of a DeskMate application which uses the GUF resource to
perform its high-level file input and output functions. The source to the FilelOHL application is
included in the SAMPLES\FILEIO\HIGH directory.

0

#include "fi1eiohl.h" / * Application header file * /
#include "fi1ehdec.h"

extern int dmerrno;
int main(argc, argv)
int argc;
char *argv [] ;
I

Allocates memory for the file so that it may be loaded.

/ * Application function declarations * /

/ * ask the,system foy at most 60K o f memory TI
for(pFileioBufferPointer = 0, FileioBufferSize = OxF000;

pFileioBufferPointer = (unsigned char *) malloc (FileioBufferSize) ;

/ * add in the extra 100 hex bytes that was taken out the last time around * /
FileioBufferSize += 0x100;

pFileioBufferPointer == 0; FileioBufferSize -=Ox100)

Initialize Datafile Pointers so we can use the High Level fil-menu-* calls. These calls require a
pointer to a datafile structure.

FileioDATAFILE.pStart = PFileioBufferPointer;
FileioDATAFILE.pTop = pFileioBufferPointer t FileioBufferSize;

/ * to this rogram on the command passe% ine
/ * Check to see if a filename was

if(argc > P)
{

* I

This next section checks the command line for a filename to load, copies the command line
filename into the Datafile structure, and validates the syntax of the filename, then attempts to
open the file passed on the command line.

a
/ * put the command line ar
/ * so that the filename wi?l be displayex on the title line * /
I* and the data file can be opened and loaded * /
strcpy(FileioDATAFILE.pFilenamef argv[l] 1;

/ * verify the file name passed (Run copnand may have been used) * /
if (valid-filename(FileioDATAFILE.pFilename,

(

into the pro rams datafile struct * /

FileioDATAFILE.pExtension) == FALSE)

/ * A message appears when the filename is invalid * /
/ * the filename was invalid so clear tht file namell*!/
/ * in the structure so it will disgtay
strcpy(FileioDATAFILE.pFilename, 1 ;

(Untitled)

I
else
(

/* open and load the validated file name file * /
FileioDATAFILE.FileSize = fil-menu-open(&FileioDATAFILE,

OPEN NO DIALOG) ; - -
1

I
else
I

If the file did not load successfully then the application should disable the save menu option of
the file menu. For example:

The F i l e i o H L D r a w Screen routine draws the main application screen and enters the main a
event loop, this% the &me functionality as the Video and Welcome applications.

/* Draw the main screen * /
FileioHL-Draw-Screen();

/* initialze the do while control flag * I
Done = FALSE;
I* Process the user inputs and actions * I
do
(

/ * read an event from an input device * /
event-read(&Event) ;

switch (Event .msg)
(

case EVENT COMMAND :
I* check to see if an item was selected from the menu bar * /
/ * process menu item that was selected * I

-

switch (Event. param)
(

Processing the "New" command takes the application to a no file loaded state. The application
should clear memory, and have no file loaded. Once again DISABLE the save menu option on
the FILE menu. fil-menu-new initializes the structure filename to a null string so that when
ttl-put-data-name is called "(Untitled)" will be displayed. The screen is then redrawn.

case FILE NEW ID:
/ * th8 user wants to clear out all previously * I
1: entered data, and go to a default new state * /
FileReturnCode = fil menu new(&FileioDATAFILE) ;
if(FileReturnCode =E TRUE)

I* everything went well and we need to * I
(

I* go to a defaultlno file loaded state * I
I* disable save menu item because there * I
I* is no file currently in memory * I
FileMenuItems[SAVE - INDEX].bEnabled = DISABLED;
/ * Display file name on the title line * I
I* Sending a pointer to a null string * I
/ * will display "Unt;tled" * I
ttl - - put data-name(FileioDATAFILE.pFilename) ;

a

1 if(FileReturnCode == DM ERROR & & dmerrno ==

(
DMERR NONDESTRUCTIVE - ABORT) -

/* the file could not be saved but the current * I
/ * data is not destroyed so just redisplay the * /
I* current file status information * I

1
FileioHL-Draw-Status-Info();
break;

The open section prompts the user with the standard open dialog box for them to select a file.
(The filename is syntatically correct since valid-filename has been called). If the return from
fil-menu-open is DM ERROR then the application should check dmerrno for
DMERR INVALID F I L E TYPE to make sure the file being loaded belongs with that application.
Some applicationsmay accept more than one file type (like this one). If the FileType element

is NULL then the FileType will not be checked (no verify). Then the application should attempt
to reopen the file (with no dialog box, since the filename is already correct). On a successful
load, the save menu option in the file menu is enabled. The filename is displayed via the
ttl-put-data-name call.

case FILE OPEN ID:
/ * th8 usef wants to open a new file * /
/ * and load it into memory * /
TempFileSize = fil-menu-open(&FileioDATAFILE,
if(TempFileSize == DM-ERROR)

OPEN WITH DIALOG) ; - -

if(dmerrno == DMERR INVALID-FILE-TYPE)
{

(
-

/ * the file type is not an ASCII Text file * /
strcpy(FileioDATAFILE.pFilename,

/ * do not do any,checking on the file type * /
FileioDATAFILE.FileType = CSR-NULL;
/ * Force the open with no dialog,and load it * /
TempFileSize = fil-rnenu-open(&FileioDATAFILE,
FileioDATAF1LE.pEnd = pFileioBufferPointer

t TempFileSize;
/ * set the Filesize in the datarile structure * /
FileioDATAFILE.FileSize = TempFileSize;
/ * save the current Filesize for later use * /
/ * see DMERR-NONDESTRUCTIVE-ABORT in open * /
OldFileSize = TempFileSize;
/ * a filename exists so enable save & saveas * /
FileMenuItems[SAVE-INDEX] .bEnabled = ENABLED;
/ * Display the ap lication's new data * /
/ * file name on &e title line * /
ttl - put-data-name(FileioDATAFILE.pFilenarne) ;

The new file could not be loaded. So save the old filesize.

FileioDATAFILE.pTmpfi1) ;

OPEN NO DIALOG 1;

1

a
if(dmerrno == DMERR-NONDESTRUCTIVE-ABORT)
{

/ * the previous file is intact but the * /
/ * new file could not be openedlloaded * /

/* reset the file size to the old file * /
FileioDATAFILE.Fi1eSize = OldFileSize;
/ * redraw the current file info*/

1

When the error DMERR DESTRUCTIVE ABORT is returned it means that when the new file was
trying to be loaded, it corrupted the one that was currently in memory so the application has
nothing to go back to. Therefore the appliction should go to a a default or no file loaded state.
Display file name on the title line. Sending a pointer to a null string will display "Untitled".

if(dmerrno == DMERR-DESTRUCTIVE-ABORT)
(

ttl put-data-name(FileioDATAFILE.pFilename) ;

/ * set the Filesize in the datafile structure * /
/ * it should be equal to DM ERROR *!
FileioDATAFILE.FileSize = TFmpFileSize;

-

1

m Redraw the screen.

1: erase the open dialog box * I
vid move cursor(0, op row - (2"CHAR-YEXT)) ;
vid-cleay to bot () ; -

/ * redraw the current file status informtion * /
FileioHL - Draw-Status-Info();
break;
1

- - -

Successful file open.
/ * Display the ap lication's new data * /
/ * file name on tfe title line * /
ttl-put-data-name(FileioDATAFILE.pFilename) ;

/ * there is now a filename so enable save h saveas*/
FileMenuItems[SAVE - INDEX].bEnabled = ENABLED;

/ * erase the open dialog box * /
vid move cursor(0, op-row - (2*CHAR_YEXT)) ;
vid-cleafto-bot - (1 ;

The application must update the Datafile structures with the size of the file (returned from open)
to the pointer pEnd to the end of the data

/* set the end to equal the,file size * /
FileioDATAFILE.pEnd = pFileioBufferPointer

t TempFileSize;

/ * set the Filesize in the datafile,structure * /
FileioDATAFILE.Fi1eSize = TempFileSize;
/ * save the current FileSize for later use * /
/ * see DMERR DESTRUCTIVE ABORT in open above * /
OldFileSize z TempFileSiZe;
/: redraw the current file status information * /
FileioHL-Draw-Status-Info();
break;

a
Saves the applications data. It is not critical to this application that the save function be
successful, your specific application would probably go though more error checking than does
this simple example. Once the file was saved, the application should redraw the main screen.

case FILE SAVE ID:
/ * thP user wants to save the current file * /
if(fil menu save(&FileioDATAFILE) == TRUE)
/ * The aata Vas successfully saved * /
/ * redraw the current file status informtion * /
FileioHL-Draw-Status-Info();
break;

The Save As function should perform the same functionality as the save function as described
above. The only difference is that Save As should prompt the user to enter a new filename for
the data to be save into. After prompting the user the application saves the data in the new
filename, displayes the new filename on the title line portion of the screen, and redraws the main
or default screen.

case FILE SAVE AS ID:
/ * thP user wZnts to save the current * /
/ * file with a different name * /
if(fil menu saveas(hFileioDATAFILE) == TRUE)
/ * The aata Bas successfully saved * /

. . ~ . A ,

/ * Display the ap lication's new data * /
I* file name on tge title line * I
ttl-put-data-name(FileioDATAFILE.pFilename 1;
/ * redraw the current file status informtion * /
FileioHL-Draw-Status-Info();
break;

a
The user requested to exit the application. This application does not have any cleanup work to
do. If your application does it would to it here. The fit-menu-quit routine prompts the user to
save any data changed sinces the last change. If the user answers CANCEL then
fil-menu-quit returns FALSE to the application so that it will not exit.

case FILE EXIT ID:
/ * setup f5r exit * I
if(fil menu quit(&FileioDATAFILE) == TRUE)

DonF = TRUE;
else

FileioHL-Draw-Status-Info() ;
break;

The fil-menu-run routines functions in the same way as fil-menu-quit, with the exception that
the user may press CANCEL at the Run File dialog box, which would cancel the runlquit function.
It the user does not canel either option then the application must setup to exit, as described
above. fil-menu-run will then run another application instead of returning to the DeskTop or to
DOS.

case FILE RUN ID:
/ * sefup €or exit then call fil menu run * /
if(fil menu run(&FileioDATAFII;E) E= TRUE)

else
t

DonP = TRUE;

/ * the user cancelled the run action or there * /
/ * was an error when tryin
/ * Reguardless the run diayo box needs to be * /
/ * cleared from the screen *?
vid move cursor(0, FIO-RUN-YORG - (2"CHARYEXT)) ;
vid-clear to bot (I ;
FilFioHL-DraD-Status-Info();

to save the file * / a
1
break;

The about-versions call is the standard DeskMate way to display version information to the
user. This routine is also used in the Video and Welcome applications.

case FILE ABOUT ID:
/ * maKe a DPskMate library call to * /
/ * display an ABOUT ... dialo
about - versions (&FileioHLAPP!-VERSION) ;

/ * clear the about diaio
vid move cursor(0, 3
vid-cleafto-bot - (1 ;

/* dis lay the File Status info back on the screen * /
FileioRL-Draw-Status-Info (1 ;
break;

box * /

ZHAR - YEXT) ;
box from the screen * /

The modified option is an application specific function that allows the user to change the status of
the Modified flag in the Datafile sturcture. This is not a normal application function, it is done
here so that the programmer can see the messages that are displayed to the user once a "real"
file is modified.

case OPTION-MODIFIED ID:
/ * t h i s option aTlows the user to change * / !* the sfatus of the modlfied flag * /
if(FileioDATAFILE.Modified == TRUE)

0 / * un-check the menu item * I
OptionMenuItems[MODIFIED~INDEX].bChecked

= MB - UNCHECKED;
1
else
{

/ * mark the file as ymodified'1 * /
FileioDATAFILE.Modified = TRUE;

/ * check the menu item * /
OptionMenuItems[MODIFIED INDEX].bChecked

= MB CHECKED;
1
/ * display the File Status info back on the screen * /
FileioHL-Draw - Status-Info 0;
break;

The redraw screen option the programmer the ability to redraw the entire screen. This option is
not usually available to the users, but it's functionality is all but required for most DeskMate
applications.

-
-

case OPTION REDRAW ID:
/ * this-option-allows the user to * /
/ * redraw the screen at any time * /

/ * display the File Status info back on the screen * /
FileioHL-Draw-Screen();
break;

} / * end of switch on type of application event * /
break;

1
/* check to see if "EXIT" or "RUN" menu item has been selected * /
while (Done != TRUE) ;

/ * give back the memory previously malloc'd * / 0
This application needs to release the memory previously allocated. This could have been done in
the exit and run functions above, but it was done in this application here to conserve code. After
the memory has been released, the bindings to the resources are released, and the application
exits.

free (pFileioBufferPointer) ;

/ * inform the loaded resources that the application is exiting * /
guf-bind end () ;
csr end(7;
exif (0) ;

} / * end of Fileio main module * /

The FileioHL Draw Screen function displays the application name and the name of the
datafile, and draws the file status information. This is very similar to the other two sample
applications discussed earlier.
void FileioHL-Draw-Screen0
{

/ * Display the application's name on the title line * /
ttl-put-app-name ("FileioHL") ;

/* Display the application's data file name on the title line * /
/ * Sending a pointer to a null string will display "Untitled" * /
ttl - - put data-name(FileioDATAFILE.pFilename) ;

FileioHL Draw Status Info();

Low-Level File I/O - FILEIOLL.PDM

FILEIOLL.PDM is an example of a DeskMate application which uses the GUF resource to
perform its Low-level file input and output functions. The source to the FilelOLL application is
included in the SAMPLES\FILEIO\LOW directory.
#include "fi1eioll.h"
#include llfileldec.hll / * Application function declarations * /

a
/ * Application header file */

To keep the code simpler and clearer this application uses the Datafile structure, even though the
low level routines do not require it.

int main(argc, argv)
int argc;
char *argv [I ;
(

The buffer pointers are initialized ,the command line is checked, the filename is copied into the
Datafile structure the same as they were in the high level example discussed earlier. Then the
file is opened via an application defined routine FileioLL Load DataFile which functions
similar to the DeskMate function fil-menu-open. The main screenis drawn and the application
enters the main event loop.

1: initialize pStart and pEnd in DATAFILE structure * /
FileioDATAFILE.pStart = FileioDATAFILE.pEnd = pFileioBufferPointer;
/ * initialize pTop to point f o the last availabl,e byte of memory * /
FileioDATAFILE.pTop = (pFileioBufferPointer t FileioBufferSize) - 1;
/ * Check to see if a filename was assed * /
/ * to this rogram on the command Pine * /
if(argc > E)
t

/ * put the command line ar
/ * so that the filename wi?l be displaye8 on the title line * /
/ * and the data file can be opened and loaded * /
strcpy(FileioDATAFILE.pFilename, argv[ll 1;

LDReturnCode = FileioLL Load DataFile(OPEN-NO - DIALOG) ;
if(LDReturnCode == FALSE) -

into the pro rams datafile struct * /

a

/ * the file could not be o ened * /
/ * disable save menu item gecause there * /
/ti is no file currently in memory * /
FileMenuIterns[SAVE - INDEX].bEnabled = DISABLED;
/ * the file open was successful so enable * /
/ti the save & save as menu items * /
FileMenuItems[SAVE - INDEX].bEnabled = ENABLED;

else

1
else

/ * disable save menu item because there * /
1: is no file currently in memory * /
FileMenuItems[SAVE-INDEX].bEnabled = DISABLED;

/* Draw the main screen * /
FileioLL-Draw-Screen();
/ * initialze the do while control flag * /
Done = FALSE;
/ * Process the user inputs and actions * /
do
(

/ * read an event from an input device * /
event-read (&Event) ;

a switch(Event.msg)
I

case EVENT COMMAND :
/ * check tD see if an item was selected from the menu bar * I
/ * process menu item that was selected * /

switch(Event.param)
{

The new operation checks the status of the modified flag in the Datafile structure and prompts
the user to save changes (if necessary). Once the file is successfully saved, the application
Initializes all variables to go to a new untitled state. The filename is displayed and the File I/O
main screen is redrawn.

case FILE NEW ID:
/ * thV usEr wants to clear out all previously * /
/ * entered data, and go to a default new state * /
/ * assume the user will not cancel this operation * /
CancelFlag = FALSE;
!* check,the DataFile modified flag * /
if(FileioDATAF1LE.Modified == TRUE)

SCReturnCode = msgbox Savechangeso;
(

if(SCReturnCode == MSG-YES)
(

/ * the user wants to save the current file * /
FileioLL-Save-DataFile(
CancelFlag = FALSE;

1
if(SCReturnCode == MSG NO)

FileioDATAFILE.pFilename) ;

/ * the user does no€ want to save the * /
/ * current file, but wants to continue * /
/ * the new operation * /
CancelFlag = FALSE;

if(SCReturnCode == MSG CANCEL)
/ * the user wants t5 cancel the new operation * /
CancelFlag = TRUE;

a
2 if(CancelFlag == TRUE)
t

1
/ * reinitialize variables to a "new" state * /
FileioLL-New-State();

/ * Display file name on the title line * /
/ * Sending a pointer to a n u l l string * /
/ * will display "Untitled" * /
ttl - - put data-name(FileioDATAFILE.pFilename) ;

FileioLL-Draw-Status-Info();
break;

FileioLL-Draw-Status-Info();
break;

FileioLL Load - DataFi le is an application written subroutine which provides the same
functionality to the application as the DeskMate function fil-menu-open.
F i l e i o L L Load D a t a f i l e returns FALSE if the open was unsuccessful, so that the
application-may handle any errors which may occur, for this example the save option is

DISABLED on load datafile failure. If everything is successful the new filename should be
displayed on the title line, the open dialog box should be removed from the from screen and the
main default screen should be drawn.

0
case FILE OPEN ID:

/ * thB useF wants to open a new file * /
/ * and load it into memory * /
LDReturnCode = FileioLL-Load-DataFile(
if (LDReturnCode == FALSE)
(

OPEN - WITH - DIALOG) ;

/ * the load was unsuccessful * /
/ * there is still no filename so disable save * /
FileMenuItems[SAVE-INDEX].bEnabled = DISABLED;

1
else
{

/ * the load was successful * /
/ * there is now a filename so enable save * /
FileMenuItems[SAVE-INDEX].bEnabled = ENABLED;

1

/ * Display the ap lication’s new data * /
/ * file name on tte t-itle line * /
ttl - put-data-name(FileioDATAFILE.pFi1ename) ;

/ * erase the open dialog box * /
vid move cursor(0, op-row - (2*CHAR - YEXT) 1;
vid-cleaF - - - to bot () ;

/ * redraw the current file status informtion * /
FileioLL-Draw-Status-Info();
break;

FileioLL Save DataFile is an application written subroutine which provides the same
functionalitvto theapplication as the DeskMate fil-menu-save call. Once the file is successfully
save the main default screen should be redrawn.

a
case FILE SAVE ID:

/ * th8 use7 wants to save the current file * /
/ * a filename should already exist, since,this * /
/ * option is gra ed unless there i s a valid file name * /
SReturnCode = FileioLL-Save DataFile (
if(SReturnCode == FALSE)
{

1
else
(

1

/ * redraw the current file status information * /
FileioLL-Draw-Status-Info();
break;

-FileioDATAFILE.pFilename 1;

/ * the save was unsuccessful * /

/ * The data was successfully saved * /

digbox-SaveAs is a DeskMate function which displays a dialog box for the user to enter the new
filename, so the data in memory can be saved to that new file. Once again the application
defined routine FileioLL-Save-Datafile is called and functions the same as it did for the save
function described above. After the save is successful, the application must remove the Save As
dialog box from the screen, display filename on title line and redraw the main default screen.

e case FILE SAVE AS ID:
/ * th8 usef wants to save the current * I
/ * file with a different name *I
SAReturnCode = dlgbox SaveAs(&FileioDATAFILE,
if(SAReturnCode == TRUE)
I

SaveAsFilename) ;
-

/ * it is ok to try and save the file * /
SReturnCode = FileioLL-Save-DataFile(
if (SReturnCode == FALSE)
I
1
else
t
1

SaveAsFilename) ;

I* the save was unsuccessful * I

/ * The data was successfully saved * /

1
else
I

/ * the user decided not to save the file * /
/ * or there was an error from dlgbox-SaveAs * /

1
/ * clear the save as dialog box from the screen * /
vid move cursor(0, sa-row - (2*CHAR_YEXT) 1;
vid-cleaT-to-bot - () ;

I* Display the ap lication's new data * I
/ * file name on tie title line * I
ttl - - put data - name(FileioDATAFILE.pFi1ename) ;

/ * redraw the current file status informtion * /
FileioLL-Draw-Status-Info();
break;

The exit function provides the same function in this application as it did in the FileioHL application e
described earlier. The difference being that this application must prompt the user to save
changes if the data has been modified since the last save, where this was automatic in the
FileioHL application. The low level application must provide much more functionality and error
checking as you can see. If the user wants to save the data there must be a filename, so the
application must prompt the user and process all possible combinations of error and return
codes.

case FILE EXIT ID:
/ * serup fir exit * I
if(FileioDATAFILE.Modified == TRUE)
{ SCReturnCode = msgbox-Savechangeso;

switch (SCReturnCode 1
{

case MSG YES:
/ * tlie user wants to save currenf file * /
if(FileioDATAFILE.pFilename == \Ol)
{ / * there is not a current filename * /

/ * prompt the user for a filename * /
SAReturnCode = dlgbox_SaveAs(

if(SAReturnCode == TRUE)
{

&FileioDATAFILE,
SaveAsFilename) ;

/ * try and save the file * /
SDReturnCode =FileioLL Save DataFile

if(SDReturnCode == FALSE)
(SaveAsFilBname) ;

/ * the save failed * /
break;

else
(

/ * the user did not specify a * /
/ * name to save the file into * /
break;

1

0
1
else
(/ * there is a current filename * /

SDReturnCode = FileioLL Save Datafile(
if(SDReturnCode == FALSE)

SaveAsFilenZme) T
/ * the save failed * /
break;

1
/ * close the currently open file * /
FileioLL-Close-File();
Done = TRUE;
break;

I * The user does not want to save the file * /
/ * but wants to continue the exit operation.*/
case MSG NO:

/ * tlie user does not want to save file * /
/ * close the currently open file * /
FileioLL - Close-File();
Done = TRUE;
break;

case MSG CANCEL:
/ * tRe user wants to cancel the new * /

default:
break;

) / * end,of switch on SReturnCode * /
} / * the modified flag is FALSE * /
/? close the currently open file * /
FileioLL - CloseFileO;
/ * set flag so the application will exit. * /
Done = TRUE;

break;

a

} / * end of main module * /

e FileioLL Load DataFile is an application written subroutine that provides the save
functionality to the application as fil-menu-open. It checks to see if the user needs to be
prompted to get a filename if so dlgbox-Generic (a DeskMate generic open dialog box function)
is called. The filename is validated for syntax errors, if bad this routines goes to a new state and
exits FALSE to the calling routine. Then the the file is opened. If the application specified a
FileType the specific bytes in the file must be checked. The first four are critical. The first byte
contains the FileType, the next three are the extension of the file. A compairson is done on the
all of these bytes, if they do not match, the application goes to a "new" state and return FALSE to
the calling function. The next eighteen bytes are assumed to be the page setup information, they
are read in and DeskMate's internal structures are initialized. After the remainder of the file is
read in the top of memory pointer p E n d is updated, this is the same as the high level example.
int FileioLL Load - DataFile(bVerbose)
i nt bVerbo seT
I

int Successful;
char TempBuf[4];
long LSReturnCode;
int Returncode;
int DGReturnCode;
unsigned int NumBytesRead;
unsigned int VFReturnCode;
unsigned int FAEReturnCode;
unsigned int FilReturnCode;
/ * have a positve outlook, assume we will be successful * /
Successful = TRUE;

/ * determine if the dialog box needs to be displayed * /
if(bVerbose == OPEN - WITH - DIALOG)
(

/ * run the open dialog box to get the data file name * /
DGReturnCode = dlgbox-Generic(FileioDATAFILE.pExtension,
if(DGReturnCode == FALSE)
(

\@ FileioDATAFILE.pFilename, FIO-OPEN) ;

/ * the data file name was not received * /
FileioLL-New StateO;
Successful =-FALSE;
return(FALSE) ;

1
I
else
{

/ * the followin valid filename & file-already-exists * /
/ * calls are ma8e by tKe dlgbox Generic call so we do * I
I* not have to execute them for-the case above * I

/ * validate the file name passed, (Run command may have been used) * /
VFReturnCode = valid-filename(FileioDATAFILE.pFilename,

FileioDATAFILE.pExtension) ;
if(VFReturnCode == FALSE)

/ * A message appears when fhe filename is invalid * /
/ * The file,,namE was invalid so clear the file name * /
/ * go to a new state * /
FileioLL New State 0 ;
Successfnl =-FALSE;
return (FALSE) ;

I

1

/ * check to make sure the file already exists on disk * /
FAEReturnCode = file alread exists(FileioDATAFILE.pFilename) ;
if (FAEReturnCode ==-FALSE r-

/ * The file does not already exist, so * /
/ * display a message box to tell the user * /
Msg.pMessage = The file does not already exist";
Msg. String = "File error";
Msg.gtn combo = MSG COMBO - OK;
msg run7 &Msg) ; -
/ * 49 to a FileioLL New State (1 ;
Successfiil =-FALSE;
return (FALSE) ;

(

new" state * /

1
1
/ * Open and load the validafed,file name file * /
FilReturnCode = fil-open(FileioDATAFILE.pFilename,

if(FilReturnCode == DM-ERROR)
(

OPEN FOR UPDATE I EXCLUSIVE) ; - -

/* The open failed * /
fil open erfor msg();
/ * 90 to-a new" state * /
FileioLL New State () ;
Successflil =-FALSE;
return (FALSE) ;

1
else
I

/ * The open was successful so before the FileHandle is set * /
/ * to the new FileHandle (via FilReturnCode) the old file * /
/ * needs to be closed to avoid having too many,files open * /
/ * at a single time. In this manner the most files open at * /
/ * one tine will be two. * /
FileioLL Close File();
FileioDATAFILESFileHandle = FilReturnCode;

I
/ * Get the file size of the o en file so we can check to see * /
/ * if we have enough room to road the file.*/
/ * get the size of the file by seeking to the end * /
LSReturnCode = fil lseek(FileioDATAFILE.FileHandle, OL, 2) ;
if(LSReturnCode =E -lL)
(/ * Tell user about any error via a DeskMate call.*/

fil lseek error msg0;
/ * 40 to Z "new" state * /
FileioLL New State () ;
Successfiil =-FALSE;
return(FALSE 1 ;

FileioDATAFILE.FileSize = LSReturnCode;
1
else

/ * reposition the file
LSReturnCode = fil lseef(FileioDATAFILE.FileHan8le, OL, 0) ;
if(LSReturnCode =E -lL)
I

ointer to the begininnin of file before read * /

fil lseek error msg0;
SucFessfuT ; FA;SE;
/ * go to a new state * /
FileioLL New State () ;
return (FALSE) ;

1
/ * the check for the file sjze will come after.checking * /
/ * for, and/or reading in file header information * /
/ * Check for DeskMate file header information * /
/ * Assume ascii file * /
if(FileioDATAFILE.FileType != 0)
{ / * Initialize temp buffer to -1's * /

TempBuf[O] = TempBuf[l] = TempBuf[2] = TempBuf[31 = OxFF;

0 / * Read the first byte of the file which * /
/ * is, in this case, the FileType * /
FilReturnCode = fil read(FileioDATAFILE.FileHandle, TempBuf, 1 1;
if(FilReturnCode =E DM-ERROR)
(

/* the file could not be read * /
fil read er:or msg0;
1: go to-a new" state * I
FileioLL New State () ;
Successfiil =-FALSE;
return (FALSE) ;

1
!* Verify FileT pe :
if (TempBuf [O] '4'= FileioDATAFILE.FileType)
I

/ * FileType is not correct * /
I* go to a "new" state * I
FileioLL New State () ;
Successfiil =-FALSE;
return (FALSE) ;

1
/ * Read in the applications extension, the next * /
/ * three bytes of the file header information * /
FilReturnCode = fil read(FileioDATAFILE.FileHandle, TempBuf, 3) ;
if(FilReturnCode == DM-ERROR)
t

/ * file could not be read * /
fil read erfor-tsg() ;
1: go to-a new state *I
FileioLL-New State();
Successful =-FALSE;
return (FALSE) ;

1
/* Compare what was returned from the read * /
/ * above to what is in the,DATAFILE structure * /
Returncode = strncmp(FileioDATAFILE.pExtension, TempBuf, 3) ;
if (Returncode != 0)
{ a /: go to a ~InewI~ state * I

FileioLL New State () ;
Successftil =-FALSE;
return(FALSE 1 ;

1
/ * Get the page setup information from DeskMate *I
ptd-get-page(LPGSetup, &PGMode 1;

/ * The next 18 bytes are printer setup information * /
/ * Read then in. TI
FilReturnCode = fil read(FileioDATAFILE.FileHandle,
if (FilReturnCode ! = 18)

/ * file could not be read * /
I

fil read error msg () ;
/ * 40 to-a rrneill state * /
FileioLL New State 0 ;
Successftil =-FALSE;
return(FALSE) ;

(char *) LPGSetup, 18) ; -

1
/ * Initilize che page setup in DeskMate to be * /
/ * the same as the files page setup information * /
ptd-set-page(&PGSetup, &PGMode 1;

/ * Adjust the size o f the file for the file too large calculation * /
FileioDATAFILE.FileSize -= FILE-HEADER-LENGTH;

1

/ * Read in the rest of the file, * /
/ * or jump to here if the file t pe was NULL. * /
/ * Check to see if the size of txe file will fit into memory * /
if((unsigned)FileioDATAFILE.FileSize > FileioBufferSize)
{

/ * The file will not fit into the allocated buffer * /
/ * so display allmessage box to the user * /
Msg.pMessage = The file is too large to fit into allocated memory";
Msg. String = "File error";
Msg.gtn combo = MSG COMBO - OK;
msg run7 &Msg) ; -
1: 40 to a "new" state * /
FileioLL New State (1 ;
SuccessfITl =-FALSE;
return (FALSE) ;

a

1
/ * Read file into allocated buffer * /
NumBytesRead = fil-read(FileioDATAFILE.FileHandle, FileioDATAFILE.pStart,
if(NumBytesRead == DM-ERROR)

/ * The file could not be read * /
I

fil read erfor msg() ;
/ * 40 to-a neij" state * /
FileioLL New State () ;
Successfiil =-FALSE;
return(FALSE) ;

/ * Make pEnd point to the last byte of data * /
FileioDATAFILE.pEnd = (FileioDATAFILE.pStart -t NumBytesRead) - 1;

return (TRUE) ;

return (FALSE) ;

FileioBufferSize) ;

1
else

if (Successful)

else

1

F i l e i o L L Save DataFi le closes the file currently open, opens the new file, and saves the
data in memory tothe new file. pNewFilename is a pointer to the filename to be written. It may
be the same as the current file, as in the case of save, or it may be a completely new filename as
in the case of saveas. A check is made for DeskMate header information so that it may be
skipped on the writing of data from memory. DeskMate's page setup and page mode information
for this application is read in and written to the file. After the file is successfully written the
Datafile structure is updated.

a

int FileioLL Save DataFile(pNewFilename)
char *pNei;jFilefiame;

int Successful;
{

long LSReturnCode;
unsigned int FilReturnCode;
unsigned int NumBytesWritten;
unsigned int MemorySize;

/ * assume this function will succeed * /
Successful = TRUE;

/ * close the current file * /
FileioLL - Close - File();
/: initialize the FileioDATAFILE,structure with the new name * /
FileioDATAFILE.pFilename = pNewFilename;

Open the new validated file name file with create, the file is opened with create in case the file
has gotten smaller, although it should never happen in this example, it is necessary to show what
procedure an application should actually have to do. Open with create to capture possible lost
disk space on a smaller file.

a FilReturnCode = fil create(FileioDATAFILE.pFilename) ;
if(FilReturnCode =E DM-ERROR)

I* the create failed * /
fil create error msg0;
I* qo to a-"new"-state * I
FileioLL New State () ;
Successal =-FALSE;
return(FALSE 1;

t

1
else
{

/ * initialize the file handle so it may be * /
/ * closed before,it is reopened below
FileioDATAFILE.F+leHandle = FilReturnCode;
FileioLL-Close-File();

/

I
/ * the filename validation was done by dlgbox SaveAs * /
/ * or in the case of save, in FileioLL Load DZtaFile * /
FilReturnCode = fil-open(FileioDATAFIT;E.pFTlename,
if(FilReturnCode == DM-ERROR)

OPEN - - FOR UPDATE I EXCLUSIVE 1;

/* the open failed * /
fil open error msg0;
Successful = FALSE;
return(FALSE) ;

FileioDATAFILE.FileHandle = FilReturnCode;

{

I
else

/ * Check for DeskMate file header information * /
/ * Assume ascii file * /
if(FileioDATAFILE.FileType != 0)
{

/ * the header information must be written out * /

/* write the File! pe * /
FilReturnCode = fly-write (FileioDATAFILE.FileHandle,

if(FilReturnCode ! = 1)
t 0 & (FileioDATAFILE.FileType) , 1) ;

/ * the write failed * /
fil write error msg0 ;
1: 90 to a "newn state * /
FileioLL-New State();
Successful =-FALSE;
return(FALSE 1;

/ * write the Extension * /
FilReturnCode = fil-write(FileioDATAFILE.FileHandle,

if(FilReturnCode != 3)
(

I

FileioDATAFILE.pExtension, 3) ;

/ * the write failed * /
fil write ef;ror msg0;
1: go to B new" state * I
FileioLL New State 0 ;
SuccessfiTl =-FALSE;
return (FALSE) ;

1
/ * get the page setup information from DeskMate * /
ptd-get-page(&PGSetup, &PGMode) ;

/ * write the Page Setup information * /
FilReturnCode = fil-write(FileioDATAFILE.FileHandle,
if (FilReturnCode != 18)
{

(char *) &PGSetup, 18) ;

/ * the write failed * /
fil write efror rnsg0;
/ * qo to 2
FileioLL-New State () ;

newn state * I
S i i r r ~ q s f n l --AT C C .

/ * calculate the size of the data in memory * /
MemorySize = (unsigned) ((FileioDATAFILE.pEnd -

/ * write the data in memory to a disk file * /
NumBytesWritten = fil write(FileioDATAFILE.FileHandle,
if(NumBytesWritten == DM-ERROR)

FileioDATAFILE.pStart) t 1) ; 0
FileioDATAFILE.pStart, MemorySize) ;

-

/ * the write failed * /
fil write error msg();
/ * go to Z "neww state * /
FileioLL New State (1 ;
Successfiil =-FALSE;
return (FALSE) ;

FileioDATAFILE.FileSize = NumBytesWritten;

{

1
else

1

FileioLL Close File closes the currently open file, if DM - ERROR is in the FileHandle
element it LdicateGhere is no file currently open.

void FileioLL-Close-File()

int FilReturnCode; / * used for the fil-close call * /
{

/ * check to see if the file handle is valid * I
if(FileioDATAFILE.FileHand1e ! = DM - ERROR)

/ * close the file * I {

FilReturnCode = fil close(FileioDATAFILE.FileHandle) ;
if(FilReturnCode =E DM ERROR)

FileioDATAFILE.FileHandle = DM - ERROR;
1: I said close the-file! * /
fil force close(FileioDATAFILE.FileHandle) ;

1
1

FileioLL New State takes the application to a "New" state. It first closes the file, sets the
Datafile strhrefi lename element to a NULL, initializes the modified flag in the Datafile structure
to FALSE, sets the Datafile structure end and start pointers to be equal, zeros the file size, and
disables the save menu option.

(

a
void FileioLL-New - State0

/: close the existing file * I
FileioLL-Close-File();
/ * NULL the current file nam? *!
*FileioDATAFILE.pFilename = \O ;

/ * set the modified flag to FALSE * /
FileioDATAFILE.Modified = FALSE;
1: reset end pointer to,equal start pointer * /
FileioDATAFILE.pEnd = FileioDATAFILE.pStart;
/ * reset Filesize to.equal Zero * /
FileioDATAFILE.Fi1eSize = CSR-NULL;
/ * disable save menu item because there * /
/: is no file currently in memory * /
FileMenuItems[SAVE-INDEX] .bEnabled = DISABLED;

1

Database File I/O - DBCARS.PDM

DBCARS . PDM is an example of a DeskMate application which uses the Database resource to
perform its file input and output functions. The DBCars application is included on the
SAMPLESDATABASE directory.
#include "dmdb. hll / * Database Resource header file * /
#include "dbcars . h"
#include "dbdecs. h"

main (argc, argv)
int argc;
char *argv [] ;
{

This application uses a database file structure which is used to store the file, table, and record
information for the current file.

.
0

/ * Application data header file */
/ * Application function prototypes header file * /

DB DATAFILE DB Datafile; / * Database Datafile structure * I
DB-DATAFILE - *pITB - Datafile; / * Pointer to the Databse Datafile structure * /

This application binds to the entire database, since it creates files and reads and updates data in
the files. For more information about binding to specific databse resources, see the Desk and
Database Manager sections of the DeskMate Technical Reference.

if (db-bind-inito == CSR-ERROR)
I

/ * failure to bind to the Database resource * /
guf-bind end () ;
csr end(T;
exif(1) ;

1
I* Assume untitled state * I
DBCars - SetUntitled(pDB-Datafile) ; a

First we check the arguments to determine if a file name was passed to the application. If an
argument was passed, then the file name is validated and its full path name is generated. The
database expects full path names for its data file names. The file is then opened.

/ * Check for a file argument * I
if (argc > 1)
{

/ * First check for a valid file name, call issues error message * /
if (valid-filename(argv[l], "DBF") == TRUE)
I

/ * Expand the name, database requires full path name * /
Path-Expand(argv[l], pDB-Datafile->Filename) ;

/ * Open the file passed without displaying the dialog box * /
DBCars - OpenFile (pDB-Datafile, NO-PROMPT) ;

1
} I* had arguments passed on the parameter line * I
/* Draw the main screen */
DBCars-Drawscreen(pDB-Datafile) ;

When we have a file opened, the first record in the file is displayed. When in the "Untitled" state,
a blank screen is displayed.

if (pDB-Datafile->hFile >= 0)

/ * We have file, display the first record in the file * /
ModelMENUITEM[O].bEnabled = ENABLED; / * Add * /
CarsMENUBAR.bRedraw = MB-NO-REDRAW;

(

mh ,-Iv=,.~ / r r ~ ~ c t n ~ r i n a n ~ .

a / * initialze the do while control flag * /
Done = FALSE;

This application also has a standard event processing loop. The fil-menu-* callss used in the
File I/O examples are not used here, database calls, db-mgr, are instead used to do the File I/O
functions.

/ * Process the user inputs and actions * /
do
{

/ * read an event from an input device * I
event-read(&Event);
switch (Event .msg)
{

case EVENT COMMAND :
/ * cheFk to see if an item was selected from the menu bar * /
/*,process menu item that was selected * /
switch (Event .param)

case FILE NEW ID:
{

/ * thP usPr wants to clear out all previously * /
/ * entered data, and go to a default new state * /
DBCars - NewFile(pDB - Datafile) ;

if (pDB Datafile->hFile >= DB OK)
/ * Created file, there are-no records * /
/ * Enable Add Model only, disable others * /
DBCars-SetNoRecordsO;

/ * Display the new file name, set menu * /
DBCars-Drawscreen(pDB-Datafile) ;
break;

/ * th8 usef wants to open a new file * /
/ * and load it into the edit field * /
DBCars - OpenFile(pDB - Datafile, PROMPT) ;

/ * Display the new file name,dis lay the first record * /
DBCars Drawscreen (
if (p W - Datafile->gFiIe >= 0)
(

case FILE OPEN ID:

e DB Datafile p;
ModelMENUITEM[O].bEnabled = ENABLED; / * Add * /
CarsMENUBAR.bRedraw = MB-NO-REDRAW;
mb draw (&CarsMENUBAR) ;
DBCars - ShowModel(pDB - Datafile, FIRST-RECORD) ;

1
break;

I* sefup fir exit * I
Done = TRUE;
break;

case FILE EXIT ID:

Database applications use the dlgbox-Run function to prompt the user for the application
information for the File Run option.

case FILE RUN ID:
/ * se€u
if (dlggox Run () == TRUE)

/ * dis lay the screen which will clear the * /
/ * dlggox-Run dialog box from the screen * /
DBCars-Drawscreen(pDB-Datafile 1;
break;

/ * the-user wants to add a new model to the file * /
DBCars AddModel (pDB-Datafile) ;
break;-

€or exit then call dlgbox-Run * /

Done =-TRUE;

case MODEL ADD ID:

case MODEL MODIFY ID:

case MODEL DEL ID:
/ * the-usef wants to change a models information * /
DBCars DeleteModel(pDB-Datafile) ;
break;-

/ * thE user-wants to display the first record * /
DBCars ShowModel(pDB-Datafile, FIRST - RECORD 1;
break;-

/ * the usef wants to display the prev record * /
DBCars ShowModel(pDB-Datafile, PREV-RECORD) ;
break;-

/ * the usef wants to display the next record * /
DBCars ShowModel(pDB-Datafile, NEXT - RECORD) ;
break;-

/ * the usef wants to display the last record * I
DBCars ShowModel(pDB - Datafile, LAST-RECORD 1;
break;-

/ * the usEr wants to display all records * I
DBCars Report(pDB-Datafile) ;
break;-

case VIEW FIRST ID:

a
case VIEW PREV ID:

case VIEW NEXT ID:

case VIEW LAST ID:

case VIEW ALL ID:

} / * end of switch on type of application event * /
break;

switch7 Event.param)

I* check for an accessory event * /
{

case APPL ACCESS:
I* rufi the requested accessory * I
dm-acc-run (Event .x) ;

case EVENT APPL :

Database applications should always verify that the correct data file disk is in the drive after
running an accessory or when returning from a task switch when the user is accessing a data file
on a floppy drive. The GUF functions is-floppy and file-already-exists can be used to
determine if the data file is on a floppy and if the file is on the disk. If the file is not on the disk,
use dm-file-search to prompt the user for the file.

a
/* redraw the screen when the accessory is finished */
DBCars Drawscreen(pDB-Datafile 1;
break;-

/ * check for a task switch event * /
case APPL TASK SWITCH:

/ * dm-yiela is the call to allow task switch to occur * /
TSRetSrnCode = dm-yield();
if (TSReturnCode == DM NOT ALLOWED)

/ * task switching nEt bPing allowed by DESK.EXE * /
break;

/* The task switch Kas occurred so * /
/ * redraw the menubar and the screen * I
DBCars-Drawscreen(pDB-Datafile) ;

/ * the yield (task switch) failed * /
/ * there i s bad trouble so exit program * /
Done = TRUE;

if (TSReturnCode == DM OK)

else

break;

break;
default:

) / * end of switch on type of Command *!
break;

/ * 1 check to see if "EXIT" or "RUN" menu item has been selected * /
while (Done != TRUE) ;

/ * Close the file * /
if (pDB-Datafile->hFile >= 0)

db mgr(CLOSE TABLE, pDB Datafile->hTable) ;
{

db-mgr(- CLOSE-FILE, - pDB - Datafile->hFile) ;
1
/ * inform the loaded resources that the application is exiting * /
db bind end0 ;
guf bin8 end (1 ;
csr-end (7;
exi€ (0) ;

} / * end of Cars main module * /

Database applications must provide their own version of the m file dialog box which is very
similiar to the Save as dialog box used by the fil-menu-save-as function. The CREATE-FILE
database function is used to create the data file. The application must then build its file format by
creating data tables in the file. Once the file structure is created, data can be added.
void DBCars NewFile(pDatafile)
DB DATAFILE-*pDatafile;
{ -

db table table;
db-columns columns[NUM-COLS];
db-index index;
i nf erc;
register int 1;
register db-columns *pcol = &columns[O];
/ * Save off the current files name in case of problems * /
strcpy(pDatafile->TmpFilename, pDatafile->Filename) ;

erc / * Prompt = DBCars user NewFileDlg(for name for pDatafile->Filename the,New file * /) ; a
if (erc == FALSE)

/ * User cancelled the box, current file is okay * /
return;

/ * Create the new file for the user * /
erc = db-mgr(CREATE-FILE, pDatafile->Filename 1;

if (erc >= DB-OK)

/ * Created the new file, close the current file if we have one * / {

if (pDatafile->hFile >= DB-OK)

db mgr(CLOSE TABLE, pDatafile->hTable) ;
{

db-mgr(- CLOSE-FILE, - pDatafile->hFile) ;
1 / * save off the file handle, clear the table handle * /
pDatafile->hFile = erc;
pDatafile->hTable = -1;

1
else
{ / * we received an error condition on the create * /

DBCars-DisplayError(erc);

/ * Reset application,to previous state * /
strcpy(pDatafile->Filename, pDatafile->TmpFilename) ;
return;

1

Now that the file is created, the data tables which make up the file are created. Each m in table
will correspond to a data record, each Column is a field in the record. All records within a table
have the same format.

a
/ * the table is a standard, non-user-definable table *I
table.handle = pDatafile->hFile;
table.tb1-name = sModel;
table.update type = ADD COLUMN;
tab1e.n coluiiins = NUM-COLS;
tab1e.n-items = NUM-COLS;
table.cGls = PCOT;
I* fill in the column information * /
for (i = 0; i < NUM - COLS; it+, pcoltt)

pcol->col name = colnames[i];
(

pcol->colIlength = collength[i];
pcol->col type = coltype[i];
pcol-mew-name = colnames[il;
pcol-Xol-pattr = 0;
pcol->unique-flag = 0;

1
/ * Add the data table to the file, returning its handle * /
erc = db mgr(CREATE-TABLE, &table) ;
if (ere->= DB OK)

pDatafile-FhTable = erc;
else

/ * we received an error condition on the create * /
{

DBCars - DisplayError (erc) ;
/* Close and delete the partially created file * /
db mgr(CLOSE FILE, Datafile->hFile) ;
deTete - file (PDatafiye->Filename) ;

/ * Set application for the Untitled state * I
DBCars SetUntitled(pDatafi1e);
return?

1

Once a table is created, its sort information is defined. The default sort order is the order the
records are added or modified.

a
/ * Build the table index - sort by model and color * /
index.table handle = pDatafile->hTable;
index.index-name = sModelIndex;
index.pSortUrder = sortorder;

erc = db mgr(DEFINE INDEX, &index) ;
if (erc-!= DB OK) -

/ * we received an error condition on the index create * /
(

DBCars-DisplayError(erc);

/ * Close and delete the partiall
db mgr (CLOSE TABLE, pDatafile->gTable) ;
db-mgr(CLOSETILE, Datafile->hFile) ;
deTete - file (PDatafiye->Filename) ;
/ * Set application for the Untitled state * /
DBCars Set Unt i t led (pDataf ile) ;
ret u r n?

} / * we weren’t able to create the table index * /
/ * Close the table which is locked from data access * /
db - mgr(CLOSE - TABLE, pDatafile->hTable) ;

-

created file * /

Now that the data file format is established, the application is ready to add data to the file.
/ * Reopen the table for data access, go to-Untitled state on an error * /
DBCars-OpenTable(pDatafile 1 ;

} / * end of Cars New File module * /

a Database applications use the dialog box function dlgbox.Generic used by fil-menu-open to
prompt the user for the file to open. This function returns the full path name of the file to be
opened. Now the file and its data table are opened for data retrieval and updating.

void DBCars OpenFile(pDatafile, bPrompt)
DB DATAFILE-*pDatafile;
1 nf

int erc = TRUE;
(

/ * Save off the current files name in case of problems * /
strcpy(pDatafile->TmpFilename, pDatafile->Filename) ;

if (bPrompt == PROMPT)

/ * Pointer to database file structure * /
/* PROMPT or NO - PROMPT for file name * / bP romp t ;

/ * Let user choose another,,file * I
erc = dlgbox-Generic("DBF , pDatafile->Filename, FIO-OPEN) ;

/ * Cancelled the Open File dialog box, previous file is okay * /
return;

if (erc == FALSE)

/ * open the named datafile * /
erc = db-mgr(OPEN-FILE, pDatafile->Filename) ;

if (erc >= DB-OK)

/ * Opened the new file, close the current file if we have one * /
(

if (pDatafile->hFile >= DB-OK)

/ * close the table first, then the file * /
(

db mgr(CLOSE TABLE, pDatafile->hTable) ;
dbrmgr(CLOSETILE, pDatafile->hFile) ;

1
/ * save off the new file's handle, clear the table handle * /
pDatafile->hFile = erc;
pDatafile->hTable = -1;

/* Open the data table, yo to Untitled state on an error * /
DBCars-OpenTable(pDatafile) ;

/ * Could not o en the new file, reset to previous state * /
st rcpy (@at af i?e->Filename, pDataf i le->TmpFi lename) ;

rn
1
else

) / * end of Cars Open File module * /

This function opens the fields data table for reading and updating.
void DBCars OpenTable(pDatafile)
DB DATAFILE- *pDatafile;

table-access open-table;
int ere;

/ * set table information required to o e n the table and open it * /
open table. file handle = pDatafile->hPile;
open-table.tb1 name = sModel;
open-table.accPss level = DATA-ACCESS;
erc G db-mgr(OPEN-TABLE, &open-table) ;

if (erc < DB OK)
(

(- -

-

/* we received an error condition on the open * /
DBCars-DisplayError(erc);
/ * Close the file since we can't access data * /
db - mgr (CLOSE--FILE, pDatafile->hFile) ;
/* Set application for the Untitled state * /
DBCars-SetUntitled(pDatafi1e);

I I * ~ . r n marnn't a h l n t n nnnn t h n t a h l n for data access * /

This dialog box function resembles the Save as dialog box. It prompts the user for a file name
and validates and expands the file name for the application.
int DBCars NewFileDlg(filename)
char * f iTename;
{

a
int retval;

I* Raise all buttons, reset the edit field, reset focus *I
NewFilePBs[O].bState = PB UP;
NewFilePBs[l].bState = PB-UP; -

/ * Clear the data in the buffer, reset editin
:;lename buff[O] = YO *

NewFileEF.edit maprect .;or 0;
NewFileEF.cursBr offset = 8;=
NewFileEF.select1offset = 0;

/ * Make the edit field the current component * /
NewFileDlg.focus-index = 0;

dlg-draw (&NewFileDlg) ;

do
(

origin since this field * /
* / scrolls (left/rf hf.) , reset the cursor an8 select offsets.

retval = dlg-run(&NewFileDlg) ;

if (retval == OK-tag)
{

if (valid filename! filename-buff, "DBF") == TRUE)

else
{

/ * ExpZnd the file name out * /
Path-Expand(filename-buff, filename) ;

/ * Message is displayed informing user of error * /

NewFileEF.edit maprect.xorg = 0;
NewFileEF.curs5r offset = EF SELECT-ALL;
NewFileEF.select-offset = 0;-
NewFileDlg.focusIindex = 0;

/ * Raise the OK pushbutton and redraw the components * /
NewFilePBs[O].bState = PB UP;
NewFileRedraw[O] = DLG REDRAW;
NewFileRedraw[l] = DLG-REDRAW;
/ * Re-run the dialog box so user can try again * /
retval = EF-tag;

I* Select the name and allow user to retry * I a

)
) I* validate the file name entered * I

) while (retval ! = OK - tag & & retval != CANCEL-tag 1 ;
if (retval == OK tag)

return (TRUE 7;
else

return(FALSE 1;

} / * end of Cars New File Dialog Box function * /

This sample does its record data entry through a dialog box for simplicity. Most applications
allow the user to enter the information directly on the screen. See the COMPS example
application for more information.
void DBCars AddModel(pDatafile)
DB DATAFILE-*pDatafile;
I -

int yet ;,
register int I,];

/ * Reset_**the dialogfibox cozpone?ts for the next execution of the box * /
DP R A T S F T I . .- L n L - L -

0 ExteriorColorGroup.se1ected = 0;
ExteriorColorGroup.cursor = CSR - DEFAULT;
for (i = 0; i < 6; it+)
for (i = 0; i < 0 tionsDialoz.nCmE; it+)

OptionsRedrawF?ag[i] = DL -RED W;
dlg-draw(&OptionsDialog) ;

do
{

} while (ret != ID-OK & & ret != ID - CANCEL) ;

Opt+onsCheckBox[i].bState = CB-UNCHECKED;

ret = dlg-run (&OptionsDialog) ;

Once the user OKs the data entered, the information is transferred to the record column values
buffers defined for the recd data structure.

if (ret == ID-OK)
{

/ * Add the new record to the database file * /
/ * fill in the record's info in the record structure * /
recd.table-handle = pDatafile->hTable;

/ * Name is ready in the record values, set the color/options*states * /
itoa (ExteriorCggrGroup. selected, recd-vals [l] . col-va?:~~P1O) ;

I* Save a 110 for each check box o tion * /
for (i = 0, j = 2; i < 6; it+, lttr
{

/ * Save selected state of exterior color radio button I
2

if (OptionsCheckBox[i].bState == CB CHECKED)
strcpy(recd-vals[j] .col-value, "1" 1;

else
strc y (recd vals [j] . col-value, "0") ;

} / * for eacg check Box option, save the state * /

0
Once all the data is transferred to the recd structure, the actual ADD-ROW or add record call is
made. This record's record number is returned or an error if the record could not be added.

/ * add the record, saving the record number for the new record * /
PDatafile->rec num = db mgr(ADD ROW, &recd) ;
if (pDafafile=>rec num-< DB OK T

/ * didn't add rEcord, displa error message * /
DBCar s-Di splayError (pDat afiye->rec-num) ;

} / * User okayed the box, add the new record * /

The new record is displayed. Notice that the currently displayed record number is stored in the
database file structure for use by the other record routines.

if (pDatafile->rec num > 0)

else
{

/ * Display the Current records information * I
DBCars - ShowModel(pDatafile, FETCH - RECORD) ;

/ * clear dialog box off the screen * /
vid move cursor(0, 4 * CHAR-YEXT 1 ;
vidIcleaT-to-bot 0 ;

1
} / * end of Cars Add Model function * /

The same dialog box used by Add is used to change a records data. Again, the information is
transferred to the data base structure and the UPDATE-ROW functions call is made to actually
change the record information.
void DBCars ChangeModel (pDatafile)
DB DATAFILE-*pDatafile;
I -

int !et, erc;
reqister int I, 3 ;

0ptionsDialog.focus index = 0;
for (i = 0; i < 0 €ionsDialo nCm s; it+)

OptionsRedrawFfag[i] = Dd*REDkW; -

dlg-draw(&OptionsDialog) ;

do
{

) while (ret ! = ID OK & & ret != ID - CANCEL) ;

if (ret == ID-OK)
(

0
ret = dlg-run(&OptionsDialog 1;

-

/ * Name is ready in the record values, set the color/options states * I
/ * Save selected state of exterior color radio button
itoa (ExteriorColorGroup. selected, recd-vals [l] . col-va?ue, 10) ;

/ * Save a 110 for each check box option * /
for (i = 0, j = 2; i < 6; it+, jtt)
(

roup * /

if (OptionsCheckBox[i].bState == CB CHECKED)
strcpy(recd-vals[j] .col-value, rrl") ;

else
strc y(recd vals[j] .col-value, "0") ;

) / * for eacE check Box option, save the state * /

/ * Fill in the record's info in the update record structure * /
update recd.table handle = pDatafile->hTable;
update-recd.rec niim = pDatafile->rec num;
/ * updzte the rPcord, we are not usin
erc = db mgr(UPDATE-ROW, &update - rec8) ;
if (erc-c DB OK)

dara validation in this example*/

DBCars-DiSplayError(pDatafile->rec-num) ;

) / * update the record changes * /
if (pDatafile->rec nun > 0)

else
(

/ * Display the Current records information * /
DBCars - ShowModel(pDatafile, FETCH - RECORD) ;

/ * Remove the dialog box * /
vid move cursor(0, 5*CHAR - YEXT) ;
vid-cleafto-bot (1 ;

a
1

) / * end of Cars Change Model function * /

This function deletes the current rocord and displays the information for the next record or
informs the user that all records have been deleted.
void DBCars DeleteModel(pDatafile)
DB DATAFILE-*pDatafile;

db delete delete-recd;
{ -

i nf ere;
/ * fill in information abou the record to delete * /
delete recd.table handle = pDatafile->hTable;
delete-recd.rec niim = {Datafile->rec-num;
delete-recd.num-query lines = *

delete1recd.queTy-linS-array = NbLL;
erc = db mgr(DELETE ROW, &delete recd) ;
if (erc-== DB - OK II-erc == DB-NOIPOWS-SELECTED)

/ * Remove previous records information from the screen * /
vid move cursor(0, 4 * CHAR-YEXT) ;
vid-cleafto-bot - (1 ;

/* Inform user and set menus for empty file state * /
DBCars-DisplayMsg("A11 records have been deleted.");
DBCars - SetNoRecordsO;

{

1

0 else
if (erc < DB-OK)

DBCars-DisplayError(erc) ;
else

/* we have a new current record * /
(

pDatafile->rec num = erc;
DBCars ShowModBl(pDatafile, FETCH - RECORD) ;

) / * have Z next record * /
) / * end of Cars Delete Model function * /

This function does single record fetching to get the data to display for a record. When a record
number is not provided then a directional (first, next, etc.) fetch is made.
void DBCars ShowModel(pDatafile, type - fetch)
DB DATAFILE-*pDatafile;
i ne type-fetch;
(

int ere;,
register int
char :bDi[a;

/ * Setup the View Menu - make some assumptions on the result * /
if (type - fetch == FIRST-RECORD)

ViewMENUITEM[O].bEnabled = DISABLED; / * First * /
(

ViewMENUITEM[l].bEnabled = DISABLED; I* Prev * I
ViewMENUITEM[2].bEnabled = ENABLED; / * Next * /
ViewMENUITEM[3].bEnabled = ENABLED; / * Last * I

) I* we know we are going to the start * I
else

if (type - fetch == LAST-RECORD)

ViewMENUITEM[O].bEnabled = ENABLED; / * First * /
(

ViewMENUITEM[l].bEnabled = ENABLED; / * Prev * /
ViewMENUITEM[2].bEnabled = DISABLED; / * Next * /
ViewMENUITEM[3].bEnabled = DISABLED; / * Last * /

a) / * we know we are going to the end * /
/ * Will almost always have more than one record * /
ViewMENUITEM[$].bEnabled = ENABLED; I* All * /
/ * Fetch the current records data * /
get recd.table handle = pDatafile->hTable;
get-recd.rec niim = pDatafile->rec num; ere-= db mgrT type fetch, &get recd);-
pDatafiliS->rec-num-= get-recd.Tec-num;

All the possible error conditions are handled and the View Menu is changed to reflect the position
of this record in the file.

switch(erc)
(

case DB OK:
/ * Fetrieved a record, not the first or * /
/ * last so enable all agin
if (type-fetch ! = FIR~T-RE?O%tk~n~y~~-fetch ! = LAST-RECORD)
(

1
break;

/ * This is the first record * /
ViewMENUITEM[O].bEnabled = DISABLED; / * First * I
ViewMENUITEM[l].bEnabled = DISABLED; I* Prev * I
ViewMENUITEM[Z].bEnabled = ENABLED; I* Next * /
ViewMENUITEM[3].bEnabled = ENABLED; I* Last * I
break;

I* This is the last record * /

for (i = 0; i < NUM VIEW MENU ITEMS; it+)
ViewMENUITEM[i]TbEnaDled = ENABLED;

case DB FTRST-RECORD;

case DB LAST-RECORD:
/ * First :(ViewMENUITEM[O].bEnabled = ENABLED;

I. , . .. -..

case DB NO RECORDS:
/ * fnefe are not any records in the file * /
ViewMENUITEM[4].bEnabled = DISABLED; / * All * /

I* This is the only record * I
V~ewMENUITEM[Ol.bEnabled = DISABLED; / * First * /
ViewMENUITEM[lJ.bEnabled = DISABLED; I* Prev * I
ViewMENUITEM[2].bEnabled = DISABLED; I* Next * I
ViewMENUITEM[3].bEnabled = DISABLED; I* Last * I
break;

DBCars DisplayError (erc) ;
pDataflle->rec-num = -1;
return;

case DB ONLY-RECORD:

0

default:

1
ModelMENUITEM[l].bEnabled = ENABLED;
ModelMENUITEM[2].bEnabled = ENABLED;
/ * redraw the application menubar to change valid options * /
CarsMENUBAR.bRedraw = MB-NO-REDRAW;
mb - draw (&CarsMENUBAR) ;
if (erc == DB-NO-RECORDS)

I* Clear the screen, there isn't any information to display * /
vid move cursor(0, 3 * CHAR - YEXT) ;
vid-cleafto-bot () ;
re tiir n ;

I* Change * I
/ * Delete * /

{

1

The data is transferred to the dialog box data buffers for a possible modification of this record.
/ * Set the current records options in the dialog box for a change * /
pData = get-recd.buffer;
/ * First copy over the model name, then the color selection * /
strcpy (CarModelBuffer, pData) ;
pData += strlen(pData) + 1;
ExteriorColorGroup.selected = atoi(pData1;
pData += strlen(pData) + 1;
/ * Now set each of the 0 tion check boxes * /
for (i = 0; i < 6; it+ p

/ * If a 1 was saved, box is checked, otherwise it is unchecked * / (

OptionsCheckBox[i] .bState = (atoi (pData) == 1) ?
CB CHECKED : CB-UNCHECKED;

pData += strlen(pData) + 1;

a

-

1
/ * Now display the information on the screen'*/
vid move cursor(0, 3 * CHAR - YEXT) ;
vidxcleafto-bot (1 ;

vid move cursor(5 * CH$R XEXT, 5 * CHAR - YEXT 1;
vid-put String("Mode1:)T
vidIputIstring (CarModelBuffer) ;

vid move cursor(40 * CHAR XEXT, 5 * CHAR - YEXT 1;
vjd-put String("Co1or: ") ?
vidIputIstring(OptionsStrings[2 t ExteriorColorGroup.selected].pString 1;
vid move cursor(25 * CHAR XEXT, 7 * CHAR-YEXT 1;
vid-put String("0ptions") ;-
vjdIsetIline attr(LINE SOLID, LINE WIDTH1, COLOR3, COLOR4 1;
vid-draw-rec€(10 * CHAR XEXT,

46 * CHARTEXT, - 15 * CHARTEXT, - VID-NO-FILL 1;
8 *-CHAR YEXT,

for (i = 0, j = 9; i < 6; it+)
I

if (OptionsCheckBox[i].bState == CB-CHECKED)

vid move cursor(12 * CHAR XEXT, jtt * CHAR YEXT) ;
I

vid-put String(OptionsStrinqs[9 t 11 .pStriKg) ;
) / * thE opfion is set, display its string * /

) / * check the next option * /
) / * end of Cars Show Model function * /

This function demonstrates the use of a multiple record query to read in the file data to display in
a report format. The Fetch Records function handles the possible error conditions returned by
the SETUP-QUERY and MORE-RECORDS database functions. The data is returned in a
buffer which contains the record index for the records. See the Database Manager section of the
DeskMate Technical Reference for detailed information about the buffer format.
void DBCars Report (Datafile)
DB DATAF I LE-* pDa t a f i !?e ;
{ -

char
DB INDEX NODE *pIndex;
register-int i, 1;
int bLast, k;
EVENT event;
/ * query database for all records in the table * /
query.table handle = pDatafile->hTable;
bLast = DBCTrs FetchRecords(SETUP-QUERY, &query 1;
if (bLast == ITM ERROR)

* pD a t a ;

/* Don't display the report, had a problem * /
return;

/ * Display the re ort - write title line * /
vid move cursor(g, 3 * CHAR - YEXT 1;
vidIcleafto-bot () ;

vid move cursor(0, 3 * CHAR YEXT 1;
vid-set Char attr(BOLD 1 UNLJERLINE) ;
vid-put-string(ReportStr) ;
vid-set-char attr(NORMAL) ;

/ * Display all records in the data file, one 20 record,page at a time * /
/ * Data starts at the beginning of the buffer, record index starts at * /
/ * Start the record index at the top, will be reset if more records * /

pIndex = (DB-INDEX-NODE *) (query.pBuffer + quPry.amt memory
i = 0;

do
(

0
- - -

/* the end of the buffer (reset if more records are read). * /

/ * need to be read from the file (bLast is DM ERROR). * /
- sizeof(DB-INDEX-NODET 1;

I* Clear the screen for a new page of records * /
vid move cursor(0, 4 * CHAR - YEXT) ;
v i d-c - 1 e a r t o-bo t () ;
for (j = 4; i < query.rec-cnt & & j < 24; iii, jit, prndex--)
(/ * Point to this record's data * /

pData = query.pBuffer t pIndex->offset;
vid move cursor(0, j * CHAR YEXT 1;
vid-put-String(pData) ;
pDafa += strlen(pData) + 1;
vid move cursor(21 * CHAR XEXT, j * CHAR YEXT) ;
vid-put String(0ptionsStriTi s[2tatoi (pDatZ)] .pString) ; / * Color * /
pDa€a ts strlen(pData) t 7;
vid-move-cursor(29 * CHAR-XEXT, j * CHAR-YEXT 1;

/ * Model Name * / -

for (k = 0; k < 6; ktt)
(

if (atoi(pData) == 1)

else
pData tz stflen(pData) ; 1;

vid-put-string (I1, If) ;

vid put string(” If) ;

0
) / * check the next option /

) / * display the next record in the buffer * /
/ * Either filled up a page or displayed all records * /
if (i == query.rec-cnt)

if (bLast)
{

(

1
else
(

vid move cursor(10 * CHAR XEXT, 24 * CHAR YEXT) ;
vid-put - - String(“Last recoyd is displayed.w) ;

/ * Get a new batch of records in, reset index to start * /
query.direction = DIRN NEXT;
bLast = DBCars - FetchReCords(MORE-RECORDS, &query) ;
1 = 0;
pIndex = (DB-INDEX-NODE *) (query.pBuffer + query.amt-memory

- sizeof(DB-INDEX - NODE)) ;
1 / * read in more records */

) / * last record was displayed on this page * /
else
{
. vid move cursor(10 * CHAR XEXT, 24 * CHAR YEXT 1;

vidIputptring(“Page DOwn-tO see more recQrds ...I1) ;

do
I

I while (f(event.msg == EVENT - CHAR & & event.param == EC-PAGE-DOWN));

1 while (bLast == DM-ERROR) ;

/ * wait for the page down key to be pressed * /
event read(&event) ;

) / * there will be another page of records to display * /

) / * end of Cars Report function * /

int DBCars - FetchRecords(type - fetch, pQuery)
int ty e fetch;
db query *p!uTry;
(-

a
int erc, ret = DM-ERROR;

ere = db-mgr(type-fetch, pQuery) ;

switch(erc)
(

case DB NO ROWS SELECTED:
case DB-NO-RECOKDS:

/ * TheIe,are no records to,display in the report * /
DBCars DisplayMsg(”Report is empty, no records to display”);
ret = DM ERROR;
break; -

case DB FIRST RECORD:
/ * First Check for only one record in the buffer * /
if (pQuery->rec-cnt == 1)

else
(

ret = TRUE;

/ * only returned when the direction is DIRN-PREV/DIRN-LAST * /
* I

DBCars DispTayMsg [“Database returned FIRST - RECORD“) ;
ret = ITMERROR;

/ * this pro ram should never get this return code

1
break;

case DB LAST RECORD:
/ * Returned when the direction is DIRN-NEXT/DIRN-FIRST * /
ret = TRUE;

0 case DB OK:
/ * Unl one record fit in the buffer * /
if (pi;uery->rec-cnt == 1)

break;

/ * A real error occurred during the record fetching * /
DBCars Dis layError(erc) ;
ret = ~ - E ~ R O R ;
break;

} / * end of switch on error code returned by fetch * /
return(ret) ;

ret = TRUE;

default:

) / * end of Cars Fetch Record module * /

This example simply displays the actual database return code. Your application should display
an informative message based on the error code. During development, displaying the error code
is beneficial to the programmer.
void DBCars DisplayError err no)
int e r rrno ; I* Dafabase Error Number * /
(

MSGBOX messa e;
char msg [981 ;
char nbr - buff[5];
/ * Build a mzssage informing user of thenDatabase error number returned * /
strcpy(msg, Error number returned was:) ;
itoa(err no, nbr buff, 10) ;
strcat (msq, nbr-birff) ;
message.btn combo = f;lSG COMBO OK;
message.pStfing = Dafabase-Error";
message.pMessage = msg;
msg-run (message 1 ;

0) / * end of Cars display database error message function * /
void DBCars DisplayMsg(ms? string)
char *ms?j-string; / -General Message String * /
(

MSGBOX message;
message.btn combo = MSG COMBO OK;
message.pStTing
message.pMessage = msg-string;

msg-run (message) ;

= "InYormatTve Message or Error";

} I* end of Cars display message function * /

It is very important to initialize file and table handles to negative values since 0 (zero) is a valid
handle. Likewise the record number should also be initialized to a negative number.
void DBCars SetUntitled(pDatafile)
DB DATAFILE-*pDatafile;
(-

register int i;
/ * Reset variables in the Dafabfse File structure * /
pDatafile->Filename[O] = \O ;
pDatafile->TmpFilename[O] = ' \ O 1 ;
pDatafile->hFile = DM ERROR;
pDatafile->hTable = DM-ERROR;
pDatafile->rec-num = DM-ERROR; -

* /
/ * only the F!le options are available in this State * /
for (1 = 0; 1 < NUM MODEL MENU ITEMS; it+)

ModelMENUITEM[i]TbEnabTed =-DISABLED;

/ * Disable the Model and View menus completely,

Cn- I ; - n . 4 / N l l M T7TCW MCMIT T'PUMC. ;++ \

/ * Draw the application menubar in the base window * /
CarsMENUBAR.bRedraw = MB NO REDRAW;
mb-draw (6CarsMENUBAR) ; - -

) /* end of set untitled application state function * /
void DBCars-SetNoRecords()

register int i;
t

/ * Disable the Model (except for add) and View menus completely * /
ModelMENUITEM[O].bEnabled = ENABLED;
ModelMENUITEM[l] .bEnabled = DISABLED;
ModelMENUITEM[2].bEnabled = DISABLED;
for (,i = 0; i < NUM VIEW MENU ITEMS; it+)

ViewMENUITEM[i] .%nabTed =-DISABLED;

/ * Draw the application menubar in the base window * /
CarsMENUBAR.bRedraw = MB-NO-REDRAW;
mb - draw (6CarsMENUBAR) ;

0

) / * end of set no records application state function * /
/ * end of dbcars.c * /

a

Page Printing - DEVICE.PDM

DEVICE. PDM is a template Deskmate application designed to demonstrate how the application
programmer utilizes the DeskMate high level print routines. These routines are identified by
beginning with "ptd-'I. See the DeskMate Technical Reference Print Manager for a complete list
of these high level Device calls. The source for the Device Print application is included in the
SAMPLES\PRINT\DEVICE directory.

This application was written from the file I/O examples.
#include "csrprt .h"
i nc 1 ude I' c s r c f g . h I'
#include "device. h"
#include "devicdec.h" / * Applications function declarations * /

extern int dmerrno;

One of the first things this application does is initialize DeskMate's internal structures for page
setup and page mode. These are defined in the .H file. Then a check is performed via an
application subroutine that determines if the print menu option on the file menu should be grayed.
Just as in the File 110 examples the command line is checked for a filename to be opened. This
application uses the high level fil-menu-* calls. The main event loop is then entered.
int main(argc, argv)
int argc;
char *argv [J ;
{

a

* I

/ * Core Services Resource printer header file * /
/ * Core Services Resource configuration header file * /
I* Application header,file * /

int Done;
int TSReturnCode;
int FMReturnCode;
int DPReturnCode;

unsigned int TempFileSize;
unsigned int OldFileSize;

/ * set DeskMate's current page setup information from my structures * /
ptd-set-page(&DevicePGSETUP, &DevicePGMODE) ;

/ * check to see if the Print menu item needs to be grayed * I
Device-Check-For-Print-Graying();

/* Check to see if a filename was
!* to this rogram on the command Tine /
if(argc > P)
{

a
asse; * I

/ * open and load the validated file name file * /
DeviceDATAFILE.FileSize = fil-menu-open(&DeviceDATAFILE,

OPEN-NO-DIALOG 1;
1

1
else
I

/ * disable save menu item because there * /
/ * is no file currently in memory * I
FileMenuItems[SAVE-INDEX] .bEnabled = DISABLED;

I
/ * Draw the main screen and * /
/ * clear the it first * /
Device-Draw-Screen(CLEAR) ;

/ * initialze the do while control flag * /
Done = FALSE;

/ * Process the user inputs and actions * /
do
{

/ * read an event from an input device * /
event read(&Event 1;

0 switch (Event .msg)
I

case EVENT COMMAND :
/ * check t6 see if an item was selected from the menu bar * /
I* process menu item that was selected * I

switch (Event .param)
I

The Page setup request runs DeskMate's page setup accessory. After the accessory is run the
page setup and page mode structures must be internally initialized, and the screen is redrawn.

case FILE PAGE SETUP ID:
I* thF useT want3 to run page setup *I
f il-menu-page (1 ;
/ * get the current page setup information from * I
/ * DeskMate into my pa e setup structures * I
ptd - - get page (&DeviceP&ETUP, &DevicePGMODE) ;

I* redraw the current file status information * I
I* clear from the menu bar down first * I
Device Draw-Status-Info(CLEAR 1;
break;-

Device P r i n t DataFi le is an application defined subroutine which prints the data currently
loaded inmemoi.

case FILE PRINT ID:
/ * thF user-wants to print the current file * /
DPReturnCode = Device Print-DataFileO;
if(DPReturnCode == TRUE)

I* The data printed successfully * /
(

1
else
{

1
/ * The data could not be printed * /

0 case EVENT APPL :
switch7 Event.param)

I & check for an accessory event * /
I

case APPL ACCESS:
I* ruii the requested accessory * /
dm-acc-run (Event .x) ;

After an accessory is run it is necessary to check the printer information because if the setup
accessory is run the printer may be disabled or changed, so a check is made to determine if the
print option on the file menu should be grayed

I* setup could have been the accessory that was * /
/ * run so we need to check the
Device-Check-For-Print-Graying (7;
/ * redraw the screen when the accessory is finished * /
I* but do not clear the screen first * /
Device - Draw-Screen(CLEAR 1;

break;

rinter setup info * /

/ * check for a task switch event * /
case APPL TASK SWITCH: - -

Before execution of a Task Switch the application must save the current page setup information
for this application. The reason for this is so that the information can be reset when returning
from the Task Switch operation.

/ * get the current page setup information from * /
I d . -__, ..._ L _ .-LA -.. - - -^ _^..__ -e -.... e..-̂ ̂ ^ ^ b h - 6 * I

/ * dm yield is the call to allow task switch to occur * /
TSRetarnCode = dm-yield();
if (TSReturnCode == DM NOT ALLOWED)

/ * task switching n5t bPing allowed by DESK.EXE * /
break;

a
The task switch was successful so redraw the screen, set the page setup information with the
information that was received on the ptd-getjage, before the Task Switch occurred. The Task
Switch'ed application may have altered the page setup information. It is the responability of each
application to set the page setup before trying to use it.

if (TSReturnCode == DM-OK)
{

/ * The task switch has occurred so * /
/ * redraw the menubar and the screen * /
Device Draw Screen(NO CLEAR) ;
/ * resEt DeSkMate's cuyrent page setup * /
/ * information from my structures * /
ptd - - set page(&DevicePGSETUP, &DevicePGMODE) ;

I

Device Draw Screen functions similar to all of the other example applications. The only
difference here is a flag to determine whether to clear the screen before redrawing the
applications main default screen.

void Device Draw-Screen(bClear)
int bC1ear;-
{

if(bClear == TRUE)
I

1
/ * Draw the ap lication menubar in the base window * /
DeviceMENUBAR.gRedraw = MB REDRAW;
mb - draw (&DeviceMENUBAR) ;-
/ * Display the application's name on the title line * /
ttl - put-app-name ('Device Print") ;
/ * Display the application's data file name on the iitle line * /
/ * Sending a pointer to a null string will display Untitled" * /
ttl - put-data-name(DeviceDATAFILE.pFi1ename 1 ;

Device - Draw-Status - Info(NO-CLEAR) ;

/ * Clear the base window (defaults to the entire screen) * /
vid-clear-screen () ; a

1

a Device P r i n t DataFile is an application subroutine which prints the data in memory. The
first thing is to prompt the user for the device to be printed to. The device is then opened unless
cancel is returned froni the device to print to dialog box. The menu bar is erased if the user
selected "print to screen". The working variables are initialized so that the page to be printed will
be built with the correct line width and printed lines per page. Landscape and portrait are the only
modes supported. Each page is then built in memory and sent to the printer. The page is then
printed, if TRUE is sent then the last page is printed. The prompt between pages is automatically
handled by DeskMate in these high level page printing functions. When the file has finished
printing the menu bar is redrawn if necessary and the device is closed.

int Device - Print-DataFile ()

int PTDReturnCode;
I

int Done;
int ErasedMenuBar;
int Linecount;
int Charcounter;
char *Currentchar;
int Linewidth;
int Print edLinesP age;
int ClosePTD;
int Bufferoffset;
int CharsRemaining;
/ * prompt the user for a device to print to * /
/ * allow all devices to be printed to */
PTDReturnCode = ptd open(PTD DEVICES) ;
if(PTDReturnCode =_ PTD-CANCEL)

/ * the device is now open * /
/ * don't forget to close it * /
/ * when exiting, unless CANCEL * /
ClosePTD = TRUE;

/ * check to see if "print to screen" has been * /
/ * selected, if so we need to erase the menu bar * /
if(PTDReturnCode == PTD-TO-SCREEN)
t

1
else

if(DevicePGSETUP.mode == LANDSCAPE)
I

return (FALSE) ;

0
mb erase();
ErZsedMenuBar = TRUE;

ErasedMenuBar = FALSE;

/ * initialize wllandscape values * /
PrintedLinesPage = DevicePGSETUP.mLandscp.plinepp;
Linewidth = DevicePGSETUP.mLandscp.1nwidth;

1
else
{ / * ASSUME PORTRAIT * /

/ * initialize Linewidth, PrintedLinesPage * /
PrintedLinesPage = DevicePGSETUP.mPortrait.plinepp;
Linewidth = DevicePGSETUP.mPortrait.1nwidth;

1
/ * if the file is a DeskMate file, do not priqt the header info * /
/ * set the offset before enterin
if (DeviceDATAF1LE.FileType != C8R NULL)

Bufferoffset = FILE-HEADER-LENGTH;
else

Bufferoffset = 0;

/ * initialize CurfentChar * /
Currentchar = DeviceDATAF1LE.pStart t Bufferoffset;

the main print loop * /

I + -- I:--- r h - r - n t n r r nr n3n-c h-..n hnen ~rinted vet * /

/ * rint a page * /
whife (Done == FALSE) / * while not done * I
(

/* initialize a new gage * /
ptd-start-page(CSR- RROR 1;

/ *
/ * Reep printing a page until the number of lines printed * /
/ * is equal to the number o f printed lines per page */
while(Linecount < PrintedLinesPage)
(

a
rint all lines on a page *I

/* check to see if we are at the end of memory * /
if(Currentchar t Linewidth > DeviceDATAFILE.pEnd - 1)

/ * there is less than 1 line left * /
(

CharsRemaining = DeviceDATAFILE.pEnd - Currentchar;
% - one = TRUE;
break;
td put nchars(Currentchar, CharsRemaining) ;

)

PTDReturnCode = ptd put nchars(Currentchar, Linewidth) ;
if(PTDReturnCode =; CSR ERROR)
(

I
Currentchar += Linewidth;
Linecount++;

) / * finished building a page * /

$: !f it is tge last page send TRUE * /
if (Done == TRUE)

else
if(PTDReturnCode == CSR-ERROR)
I

1
Linecount = 0;

-
/ * the page list is full * /
break;

rint the age we just built * /

PTDReturnCode = ptd-print - page(TRUE) ;

PTDReturnCode = ptd print page(FALSE) ;

Done = TRUE;
ClosePTD = FALSE;

a
1
I
if (ErasedMenuBar == TRUE)

/ * Draw the ap lication menubar in the base window * /
DeviceMENUBAR:ERedraw = MB REDRAW;
mb-draw (&DeviceMENUBAR) ;-

if(ClosePTD == TRUE)

I
else

ptd - close();
1

Device Check For P r i n t Graying checks to see if a printer driver is loaded. Then checks
to makesure the printer is text and that it will print in portrait mode. Finally a check is done to
see if there is a datafile to print. If there is no datafile, print must be disabled.

void Device-Check-For-Print-Graying()
(

/ * get the printer configuration information * /

:2-8 evTcePRINTER CFG.driver[O] E= '\Or)

else
{

et prt data(&DevicePRINTER CFG) ;

FileMenuItemspRINT - INDEX] .bEnabled = DISABLED;

/ * there is a driver loaded * /
prt-get printer(&DevicePRINTER) ;
if(DevTcePRINTER.bTextOnly == TRUE & & DevicePGSETUP.mode != PORTRAIT)

'NnCYl hFnahlDd = I I T S A R T F n ; 7 7 2 , -.I --.. r .--- r n n r l l m

a /* gray the
if (DeviceDA!AFILF.pStart == DeviceDATAFILE. End)

rint menu item if there is no file to print * /
FileMenuItems [PRINT - INDEX] . bEnabled = DIgABLED;

1

a

Direct Printing - DIRECT.PDM

DIRECT. PDM is a template Deskmate application designed to demonstrate how the application
programmer utilizes the DeskMate low level print routines. This application utilizes the various
low level or Direct print routines which DeskMate provides to an application. These routines are
identified by starting with "ptt-". See the DeskMate Technical Reference Print Manager for a
complete list of these low level Direct calls. This application only prints in portrait mode. The
source for this Device Print application is included in the SAMPLES\PRINT\DIRECT directory.

a

#include "csrcfg. h"
#include "direct .h"
#include "direcdec.h"
extern int dmerrno;

int main(argc, argv)
int argc;
char *argv [I ;
{

/ * Core Services Resource configuration header file * I
/ * Application header file * /
/ * Application function declarations * /

int Done;
int TSReturnCode;
int FMReturnCode;
int DPReturnCode;
unsigned int TempFileSize;
unsigned int OldFileSize;

The page setup getting and setting are the same as the high level Device printing as explained in
the previous section.

case FILE PAGE SETUP ID:
/ * the usef want3 to run page setup * /
f il-menu-page () ;

/ * get the current page setup information from * /
/ * DeskMate into my pa e setup structures * /
ptd-get-page (&DirectP&ETUP, &DirectPGMODE) ;
/ * redraw the current file status information * /
/ * clear from the menu bar down first * /
Direct-Draw-Status-Info(CLEAR) ;
break;

a
Direct Print - DataFile is an application subroutine which prints the data from memory to
the printer.

case FILE PRINT ID:
/ * thP user-wants to print the current file * /
DPReturnCode = Direct Print-DataFileO;
if(DPReturnCode == TRUE)

/ * The data printed successfully * /
{

1
else
(

1
/ * The data could not be printed * /

/ * redraw the current file status informtion * /
Direct Draw-Status - Info(NO-CLEAR) ;
break;-

}

a Direct P r i n t Da taF i l e is the application routine that prints the data in memory to the
printer. The firstthing it does is open the print device (no dialog box is displayed). Then a dialog
box is displayed giving the user the option to cancel the print operation. This was automatic in
Device printing. Then a check is made to the event queue to see if the user wants to cancel
printing (any event is assumed to be a cancel request). Then all of the lines are printed on a
page until the lines printed are equal to the Portrait lines per page.

i n t D i rec t -P r i n t Da t at? i 1 e ()

i n t PRTReturnCode;
(

i n t Done;
i n t L inecount ;
i n t CEReturnCode;
i n t Charcounter ;
c h a r *Cur ren tcha r ;
r e g i s t e r i n t B u f f e r o f f s e t ;
r e g i s t e r i n t C h a r o f f s e t ;

/ * open t h e direct p r i n t d e v i c e LPT1, LPT2 o r LPT3 * /
PRTReturnCode = p r t o e n (1;
i f (PRTReturnCode =: FSR-ERROR)

/ * t h e d e v i c e i s now open * /

/ * in form t h e u s e r t h a t we a r e about t o p r i n t * /
/ * t h i s a l s o g i v e s t h e user t h e chance i o c a n c e l p r i n t i n g * /
Msg.pMessage = " P r i n t i n 2 i n p r o g r e s s . .. ;
Msg. S t r i n g = " P r i n t i n g ;
Msg.%tn combo = MSG COMBO - CANCEL;
msg-drai(&Msg) ; -

(

-

r e t u r n (FALSE) ;

/ * check t o see i f t h e u s e r wants t o s t o p p r i n t i n g * /
CEReturnCode = Direct Check E v e n t () ;
i f (CEReturnCode != CSR - NULL)
{ a / * c l e a r t h e message box * /

v i d move c u r s o r (0, 5 * CHAR - YEXT) ;
v i d - c l e a i t o b o t () ;
/* femove-the even t from t h e even t que * /
even t purge (1 ;
Direcf P r i n t Form-Feed(Linecount 1;
p r t cli5se () ;-
r e t u r n (FALSE 1;

1
/ * r i n t a l l l i n e s on a page * /
/ * Keep p r i n t i n g a page u n t i l t h e number of l i n e s p r i n t e d * /
/ * i s e q u a l t o t h e number of p r i n t e d l i n e s p e r page * /
w h i l e (Linecount < DirectPGSETUP.mPortrait.plinepp)
{

/ * p r i n t t h e l e f t margin on each l ine * /
f o r (Charcounter = 0; Charcounter <= DirectPGSETUP.mPortrait.1eft;

(
CharCounter t t)

/ * pu t ou t a space * I
PRTReturnCode = p r t pu t c h a r (I I 1;
i f (PRTReturnCode =E CSK-ERROR)
(

1

p r t c l o s e () ;
r e t u r n (FALSE) ;

1

I* print a single line on a page * /
Bufferoffset += Charoffset;
Charoffset = 0;
Charcounter = 0;
for(; Charcounter < DirectPGSETUP.mPortrait.1nwidth; Charoffset++)

Currentchar = DirectDATAF1LE.pStart t (BufferOffsettCharOffset);
(

/ * check to see if the user wants to stop printing * /
CEReturnCode = Direct Check Event();
if(CEReturnCode != CSR-NULL)

/ * clear the message box * /
(

vid move cursor(0, 5 * CHAR-YEXT) ;
vid-cleaf to-bot () ;
/* femove-the event from the event que * /
event purge () ;
DirecE Print-Form-Feed(Linecount) ;
prt cl5se();
retErn (FALSE) ;

0

1
/ * check to see if we are at the end of memory * I
if(Currentchar > DirectDATAFILE.pEnd - 1 1
{

Direct-Print-Form-Feed(Linecount) ;
prt close () ;
DonB = TRUE;
return (TRUE) ;

1

prtgut-char prints a character to the device. prtgut-char filters out certain control codes,
any non-ascii characters with the exception of 10h, l l h , 12h, and 13h will not be printed.
Applications may want to enter special checking for carriage returns and line feeds here, but this
SIMPLE demo does NOT respect those particular control characters.

/ * *(Current Char) -- Print a single character on the device.*/
PRTReturnCode = prt put char(*(Current Char)) ;
if(PRTReturnCode =: CSK-ERROR)
(

1
/ * since CR's and LF's are not rintable, they should not * /
I* be included as part of the cEaracter count * /
if (*(Currentchar) == OxOd I I

else'

prt close () ;
retErn (FALSE) ;

a
"(Currentchar) == OxOa) . / * -- Charcounter; * I
I* the character was successfully printed *I
/ * increment the character counter * /
++Charcounter;

) / * finished printing a line * /
I* At end of line, put a CR. * /
/ * This was automatic in High Level Device. * /
/ * put out a Farra e line * I
?$K?%k$F&N%A !bG. bAut oLF == CR ONLY I I

LineEouiit++r

- DirectPRINTER.bTextOnly == PRT-TEXT-ONLY)
/ * put out a fine feed * I
rt put tty(\ n ') ;

) / * finished printing a page * /
Direct Print Form-Feed(Linecount) ;
LineCoEnt = 0;

1
1

rn Direct Check Event scans for any event in the event queue.
automatically in %e high level Device printing.
int Direct-Check-Event: ()
(

This routine was done

event scan(&Event:) ;
if (EVent.msg != CSR NULL)

return (Event .msg) ;
else

return (CSR-NIJLL) ;
1

Direct P r i n t Form Feed prints the appropriate number of blank lines on the page so that
the paps will b e at the top of the form. This function was automatic in the high level Device
printing.
void Direct Print-Forrn-Feed(Linecount)
int Linecount;
t

while(Linecount s: DirectPGSETUP.mPortrait.linepp)

prt put tty('\xOd') ;
if(-DirPctPRINTER-CFG.bAutoLF == CR ONLY I I

Linegounit++?

(

DirectPRINTEX.bTextOnly == PRT-TEXT-ONLY)
rt put tty('\xOa') ;

1
1

m

FORMS.PDM

FORMS.PDM is a DeskMate program which uses the Form Manager to manage, display, and
print graphic shapes. This example uses a "working window" to display the graphics. Refer to
the Special Topics section for more information about Managing Windows and Events.

#include "csrform.h" / * CSR form manager header file * /
#include "dmfont.h" /* form font definitions * /
#include "dmfntfrm.h" / * font structure definitions * /
#include "forms.h" / * Application header file * /
#include "formdecs.h" /* App Prototype header file * /
#include "fontbox.h" / * App structure definitions */

main ()
(

@

register FORM *pForm; /* Pointer to allocated graphics form*/

EVENT Event:
int Done, bMode:
int oldx,oldy,xdif, ydif;
int mem-available:
W R E C T map, region;

register FORM-HDR *pFormHdr; /* Pointer to graphics form header * /

The enhanced form manager with font support is a separate resource which must be requested
by the application.

if (eform-bind-init (1) == CSR-ERROR)
(

/ * failure to bind to the Enhanced Form Manager * /
Forms-DisplayMsg("Enhanced Form Resource could not be loaded");
guf-bind-end () ;
csr-end () ;
exit (1) ;

1

II) Get the largest block of memory available, but leave 50k of memory free for printing purposes.
/ * setup buffers in font engine (get all memory available) * /
mem-available =font-set-buffer(-l); /* get largest block of memory * /

/ * leave 50k of memory free to print * /
/ * if largest block is less than 4k then exit * /
if ((men-available = mem-available - (50*1024)/16) < 256)
(

Forms DisplayMsg("Not able to get enough memory");
guf-bynd-end 0 ;
eform-bind-end () ;
csr-end (1 ;
exit (1) ;

1
else
font-set-buffer(mem-available);

The application allocates the data space for the graphics form. The data space MUST be
contiguous.

/* Allocate the graphics form * /
pForm = (FORM *) malloc(sizeof (FORM)) ;
if (pForm == NULL)
(

/ * always free resources before exiting program * /
Forms DisplayMsg("1nsufficient memory to allocate graphics form.");
eform-bind-end 0 ;
guf-bhd-end (1 ;
csr end():
exif(1) ;

1

\ 0
/* Setup the graphics form, remainder of information is * /
/ * supplied by the Form Manager when the form is opened * /
pFormHdr = h(pForm->header);

pFormHdr->bNewList = NEW-FORM:
pFormHdr->bVideo = TRUE:
pFormHdr->list-size = SIZE-OF-LIST;
pFormHdr->stroke-size = SIZE-OF-STROKE;
eform-open((FORM-HDR f a r *) pFormHdr) :

/* Set the Mode to Draw, no element is currently selected */
bMode = DRAW:
pForm->pElement = NULL:
pForm->tag = CSR-NULL;

All applications which use the Page Setup function should register their default page setup
information with the CIiR before any printing is done.

/* Register the default page setup information f o r printing * /
ptd-set-page(SFormsPGSETUP, SFormsPGMODE) :

/ * Draw the main screen, switch to the child window * /
Forms-Drawscreen(pFormHdr, pForm->pElement) :

/ * initialze the do while control flag * /
Done = FALSE:

The Event processing here is very similar to that seen in the other programming examples except
in this example the event is passed on to another function which processes the event. Mouse and
keyboard events are processed within the event processing loop.

/* Process the user inputs and actions * /
do
I

/ * read an event from an input device * /
event-read (&Event) :

switch(Event-msg) e I
The CHAR processing determines what element has been selected when the keyboard is used.

case EVENT-CHAR : ...
The MOUSE processirig determines what element has been selected when the mouse is used.

case EVENT-MOUSE : ...
The OUTSIDE processing determines if an event outside the current active window has taken
place.

case EVENT-OUTSIDE : ...
The APPL determines if a special CSR defined event has taken place.

case EVENT-APPL :

) /* end of swizch on type of event * /

...

1
/* check to see if "EXIT" or "RUN" menu item has been selected * /
while(Done != TRUE) :

When EXIT or RUN has been selected we leave the event loop and exit the application after a releasing the load resources. P
/* release the loaded resources before exiting * /
eform-bind-endO :
guf-bind-end () :
csr end() :
exiF(0) :

} / * end of Forms main module * /

*

a This function sets the Edit Menu appropriately, draws the application menu bar and displays the
graphics form in the working window.
void Forms-Drawscreen(pFormHdr, pElement)
FORM-HDR *pFormHdr;
ELEMENT *pElement:
{

register inti;
int t.ype, length:
char far *lpBuffer:

/* Check for graphics on the clipboard, set the Edit menu * /
dm-get-clipboard-info ((int far *) htype, (int far *) &length,

if (type == CLIP-DFUW)
f

(char far **) SlpBuffer) ;

/* Enable Paste, Disabled Cut, Copy, and Clear * /
EditMENUITEMrEDIT PASTE INDEX].bEnabled = ENABLED;
EditMENUITEM[EDIT'%UT ImDEX].bEnabled = DISABLED:
EditMENUITEM[EDIT~~COP~-INDEXl.bEnabled = DISABLED:
EditMENUITEMIEDIT CLEAR 1NDEXI.bEnabled = DISABLED;

} / * clipboard contains Draw graphics * /
else
t

/* Disable Cut, Copy, Paste, and Clear */
for (i = 0; i < EDIT-COUNT - 1: i++)

EditMENUITEM[i].bEnabled = DISABLED;
} /* this application doesn't handle the clipboard type * /

/* Draw the application menubar in the base window * /
if (win get active0 != hBase)

FormsMENUBAR.bRedraw = Ml3-REDRAW:
&-draw (SFormsMENIJBAR) ;
FormsMENUBAR.bRedraw = MB-NO-REDRAW:

/* Display the application's name on the title line */
ttlgut-app-name ("Focms Manager") .
/* Display the application's data .le name on the title line * /
/ * Sending a pointer to a null stz : will display "Untitled" */
ttl-put-data-name("Gcaphics Exampih ;

/* Draw the graphics, clearing the screen first * /
win-activate (hChild) ;

/* Draw the current form on the screen * /
Forms-Updatescreen(pFormHdr, pElement) ;

win-aztivzte (hBa:;e) :

e

} / * end of form draw screen module * /

void Forms-Updatescreen(pFormHdr, pElement)
FOW-HDR *pFormHdr:
ELEMENT *pElement:
(

/ * erase the cursor Aurin9 the updating of the screen * /
vid erase cursor () :
efoTm-updzte ((FORM-HDR far *) pFormHdr, ENABLED) ;

/* Highlight the currently selected item (if there is one) */
if (pElement != NULL)

Forms-DrawBox (pELement) ;

vid move cursor(0, 0) ;
/ * Eurn Fhe cursor back on * /
vid-draw-cursor () ;

1

The Forms AddShape call is made to add the appropriate type element to the graphics form.
The data stnrcture for the element is filled in and the function call made. 0
void Forms-AddShape (pFormHdr, command)
FORM-HDR *pFormHdr;
int command;
[

ELEMENT *pElement;
EVENT event;
register int index, i;
int X I Y, XI, yl;
int Val ;
char ch;
char string-buffer[EO] ;

vid-read-cursor (cx, cy) ;

switch(command)
{

case SHAPES LINE ID:
/* add aline-element to the form * /
pElement = (ELEMENT *) &FormsFORM-LINE;
pElement->x0 = x;
pElement->y0 = y;
pElement->xl = x + 10 * CHAR-XEXT;
pElement->yl = y + 5 * CHAR-YEXT;
index = SHAPES-LINE-INDEX;
break;

/ * add a-rectangle element to the form * /
pElement = (ELEMENT *) CFormsFORM-RECT;
index = SHAPES-RECT-INDEX;
pElement->x0 = x;
pElement->y0 = y;
pElement->xl = x + 15 * CHAR-XEXT;
pElement->yl = y + 5 CW-YEXT;
break;

case SHAPES RECT ID:

case SHAPES ELLIPSE-ID:
/ * add a-ellipse element to the f o r m * /
pElement = (ELEMENT *) CFormsFORM-ELLIPSE;
index = SHAPES-ELLIPSE-INDEX;
pElement->xO = x ;
pElement->y0 = y;
pElement->xl = x + 12 CHAR-XEXT;
pElement->yl = y + 6 * CHAR-YEXT;
break;

/ * add a-text-element to the form * /
pElement = (ELEMENT *) cFormsFORM-TEXT;
index = SHAPES TEXT INDEX;
FormsFORM-TEXTrpStrrng E "This is a text element.";
FormsFORM TEXT.nChars = strlen(FormsF0RM-TEXT.pString);
pElement-5x0 = x ;
pElement->y0 = y:
pElement->xl = x + FormsFORM TEXT.nChars * CHAR-XEXT;
pElement->yl = y + CHAR-YEXT;
break;

/ * add a-fontelement to the form * /
pElement = (ELEMENT *) CFormsFORM-FONT;

eform update((FORM-HDR far *) pFormHdr, ENABLED);
ms draw pointer();
/*-fill-in the element structure for a font * /
FormsFORM-FONT.info.fpFace1nfo =

FormsFORM FONT.info.fzFaceInfo-YbStyleAttrs = bstyle;
FormsFORM-FONT.info.string xorg = x;
FormsFORMIFONT.info.stringryorg = y;
FormsFORM FONT.info.fgnd color =COLORZ;
FoKIIIsFORM-FONT.~ header.element.type = FORM-OTHER;

*
case SHAPES TEXT ID:

case SHAPES FONT ID:

fpFontFaceInfo+font base+font selected;

/* fonts are assigned OTHER */
_ _ _ A . _ _ A - F m n " 7 , nn.rm v"aF.:

a vid-busy-disable () ;
vid-move-cursor (0,O) ;
vid-put-string ("String: ") ;
vid-clear-to-eol() ;
val=O;
event-read (6event) ;
/* get a string * /
while (event.msg == EVENT-CHAR 66 event.param != OxOd 66

(

\

event.parani != 0x16)

ch = (char) event.param;
if (ch == 0x08)

{
vid-read-cursor (6x1.6yl) ;

vid-move cursor (xl, yl) ;
vid put Ehar(' I) ;

vid-mov-cursor (x1,yl) ;

xl = xl - CHAR-XEXT;

Val=-;
1
else
t

vid-put-char(ch);
string-buffer[val]=ch:
Val++;

}
event-read (hevent) ;
1
vid busy-enable (1 ;
if 7 event.param != 0x16)
t

/ * fill in the FORM FONT structure (element structure) * /
FormsFORM FONT.infoTfpString = (char far *) string-buffer;
FormsFORM-F0NT.info.fpEscapement = 0;
FormsFORM-FONT.info.nChars = Val; / * string size */
/ * get a Eounding box f o r the font string. Fills in the * /
/* maprect. This is VERY IMPORTANT * /
evidgst-bounding-box((F0RM-FONT f a r *) 6FormsFORM-FONT);
break;

1
return;

default:
break;

a
} /* end of switch on shape being added * /
f o r (i = 0; i < SHAPES-COUNT; i++)

/ * Check the shape selected, uncheck all the others * /
ShapesMENUITZM[i].bChecked = (i == index) ? MB-CHECKED :

/* aad the element to the form * /
if (eform-add-element ((FORM-HDR far *) pFormHdr, (ELEMENT far *)

Forms-DisplayMsgT"Error adding graphics element to list.");
else

/* Enable printing - we know we have graphics in the form * /
FileMENUI'CEM[FILE-PRINT-INDEX].bEnabled = ENABLED;

MB UNCHECKED;

pElement) == CSR ERROR)

/ * Update menu bar information without actually redrawing it * /
&-draw (hFonnsMENUBAR) ;

/* Move the cursor to the origin of the new shape * /
vid-move-cursor(x, y);

1 / * end of add shape function * /

The oms Select demonstrates a typical method for determining if the user "clicked" on a
graphics shzpe on the screen or positioned the text cursor and pressed the space bar or ENTER
to "select" the graphics shape. The graphics select "handle box" is drawn around the shape when
it is selected to show selection.

int Forms-Select(pForm, pEvent)
FORM *p€orm;
EVENT *pEvent;
(

FORM-HDR *pFormHdr;

/ * determine if there is an element at the current * /
/ * cursor location or where the user clicked. * /
if (pEvent->msg == EVENT CHAR)

vid-read-cursor(LpEveKt->x, CpEvent->y 1;

pFormHdr = h(pForm->header);
pForm->tag = eform-find-element((FORM-HDR far *)pFormHdr, pEvent->x,

if (pform->tag > CSR-NULL)
I

pEvent->y, 1) :

/ * First unselect a previously selected element * /
if (pform->pElement != NULL)
Forms-ClearBox(pFormHdr, pForm->pElement);

/ * Now point to the element's information in the form * /
pForm->pElement = (ELEMENT *) eform-getgointer((FORM-HDR f a r *)

/ * Draw the handle box surrounding the element bounding box * /
Forms-DrawBox(pForm->pElement) ;

/* Set the Edit menu for clipboard manipulation */
EditMENUITEMIEDIT CUT INDEX].bEnabled = ENABLED:
EditMENUITEM[EDIT-COPT 1NDEXI.bEnabled = ENABLED:
EditMENUITEM[EDIT~CLEA~-INDEXj .bEnabled = ENABLED:
EditMENUITEM[EDIT PASTE INDEX].bEnabled = DISABLED;
mb-draw (CFormsMEgUBAR 7:
return (1) :

pFormHdr, pForm->tag) ;

] /* found a graphics element at the cursor/mouse location * /
else
(

*e
/ * First unselect a previously selected element * /
if (pform->pElement != NULL)

/ * Clear pointer to currently selected element * /
pForm->pElement = NULL;

/ * Now position cursor at the stored mouse coordinates * /
vid move-cursor(pEvent->x, pEvent->y) ;
retiirn (0) ;

Forms-ClearBox(pFormHdr, pform->pElement) ;

] / * there isn't anything at the cursor location */
] /* end of forms select graphics module * /

This routine draws the "handle box" to show selection. Refer to the Video programming example
for more information about the video functions used to draw the actual box.

void Forms-DrawBox(pElement)
ELEMENT *pElement:
t

/ * First draw the rectangle surrounding the element's bounding box * /
vid set line attr(LINE-SOLID, LINE WIDTHZ, COLOR-XOR) ;
vidzdra-recf (pElement ->xO, pElemeEt->yO,

vid-draw-rect(vid-prevn-nwcx(pE1ement->xl, 3) ,

pElement->xl, pElement->yl, VID-NO-FILL) :

/ * bottom/right corner * /
vid Drevn nwcy(pE1ement->yl, 3) ,

0 / * Now move the cursor to the origin of the select box * /
vid-move-cursor (pE:lement->x0, pElement->y0) ; \

) /* end of forms draw select box function * /

\e

The Forms-Print functions demonstrates how easy it is to do printing when using the graphics
Form Manager. The Device Print Manager is used to select the printing device, initialized printing,
and then print the graphics form.

e
void Forms-Print (pFormHdr, pElement)
FORM-HDR *pFormHdr;
ELEMENT *pElement;
I

int device, ret;
PRINTER-CFG PrtConfig;

device = ptd-open(PTD-DEVICES);
if (device == PTD-TO-SCREEN)

else if (device == PTD-CANCEL)
(

I

mb erase();

Forms-Drawscreen(pFormHdr, pElement) ;

cfgget-prt-data(CPrtConfig) ;
if (FormsPGSETUP.mode == LANDSCAPE)

return;

PrtConfig.cpi = PRT-10-CPI;

/ * Start a new page, clear the attribute flag * /
ptd-start-page(CSR-ERROR 1;

/ * Pointer to form, starting column, cpi at which to print form * /
ret I. ptd-draw-list(pFormHdr, 0, PrtConfig.cpi) ;

if (ret == CSR ERROR)
Forms-DisplayMsg ["Draw List call resulted in an error.") ;

/* Print the form, this is the last page printed * /
ret = ptd-print-page(TRUE) ;

if (device != PTD TO SCREEN C C ret == CSR ERROR)
Forms-DisplayMsg("~rint Page call resulFed in an error.") ;

ptd-close 0 ;

/* Redraw the application screen * /
if (device == PTD TO SCREEN 1

else

Q
Forms-DrawScreen(FFormHdr, pElement);

Forms-Updatescreen(pFormHdr, pElement) ;

) / * end of forms print graphics module */

m The f o n t s e l e c t i o n function locates the fonts files in the system and enumerates all of the
font faces,

font-selection 0
(

int i;
int more fonts ; / * return boolean code * /
int nFaces ; / * number of faces found * /
char far *tmp-fp;

face.bType = FF RESXDENT + FF-RASTERIZE ;
face.request = EMF-READ ;
nFaces = font-face-support ((FACE far *) Sface) ;

if ((fpFontFaceInfo = (FONT-FACE far *) malloc (sizeof (FONT-FACE)

(
(nFaces -1))) == (char *IO)

font-end0 ;
f ont-bind-end (1 :
csr-endo ;
return (DMF-ERROR) ;

)

more-fonts = DMF-OK ;
face.request = 0 ;
for (i=O; ((i < nfaces) 66 (more-fonts >= DMF-OK)); i++)

(
more fonts = font get-face(6face. fpFontFaceInfo+i) ;
trnp-Tp = (char far *) ((fpFontFaceInfo+i)->face-name);
FNTLBl-text-pitems [il .= (char *) (FP-OFF (tmp-fp)) ;

1

font-selected = 0 ;
FNTRBs-text[O].selected = 1 : /*--outline, rasterize list * /

/ * ---- present the user with the option of selecting a font face * /
if (font-select ((FONT-FACE far *) fpFontFaceInfo) == (int) DMF-ERROR)
(

>m b
font selected = 0 ;
fpFostFaceInfo->PtSize = 12 ;
fpFontFaceInfo->rotation = 0 ;
bStyle = DFS-NORMAL ;

1

return (DMF-OK) ;

} /* end font-selection0 */

int font-select(fpF0ntFaces)
struct font-face-defn *fpFontFaces :
(

int dlg-code ;
FONT-FACE *fpFontFace ;
FONT-FACE *f-face ;
char ptbuf [4] ;
char pitbuf[SI ;
char rotbuf [4] :

if (FNTRBs-text[Ol .selected -= 0)
(

fpFontFace = fpFontFaces ;
FNTLBs text[O].pItems = FNTLBl text pitems ;
FNTLBsrtext[O].nItems =(unsignzd chzr)face.nResident :
font-base = 0 ;

1
else
{

fpFontFace = fpFontFaces + face.nResident ;
FNTLBs-text[O].pIterns = FNTLBl textgitems + face.nResident;
FNTLBs-text[O].nItems =(unsignsd char)face.nRasterize ;
font-base = face.nResident ;

/e---- set the cursor focus on first component * /
FNTDlg text.focus index = 1 :
FNTLBsItext[O].seiected = (char)font selected + 1;
f face= (struct font face defn *) fpFofitFace+ (FNTLBs-text (01 .selected-1) ;
FWTEFs-text[O].pBufFer =-itoa(f-face->PtSize, ptbuf, 10) :
FNTEFs-text[l].pBuffer = itoa(f-face->pitch, pitbuf, 10) *
FNTEFs-text [2] .pBuffer = itoa(f-face->rotation, rotbuf, 1b) :

FNTCBs text[O].header.bEnabled -(char) ((f-face->bStyle h DFS-BOLD) ?

FNTCBs text[l].header.bEnabled =(char) ((f-face->bStyle h DFS-GRAYED) ?

FNTCBs-text [Z] .ieader.bEnabled =(char) ((f-face->bStyle 6 DFS-ITALIC) ?

FNTCBs-text[3].header.bEnabled =(char) ((f-face->bStyle 6 DFS-HOLLOW) ?

FNTCBs textl41.header.bEnabled -(char) ((f-face->bStyle h

FNTCB-text [Ol .bState =(char) (bStyle h DFS-BOLD ?

FNTCEs-text [l] .Estate =(char) (bStyle h DFS-GRAYED ?

FNTCBs-text [21 .bState =(char) (bStyle h DFS-ITALIC ?

FNTCEs-text [31 .Estate =(char) (bStyle h DFS-HOLLOW ?

FNTCBS text[4].bState =(char) (bStyle h DFS-UNDERLINE ?

if (f-face->bType == FF-RESIDENT)
(

0

ENABLED:DTSABLED) ;

ENABLED: DTSABLED) -
ENABLED:DISABLED) :

ENABLED:DISABLED) :

DFS VNDERLINE) ? ENABLED:DISABLED) :

CB CHECKED:CB UNCHECKED) :

CB CHECKED:CB-UNCHECKED) :

CB CHECKED:CB UNCHECKED) :

CB CHECKED:CB-UNCHECKED) :

CB-CF~ECKED:CB-UNCHECKED) :

FNTEFs-text[O].header.bEnabled = DISABLED :
FNTEFs text[l].header.bEnabled = DISABLED ;
FNTEFs~text[2].header.bEnabled = DISABLED :

1
else
(

FNTEFs-text[O].header.bEnabled = ENABLED ;
FNTEFs-text[ll.header.bEnabled = ENABLED :
FNTEFs-text[2].header.bEnabled = ENABLED :

)

/*---- set the push buttons to an up position */
FNTDlg-text.return-value = CMF-NO-ACTION :
FNTPBs-text[O].bState = PB-UP :
FNTPBs text[ll .bState = PB UP ;
FNTEFs-text[Ol.cursor offset = EF-SELECT-ALL :
FNTEFs~text[ll.cursor~offset = EF-SELECT-ALL ;
FNTEFs-text[Zl.cursor-offset = EF-SELECT-ALL :

dlg-draw(6FNTDlg-text) ;

/*----run the dialog box until user has finished * /
ms draw pointer (1 :
while (TFNTPBs-text[O].bState != PB-DOWN) h h (FNTPBs-text[ll.bState

(

e

!= PB-DOWN))

dlg code = dlg-run (hFNTDlg-text) :
if Tdlg-code == (intjFNTRBl-text-tag)
(

if (FNTRBs-text [O] .selected == 0)
{

fpFontFace = fpFontFaces :
FNTLBs text [O] .pItems = FNTLBl textgitems :
FNTLBsItext[O].nItems =(unsigned char)face.nResident :
font-base = 0 :
FNTRedraw-text[ll=DLG-REDRAW :

I

1
else
I

fpFontFace = fpFontFaces + face.nResident :
FNTLBs text[O].pItems = FNTLB1 text pitems + face.nResident ;
FNTLBsItext[O].nItems =(unsigned char)face.nRasterize :
font base = face.nResident :
FNTR~draw-text[l]=DLG-REDRAW ;

I
l

0 [
f-face=(struct font face defn *) fpFontFace +

FNTCBs text [O] .header.bEnabled =(char) ((f-face->bStyle 6

FNTCBZ-text[l].header.bEnabled =(char) ((f-face->bStyle &

FNTCBs text[2].header.bEnabled =(char) ((f-face->bStyle &

. FNTCBs-text[3l.header.bEnabled =(char) ((f-face->bStyle 6

FNTCB-text[4l.header.bEnabled =(char) ((f-face->bStyle 6

if (f-face->bType == FF-RESIDENT)
I

(FNTLBs-text [O] . selectzd-1) ; L

DFS EOLD)? ENABLED:DISABLED) :

DFS-GRAYED) ? ENABLED:DISABLED) :

DFS-TTALIC) ? ENABLED:DISABLED) :

DFS HOLLOW) ? ENABLED:DISABLED) :

DFS-UNDERLINE) ? ENABLED:DISABLED) ;

FNTEFs text [01 .header. bEnabled = DISABLED :
FNTEFs-:ext[l].header.bEnabled = DISABLED :
FNTEFsI;;ext[2].header.bEnabled = DISABLED :

1
else
[

FNTEFs-sext[O].header.bEnabled = ENABLED :
FNTEFs :ext[l].header.bEnabled = ENABLED ;
FNTEFsIrext[2].header.bEnabled = ENABLED :

1

FNTEFs text[O] .pBuffer = itoa((int) f face->PtSize, ptbuf, 10);
FNTEFstext [l] .pBuffer = itoa(f face=>pitch, pitbuf,lO) :
FNTEFs text[2].pBuffer = itoa((Tnt)f-face->rotation,

FNTEFs text[O].cursor offset = EF SELECT ALL ;
FNTEFs-text[l].cursor-offset = EF-SELECT-ALL :
FNTEFs~text[2].cursor~offset = EFISELECTIALL :

FNTRedraw text [3] =DLG REDRAW :
FNTRedraw-text [4] =DLG-REDRAW ;
FNTRedraw-text[Sl=DLG-REDRAW ;
FNTRedraw-text[6]=DLG-REDRAW :
FNTRedraw-text[71=DLG-REDRAW ;
FNTRedraw-text[B]=DLG-REDRAW ;
FNTRedraw-text[S]=DLG-REDRAW ;
FNTRedraw~text[lO]=DL~-REDRAW :

rotbiif, 10) ;

l!B
1

j

ms-erasegointer 0 ;
event-purge () :

vid-move-cursor(O,MB-BOTTOM-YORG-C~-~XT) :
vid clear to bot();
if TFNTPBs-text [O] .bState == PB-DOWN)
[

font-selected = FNTLBs-text[O].selected-1 :
f-facee (struct font-face-defn *)fpFontFace+font-selected ;
bStyle= DFS-NOIUlAL :
bStyle = FNTCBs text[O].bState ? (bStyleIDFS-B0LD):bStyle :
bStyle = FNTCBs--text [l] .bState ? (bStylelDFS GRAYED) :bStyle :
bStyle = FNTCBs--text [2] .bState ? (bStylel DFSIITALIC) :bStyle :
bStyle = FNTCBs--text[3].bState ? (bStylelDFS HOLL0W):bStyle :
bStyle = FNTCBs:text[4].bState ? (bStylelDFSIUNDERL1NE):bStyle:
f face->PtSize = atoi (FNTEFs text [O] .pBuffer) ;
f-face->pitch
f-face->rotation = atoi (FNTEFstext [Z] .pBuffer) :
rzturn (DMF-OK) :

1
else
return (DMF-ERROR) :

= atoi (FNTEFs-text [l] .pBuffer) :

1

/ * end of f0rms.c * /

Special Topics

This section discusses the special programming required to run components directly in the work
area instead of in a dialog box, how to create and manage events from multiple windows in the
work area and how to interface with the DeskMate clipboard if your application has an Edit Menu.

Running Components in the Work Area - COMPS.PDM

COMPS . PDM shows how to handle the running components in the work area of a DeskMate
application. The Comps application is included in the SAMPLES\COMPS directory.

#include 'lcomps. h"
#include "c0mpsdec.h"

a

/ * Application header file * /
/ * Application function declarations * /

The application starts with the standard calls to initialize and bind to resources (Guf and the
CSR). Then a call is made to draw the screen. In this case the screen is redrawn with the
appropriate component drawn along with the menubar. The first time the call is made, there is no
component, the handle is DM-ERROR, so no component is drawn.

int main()
{

EVENT Event;
int TSReturnCode;
int Done;
int component = DM-ERROR;
int bActive;
int j;
int handle = DM-ERROR;

/ * initialize the Component-Run control flag * /
bActive = FALSE;
/ * Process the user inputs and actions * /
do
{

a
if (bActive)

/ * read an event from an input device * /
event-read (&Event) ;

switch (Event .msg)
{

Component-Run(component 1;

case EVENT COMMAND: -
case CMP EDITFIELD ID:

/ * t'iie user wants to see editfield operation * /
/ * set component for call * /
component = EDITFIELD-COMPONENT;
/ * o en and draw the component * /
handfe = Component-Init (component, handle) ;
bActive = TRUE;
break;

/ * tKe user Wants to see lisbox operation * /
/ * set component for call * /
component = LISTBOX-COMPONENT;

!* ?pen and draw the cp?ponen'_*[l____l , - , .

case CMP LISTBOX ID:

a case CMP PUSHBUTTON ID:
/ * tBe user wanfs to see radiobutton operation * /
/ * set component for call * /
component = PUSHBUTTON - COMPONENT;
/ * o en and draw the component * /
handye = Component Init (component, handle) ;
Component Disable Edit-Menuitems();
bActive =-TRUE; -
break;

case CMP ICONBUTTON ID:
/ * tRe user wanfs to see iconbutton operation * /
/ * set component for call * /
component = ICONBUTTON - COMPONENT;
/ * o en and draw the component * /
handye = Component Init (component, handle) ;
Component Disable_Edit_Menuitems();
bActive =-TRUE;
break;

) / * end of switch on type of application event * /
break;

) / * end of Component main module * /

When a user selects one of the four component types from the F4 Menu, a call is made to
Component Init with the type of component passed as the parameter. Component Init
closes any component that may have been previously opened and sets the initial state%f the
component (the edit field cursor offset, the selected item in the list box, the state of icon and push
buttons, etc.).

Any previous component which may have been on the screen is erased, the selected component
is disabled from the F4 menu, and finally the selected component is drawn with a call to
cmp-draw and the handle for the new component is returned.

If any component besides the edit field is selected, the F3 Edit menu options are all disabled.
Cut, copy, paste, and clear only apply to the edit field component.
int Component Init(component, handle)
int componentT
int handle;

int ' -
I

int ikewcomponent ;

if (handle != DM ERROR)

switch (component)
(

a

cmp-close(hC5mponent[component], pComponent[component]) ;

case EDITFIELD COMPONENT:
* (ComponenEDITFIELD .pBuffer) =' \O' ;
ComponentEDITF1ELD.cursor-offset = 0;
break;

ComponenfLISTBOX.se1ected = 1;
break;

ComponentPUSHBUTT0N.bState = PB-UP;
break;

case LISTBOX COMPONENT:

case PUSHBUTTON COMPONENT:

I n .
case ICONBUTTON COMPONENT:

/ * remove previous component (if any) from screen * /
vid move cursor(0 * CHAR - XEXT, 3 * CHAR - YEXT) ;
vid-cleaf - - to-bot () ;

/* enable all F4 Menu items * /
for (j=O; j<4; jtt)

ComponentMENUITEM[j].bEnabled = ENABLED;
/ * disable the selected F4 Menu item * /
ComponentMENUITEM[component].bEnabled = DISABLED;
/ * o en the selected component * /
hNewFomponent = cmp-open (pcomponent [component]) ;

I* draw the selected component * /
cmp-draw(hNewComponent,pComponent[component]) ;

return(hNewComponent) ;

) / * end of init component * /

a

After the component is initialized, control returns to the beginning of the main loop, where the
component is actually run with a call to Component Run. If the component is an edit field, a
check is made to see if any text data is residing in the clipboard with a call to
dm-get-clipboard-info. If text data is in the clipboard, then the "Paste" option of the F3 menu
is enabled, while the other F3 options are all disabled.

While the component is running the application displays messages that show that the component
is running while in cmp-run and the return code definition produced by the cmp-run.

In the case of a CMP-SELECT-CHANGE on an edit field component, the "Cut", "Copy", and
"Clear" options of the F3 Edit menu are enabled.
void Component Run(component)
int component;-

int Returncode;
int *

int !%ne;
char *pString;
int Type, Length;
char far *lpBuffer;

/ * Check if editfield is component selected.
/ * something in the clipboard, then enable paste, grey cut,copy,clear ... * /
/ * else enable those and grey paste * /
if (component == EDITFIELD-COMPONENT)
(

a (

If it is and there is * /

/ * check for text in the clipboard * /
dm get clipboard-info((int far *) &Type, (int far *) &Length,

(char far * *) &lpBuffer 1; - -

if (Type == CLIP-TEXT)
I

1

Component Disable Edit Menuitemso;
EditMENUITEM[EDIT-PASTE - - INDEX].bEnabled = ENABLED;

1
Done = FALSE;
do
(

vid move cursor(,,26 * CHAR XEXT, 4 * CHAR YEXT) ;
vidIputString(Component-Running") ; -

Returncode = cmp-run(hComponent[component], pComponent[component] 1;

vid move-cursor(2 6 * CHAR - XEXT, 4 * CHAR - YEXT 1; .,-., .. I _ --, I \ .

a pString = ComponentReturnStrings[ReturnCode];

vid move cursor(40 * CHAR-XEXT, 5 * CHAR - YEXT) ;
vidIput-3t r i nq (pSt r i ng) ;
/* On pushbutton, delay, then raise the button * /
if(component === PUSHBUTTON-COMPONENT)
(

waitloop(Ox20);
ComponentPUSHBUTT0N.bState = PB UP;
cmp-draw(hComponent[component]T pComponent[componentl 1;

1
/ * On iconbutton, delay, then raise the button * /
if(component :== ICONBUTTON-COMPONENT)
{

waitloop(Ox20) ;
Component1CONBUTTON.bState = PB UP;
cmp-draw(hComponent[component]~ pComponent[component]) ;

1
switch (Returncode)
I case CMP NO ACTION:

Done-== TRUE;
break;

case CMP CANCEL:
breat;

case,CMP SELECT-CHANGE:
if (Component == EDITFIELD - COMPONENT)
{

il (ComponentEDITFIELD.se1ect-length > 0)

/ * only if selected text in the editfield * /
Ed+tMENUITEM[EDIT CUT INDEX].bEnabled = ENABLED;
EditMENUITEM[EDIT-COPY INDEX].bEnabled = ENABLED;
EditMENUITEM[EDIT-PASTE INDEX].bEnabled = DISABLED;
EditMENUITEM[EDIT-CLEAR_INDEX].bEnabled - = ENABLED;

{

a 1
else
Component-Disable-Edit-Menuitemso;

1
break;

case CMP GO:
brea8;

case CMP ACTION:
Done-= TRUE;
break;

breat;

break;

case CMP ACTION IN EVENT:

default :

- -

1
1
while (!Done) ;

1

void Component Draw-Screen(component, handle)
int component;-
int handle;
I /* draw the selected component * /

if (handle != DM ERROR)
cmp-draw(haiidle, pComponent[component] 1;

1

Managing Windows and Events

The following example shows how to create a window in the work area which starts immediately
below the application menu bar and goes to the bottom of the screen. By creating this window,
the application can now access the first line and column under the menu bar as cursor position
(0,O).

a

ChildWnd.xorg = 0;
ChildWnd.yorg = vid next nwcy (vid-wcy-to-nwcy (MB - YORG) t MB - YEXT - 1) ;
ChildWnd.xext = 80 F CHAR XEXT;
ChildWnd.yext = 25 * CHARTEXT - ChildWnd.yorg;
hChild = win o en(&ChildWnd) ;
win - activatenEhild) ;

All keyboard events, EVENT-CHAR,belong to the currently active window. When the child
window is active all keyboard events can be directly processed in that window.

Mouse events are translated into the coordinates for the active window. The mouse cursor is
automatically fenced to the current windows during a drag sequence (button down, holds, button
up). When the user clicks in an area outside of the current window, the window will get an outside
event.

case EVENT OUTSIDE -
/ * Go Back to tie base window to get the real event * /
win activate(hBase) ;
evelit-read (&Event) ;

/ * Now go back to child window to process the event * I
win activate(hChild) ;
if 7 Event.ms EVENT MOUSE)

/ * Get ri8 iF all mouse events in the base window * /
event-purge 0 ;
I* Check the mouse coordinates to determine what * /
/* window the event belongs to. Activate that * /
/ * child window and let it read the event. * /
/ * Write back event for the child window to process * /
event-write(&Event) ;

else

break;

a
On an outside event, the Base window should be activated and the event should be read. Mouse
events will always be seen by the base window. This example purges events in the base window.
This step is important since it get rids of mouse events in the dead spots in the base window,
such as over the menu bar in the title-line area.

Applications with multiple windows on the screen should determine which window the mouse
event occurred in and activate the appropriate window and let that window read the mouse event.
Remember to write back the event if you wish the window to reflect the event. For example, an
application has two windows on the screen, A and B, with the active window as A.

...
I I I
I I I
I I I

I
I

I I
A I B I I I

I
I I

I
I

I
I I
I I
I I I
I I I ____________________-____------------------

0 To reposition the cursor where the user clicked, write the event back after activating window B
and have window B read it and position the cursor.

Events from the menu bar will appear as outside events to the child windows since the menu bar
belongs to the base window. Remember to activate the base window BEFORE drawing the
application menu bar.

/ * Draw the application menubar in the base window * /
if (win get active() ! = hBase)

FormsMENUBAR.bRedraw = MB-REDRAW;
mb draw (&FormsMENUBAR) ;
FofmsMENUBAR.bRedraw = MB-NO-REDRAW;
/ * Display the application's name on the title line * /
ttl - put-app-name('Forms Manager");
/ * Display the application's data file name on the title line * /
/ * Sending a pointer to a null string will display "Untitled" * /
ttl - put-data-name ("Graphics Example") ;
/ * Draw the gra h+cs, clearing the screen first * /
win-activate (hghild) ;

/* Draw the current form on the screen * /
Forms - Updatescreen(pFormHdr, pElement 1;

win aFtivTte(hBase 1;

e

Interfacing with the Clipboard

From an Editfield Component

a
Use the edt-* component utilities discussed at the end of the Component Manager section of
the DeskMate Technical Reference when interfacing with the clipboard through editfields
which are running directly in the editfield. In the DeskMate 3.3 system, the clipboard
functions are handled automatically by the component itself if the Edit Menu accelerators are
not defined and active.

case CUT TEXT ID:
edt Cut(ZComponentEDITFIELD 1;
cmp-draw(handle, &ComponentEDITFIELD) ;
bAc€ive = TRUE;
break;

edt c5py(ZComponentEDITFIELD 1;
bAcfive = TRUE;
break;

case PASTE TEXT ID:
edt paSte(KComponentEDITFIELD) ;
cmp-draw(handle, &ComponentEDITFIELD) ;
bAcEive = TRUE;
break;

case CLEAR TEXT ID:
edt clPar(ZComponentEDITFIELD) ;
bAc€ive = TRUE;
break;

case COPY TEXT ID:

When Using the Form Manager

Use the form-* calls discussed in the Form Manager section of the DeskMate Technical
Reference when copying to and retrieving form graphics from the clipboard. Graphics on the
clipboard are complete graphics forms with header information. The entire form is one object
which must be broken apart using the form-break-object call in order to access the
individual elements in the form.

a

case EDIT CUT ID:
case EDIT-CLEAR ID:
case EDIT-COPY ID:
case EDIT-PASTE ID:
case EDIT-CLR SCRN ID:

Forms-EdifOptiGn (pForm, &Event) ;
break?

void Forms Editoption(pForm, pEvent)
FORM *pForm;
EVENT *pEvent;
{ switch (pEvent->param)

case EDIT CUT ID:
case EDIT-CLEAR ID:

(

/ * Copies t8 clipboard & deletes it from list * /
Forms-CutElement(&(pForm->header), pForm->pElement,

pForm->tag, pEvent->param) ;
break;

/ * Copies Blement to the cli board * /
Forms - CopyElement (& (pForm->leader) , pForm->tag) ;

case EDIT COPY ID:

I + r.1- r l - - l t . . --t t , l , - . . ~ Ch, n1n-n-t ~ n l n n l - n A * I

0 case EDIT PASTE ID:
/ * Adas the-element on the clipboard to the list * /
Forms PasteElement(&(pForm->header)) ;
break?

/ * Fifst Clear-the graphics form, then the screen area * /
form clear (& (pForm->header)) ;
vid move cursor(0, 0) ;
vid-cleaf - - to-bot () ;

/* Disable printing since we don't have any
FileMENUITEMLFILE PRINT INDEX] . bEnabled = DIZAABLED;
mb draw(&FormsMENUBAR 7;
brPak;

break;

case EDIT CLR SCRN ID:

raphics * /

default:

) / * end of switch on Edit option * /
/ * Will no longer have a selected element on the screen * /
pForm->pElement = NULL;
pform->tag = 0;

} / * end of form edit option module * /

void Forms-ClearBox(pFormHdr, pElement)
FORM HDR *pFormHdr;
ELEMENT *pElement;
(

MAPRECT region;
/ * Redisplay the region surrounded by the select box * /
region.xorg = vid prevn nwcx(pE1ement->x0, 3);
region.yorg = vid-prevn-nwcy(pE1ement->yo, 3);
region.xext = vid-nextn-nwcx(pE1ement->xl, 3);
region.yext = vidInextnInwcy(pE1ement->yl, 3);
vid - clear-block(region.xorg, region.yorg, a region.xext - region.xorg + 1,

region.yext - region.yorg + 1) ;

form display region (pFormHdr, ®ion) ;
vid - move-cursor(pElement->x0, pElement->y0) ;

} I* end of forms clear select box function * /

Forms CutElement(pFormHdr, pElement, tag, command)
FORM HDR *pFormHdr;
ELEMENT *pElement;
int tag;
int command;

{ YPRECT region;
int ret, t pe, length;
char far *lpBuf!er;
/ * Save region to remove the element from the screen * /
region.xorg = pElement->xO;
region.yorg = pElement->yo;
region.xext = pElement->xl;
region-yext = pElement->yl;
if (command == EDIT CUT ID)

else

/ * Remove elemen€ frGm the graphics list & copy it to the clipboard * /
ret = form-cut-element(pFormHdr, tag 1 ;
/ * Remove element form the graphics list only * /
ret = form - delete - element(pFormHdr, tag) ;

Forms_DisplZyMsg("Cut or Clear operation was unsuccessful.");
if (ret == CSR ERROR)

/ * Clear the screen where the element was displayed * /
vid clear-block (region.xorg, region.yorg,

r n m 7 m n v n v t - rnninn vnrn -L 1 -

/ * Redisplay the re ion where the element was displayed * /
form display region? pFormHdr, ®ion) ;
vid - Eove-curJor(region.xorg, region.yorg) ;

/ * Check for graphics in the form, if empty then disable printing * /
region.xorg = 0;
region.yorg = 0;
region.xext = ChildWnd.xext;
region.yext = ChildWnd.yext;
if (form re ion em ty(FormHdr, ®ion) == CSR NULL)

/ * Disable Cut, Co y, and Clear * /
EditMENUITEM [EDIT &JT INDEX] . bEnabled = DISABLED;
EditMENUITEM[EDIT-COPY INDEX].bEnabled = DISABLED;
EditMENUITEM[EDIT-CLEAR - - INDEX].bEnabled = DISABLED;
if (command == EDIT CUT ID)

else
{

a
FileMFNU?TEmIfE - PRfNT - INDEX] . bEnabled = DISABLED;

/*,We know there-is Something on the clipboard, enable paste * /
EditMENUITEM[EDIT-PASTE - INDEX].bEnabled = ENABLED;

/ * Check for graphics on the clipboard, set the Edit menu * /
dm get clipboard-info((int far *) &type, (int far *) &length,
EditMENUITEM[EDIT PASTE INDEX].bEnabled = (type == CLIP DRAW) ?

(char far * *) &lpBuffer) ;
- -

ENABLED : DISABLED; - -
} / * check clipboard before enabling paste * I
/ * Update the menu information * /
mb - draw (&FormsMENUBAR) ;

} / * end of forms cut element function * /

Forms CopyElement(pFormHdr, tag)
FORM HDR *pFormHdr;
int - tag;
{

/ * Copies element to the clipboard, leaves
if (form copy element(pFormHdr, tag) == ZSR ERROR)

/ * Enable Paste, Disabled Cut, Copy, and Clear * /
EditMENUITEM[EDIT PASTE INDEX].bEnabled = ENABLED;
EditMENUITEM[EDIT-CUT INDEX].bEnabled = DISABLED;
Ed+tMENUITEM[EDIT-COPY INDEX].bEnabled = DISABLED;
EditMENUITEM[EDIT%LEAK-INDEX].bEnabled - = DISABLED;
mb - draw (&FormsMENUBAR) ;

raphics list intact * /
Forms-DispTayMsg("Copy - operation was unsucFessfu1."); a

1 / * end of forms copy element function * /
Forms PasteElement (pFormHdr)
FORM HDR *pFormHdr;
{ -

int tag, x, Y!
ELEMENT *pElement,
FORM-DST Destination;
/ * past in the element from the clipboard * /
tag = form-paste (pFormHdr) ;

if (tag < 0)

Forms DisplayMsg("Paste operation was UnSUCCeSSfUl.");
(

return;
1
/ * Move the new element to the cursor location * /
/ * since it was pasted at the upper-left corner * /
vid-read-cursor(&x, &y) ;

a pElement =: (ELEMENT *) form-get-pointer (pFormHdr, tag 1 ;
Destination.xO = x;
Destination.yO = y;
Destination.xl = (pElement->xl - pElement->xO) + x;
Destination.yl = (Element->yl - pElement->yo) + y;
Destination.xOf = g;
Destination.xlf = 0;
Destination.yOf = 0;
Destination.ylf = 0;

form-move-element(pFormHdr, tag, &Destination) ;

/ * Enable printing since we now know we have some graphics * /
FileMENUITEM[FILE PRINT INDEX].bEnabled = ENABLED;
mb - draw (&FormsMENWAR) ;-

} / * end of forms paste element function * /

m

Direct Interfacing with the Clipboard

To read the clipboard:
a

Source is the pointer to the clipboard area returned by dm-get-clipboard-info.

Dest
information will be copied to.

NumBytes is the size of the clipboard returned by dm-get-clipboard-info.

copy from clipboard (Source, Dest, NumBytes)
unsigned Fhar far *Source;
unsigned char *Dest;
in t NumB yt e s ;
I

is the pointer to the buffer area in the application data segment where the

register unsigned char *d;
register int n;

d = Dest;
n = NumBytes;

for (; n != 0; n--)
*dti = *Source++;

1

To write to the clipboard:

1) Call dm-set-clipboard-info, to set the type and length of your data.
2) If an error is returned, then the data is too large to fit on the clipboard. The previous

contents of the clipboard buffer is still intact (the type and length were not changed).
The application should inform the user that the selected data was too large.

3) If no error is returned, call dm-get-clipboard-info to get the clipboard buffer pointer.
4) If no error is returned, the data may be transferred to the clipboard buffer.

Source is the pointer to the buffer area in the application data segment where the
information will be copied from.

Dest is the pointer to the clipboard area returned by dm-get-clipboard-info.

NumBytes is the size of the clipboard returned by dm-get-clipboard-info.

copy to clipboard (Source, Dest, NumBytes)
unsiqnea char *Source;
unsigned char far *Dest;
int NumBytes;
I

a

register unsigned char *s;
register int n;
s = Source;
n = NumBytes;

for (; n != 0, n--)
"Desttt = *st+;

I

a Writing text with attributes to the clipboard:

The text application utilizes attribute description flags in order to display text with the
underline or bold attributes. These flags must always be used in pairs, with the "ON"
flag appearing at the start of the attributed text and the "OFF" flag appearing at the end
of the attributed text. Each "ON" flag MUST be accompanied by an "OFF" flag. The
following attribute pairs are recognized:

UNDERLINE ON(Oxl1) UNDERLINE OFF(Ox10)
BOLD OFF (Ux12) BOLD - ON (0 3 3) -

The defines for these attribute pairs are in the include file, CSRVID . H.

See form-copy-element when copying form data to the clipboard.

e

Writing a 40 Column Application

main ()
{

int
int 1 , bfsund;
char tmp-buff [201;

video info , nbr-drivers , driver-index ;

e
Forty column applications must bind to the CSR using the dmcsr-bind-init call which does not
load the video driver.

/* Bind to the Core Services Resource * /
if I *,failare tE bind to the CSR, could not findlload resource * /

/ * Determine number and names of possible drivers * /
video info = vid loadable drivers(&VidSwapBuffer[O]) ;
nbr dyivers = viae0 info T NBR DRIVERS-MASK;
driver - index = videE-info >> 87

/ * Find the forty column video driver to use on this machine * /
for (i = 0, bFound = FALSE; (i < nbr - drivers) & & (!bFound); it+)
{

dmcsr bind init() == CSR ERROR)

exit (1) ;

strcmp (VidSwapBuffer [i] .driver name, "DMVST256") == 0)
if I * Forty-column video driver for EGA/VGA matches * /

bFound = TRUE;
)

if (!bFound)
{

for (i = 0; (i < nbr drivers) & & (!bFound); it+)
{

-
strcmp(VidSwapBuffer[i] .driver name, 11DMVSTC4011) == 0)

if I * Forty-column video driver for Tandy 1000 matches */
bFound = TRUE;

1

if (!bFound)
{

for (i = 0; (i < nbr-drivers) & & (!bFound); it+) '

{

if I * Forty-column video driver for CGA matches * /
strcmp(VidSwapBuffer[i] .driver name, "DMVSLRES") == 0)

0
bFound = TRUE;

1
) / * did not find a match for Tandy 1000 either, try CGA * /

) / * did not find a match for EGA/VGA try Tandy 1000 or CGA * /
if (bFound)

else
{

driver-index = i - 1;

/ * did not find a forty column driver - exit application * /
dmcsr bind-end () ;

)exit (*) ;

The csr-load-video-driver actually loads the video driver.
Returncode = csr - load - video - driver(VidSwapBuffer[driver-index].driver-name);
if (Returncode == CSR-ERROR)

{
/ * could not load the forty column driver - exit application * /
dmcsr bind-end () ;
exit (0) ;

I
/ * Bind with the rest of the core * /
csr-access-init () ;

\ . / * Draw the main screen.:/ - _ _ ~. , *

Not i i $b eKwple 055ull4.e.5 &-
sw14liz URwory IKdtI.

Writing a DeskMate Resource

A DeskMate resource must provide application and resource side bindings. The application side
bindings are linked with the application. The bindings in the DeskMate libraries are application
side bindings. These bindings setup the far call into the resource from the application. The
resource side bindings are part of the resource. They supply the entry point into the resource and
handle returning to the application.

The sample source provided here is included in the SAMPLES\RESOURCE directory.

f APPSIDE.ASM t h e s e a r e t h e a p p l i c a t i o n s s i d e of b indings .

i nc lude r e s segs . i n c
inc lude dmexec.inc ; i nc lude de f ines f o r desk

p u b l i c Resource Load ; load t h e resource
p u b l i c Tesource-End
p u b l i c fsc-srq-vEctor ; a p p l i c a t i o n b inding

- DATA segment

The rsc s rqv or resource service request vector is the far address of the resource assigned by
the executive (desk) once the executive has loaded the resource. This variable is the bridge
between the application and the resource.
p u b l i c rsc-srqv

rsc-srqv dw Oabcdh

myname db 'MESSAGE', 0 ;name of resource f i l e , without ex tens ion

a

.________________--_____________________---------------------------------------.
I

I

I

I I ._______--____-----_____________________---------------------------------------. ,

; w i l l remove resource from memory

; v e c t o r t o resource b inding
dw Odcbah ; r ece ived from desk

DATA ends -
- TEXT segment

a

a At this point, the application side of the bindings must create a series of jump routines to the
rsc srqv address, each routine having a unique function within the resource itself. A macro is
usedto generate the function jump table. Each time a function call is added or deleted, the jump
table must be regenerated.
.--_--_-_--.
I I

f Create a jump routines to rec-srq-vector routine with the appropriate value f
; in AX. For example: ,
; name of resource app called label near I

I I

I liiov-ax,name bf-rPsource-app-called I

I jmp near ptf [rsc-srq-vector] I

I ,
I I
.____________-_--.
RESOURCE - APP=O

The file msgbind.inc contains the macros needed to build application side and resource side
bindings for all functions in the resource. Here it is building the application side bindings.
ifdef RESOURCE APP

asm proc mzcro svc name
-public &svc name
mov ax, svc id
jmp near ptf [rsc-srq-vector]
svc-id=svc-idtl

&svc nZme label near -

endm
endif
public functbl

functbl label word ;label for begining of jump table
svc id=O
;asiii_proc goes here
asm proc Resource Message
asmzproc ResourcezDraw-Box a

This is the actual entry point into the resource.
._______________________________________---------------------------------------. ,

I

,
I

I

I
I

i rsc-srq-vector will call the resource binding supervisor.

f Entry: ax resource service function.

f Exit: None.
I I .___________________-.--.
I

rsc srq vector proc near
-pu sK bp
mov bp, sp
add bp, 4 ;get past return address

;ss:bp will point to parameters
; and ax contains function code
;make a service request to resource binding
;on return AX will be set to O->error, l->okay

call dword ptr DGROUP:[rsc-srqv]

ret

;make service request
POP bP

rsc-srq-vector endp

The resource side of the bindings for this example are in RESSIDE.ASM. The resource side
bindings set up the resource information structure defined in RESINFO. INC.
.--. ,
I ,

I

a
; RESSIDE.ASM these are the resource side of bindings.

include ressegs. inc

public resource
public Resource Binding
public resourcerend

- DATA segment
extrn -ParameterString:byte
.xlist
include dmexec.inc ;defines for desk executive calls
include resinfo.inc ;Resinfo structure and macros
.list
RESOURCE - RES=O
Set-End -TEXT:resource-end ;use macro to set up EndAddr in struct

I I .--. I

;build jump table of resources

.---------------_--.
I ,
I I

I ; Set-ResInfo fills in name and binding entry point.
I name must be upper case, no extensions. I

I I

I I
.--.
Set - ResInfo RI,"MESSAGE",_TEXT:Resource - Binding '

DATA ends -
The resource side of the bindings MUST contain a two byte stack for the return address.
STACK db SEGMENT 2 dup(?)

STACK ENDS

- TEXT segment

a
+jqt mwrce'r Shd h (It+ U5ed & k R 445 mource

i s (I 1-3 ./ lOk&,d, /&y #dj #c a/kahbN)s &cI Q

dsed. A l s o , 2 I;vl.; I's u l ~ M y m u C l/ A ; &
Assume cs:-TEXT, DS:DGROUP

include msgbind.inc

The file msgbind. inc contains the macros which will bind the resource side bindings.

/ j m f - ii m j i a k hL m ~ m WI %$4 Y&.

ifdef RESOURCE RES
asm-proc mZcro svc name

svc name=svc ia
extrn &svc iiame:near
dw Sffsef TEXT:-&svc-name
svc-id=svc-idTl

endm
endi f

public functbl
functbl label word ;label for begining of jump table
svc id=O
;asiii_proc goes here

asm proc Resource Message
asmIproc ResourceIDraw-Box

m Besides setting up function numbers for resource calls and providing a near jump into the
resource code, the resource side of the bindings saves the current PSP, sets up DS to equal
DGROUP, moves the --TEXT segment into CX (for debugging purposes), and asks the executive
to execute the resource, and terminate and stay resident for subsequent calls to the resource.
.-________-------___---.
I ,
I I

I ; -resource saves t h e c u r r e n t PSP.
I moves DGROUP t o t h e c u r r e n t d a t a segment. I

I r e g i s t e r t h e r e source wi th DESK.EXE. I

I terminate and s t a y r e s i d e n t . I

I

; Entry :

; E x i t :

I

I

I

,
I

I I

I , ._________---------_---.
r e source p roc near -

mov cxles ; save f o r PSP

mov ax l DGROUP ; on ly do t h i s i s resource i s not i n C
mov ds , ax

;register r e source wi th DESK.EXE

mov b x , o f f s e t DGR0UP:RI ;es :bx =resource i n f o s t r u c t u r e
mov [bx] .ResPSPl cx

mov ax ,ds
mov e s , a x
mov cx,-TEXT ;when debugging, use cx t o r e s o l v e

mov axlDM EXEC RES-START : i n t e r r u t s e r v i c e number
i n t

; -TEXT segment (o t h e r segments w i l l
be o f f s e t from t h e r e)

;desk w i y l r e t u r n ROM/LIM page o r f f DM - EXEC - INT

a ; g e t memory s i z e i n paragraphs f o r TSR

mov dx, LAST
sub dx,-TEXT
add dxlTOh ;a l low f o r PSP
mov ax13100h ; s t a y r e s i d e n t wi th DX paragraphs
i n t 21h

- r e source endp

The Resource-Binding address is used by the macro Set ResInfo as a resource binding entry
point for all calls into the resource. Since all calls in the resource enter the resource binding code,
this is where the copying of parameters used by the resource functions is done. The function
number in AX is doubled and the near call to CS : [BX] results in the actual function being called.

a
.------------------_____________________---------------------------------------.
I

I

I
I
I
I

I
,
,

,
,
I .-------------------____________________---------------------------------------. I

; Resource-Binding save all current registers.
; Entry: SS:BP points to first parameter on applications stack.
I AX contains function code
, DS points to applications data area
; Exit: None.

kesource-Binding proc far

I

I

assume ds:nothing, ss:nothing, es:nothing
push ax
push bx
push cx
push dx
push si
push di
push bp

& .&& &(molrrce Ln&bulL.

&3 d d 4

r ~ m ,,id li.\ 413 ""‘pic
I A K ~ I)# a ~ e r&~djafJ‘ve push push es ds ;save segment registers

call copy-params
mov bx,DGROUP
mov ds,bx
shl ax 1
mov bx:0000 y ef7%r ; %Cdd k N V 1, ,&&{
add bx, ax
call cs: [bxl

POP ds
POP es
POP bp
POP d: POP s1
POP dx
POP cx
POP bx
POP a*
ret

a

Resource-Binding endp

e This routine copies any parameters needed by the functions. It checks to see which function is
being called and copies the amount of data needed by the call. It assumes that DS has been set
to the application's data segment.

assume ds:DGROUP, ss:nothing, es:nothing .--.
I

I ,
I

I

,

; copy-params copies parameters to local data area.
; Entry: SS:BP points to parameters.
I

I DS applications data segment. I

I AX function number. I

I

; Exit: None.

copy-params proc near

Cmp
JZ no-params

params :

I

,
I I

I I
.-----------------_-____________________---------------------------------------.

d&: a3 /-eSOurce $5 not.
mi& (a m & m cgied

ax I Re sour ce-Draw-Box

-4.0 &dli & e o , ;need to copy parameters,structures to a local data area
push ax
mov ax, DGROUP
mov es, ax
mov si, [bptO]
mov di,offset DGR0UP:-Parameterstring
mov cx,0028
rep movsb

POP ax
ret

no-params:
ret

a
copy-params endp

The "resource-end address in the resource side of the bindings is a far address to set the end of
the resource's memory in the macro Set End so that the executive knows which procedure to
call before it unloads the resource. This &tine should clean up all files, buffers, and close all
resources before returning. All latched interrupts should also be unlatched in this procedure.

The sample resource has no open files, resources, or buffer management to take care of, so it
simply returns. It is important for the routine to exist for the sake of Desk's code that releases a
resource.
._______________________________________---------------------------------------.
I ,
I I

; resource-end this routine should clean up all files, buffers and close all ;
I resources before returning. This is called by desk before I

l it is about to remove the resource from memory. A l l latched I

I interrupts should be unlatched at this time. I

; Entry: SS:BP poinfs to parameters. I

I DS applications data segment. I

I AX function number. t

, I

I ,
; Exit: None. I

resource-end proc far

resource-end endp

I I ._______________________________________---------------------------------------.
I

ret

In the example resource MESSAGERES, the procedure Resource-Load is the function that
requests that the executive load a resource. This call is comparable to the initialization routines
cs r-i nit and g u f-bi nd-i n i t .

0
.___________________--------_______---_----------__-__--_____------------------.
I I

I I

; -Resource-Load loads a resource into memory. I

; Entry: es:dx points to name of the resource module to load. ,
I es:bx points to long address. ,
; Exit: I
I AX=1, Success. I

I AX=O ,Failure. I

I I

I

desk will put the resource binding entry point into return AX with:

I I

I I
._______________________________________---------------------------------------.
- Resource Load proc near

pu-sh es ; save es
push bx ; save bx
push ds ;make es = ds
POP es
mov dx, offset dgroup:myname ;get resource binding name
mov bx, offset dgroup:rsc-srqv ;resource entry point will be

; saved at rsc sqrv
mov ax, DM EXEC LOAD RES ;interrupt service nEnber
int DM - EXEC - INT- - ;call desk
POP bx ;restore registers
POP es

ax, ax ; test for succes or failure
error 9r

1 2 mov axlOl

error:
ret

- Resource-Load endp

The sample resource MESSAGE.RES also includes an example of freeing a resource,
Resource-End. This call is eqiivalent to csr-end or guf-bind-end.

a
._______________________________________---------------------------------------. , I

I I

; -Resource-End calls DESK.EXE to free a resource. ,
; Entry: es:dx name of binding resource. I

I Exit: none.

- Resource-End proc near

I I

I

I

I I

I I
._______________________________________---------------------------------------.

mov axlds
mov eslax ;make es = ds
mov dx,offset DGR0UP:m name ;ascii name of resource
mov ax, DM EXEC FREE-RE8 ;free the resource
int DM-EXEC-INT

I load a dummy routine in the event someone tries to access the resource . - - - - - - -
I that we just freed

mov ax,offset TEXT:resource-not-loaded
mov rsc srqvlaH
mov rsc~srqvt2, cs
ret

- Resource-End endp

.--.
I

I I

J) ; -resource-not-loaded dummy routine to return an error if the resource is . , I
; Entry: None. ,
; Exit: None. I

resource-not loaded proc far
mov aKIDM ERROR
ret

resource-not-loaded endp

- TEXT ends

end

I already gone. I

, ,
I I

I I

I I
.---______------_--.

-

-m

This code resides in the resource and provides the resource's functionality.
.__-_--_---__--_-_-_____________________---------------------------------------. ,
I ,
; MESSAGE.ASM - contains two routines, one to dis lay the passed message on ;

I message. I

I the screen, the second to draw a gox around the displayed

a
,

I I

I I
.___________--_-___-____________________-----------------.~---------------------.
include ressegs.inc
.xlist
include csrbase.inc
include csrvid.inc
.list
DATA SEGMENT -
public -Parameterstring

- Parameterstring
DATA ENDS
TEXT SEGMENT
extrn csr access init:near
extrn -csr-init:nPar
extrn -csr-end:near
extrn Ivid-clear screen:near
extrn vid-move Cursor:near
extrn -vid-set Tine attr:near
extrn -vid-draV rec€:near
extrn 1vid:put-String:near

f Resource-Message - moves the cursor to X = 2 6 ; Y = 12.

; Entry: None.
f Exit: None.
f Calls DeskMate's vid-move-cursor, and vid-put-string routines.

bublic -Resource-Message

- Resource-Message proc near

db 28 dup (?) ; Local buffer for passed string

-

-

._________________--____________________---------------------------------------. , I

I

I

I displays the message passed at that location. I

I I

a
,
I

I

I

,
I I ._______________________________________---------------------------------------. I

call -csr-init
mov ax,12 * CHAR YEXT
push ax
mov ax,26 * CHAR XEXT
push ax
call vid move-cursor
add Sp,O4
mov ax,offset DGR0UP:-Parameterstring ;resource-msg
push ax
call vid put-string
add Sp,OZ
call -csr-end
ret

- Resource-Message endp

-

-

I f

I , , f @ ._______________________________________---------------------------------------.
; Resource-Draw-Box - sets DeskMate's line attribute to LINE SOLID.

Sets DeskMate's line width,to LINE WIDTH1. ,
I sets DeskMate's color attribute to-COLOR3. I

I draws a box around the message passed earlier. I

I I

I f

; Entry: None. I

; Exit: None. f

; Calls DeskMate's vid-set-line-attr, and vid-put-string routines.

bublic -Resource-Draw-Box
- Resource-Draw-Box proc near

I I

,
I , ._______________________________________---------------------------------------. I

call - cs r-ini t

mov ax, COLOR3
push ax
mov ax, LINE-WIDTH1
push ax
mov ax, LINE-SOLID
push ax
call vid set line-attr
add Sp,O6 -

mov ax,VID - NO-FILL
push ax
mov ax,14 * CHAR-YEXT
push ax
mov ax,55 * CHAR-XEXT
push ax
mov ax,ll * CHAR - YEXT
push ax
mov ax,25 * CHAR - XEXT
push ax
call -vid draw--rect
add sp,lU
call -csr-end
ret

- Resource-Draw-Box endp

-END

a
TEXT ENDS

.___________________~.--.
I

I I

i RESSEGS.INC these are the resource segment declarations. I

I .___________________-.--.
I

,
f

TEXT segment byte public 'CODE' ;regular code segment
-TEXT ends
?DATA se ment byte public 'PDATA' ;static data
-PDATA en&
-1TEXT se ment byte public 'ICODE'
-1TEXT en%
-DATA segment byte public 'DATA' ;regular data segment
-DATA ends
E S S se ment byte public 'BSS'
TSS en&
STACK se ment word stack 'STACK'
STACK en&
LAST se ment byte public 'LAST'

-LAST - en%

DGROUP roup DATA, BSS, STACK
assume &:-TEXT, DS:IlGROUP, SS: STACK

;impure code segment (for ROM/LIM)

;uninitialized data segment
;resource stack segment

; start of data heap

-
Writing a DeskMate Accessory

DeskMate accessories are mini-applications which perform a specific task for the user. These
programs pop-up over the current application and require an application launch them with the
dm-acc-run function call. There are two types of accessories, the first are application specific
and are launched from an application menu option. The second are system accessories which
are general purpose and are launched from the F10 menu.

Application specific accessories are called by name. Use accessories to implement functions
which are not often used and to reduce the load size of your application. For example, the
DeskMate Calendar application uses an accessory to perform its Calendar Merge function. The
Calendar application is smaller in size since part of its functionality resides in another program.

System accessories are available in all applications. Developers may write accessories which
can be accessed through the More menu option. For more information about "installing" the
accessories with the More option, see the dmmore-add-accessory function in the Library
Functions section of the DeskMate Technical Reference.

Accessories may call csr-access-init and csr-access-end instead of csr-init and csr-end if
they are NOT going to have a menu bar. Accessories which call csr-access-init should call
winsroup-init (and win-group-end) to create a new base window. A child window which
encompasses the pop-up area should also be created to simplify the accessory's event handling.
See the Managing Multiple Windows and Events section for more information.

General Guidelines

t
0

1) Accessories should be kept small in load size to improve their chances of being launched -0 by any application.

2) Accessories should follow the style guidelines for pop-ups discussed in the DeskMate
Style Guide.

3) Accessories which use resources should:

a) check the product version number and on a 3.0 system they should "grow" to 32K to
ensure that they are using all available code shed space. Resources cannot be loaded
into the code shed space on a 3.0 system. This only applies to resources other than
the CSR and GUF which are already loaded on a 3.0 system.

b) load the resources as temporary resources using dm-temp-resource so that the
resources are loaded in the code shed space along with the accessory. This only
applies to resources which are not required after the accessory terminates.
Accessories which provide functions which require that the resource stay loaded after
the accessory terminates should not use this call to load the resource.

c) use the resource information in the DESKHDR.EXE utility to inform the executive of
what resources are required for execution. The executive will preload the resources
and if there is not enough memory for the accessory and the resources it will inform
the user.

A\ i icn thn trnrcinn niimhnr fiinrtinnalitv in the nESKHnR .EXE utilitv to Set the file's

Accessory Chaining a,
Chaining is the method by which two accessories invoke each other, having only one
accessory resident in memory at a time. The following code is an example of how an
accessory chains to DMHELP . ACC.

Check-ACC-Info is used to save and restore MY ACC to the state it was in when it chained
to DMHELP .ACC. This function writes out the necessary information into the environment
manager's environment area before it chains to the help accessory. When the help accessory
chains back to MY ACC, check-acc-info is immediately called to restore variables,
structures and any-needed data to restore MY - ACC. This is done so the user is not aware that
they left the accessory.

main ()
I * * b i n d t o neccesary resources **

/ * Restore t o prev ious s t a t e be fo re he lp , i f necessary * /
Check ACC Info(REST0RE);

/ * get inpu t and process u n t i l CANCEL */
do
I

- -

event - r ead (&Event) ;

swi tch (Event .msg)
I
c a s e EVENT APPL:

/ * run E e l p * /
i f (Event.param == APPL - ACCESS & & Event.x == ACC - HELP)

Run Help () ;
I

Eveiit.param = I D - CANCEL;
1
break;

0

case EVE:NT OUTSIDE: * * * Frocess o u t s i d e even t s * *
break;

* A * prozess c h a r a c t e r even t s * *
break;

case EVENT CHAR:

} / * swi tch * /
} whi le (Event.param != I D - CANCEL);

* * unbind t o r e sources * *
r e t u r n () ;
1

int Run - help()
I

ENVDATA EnvData; / * environment data structure * /
int Data [401 ; / * data buffer * /
register int Returncode; / * return code*/

a
/ * setup the environment structure * /
EnvData .pEnvFileName = "ACCCHAIN" ;
EnvData . DosEnvString = "ACCCHAIN";
EnvData. g Swap = ENV NO CREATE;
EnvDa t a . pDmEnvS t r ing =-"ACCNAME" ;
/ * see if the environment file exists * /
Returncode = env - get(&EnvData);

/ * if the data was not there, create it * /
if (Returncode == DM ERROR)

env - open (&EnvDa€a) ;

Data [O] = ACC BY NAME;
strcpy (&Data [I] ,-"MY ACC") ;
EnvData.pDataInfo = Tchar far *)Data;
EnvData.DataLen = strlen(Data);

/ * write the environment data to memory * /
env - replace (&EnvData) ;

/ * Save the necesary information to restore MY ACC to its * /
/ * current state when dmhelp.acc chains back *T
Check ACC Info (SAVE) ;

/ * run the help accessory * /
dm acc run (ACC - - BY NAME, "DMHELP") ;

- -

a r e € ~ rnTO) ;

1

a

Part 3
Tools and Utilities

a

6 Contents

Menu bar Builder . MENUBLD.PDM 3-1
Dialog Box Builder . DLGBUILD.PDM 3-3
Bitmap Editor . HYPERBIT.PDM 3-7
Graphics Form Generator . DRAWLIST.PDM 3-9
Clipart File Builder . CLIPART.PDM 3-11
Stroke Font Editor . STROKE.PDM 3-13
Memory Map Generator . MEMMAP.PDM 3-15
Desk Header . DESKHDR.EXE 3-17
Disk Label Generator . DMLABEL.PDM 3-21
Customized Runtime Utility . RUNTMBLD.PDM 3-25
Customized 1NSTALL.EXE Utility . 1NSTLBLD.PDM 3-26

0

I%+ h d (r-$w d OcCvrrencGs 0s ,MEN u - 7 ~ G
J& ,Pf'P-TAG in .A 4'1~ ~ ~ a h d h! +hi

o///$ Okwisc, f l f i C O d t W;II d C O ~ & i
$4 Menu bar Builder - MENUBLD.PDM

The Menu Bar Builder allows the programmer to interactively build an application's menu bar.
The lines of source code declarations and definitions necessary to describe the application's
menus are generated automatically for the programmer. A 'C' language header or include file
(.H), ready for use in the programmer's application, is produced.

The Menu Bar Builder is a DeskMate application which follows the DeskMate Style Guide,
providing both a mouse and a keyboard interface. The information needed to decribe the
application menus is entered in two dialog boxes.

The information which describes the menu bar - menus, buttons, help, message menu, and
accessories menu - is entered in the "Menubar" dialog box. The menu titles for the F2 through
F8 menus are entered in the designated edit fields. The Alarm Menu, Tandy Accessories Menu,
Help, and Up, Down, Left, and Right arrow buttons are selected through their respective check
boxes.

The information which describes the individual menus is entered in the "Items Definitions" dialog
box. The Item edit field is used to enter each item's string. The Accelerators list box is used to
assign an accelerator to an item. Check boxes are used to enable or check a menu item. Radio
buttons are used to set the menu item's group. The list box to the right displays the current
menu's name and any items already defined. The ADD push button is used to add another item
to the menu. The DELETE push button is used to remove an item from the menu.

This utility makes the creation of a DeskMate application's menu bar quick and easy. A complete
menu bar definition can be created in a matter of minutes. The programmer need not worry about
the contents of the data structures, the constant definitions necessary, or the dimensions of the
menus while creating the menu bar.

Source code definitions and declarations generated include initialized string declarations, return
code definitions, individual MENUITEM and MENU data structure declarations, and the MENUBAR
data structure declarations. The code generated by the utility is of a generic nature. You may
choose to change the naming conventions used before incorporating the code into your
application. The utility is meant to create the initial menu bar definition, simple changes to the
menu bar definition can be made manually by editing the header file.

Summary of Commands:

m

0

File Menu :

New Creates a new menu bar definition. Prompts the user to
save any changes first.

Opens an existing menu bar definition header file.

Saves the menu bar definition to the header file.

Prompts the user for the name of the header file,
generates and saves the menu bar definition to named
file.

Open ...

Save

Save as ...

.! Run ... Standard File Run function, prompts the user for the
name of the application to be executed when the utility
exits.

Options Menu :

Define menubar ...

Define items ...

Displays the "Menubar" dialog box.

Displays the "Items Definitions" dialog box.

e

f l&; # v t b u k L P w;ll &I f)/oo fql l-0 pd
r/loe $m 90 coy@W+s rk& 4ck , T b drc,

dg / i M A m -& mhv- o F eacl\ +pt OO cb~p~d.

pu c&! mw.cm 9wa-k -kd& Lh4) bd C~flpfie;rls
The Dialog Box Builder provides the programmer with a way to interactiv t ly design and execute &A & d,guA+

3

$ l,h& w cuNu/d i~e ! m k & ; ~ e & box is edikd, Dialog Box Builder - DLGBUILD.PDM - 0
dialog boxes. The true power of the program becomes evident when the lines of source code
declarations and definitions necessary to describe the dialog box are generated automatically.hd 'hCrpus.Sk'
The 'C' language header or include file created is ready for use in an application. The routine to {h 4b1,1,{, Tb ~ C Z Y

actually invoke and interface with the dialog box is the piece of code written by the programmer.
By saving the binary image of the dialog box, the programmer can come back and make
changes, regenerating the header file as needed.

The Dialog Box Builder is a DeskMate application which follows the DeskMate Style Guide,
providing both a mouse and a keyboard interface. Components are added by by positioning the
text cursor (block) first, then choosing the component to add. The Components Menu contains
the commands to add the individual components. Dialog boxes are used to enter the component
information such as size or dimension, data type, and label.

The standard user interface components are supported - push buttons, radio button groups, list
boxes, check boxes, edit fields, and a menu bar. Static strings are provided for labels and
prompts. Static boxes are also provided to show component groupings.

This utility makes the development of DeskMate applications quick and easy. A complete dialog
box, including the title, frame, and components can be created in a matter of minutes. The
programmer need not worry about the contents of the data structures while designing the dialog
box. The utility automatically calculates the coordinates necessary to center the box on the
screen. Changing the tabbing sequence and selecting components for modification, repositioning,
or removal are also supported.

The source code generated includes initialized string declarations, edit field buffer declarations,
edit field format string declarations, return code definitions, individual component data structure
declarations, the redraw and component array data structure declarations, and the frame and
dialog box data structure declarations.

Summary of Commands:

4rl4c25er 6 &k-
skh 5 is Icl, 3

File Menu :

New Creates a new dialog box, prompts the user to save
changes first.

Opens an existing dialog box file (.dlg), prompts the user
to save changes first. Clears screen, displays the dialog
box.

Saves the dialog box image to file.

Saves the dialog box image to a new file for editing
purposes later.

Exit Exits the utility.

Open ...

Save

Save as ...

Source Menu : e
Generate ... Creates the source header file for the dialog box.

Prompts user for a label prefix to be used when
generating variable declarations.

Displays dialog box used to cycle through the
components, allowing the user to change the default
names of the source variables.

Prompts the user to enter the number of characters of
the dialog box name to be used in generating the names
for the source variables. This feature is useful when
several dialog boxes are being created.

Modify variables ...

Extension length ...

Components Menu :

Pushbutton Adds a push button component at the current cursor
location. Brings up the Push Button Definition dialog
box, allowing the user to enter the component specific
information. Displays the push button when the user
OKs the box.

Adds a radio button group component at the current
cursor location. Brings up the Radio Button Group
Definition dialog box, allowing the user to enter the
component specific information. Displays the radio
button group when the user OKs the box.

Adds a list box component at the current cursor location.
Brings up the List Box Definition dialog box, allowing the
user to enter the component specific information.
Displays the list box when the user OKs the box.

Adds a check box component at the current cursor
location. Brings up the Check Box Definition dialog box,
allowing the user to enter the component specific
information. Displays the check box when the user OKs
the box.

Adds an edit field component at the current cursor
location. Brings up the Edit Field Definition dialog box,
allowing the user to enter the component specific
information. Displays the edit field when the user OKs
the box.

Adds a menu bar component at the current cursor
location. Brings up the Menu Bar Definition dialog
boxes, allowing the user to enter the component specific

Radiobutton

a
List box

Checkbox

Editfield

Menubar

infnrmatjon.

Static string Adds a static string at the current cursor location. Brings
up the Static String Definition dialog box, allowing the
user to enter the text string. Displays the string when
the user OKs the box.

Adds a static box at the current cursor location.
Displays a default size box at the cursor location, with a
size handle in the lower right-hand side of the box. The
user drags the handle to resize the box.

Modifies the currently selected component or static
string. Brings up the Definition dialog box, allowing the
user to change the component / string specific
information. Displays the component / string when the
user OKs the box. When the currently selected item is a
static box, the sizing handle appears, allowing the user
to resize the box.

Removes the currently selected item from the dialog
box.

a
Static box

Modify

Delete

Options Menu :

Title. ..

Width+Height

Allows the user to enter or change the dialog box title.

Repositions the lower, right-hand side of the dialog box
to the current cursor location - sets the new width and
height of the dialog box.

Allows the user to change the component tab order for
the dialog box.

Brings up a dialog box that allows the user to select the
corner of the screen where the X and Y location box
appears. The location box contains the origin of the
selected component. This box is used to align
components in a dialog box.

Allows the user to "try out" the dialog box.

Tab Order

Location Box ...

Run dialog

Redraw screen Redraws the screen.

Bitmap Editor - HYPERBIT.PDM

The Bitmap Editor provides the programmer with a way to interactively modify device-
independent bitmaps. The bitmaps may be created from Draw data files (.fig). These bitmpas
may used in information boxes or simply displayed on the screen.

The Bitmap Editor is a DeskMate application which follows the DeskMate Style Guide, providing
both a mouse and a limited keyboard interface. The information needed to decribe the device-
independent bitmap is generated in several formats - as a graphics form in a Draw file format
(.fig), as a graphics form 'C' data structure defintion header or include file (.h), and as a graphics
form assembly language data structure definition header or include file (hc).

Hyperbit supports all DeskMate video modes, including the Tandy 4 and 16 color modes.

This utility makes the modification of device-independent bitmaps simple by allowing full scrolling
while in the zoomed editing mode. A select rectangle is used to the determine the area of the
bitmap to initially zoom in on. Double-clicking on the bitmap will toggle the zoomhormal modes.
Keyboard accelerators of Ctrl+Z to zoom and Esc to toggle back are also supported.

The size of the bitmap in bytes is displayed on the main screen at all times, notice the size
change when the Bits per pixel is changed. Two, four, and sixteen color bitmaps are supported.
The more colors used, the larger the bitmap.

Summary of Commands:

m

File Menu :

New Creates a new bitmap file, prompting the user to save
changes first.

Opens an existing bitmap file (.fig, .h, or hc) , prompts
the user to save changes first. Clears screen, displays
the new bitmap.

Saves the bitmap information to file (.fig, .h, or hc) .

Saves the bitmap information as a graphics form, which
may be read by Draw, or as a 'C' or assembly language
header file.

a
Open.. .

Save

Save as ...

Exit Exits the utility.

Run Draw Runs the Draw application automatically after exiting.

Edit Menu :

COPY Places a copy of the bitmap on the clipboard as a
graphics form which may be pasted into the Draw
application for further manipulation.

~ . . - . - .. _.

@ Zoom Zooms in on the bitmap, allowing editing of the actual
pixels.

Options Menu :

Bits per pixel ... Displays dialog box allowing the user to choose to make
the bitmap a two (1 bit), four (2 bits), or sixteen (4 bits)
color bitmap.

Displays a dialog box used to change one color of the
bitmap to another. For example, in a four color bitmap
all the "green" pixels can be changed to "red".

Toggled check mark menu item used to set the bitmap
background to transparent. When displayed, graphics
under the bitmap will show through the background.

Toggled check mark menu item used to set the bitmap
background to solid. When displayed, graphics under
the bitmap will be covered by the bitmap background.

Change colors ...

Clear background

Solid background

m

Graphics Form Generator - DRAWLIST.PDM

The Graphics Form Generator converts a graphics form which was placed on the Clipboard by
Draw (or other application which uses CLIP DRAW data type) to its equivalent 'C' source header
or include file. This utility allows a programmer to create a screen or picture using the Draw
application and then compile into an application, making it part of the program's data.

A simple DeskMate application, Draw List, automatically pastes in a picture from the clipboard at
start-up and prompts the user to paste after a task switch.

Use the video call vid-draw-form((FORM-HDR *) Form, x, y) to display the bitmap at the
desired location on the screen.

Summary of Commands:

a

File Menu :

Save as ...

Exit Exits the utility.

Run ...

Saves the graphics form as a 'C' source header file.

Standard File Run function, prompts the user for the
name of the application to be executed when the utility
exits.

a

Clipart File Builder - CLIPART.PDM

The Clipart File Builder allows the software developer to create clipart files with the extension
CLP from Draw files with the extension FIG. Clipart files can also be created by copying objects
to the clipboard from Draw and pasting them into the Clipart application. Clipart files that are to
be released to the public should not contain blank pictures. The following are the three methods
of operation used to build clipart data files.

Method 1 :

0

1. Create one or more pictures which will be included in a clipart file using DRAW.PDM.
2. Select each picture and make it a separate object (use the Make Object menu

option).
3. Save your pictures to a disk file. Only a draw file that contains all objects can be made

into a clipart file.
4. Run CLIPART. PDM.
5. Open the draw file from the clipart application.
6. Select a display layout from the Display menu - 2 objects, 3 objects, to 12 objects,

depending on the number of pictures in your file.
7. Rearrange the individual pictures using the clipboard.
8. Save the pictures as a clipart file.

Method 2:

1. Create pictures using DRAW. PDM. Select the pictures you wish to be made into clipart
and make each one a separate object.

2. Copy each picture to the clipboard. Only clipboard pictures that are objects can be
made into clipart.

3. Run the clipart application, CLIPART. PDM.
4. Select a display layout from the Display menu - 2 objects, 3 objects, to 12 objects,

depending on the number of pictures in your file.
5. Paste the pictures into the clipart application.
6. Rearrange the individual pictures using the clipboard.
7. Save the pictures as a clipart file.

e

Merging Files:

1. Open a file and use "Copy all" from the "Edit" menu.
2. Open a second file and use "Paste" from the "Edit" menu.
3. Select a larger display layout to display the merged pictures.

Summary of Commands:

File Menu :

New Creates a new clipart file. The user is prompted to save
changes first.

Opens a .fig file created with Draw. The file contains
only one obiect.

Open draw file ...

@ Save draw file as ...

Save clipart file as ...

Exit Exits the utility.

Run ...

Saves the data as a Draw file with a .fig extension.

Saves the data as a Clipart file with a .clp extension.

Standard File Run function, prompts the user for the
name of the application to be executed when the utility
exits.

Edit Menu :

Cut

COPY

Paste

Clear Deletes the selected clipart.

Copy all

Display Menu :

Cuts the selected clipart to the clipboard.

Copies the selected clipart to the clipboard.

Pastes in the contents of the clipboard.

Copies all displayed clipart to the clipboard.

Allows the user to select the number of objects to be displayed from 2, 3, 6 (horizontally
and vertically), and 12. 0

Stroke Font Editor - STROKE.PDM

Provides the programmer with a way to edit or create his own stroke font definitions to add
characters to an alphabet or modify an existing alphabet. Stroke defintions may be created for
icon buttons, such as those used to display the tools in the Draw application.

Stroke is a DeskMate application which provides only a mouse interface. The screen is divided
into two windows, one for editing of the font definition and one for displaying the result at any
size.

A Draw figure may be used to "trace" over while creating a font defintion. An optional grid may
also be used to help position lines. The point value is displayed on the screen.

A "stroke" is defined as a pen down, draw line, draw line, ..., pen up. In the draw mode, a mouse
click or double-click designates a pen up/down. Press and drag is used to draw lines within a
stroke.

In select mode, a mouse click is used to select a line segment for resizing, moving, and deleting.

Summary of Commands:

a

File Menu :

New Creates a new stroke font definition file, prompts the
user to save changes first. Clears screen.

Opens an existing stroke font definition file (.h), prompts
the user to save changes first. Clears screen, displays
the last character definition.

Saves the font information to file.

Open. .. e
Save

Exit Exits the utility.

Run ... Standard File Run command, runs the specified program
when the utility exits.

Edit Menu :

COPY Places a copy of the character defintions as a text string
in a graphics form.

Pastes in a graphics form which contains a text element
which uses a Draw font - such as the Roman font
alphabet.

Pastes in a graphics form from Draw which is used to
"trace over" during the editing or creation of a new
definition. Most useful for the creation of icon pictures.

Paste stroke

Paste overlay

- . . . I . .

a Delete stroke Deletes the group of lines defining the stroke the current
line is a part of.

Character Menu :

Next Displays the next character in the definition, always
enabled since there is always a next "blank or new"
character in the list.

Previous Displays the previous character in the definition. This
item is disabled when viewing the first character.

Removes the current character definition.

Renames the character being defined.

Selects a character definition, versus using the next and
previous commands to cycle through all the characters.

Displays the full character set defined in the current file.

Delete

Rename

Select

Display all

Options Menu :

Select brush Displays the Brush Styles dialog box, uses the selected
brush when displaying the font.

This mode allows the user to add new lines to the
character definition. This is a checked menu item with
Select mode item which follows.

This mode allows the user to move, resize, and delete
lines in the character definition. This is a checked menu
item with the Draw mode item above.

a Draw mode

Modify mode

Redraw screen Redisplays the screen.

Overlay This mode displays the overlay. This is a checked menu
item, which is toggled on/off.

Grid This mode displays a grid the user may use for
alignment during drawing. This is a checked menu item,
which is toggled ordoff.

Memory Map Generator - MEMMAP.PDM

One of the most commonly asked questions is "How much system memory does DeskMate
use?". The Memory Map Generator answers that question, given any system configuration.

The Memory Map Generator is a small DeskMate application which scans the memory arenas
determining the allocated and free segments and their sizes (in bytes). The information is
displayed in a list box on the screen. The information is gathered once, upon execution of the
program. The utility does not appear as an arena entry, it takes itself out of the calculations.

To determine the amount of space available for an application, run MEMMAP . PDM.
To determine the amount of space available for another application to task switch with your
application, first run your application then task switch to MEMMAP . PDM.
To determine the amount of space left for an accessory, rename MEMMAP . PDM to DMHELP . ACC
and execute the by using the F1 key. Remember to save a copy of the Help Accessory before
copying over the Memory Map utility.

Summary of Commands:

a

File Menu :

Save as Saves the memory map information as a Text ASCII
document, for editing or printing purposes. a Exit Exits the utility.

The Desk Header Utility - DESKHDREXE

The Desk Header Utility reads an .EXE file and its associated MAP file and creates a DeskMate
executable file, .PDM, with the DeskMate extended header. The extended header contains
information about the file for the executive's use in loading and executing the program. You
should run your application through the utility each time it is relinked. See the make file
distributed with the Samples for more examples of the utility's use. DESKHDR.EXE can add the
following items to the header:

Shed size

m

This is the number of paragraphs that DeskMate may code shed in order
to run an accessory. This number currently is only used for .PDM files.

DeskMate may load a program in two separate, non-contiguous pieces if
there is a split address in the header. This makes it more likely that a
program might fit if memory is fragmented and there is not a single
chunk of memory large enough to contain the program. If a program has
a split address in its header, the executive will load the first part of the
program (up to the split address) in one piece and load the second part
of the program (all the rest from splii address up) in another piece. The
PSP will be immediately before the second part.

This is where the program may notify the loader that it intends to allocate
extra memory during execution. The current version of the executive
does not use this information.

If an accessory will require one or more (up to 5) resources to be loaded
in order for it to run it can declare these in the header so that the
executive may load these resources before loading the accessory. This
way the executive can find out that it needs to code shed the current
application in order for the accessory and all its resources to fit.

These are the numbers that were used by the SETHEAP. EXE program.
These values optimize the amount of memory required before the
executive can load the program, Each value is a number of paragraphs.

The values for MIN and MAX are added to the existing minalloc value,
which the linker placed in the file header, to get the new values for
minalloc and maxalloc.

When the program does not plan to allocate any memory on its heap, the
values for MIN and MAX should both be zero (0).

When a program wants the maximum amount of heap space a small- or
middle-model C program can use, the word "full" is used instead of a
numeric value. The utility will attempt to open the MAP file for the
program to determine where the data segment DGROUP starts and
calculates the heap to extend to 64k past the beginning of DGROUP. The
DESKHDR utility will not run without a map file.

Split address

extra memory

resources e
min & max heap

C programs use part of their heap space to store the arguments (argv) *-
iand the environment when the program begins execution. The linker
does not account for this space in setting the initial value for minalloc. If
your C program needs to use heap space, you should add an amount to
the MIN and MAX values to allow for storing the arguments and
environment. Even if the program does not use any heap, you may want
to add some heap to allow for these values. If C does not have enough
heap for these strings during start up, it shrinks the stack by the amount
sf memory required for them.

A version number may be stored in the extended header. This number
can be used to quickly track versions of a program by always having one
place to look for the version of any DeskMate program file. The
executive does not currently use this information.

A flag in the header tells the Desk Executive that the first code
segment@) or specified code segment@) of the program may be loaded
into LIM expanded memory. Only supported in the Runtime and Retail
(stand-alone) products.

A flag in the header tells the Desk Executive that the program may be
loaded into shadow RAM. Only supported in the Runtime and Retail
(stand-alone) products.

version

l im flag

shadow ram flag

e To run DESKHDR.EXE you must create a control file which specifies the names of the output file
and the input files and the contents of the extended header fields. To run the utility type

deskhdr <control>

where <control> is the name of the control file.

Control file format

keyword argument default

output <filename> none
Input <filename> output filename with .exe ext
MAP <filename> input filename with .map ext
VERsion <symbol name> or enumbeh - VERSION NUMBER

I====== ======:=a t=.3=1=8i=

ITEXT, O~DGROUP if no - ITEXT SHED <Segment name> or <numbem -
SPLIT <Segment name> -
m o w <numbem 0
Resource <resource name> none
MINheap <numbem 0
MAXheap enurnbe- or "Full" fu II

ITEXT

<Segment name> or <none> if not specified do NOT load into LIM

RAM

L I M
SHADOW <none> if not specified do NOT load in shadow

The keywords may be abbreviated using the letters shown in caps. The commands may appear

If VERsion specifies a symbol name, the symbol is the address of a word in the program
containing the version number of the program.

<numbem are in paragraphs (16 bytes each) unless followed by "k", in which case the number
is assumed to be in k-bytes (1024 bytes each). Numbers may be given in decimal, octal, or hex.
Hex numbers have "Ox" before first digit. Octal numbers have 0 for first digit. Decimal numbers
should not start with 0.

MIN heap and MAX heap will be added to the minalloc value in the input file to compute the
minalloc and maxalloc values for the output file. If maxalloc of the input file is not OxFFFF, the
heap calculations will be skipped and rninalloc and maxalloc will be left unchanged. MAX heap full
means DGROW? will be 64k total.

Resource is used for accessories to tell desk which resource@) it will need. There may be up to
5 Resource lines per file. The <resource name> should not include the .RES extension.

Output is the only required command line in the control file.

If the LIM keyword does not exist in the control file, then the DeskMate application or accessory
will not be put into LIM. The segment name parameter for the LIM keyword is the LIM boundary.
If a parameter is not specified then the Desk Header program will attempt to locate an JEXT
segment in your application or accessory .MAP file. If an JTEXT segment is not found then the
Desk Header program will search for an -ITEXT segment. If either segment is found, the
specified application or accessory will be placed in LIM from the beginning of the specified
application or accessory to the found segment. If a segment name is specified on the LIM
command line, the Desk Header program will put the address of that segment in the header in
the place of the -FTEXT and JTEXT segments. If the specified segment name is not found or if
the LIM keyword is used and -FTEXT or JTEXT segments cannot be found, an error message
is displayed by the Desk Header program.

If the SHADOW keyword does not exist in the control file, then the DeskMate application will not be
put into shadow RAM.

Examples

Example 1 - Minimum file requirement:

@ in any order.

-a

0 MYAPP .PDM

This control file will cause the DESKHDR program to use MYAPP.EXE and MYAPP.MAP
as input to create the file MYAPP.PDM.

The program's code shed size will be the size of its - TEXT segment. (Assuming -1TEXT
or DGROUP follows - TEXT in map.)

If it has an - ITEXT segment it will be loadable in two separate pieces, - TEXT in one . .. --- ---vm nranrm cmnrv --A %e h a m n in thn nther niece-

Its minimum heap requirement will be 0 and its maximum heap will be everything from
the end of the program (above STACK) to 64k past the beginning of DGROUP. \e
If there is a symbol VERSION " M B E R in MYAPP .MAP, the word at that address will be
copied into the version numberfield of the header.

MYAPP.PDM will not be loaded into LIM or shadow RAM.

Example 2 - Uses resources and sets the heap sizes:

0 MYACC.ACC
R DMDB
MIN Ox100
MAX 15k

This control file will cause the DESKHDR program to use MYACC. EXE and MYACC .MAP
as input to create the file MYACC . ACC.
If it has an ITEXT segment it will be loadable in two separate pieces, TEXT in one
piece, and itcPSP, - ITEXT, DGROUP, STACK, and its heap in the other piece.

The minimum memory required to run MYACC.ACC will be the size of the program
including all its initialized and uninitialized data plus its stack plus 256 paragraphs (1024
bytes). The maximum amount of memory that will be allocated to the program, and the
amount of memory desk.exe will attempt to free up for the program will be the size of the
program including all its initialized and uninitialized data plus its stack plus 15 times 1024
bytes.

MYACC.ACC will not be loaded into LIM or shadow RAM.
ab

Example 3 - Uses LIM:

Output MYAPP . PDM
MIN 10
MAX FULL
LIM C ETEXT -

This control file will cause the DESKHDR program to use MYAPP .EXE and MYAPP .MAP
as input to create the file MYAPP . ACC.
Since the LIM keyword is used, the LIM flag will be set in the header for MYAPP.PDM.
The Desk executiwt will place the first part of the program into LIM. The size of the LIM
segment is determined by the LIM boundary, for this example C - ETEXT.

Disk Label Generator - DMLABEL.PDM

The Disk Label Generator allows the software developer to create a reference file that DeskMate
will use to prompt a user for when disk swapping. The reference file, LABEL.LBL (required
name), contains a list of application and data filenames which are associated with the name of
the disk containing those files. When your application requires a particular file and DeskMate
cannot find that file on the current disk in the drive, DeskMate will access the file LABEL. LBL and
copy its contents into the DeskMate environment managed by the Environment Manager in the
GUF resource. It will retrieve the disk name from the DeskMate environment and ask the user to
insert by name, that disk you designate as the home of the file. On subsequent attempts to
access a particular file that cannot be found on the current disk, DeskMate will retrieve the disk
name from the copy of LABEL. LBL that resides in the DeskMate environment.

The utility also lets you store information in the reference file that can be used by the install
program, INSTALL. PDM I used to copy files from floppies to a hard disk system. Eight bits of
information is stored for each file. The following is a list of the current designation of each bit:

a

Bit 0 (LSB) Never copy
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5 not currently used
Bit 6 not currently used
Bit 7 (MSB) not currently used

Copy on date compare
Copy if Deskmate 3.0 CSR
Copy to DMCONFIG directory
Copy if older version

Creating a label file:

1. Manually create a master set of disks for your product.

2. Run DMLABEL . PDM.
3. Put the first disk in drive A or B and select "Add new disk ..." from the "Options" menu.

The disk will be read for all.files in the root directory and a dialog box will be displayed
which lists all files in the "Files" list box.

0

4. At the "Disk label:" prompt, type the name of the disk with which you wish to prompt
the user when trying to access any file on this disk.

5. If there are any files on the disk for which you do not wish the user to be prompted by
disk name, select such files in the "Files" list box and push the "DELETE FILES" push
button. The LABEL. LBL file and application data and configuration files should not be
included.

6. If there are any files on the disk for which you wish to set any bits of the installation
flags, select such files in the "Files" list box and place an " X in the appropriate check
box. The default selection is to always copy the file.

7. Push the "ADD NEW DISK push button to accept all data in the dialog box and enter
it into memorv.

m 8. The contents of the added disk will appear on the screen. Standard DeskMate cursor
keys (Up arrow, Down arrow, Page Up, Page Down, Ctrl+Home, Ctrl+End) may be
used to view the entire contents of data in memory.

9. To add the next disk, go to step 3 and substitute "next" for "first". Continue until all
disks have been processed.

10. To save the data in memory to a file on disk, select "Save as ..." from the File menu.
For the released product you should name the file LABEL. LBL (this is the only label
file name that will be accessed by DeskMate when looking for a file). However, it is
possible to save the file using different names if you will have different versions of the
LABEL. LBL file produced for different products (e.9. you may have one version for 3
1/2 disks and one for 5 1/4" disks). The file LABEL. LBL should reside on each disk
of the released set.

Changing a disk label:

1. Select "Change disk label ..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label you wish to change and push the
CHANGE push button.

3. A second dialog box will appear. At the "Change to:" prompt, type the new disk label.

4. Push the "CHANGE" push button to change the disk label.

a Deleting a disk of files:

1. Select "Delete disk ..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label of the disk you wish to delete.

3. Push the "DELETE" push button to remove the label and all files associated with this
disk label. The disk number of any disks following the deleted disk will be adjusted
according I y .

Adding files to a disk:

1. Select "Add files ..." from the "Options" menu.

2. Put the disk containing the files to be added in drive A or B. The disk will be read for
all files in the root directory and they will be displayed in a list box after choosing the
disk label.

3. At the "Disk Labels" list box, select the label of the disk to which you wish to add one
or more files and push the "OK" push button.

4. If there are any files on the disk which already exist in the label file or for which you do
not wish the user to be prompted by disk name, select such files in the "Files" list box
and push the "DELETE FILES" push button.

5. If there are any files on the disk for which you wish to set any bits of the installation
flags, select such files in the "Files" list box and place an " X in the appropriate check
box.

m
6. Push the "ADD FILES" push button to add all files in the "Files" list box to the

previously selected disk. Duplicate filenames are not allowed, you will be informed of
any duplications.

Changing file(s) installation flag bits:

1. Select "Change files ..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label of the disk which contains the file@) for
which you wish to change installation flag bits.

3. Select any file@) from the "Files" list box and place an " X in the appropriate check
box.

4. Push the "OK push button to accept all changes.

Deleting files from a disk:

1. Select "Delete files ..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label of the disk which contains the file(s) you
wish to delete. a 3. At the "Files" list box, select the file@) you wish to delete.

4. Push the "DELETE push button to remove all selected files.

Moving files from one disk to another:

1. Select "Move files ..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label of the disk which contains the file@) you
wish to move.

3. At the "Files" list box, select the file(s) you wish to move.

4. At the "Move To" list box, select the label of the disk to which you wish to move the
file@).

5. Push the "Move" push button to move all selected files.

Label file format:

The label file is a DeskMate environment file.

Each filename has a key field for which there are two bytes of data :
h\ho nno fnr dick ni itnber

a All files for disk #1 are listed in the label file before all the files for disk #2, which are listed before
all files for disk #3, etc.

Following all filenames is the LABELS key field for which there are several bytes of data which
includes each label string for each disk in order of disk number. The use of the word, LABELS,
as a key field prevents any files in your label file from being named LABELS.

Each key field is null terminated. The two bytes after the null terminator are length bytes which
determine how many bytes of data that follow are associated with the key field. For key fields that
are filenames, the length is always 2. For the LABELS key field the length is dependent on the
total length of all label names.

% ~ ~ ~ ~ d ~ , d& vmdle~ 1;1 i.AIa-iBI. are &mal e duJ4 fi+J
&J @/&. %e && $/A If. 7% f& n " J 7 SkrXhy a+ I 1 ' & Second kk- I;

& fv+ I;$& p"s' 3 -21. a (QT4 V a r l h b (e , c0JIcd GAgELf, k3 Oc V i W f- UtOU

Add&&, c o r ~ ~ l 'sc, in 0 p f& &&& &&, / , c / / l ' f e f M I h $ p d , /i ordPr &;19 &Ml

. . ~

dl J
a'SSOC~

J & &ssoclh

/, p very +t/h L~HR#.

Customized Runtime Utility - RUNTMBLD.PDM

The Customized Runtime Utility allows the programmer to create a customized 3.05 executive
which displays your company's copyright message and automatically executes the specified
application instead of the DeskMate DeskTop application. This utility replaces the DeskMate 3.2
BLDRUNTM.PDM utility which is still used to customized 3.2 executives. These utilities are NOT
interchangeable and you must match the utility to the executive being customized.

A dialog box is used to enter the following information to customize your runtime executable:

1 0

Applications name: APPLNAME (8 characters, extension will be .PDM)
Customized name: APPLNAME (8 characters, extension will be .EXE)
Copyright message: 40 characters.
Forty/Eighty column driver choice.
Lowest video resolution flag.

The executive file RUNTIME. EXE file is loaded, modified in memory, and the customized file,
APPLNAME .EXE is written out. To insure the correct version of RUNTIME .EXE is used, copy
the file into the current directory. The new file will be created in the current directory.

The Forty/Eighty column driver choice tells the CSR which set of drivers to auto-detect from.
The Lowest video resolution flag tells the CSR to choose the "worst-fit" video driver when it
auto-detects the video. For instance, most videos would auto-detect CGA except where the
video is Hercules.

This utility MUST be used with and ONLY with a DeskMate 3.03 or later runtime file. To
customize a DeskMate 3.2 runtime, use the BLDRUNTM.PDM distributed with the DeskMate
Development System 03.02.00.

%@

0 Customized Installation Launcher Utility - 1NSTLBLD.PDM

This utlity allows the developer to create a small INSTALL. EXE program used to install a
DeskMate application in a stand-alone environment. This program uses the application's
customized runtime executive to launch the INSTALL. PDM application at installation time. This
utility enables a developer to use the same customized mntime on the diskette to launch both the
application and the installation application.

The utility displays a dialog box which prompts the user for two pieces of information:

L.l

1) The name of the customized runtime without the .EXE extension, for example, MYAPP for
MYAPP .Em.

2) The Disk Label used in DMLAl3EL. PDM for the diskette containing the customized runtime
file and the INSTALL. PDM program.

This utility needs the file INSTALL. TEM and your customized runtime, MYAPP . EXE , to reside in
the current directory with the utility. The utility will open both files, patch INSTALL. TEM in
memory and write out INSTALL. EXE.

Refer to Distributing Your Application for more information about the installation procedure.

%3J

0

Part 4
Distributing Your Application

a

Contents
a

The DeskMate Checklist 4-1
Installation and Upgrade Procedures 4-3
Determining DeskMate Product Versions 4-5

Installation launched from the DeskTop 4-5
Installation launched from the 1NSTALL.EXE 4-5
How to get the file version 4-6

Runtime Distribution Guidelines 4-7

a

The DeskMate Checklist

Programs that will be sold by Radio Shack as DeskMate applications must meet these
requirements:

1. The program must be implemented using the DeskMate Development System and use
the DeskMate environment.

2. The program must be installable using the DeskTop's F7 Menu, Install option. Refer to
the Installation and Upgrade Procedures section which follows this Checklist for more
information.

3. The program must support the DeskMate 3.2 and use the DeskMate version 3.3 or later
help system.

4. The program should run all accessories (including "More...") and have the F10 menu
button on its menu bar.

:m

5. The program must permit task switching from the F10 menu.

6. If the program uses a cut/copy/paste function, the program should support the DeskMate
clipboard as its cut/copy/paste buffer. If the program has graphics capabilities, it should
use the DeskMate Forms Manager to permit the data to be transferred in the DeskMate
graphics format.

7. The program must have the F9 notification menu button enabled.

8. If the program changes the user-defined colors, the program must restore the colors to
those specified by the user when the program terminates.

9. The program must not use DOS overlays. If new portions of code must be overlaid onto
an executing program, the program should use DeskMate Resources instead of overlays.

10. The program should use the DeskMate printer drivers.

11. The product must be submitted to Radio Shack Computer Merchandising for interface
and style guide approval before the application can bear the trademarked DeskMate
User Interface logo.

a-

12. The product package should display the trademarked DeskMate User Interface logo.

Installation and Upgrade Procedures

All DeskMate applications should have an installation program which is itself a DeskMate
application. The installation program should be easy to use and not alter the user's system
without the user being notified.

The installation program should not perform DOS commands which might alter the user system
(other than creating directories and copying files), such as setting the date and time, deleting

that the user cannot easily recover.

Whenever appropriate, the user should be given a choice to continue the process or cancel. For
instance, if the installation is about to delete all system files from a previous version of your
product, the program should inform the user giving the option to approve or cancel the process.

Every application must:

e

AUTOEXEC. BAT Or CONFIG. SYS files, Or modifying AUTOEXEC. BAT or CONFIG. SYS files such

Have an INSTALL. EXE program which launches the application's INSTALL. PDM file
from a DeskMate 3.05 runtime. This program is used to install stand-alone versions of a

program. This file must be on the same diskette as the application's customized version

Have an INSTALL. PDM application which copies files to the user's hard disk using the
following guidelines:

product.

Of RUNTIME. EXE.

Use the INSTLBLD . PDM program to build your customized INSTALL. EXE

Create a directory for the user in which the files are installed. Present the user
with a default pathname which can be modified.

When installing on a DeskMate product, do not copy the DeskMate system files
unless an upgrade has been recommended or your product requires the version
of your runtime. The installation program should determine the DeskMate version
by the method outlined in the Determining the DeskMate Product Version section
which follows.

To install as a stand-alone system, copy the DeskMate system files along with

If your product uses the DeskMate Help system, copy the application help file to

a -

rJ0I-E; bo nk ,Z&J 4.c

3.03 help WQy &bt e ,

3.oyg.?Jz htlp to$-*

b;,;ly "& B r;l SCR mill

Neither the INSTALL. PDM nor INSTALL. EXE files should be copied to the hard iksk&k!! Jflckf)' vrlder

3 ,bZ o r !lek+@ * LP yJ disk.

For 40 column applications, the INSTALL .PDM must also be a 40 column

bp ttfidcr prc-
application.

3,c;5 5 + ~ 5 , p Ed-
you upgrade a system due to an incompatibility or to fix a known problem. A ifi5M tfl q g d d ~ & ~ .
n intime installatinn shnrild never dawnaradehpgrade a user's DeskMate system > ~ ,, , ,p I -/-I/ ,,a

Do not install the DeskMate system files in a directory which contains a
DeskMate product or another vendor's runtime, unless Tandy has recommended

d your application's files to the directory.

the directory along with the application.

--r

Nai. & mvlde&

product is not mistakenly downgraded. ab Provide a DESKTOPD . CFG configuration file which is used by the Desktop install function.
This file should be copied along with the other application files during the installation.

Create this file using the DeskTop Menu (F7) Create Quick Load option.

DESKTOPD .CFG is used by the QUICK LOAD application box on the DeskTop.
When the user changes directories to your directory, the box will change to show
your application and list of data files.

Have a diskette label file, LABEL.LBL, created with DMLABEL.PDM which contains
diskette information used in file searching and for diskette prompts. The file also
contains instruction flags for each file which tell the installation program how to copy the
file. The diskettes must also have unique volume ids used by your customized
INSTALL. EXE and the file search function to prompt for diskettes. The diskette label file
should not be copied to the hard disk.

To provide help during the installation process, an INSTALL-HLP help file can be
supplied with the product. This file must reside with INSTALL. PDM and should not be
copied to the hard disk. If you choose not to provide help during the installation process
then this file is not needed.

The user documentation for installation on a DeskMate DeskTop should give the
following directions:

1) The user should be told to insert the diskette (use the name from the label
- *& program) which contains INSTALL. PDM into any floppy drive.

2) Direct the user to use the Desktop Menu (F7) Install option to install your

3) The user should then follow the prompts given by your installation program.

application on the DeskTop.

To reinstall or upgrade on a DeskMate 3.2 or later system, the user should be instructed
to use the Desktop Menu (F7) Delete option to remove the application's definition and
then follow the installation directions outlined above.

The user documentation for installation or upgrade of a stand-alone system should direct
the user to:

1) The user should be told to insert the diskette (use the name from the label

2) Direct the user to change to that drive.

3) The user should then run I N S T ~ L . EXE to do the installation.

program) which contains INSTALL. EXE into any floppy drive.

If your application allows the user to make backups of the product diskettes, then the
user should be directed to use the DISKCOPY command to insure the volume ids are

++ne 3rd rnninrl _ _ _.__I L _- *La AZ-1- -

g
Determining DeskMate Product Versions

Installation launched from the DeskTop

The installation program, INSTALL. PDM, can detect if it was invoked from the DeskTop through
the F7 Install option by calling env-open with the following ENVDATA structure.

@

ENVDATA your env =

USER. CFG,
DMCONFIG,
ENV NO CREATE,
USER,
(char far *)O,
0,

d\ do% &+ wolf4 *
W d . f e4 C) *m- - dim%&

Jfl-LmOR. \
-

I

- -

1 ;

If env-open does not return DM - ERROR, then install was invoked from the DeskTop.

If invoked from the Desktop, do the following to determine the DeskMate version:

'

ret code = dm-inqyiregroduct (1 ;
if T(ret-code & DM VERSION)

else

!= 0)
user has DeskMate 3.3 or greater

user has DeskMate 3.2 or less

Before copying the necessary files (based on the DeskMate version) to a directory you must
make sure the DeskMate product is not in that directory. If none of these files are found, then
DeskMate is not in the directory.

-@
1) Ensure DESK. EXE is not present.

2) If it is not present, then check for a Tandy ROM machine in which the file is in ROM.
Check that at least three of the following files are not in the directory, since it is possible
that one of these applications may be in ROM:

ADDRESS. PDM
CALENDAR.PDM
FORMSET.PDM
FILER. PDM
DRAW. PDM
TEXT. PDM

If your runtime executive and application files are present, you can consider this installation to be
an upgrade and copy the files.

If your executive and application files are not present, see if any DeskMate 3.0 runtime resource,
.RRS extension, or your runtime files are present. If so, there is another runtime application in that
directory and you should not install in this directory.

lnctallatinn laiinehml frnrq the INSTALL.EXE

DeskMate is present. @
ret-code = dxn-file-search ("DESK.EXE", pPathbuf fer, 0) ;
if (ret-code == 1)

else
The file was found and the path is in pPathbuffer

The file was not found, so call dm-file-search for the
DeskMate application files listed above.

If none of these files are found, the user does not have the DeskMate product.

How to get the file version

As long as your application, accessory, and resource files use the DESKHDR. EXE utility, you can
determine the version of your files in the manner described below. Do the following to determine
the version of the file:

1) Open the file, refer to this FileHeader structure for variable offsets.

struct FileHeader =

(

int MagicBytes [12] ;
int RelocSeek;
int VersionNum;
char DM89Key 1 4 1 ;

1:

2) The element RelocSeek must be greater than 25H.)ab
3) The element DM8 9Key must contain the fcrur bytes "DM89".

If items 2 and 3 are meet, then the DeskMate file is version 3.3 or greater. This method can
be used by your INSTALL.PDM for upgrading only files with prior versions. The element
VersionNum contains the DeskMate 3.3 (or greater) version number. The format of this
element is file dependent, for DeskMate resource files, '.RES, the version number is binary.
DeskMate application and accessory files use ASCII version numbers.

0 Runtime Distribution Guidelines

Only distribute files listed in Exhibit A of the DeskMate Distribution License. Files marked for
non-distribution should not be distributed.

Do not distribute mixed versions of the DeskMate system files. For instance, do not distribute the
3.2 versions of any of the accessories with the 3.3 resources or vice versa.

Files which MUST be distributed with your product:

\

RUNTIME. EXE

INSTALL.TEM Runtime Installation Launcher - Distribute your customized
1NSTALL.EXE version. You must write the INSTALL.PDM program
which is launched by this program.

Your DeskMate application which installs your application onto a hard
disk.

Executive - Distribute your customized version

INSTALL. P D M

DMSETUP.ACC Setup Accessory
DMSETUP.HLP Setup Accessory Help File

DMCSR.R89 Core Services Resource

PRGUF.RES

DM MDJ.RES
DMMDPRES Micro-Channel Serial Mouse Driver
DMMDS.RES
DM SSM .RES
DM EM M. R ES

DMVID.EXE DeskMate video force utility.
DMVID.DOC Video force utility documentation.

Power & Run General User Functions Resource

Tandy 1000 Joystick Driver ~ h ~ k f b ~ ~ f ~ REs)

Serial Mouse Driver (Dflfl?)JG,?T, RES)
Screen Saver Resource
Extended Memory Manager Resource

e

Distribute the video driver resolution set which is required by your application. If your application
is a standard 80 column application, distribute ONLY these drivers:

DMVS1000.RES
DMVSCGAAES
DMVSEGAAES
DMVSHERC.RES
DMVSVGA.RES
DMVSTC16.RES
DMVST. R ES
DMVSMCGA.RES

Tandy 1000 (TGA), 4 color video driver
CGA, 2 color video driver
EGA, 16 color video driver
Hercules, 2 color video driver
VGA, 16 color video driver
Tandy TUSL (ETGA), 16 color video driver
EGA board, CGA monitor, 2 color, 640 X 200 resolution video driver
MCGA, 2 color video driver

If your application is a 40 column application, distribute ONLY these drivers:

DMVSLRESRES 40 column, low resolution video driver
n h i \ ’ C T e r E ac@ A n enliimn vna video driver

e DMVSEBES
DMVSM.RES 40 column, Monochrome EGA video driver \ A

40 column, EGA video driver

Files which must be distributed ONLY if your applications uses the specific function or resource:

DMPGSET.ACC DeskMate Page Setup Accessory
DMPGSET.HLP

DMHELP.ACC Help Accessory
DMHELP88.ACC
DMHLPENGRES DeskMate Intelligent Help Resource

DMGUF.R89 General User Functions Resource

DMDB.R89
DMDBBLDRES
DMDBRD.RES
DMDBUPDAES

DMFORMRES Form Manager Resource

DMEFORM.RES Extended Form Manager Resource

DMFONTRES Font Resource

DMTHES.RES Thesaurus resource (see local dealer).

DMPDASCLRES Daisy-wheel, or other non-supported printer, printer driver
DMPDIBMMAES IBMcompatibie graphics printer driver
DMPD1 .RES Tandy DMP 105 printer driver (Tandy mode)
DMPD2.RES Tandy DMP 200,420, or 430 printer driver (Tandy mode)
DMPDLASR.RES HP Laserjet Plus or Laserjet-compatible printer driver
DMPDS.RES 24-pin extended printer driver
DMPD.CFG Configuration file where printer information is saved

DMPRTSEL.ACC General printer selection accessory which makes use of:
DMPRTSEL.HLP Printer selection accessory help file
DMPDASCLACC Daisy-wheel, or other non-supported printer selection accessory
DMPDIBMM.ACC IBM-compatible graphics printer selection accessory
DMPD1 .ACC Tandy DMP 105 (Tandy mode) printer selection accessory
DMPD2.ACC Tandy DMP 200.420, or 430 (Tandy mode) printer selection accessory
DMPDLASR.ACC HP Laserjet Plus or Laserjet-compatible printer selection accessory
DMPDS.ACC 24-pin extended printer selection accessory

Play application, launches tutorial or demo

Tutorial Decompression Resource

DeskMate Page Setup Accessory Help File

DeskMate 3.0 Compatible Help Accessory

Database Control Resource, is required by the DeskMate Help System
Database File Build Resource (DBwl Lb. R&5)
Database File Read Resource, is required by DeskMate Help System [DMGhb I KGS)
Database File Update Resource(ggupbhrj RES)

m

PLAY.PDM
DMPLAYAES Play resource
DM U N PACK.R ES
DEMO.PDM Customized Runtime Demo Launcher
TUTKBDAES Keyboard Layout Resource

I I ~ .-. .- ---I!--*:-- - - h c I I C P nf the fnnt tnchnnlnnv include these video and printer drivers in

3
z m DMVECGA.RES

DMVEEGAAES
DMVEHERC.RES
DMVEVGAAES
DMVETC16.RES
DMVET.RES
DMVEMCGAAES

DMPEIBMMBES
DMPE1 .RES
DM PE2.RES
DMPELASR.RES
DM PES. RES

CGA, 2 color video driver
EGA, 16 color video driver
Hercules, 2 color video driver
VGA, 16 color video driver
Tandy TUSL (ETGA), 16 color video driver
EGA board, CGA monitor, 2 color, 640 X 200 resolution video driver
MCGA, 2 color video driver

IBM-compatible graphics font printer driver
Tandy DMP 105 font printer driver (Tandy mode)
Tandy DMP 200,420, or 430 font printer driver (Tandy mode)
HP Laserjet Plus or Laserjet-compatible font printer driver
24-pin extended font printer driver

Daisy-wheel, or other non-supported printer, printer driver

Tandy DMP 105 printer driver (Tandy mode)
Tandy DMP 200,420, or 430 printer driver (Tandy mode)
HP Laserjet Plus or Laserjet-compatible printer driver
24-pin extended printer driver

and the associated resident font definition files needed for the video and printer drivers:
DMPDASCIRFD
DMPDIBMMRFD IBM-compatible graphics printer driver
DMPDl .RFD
DMPD2.RFD
DMPDLASR.RFD
DM PDS.R FD

and the associated font files
COBB.FF1
D IXON. FF1
MAR IN.FF1

Q

0

8

Part 5
DeskMate Help Systems

a

Contents
e

Overview ... 5-1
The I n t e l l i g e n t Help Manager 5-1

The Help Queue .. 5-1
The Help Accessory 5-1
Help Display .. 5-1

Writing t h e Application Help F i l e 5-5

Writing t h e Help Window Text 5-5

Format ... 5-5

Help on .. 5-6
Menus .. 5-6
Menu options 5-6
Grayed menu options 5-6
Dialog Boxes 5-7

Edit Fields 5-8

L i s t Boxes 5-8

Other Components 5-8

Mouse vs . Keyboard 5-9
Writing t h e Help Screen Text 5-10

Format ... 5-10

Help Topic ... 5-10

Message Boxes 5-8

0 ..

Numbered help buttons 5-10

Screen Titles .. 5-10
The f i r s t help screen 5-10
Common Problems 5-11
How t o F i l l Up Screens 5-11

Creating t h e Sample Help F i l e VIDEO.HLP 5-13

Help when a menu option i s highlighted 5-13

Help i n d ia log boxes 5-17

General help .. 5-13

Rule-based helD i n a dialoq box 5-18

Adding menu bar tex t 5-25
Adding new r u l e s .. 5-25
Group numbers ... 5-25

Queue Data .. 5-26
Funct ions ... 5-26

DeskMate Help E d i t o r - DMEDITOR.PDM 5-29
Working wi th r u l e s 5-29

E d i t i n g a r u l e 5-29
Adding a new r u l e 5-29

Rules t h a t cha in 5-29
Working wi th d i sp layed t e x t 5-29

S i z e r e s t r i c t i o n s 5-29
Link t o r u l e s .. 5-29

Working w i t h s o l u t i o n ex tens ions 5-30

Working wi th b u t t o n t o p i c s 5-30

Help F i l e Format ... 5-33

11)

Help F i l e Compression U t i l i t y - TOKEN.PDM 5-31

a

Overview

The Intelligent Help Manager

The Intelligent Help Manager, IHM, is a part of the Core Services Resource. It tracks the user as
he uses DeskMate. Each time the user starts up a new application or accessory, the IHM starts
gathering information on the context of the application. The IHM is called every time your
application runs the application menu bar, calls dlg_run, msg-run, or cmp-run. The IHM
determines whether or not to keep any information about the component that is running.

The Help Queue

Because the information is so diversified, the IHM keeps a wrap-around queue of component
entries. The IHM is selective about the information it stores. For example, when the user runs a
dialog box, the manager adds a dialog box entry to the queue and stores the edit field, list box,
radio button, icon button and check box information about the dialog box with it.

The Help Accessory

The Help Accessory takes the queue information and the application help file to find the best help
solution for the current context of the application. If no solution is found, general application help
is displayed.

The accessory has a built-in inference engine that is rule-based. It uses a backward chaining
algorithm to find a help solution. Since you write the rules for you application, you have the
flexibility of making the help as specific as the IHM's queue information will allow. You also
decide in what cases you want help to be displayed.

The inference engine takes the data out of the queue and translates it into facts. The rules you
define are made up of premises and a conclusion. The conclusion is TRUE if all the rule's
premises are TRUE. When checking if the premises are true, the inference engine compares
them to its facts. A match means the premise is true. The premises in a rule do not have to be
facts and they can be conclusions for other rules - the start of backward chaining.

Help Display

A conclusion can be a text solution, a group, or a SuperGroup. If the help you want displayed has
multiple step or multiple topics, your conclusion should be a group, $<groupname>. For the
most general help available, the conclusion should be a SuperGroup, $$<supergroup>. The
help accessory will display the SuperGroup help if no other solutions are found. There should
only be one SuperGroup solution in your help file. The SuperGroup is the first level of general
help the user will see when no solutions or conclusions could be made for the current context of
the application.

a

a

0 A text solution displays specific help on an item in a help window.

drau the current

The group and SuperGroup solutions redraw the screen and display six (6) topic buttons. The
user can choose the help topic they want by selecting one of the buttons. We will allow five levels
of help, so that you can go into further detail as you go down a level.

a
Hou do I leave

World CoordiMte?

what happens uhen

TAB = hve to next question F l = Different questions

When the help displayed in a help window is not sufficient, you can attach another text solution
(another help window) or a group solution (a button screen) to your conclusion. When the user
presses F1 in the help window, the attached text or group will appear. Using the help editor, you
can specify the "Next solution" for the current text or group solution.

Definitions:

a
A Topic is a single solution with text to display with it.
A Group has one or more groups or topics in it. A maximum of 18 groups + topics.
A Title is a descriptive string to help the user identify with the contents of a group or topic.

You can define the starting level for General Help to be any group, not just the SuperGroup. You
can add rules that will cause a group to be displayed. This means you can have different starting
levels depending on your application's current state.

You can use a rule to display a group depending on your state. For example, the DeskTop has a
completely grayed Sort By Menu on the menu screen, but these items are available when the
tree screen is viewed. In a case like this, you can define 2 groups, $Sort by and $Sort2, where
$Sort by defines all the gray options and $Sort2 defines the enabled options. Normally, an
internal rule would return $Sort by, but an external rule could be defined for $Sort2 :

if

then

CALL MenultemChecked (Tree)
menu.item.selected (Sort by)

$Sort2

There will probably be topics that you want to include with your application that no rule will lead
to. These topics will be available whenever running full screen help, help invoked by the
application by running the Help Accessory. This basic help should be provided for all menus,
menu options, dialog boxes, message boxes. In addition, help can be provided for individual
components in the work area.

Specific help is help you define with the rules you write yourself. These rules can utilize the
queue information, like checking the contents of a dialog box edit field.

You can make rules that take past user activity into account. This will help you solve problems
like having dialog boxes with the same name. These dialog boxes will come up in different
situations, perhaps one after another. You can take advantage of the fact that multiple events will
get you to a unique state when you write your rules.

a

Writing the Application Help File

Now that you know how the Help system works we should discuss how to actually write your
application's help file. First we will cover the style guidelines you should follow when writing the
help, then we will demonstrate how the help tools were used to actually create a help file for one
of the sample applications, then the details of the help tools will be covered.

Writing the Help Window Text

Format

You should use the same structure for each of your help windows. Use the following guidelines:

e

First in t roduce t h e he lp t o p i c .

Now describe what t h e user has t o do, o r
p o i n t ou t e r r o r s .

P u t any e x t r a information r e l a t e d t o t h i s
t o p i c a t t h e end.
[Em1

Introduce the topic

Make sure the first sentence the user sees will make it clear what the help will be
about.

Do not indent.
If you are going to make paragraph transitions, do not indent the first line of the a new paragraph.

Do not use blank lines.
Use a line containing ------ to provide a transition between paragraphs. Blank
lines do not encourage the user to continue reading the help, especially if the
blank line appears at the bottom of the window.

Any extra information you think the user might like to know should appear last.
Extra information appears at the end.

Mark the end of the text.
Every help window should end with [END] to make it clear that there is no more
help in this window. The Help Editor does this for you automatically.

e Help on...

Menus

Give a general explanation of the functionality of the options on the menu. Refer to the
menu by name. Do not link a menu directly to a screen of help, let that transition occur
after the first window of help. That is, go ahead and link the general explanation to a
help screen. This screen should contain topics that relate to the help window. For
example, the help for the DeskTop File Menu is:

DeskTop le t s you manage t h e f i les
t h a t reside on your d i s k . You can
make cop ie s of f i les, remove o l d
f i l e s from t h e d i s k , o r change t h e
name of f i l es . [END]

Menu options

The help for these options should always refer to the option by name, and should explain
what the option will allow the user to do. The option name should be capitalized. For
example, the DeskTop File Copy option provides the following help:

The TYPE op t ion l e t s you s o r t t h e
f i l e s by t h e f i lename ex tens ion .
ex tens ion i s t h e three letters
fo l lowing t h e p e r i o d . [END]

The

0 You may also use the phrase: "Choosing the <menu option name> option lets ..." . You
may also make reference to the Menu on which the option resides. For example, the
COPY option on the File Menu

Grayed menu options

The help for these options should always refer to the option by name, and should explain
what the option will allow the user to do. The option name should be capitalized. Next, tell
the user that the option is grayed and why. The "why" pari of your help should state
directly, or imply, what the user needs to do to enable the option. Never use the word
disabled; always refer to the option as grayed. For example, the DeskTop Type option
gives the following help when it is grayed:

The TYPE op t ion l e t s you s o r t t h e
f i les by t h e f i lename ex tens ion .
ex tens ion i s t h e three le t te rs
fo l lowing t h e pe r iod .

The TYPE o p t i o n i s grayed because
t h i s func t ion i s only a v a i l a b l e a t
t h e Tree sc reen . [END]

The

Dialog Boxes

Start dialog box help with an explanation of what task the box will perform. Then outline
what the user should do at each prompt, ending with how to complete or abort the
operation. If there are a large number of prompts to describe, use more than one window
of help by attaching another window (fill in the Next Solution field). This way, the user
will not be overwhelmed by a single window full of details. If your dialog box is fairly
simple, you may want to skip the explanation of the task and procede to the steps
involved in completing the operation. For example, the DeskTop help for the Format Disk
Dialog Box is:

a

Ente r t h e name of t h e d r i v e i n which
you wish t o format d i s k s .

I f you have a high-capaci t
a t Options: t y e /n:9 / t : 8 8 t o

type /4 t o format a 360K 5 1 / 4 inch
d i s k .

Check t h e i n s t a l l ope ra t ing system
box i f t h e d i s k e t t e w i l l be f o r
s t a r t u p . [END]

drive,

format a 720K s 1 / 2 inch d i sk , o r

An example of more complex dialog box help is the help on the Change Directory Dialog
Box:

The Change Di rec to ry box i s used t o
change t h e c u r r e n t d r i v e o r
d i r e c t o r y (d i sp layed on t h e t i t l e
l i n e of t h e DeskTop).

Type i n t h e le t ter of t h e d r i v e
fol lowed by a colon, t hen t h e name
of t h e d i r e c t o r y .

There must be a d i s k i n t h e new
d r i v e s p e c i f i e d , and t h e d i r e c t o r y
you type must be an e x i s t i n g
d i r e c t o r y . Use t h e TREE opt ion on t h e
V i e w Menu t o see a l l d i r e c t o r i e s on
a drive. [END]

------ a
For example : A:\NEW ------

This screen links to another screen that talks about directories. If the user presses F1 he
will see:

A d i r e c t o r y i s a c o l l e c t i o n of f i l e s
on a d i s k much l i k e a f o l d e r i n s i d e
a f i l e c a b i n e t . I n a d d i t i o n t o
f i l e s , a d i r e c t o r y can a l s o con ta in
o t h e r d i r e c t o r i e s .

The Di rec to ry menu le ts you look a t
t h e con ten t s of a d i r e c t o r y , make
new d i r e q t o r i e s o r remove empty
d i r e c t o r i e s . [END]

a Message Boxes

The help you provide for a message box should be a more detailed explanation of the
problem'that has occurred, and how to solve it. Try to be as specific as possible. For
example, in DeskTop, if you type an invalid directory name you will get a message box
stating "Path was not found." The help displayed for this box is:

A par t of t h e d i r e c t o r y name typed
ei ther c o n t a i n s i n v a l i d c h a r a c t e r s
o r cou ld no t be found on t h e d i s k .

A l l d i r e c t o r i e s on t h e disk can be
viewed from t h e Tree V i e w .

Check t h e d i r e c t o r y you s p e c i f i e d
f o r accuracy, and then p r e s s ENTER.
[END1

Edit Fields

Explain what you can type into the editfield, and for what purpose. For example the Address
Book gives the following help for the Title field in an address record:

You can t y p e a cour t e sy t i t l e us ing
t e n c h a r a c t e r s o r fewer. T h i s t i t l e
w i l l be p r i n t e d on your l a b e l s .
[END1

List Boxes a
Indicate what is in the list box, and why the user might want to select an item. Also
indicate how one (or more) items can be selected. For example, in Address Book, the
help for the Index List Box is:

When you select a name from t h e
Index L i s t Box, t h e accompanying
address r eco rd i s d i sp layed .

Press PG UP o r PG DOWN t o d i s p l a y a
page of names, o r press t h e up o r
down arrow keys t o move t h e
h igh l igh t one name a t a time.

You can a l s o c l i c k t h e mouse bu t ton
on a name t o select it a s t h e c u r r e n t
addres s record .

I f you a r e looking f o r a p a r t i c u l a r
name, t ype t h e f i r s t l e t te r of t h a t
name t o d i s p l a y t h e address records
beginning w i t h t h a t l e t te r . [END]

Other Components

If you have help for the other components (check boxes, icon buttons, and radio buttons.

button. For example, The Draw application uses icon buttons to represent tools. The help
always refers to them as such.

Mouse vs. Keyboard

0
When you start giving the user instructions, you will be faced with the dilemma of
explaining how to perform a task with either the keyboard or the mouse. We recommend
the following:

1. When instructing the user to push a button, tell them the key that they should press,
rather than where to click with the mouse. Never give mouse-only instructions.

2. If you feel the help can easily be explained for both the mouse and the keyboard,
explain both methods.

3. If the message you are trying to get across will be lost by the explanation of the

4. Do not mix keyboard and mouse instructions. Do not tell the user to do one step with
the mouse and the next with the keyboard. You may, however, tell them they can do
one step by keyboard or mouse, and then just explain the keyboard method for the
next step.

5. Use the phrases "double click the mouse button" and "single click the mouse button"
when referring to those actions.

keyboard and mouse sequence then use a keyboard explanation only.

a

a Writing the Help Screen Text

Format

Help Topic

Use a question format to identify a help topic. For example, some of the buttons seen in
DeskTop help are:

How do I change t h e DeskTop d i sp lay?
How do I move around on t h e DeskTop?
What i s a d i r e c t o r y ?

You should, therefore, use {how, what, when, where} as often as possible. If you cannot
describe a topic using a question, then you may use a phrase or a complete sentence.
The more specific you are, the better. The user should have a strong idea of what he will
see if he selects a button.

Numbered help buttons

Whenever you present the user with a screen of buttons that represent the steps in
completing a task, use the numbering capability. The button labels on these screens are
not in a question format, they ale in an action format. If you do put some general
information on this screen (that is not one of the steps), that button should not be
numbered. To number buttons in the help editor, choose the "Number this field check
box in the Edit Topic dialog box or, insert an extra star (*) delimiter in FRONT of the first
solution you want numbered. The numbering will stop when an extra star (*) delimiter
appears AFTER a topic.

Screen Titles

Always use titles on numbered screens. The title should be the same that appeared as
the topic of the button the user selected to get the numbered help screen. Since you
have more space available, you may use a more descriptive title if you feel it is
necessary. To encourage the user to read all the buttons on a help screen, do not use
titles on any other screens.

The first help screen

The SuperGroup help screen is the first full help screen the user sees unless you create
rules that go to other help screens. The SuperGroup screen is a general overview of the
help topics that direct the user to more specific help topics. If you create a rule for
another screen, that screen should have topics specific to the application's current state.
If six topics are not enough to describe either or these cases, then link this screen to
other screens. When the user presses F1, the next set of topics will be displayed.

e

Common Problems

If there are common problems people experience when using your application, then the
user should be able to see these topics by selecting a button labeled:

0
Common

Problems

Place a screen(s) of help underneath the button.

How to Fill Up Screens

Do not feel obligated to fill up all six buttons on a help screen. Instead, concentrate on
grouping topics that relate to one another. (Exception: SuperGroup screen. Since it will
contain an overview of your application, is not likely to follow this convention).

One of the help screens you should include in your file is a help screen. It is the last screen the
user will see if he continually pressed F1 to view all your screens. This screen is included in the
STARTER. HLP file, its solution string is $Help.

a

Creating the Sample Help File VIDEO.HLP

To explain the actual process necessary to build an application help file we will show how the
help tools were used to create the help file for the sample application VIDEO. PDM. The types of
help we will create and edit are:

a
General help
Help when a menu option is highlighted
Help in dialog boxes
Rule-based help in a dialog box
Help groups

The following tools and utilities are provided to aid in the creation and editing of an application
help file. These files and tools were used to build the VIDEO.HLP help file for the VIDEO.PDM
application.

DMHELP.UTL Help rule based utility
DMEDITOR.PDM Help text editor
TOKEN. PDM
STARTER.HLP Basic help file template
STARTER.TKN

Help file compression utility

Starter help file token file

General help

The file STARTER.HLP contains the help text used in most applications, such as how to use
menus, dialog boxes, edit fields and other components. Other help text includes use of the
mouse, common file Vo and database error messages, how to use accessories, and other
subjects common to many DeskMate applications.

To begin, STARTER.HLP is copied to create the file VIDEO.HLP to provide general DeskMate
application help.

Help when a menu option is highlighted

Once the file VIDEO. HLP has been created, it is used as the basis for the application-specific
help to be added.

The accessory DMHELP .UTL is renamed DMHELP .ACC. Now, whenever the F1 key is pressed,
this utility will run in the place of the Help accessory. Let us look at how help for all of the menu
options in VIDEO. PDM was created.

a

0 First we will add help for Next (n) X... in the World F3 Menu. The Video application is run and the
option in the meny is highlighted.

I

The F1 key is pressed to invoke the help utility.

a

The event queue display contains a list of the events that led to the selection of the Next (n) X...
menu option. The return code, f518, is the code for the menu option. While in the Help Utility,
Add menubar text is selected from the File F2 Menu. Now every return code for every menu
nntinn in thp Viripn anolication will be added to V I D E O . HLP.

To examine how each menu option return code has been added to the help file for the Video
application, the Help Editor, DMEDITOR. PDM is used. The data file VIDEO. HLP is selected as the
file to edit.

In the Help Editor File F2 Menu, Switch to text is selected to examine the help solutions and text.
For the solution string f518, our Next (n) X... menu option, the editor displays

0

Notice how the Help Utility inserted the return code for the menu option as the Solution string and
the actual menu option string as the Help text to present.. Every menu option in your menu bar
will appear this way. It is now a simple manner to enter the desired help text to replace the string
for the menu option.

0

a Now after exiting the Help text editor and returning to VIDEO. PDM, when the Next (n) X... option
is highlighted in the World Menu and F1 is pressed, the help text entered in the Help text editor
will appear.

current Uorld
au the current

e

Help in dialog boxes

Setting up a help screen that explains the components in a dialog box or how to enter information
in a specific dialog box is simple. Run the help text editor, get into Text mode (CTRL+T) and
select New from the Text F3 Menu. Now enter the name of the dialog box,, as it appears in the
dialog box frame along with the .db identifier in the Solution string edit field. Then enter whatever
text you wish to appear as help for the dialog box.

0

0
Add rules or premises with the Help Utility for dialog box help when you want to check the state
of a specific component within the dialog box. When F1 is pressed in the dialog box, the help
text entered will appear.

press OK. The number
ecified u i l l be added t o the

0 Rule-based help in a dialog box

As an example, we will show how to add help for the World Next (n) X dialog box. First the
desired dialog box is brought up on the screen.

When F1 is pressed, the help utility appears with a list of events in the help queue. Arrowing 0
down to the last event (running.dlg.box World Next (n) X (l)) , will display the event as the first
premise. Pressing enter at this point adds the event as a premise to this rule.

With this premise included, any subsequent checks we wish to make about the state of
components in the dialog box can be made. We wish to bring up a certain help screen if the edit
field in the dialog box is already displaying a number.

At this point, arrowing down into the first item in the Event Queue Display Listbox will once again
place the premise running.dlg.box World Next (n) X (1) in the second premise editfield. Selecting
the Call option from the Functions F4 Menu will allow setting the check for the edit field contents.

a

a
Pressing the NO button here will mean that the solution will be invoked if the user has pressed F1
while the World Next (n) X dialog box is running AND the edit field has some number displayed.
Once NO has been pressed, the solution string (an arbitrary string for use by the Help Editor) is
entered. This string will correspond to the actual help text to be displayed.

Henu item selected. Return: f518
Application started: UIDM)

m Now we leave the Help Utility and the application to edit the help text for the rule we just set up.
Running the Help Editor in the Rule mode will show the rule and solution string.

Switching to Text mode and finding the needed solution string "wld nxt(n)ef nurn" allows us to
enter the actual help text that corresponds to the rule we defined. a

Since this dialog box already has help text defined which is displayed if the edit field is empty (the
case which has no premises), the rule for the more specific case of an edit field with characters
displayed should appear first in the help file - it should have a lower rule number.

Help groups

Address help for specific questions with a group of help topics. A help group appears as a group
of up to 6 beveled rectangles, each with a unique subject and solution.

e

€MER = llore details on question Esc = Exit help

To enter a help group, we will once again use the "Next (n) X menu option. When this option is
selected by the user and F1 is pressed, we wish to offer a group of 4 more items. In order to get
to this group when F1 is pressed, the "Next solution" for the original help screen must be defined
as this new group. Groups are notated by a leading " $ in the solution string. Every help file
must have one and only one "Super Group" which is notated by two leading dollar signs (' I $ $) .

Help will automatically go to the SuperGroup if a "Next solution" is not provided.

a

0 In the help editor open the Video help file and get into the "Text" editing mode. Find the solution
string for the menu item in question (f518). Once this record has been found, we must now
enter a string in the "Next solution" editfield. We will arbitrarily call this string "world(n)Xl",
making sure that it is preceeded by "$", denoting the solution as a group.

Once the solution string is entered and saved, choose the F2 "Switch to groups" option to define 0
the group and enter the solutions for each of the items in the group.

The solutions can be more groups or other text solutions. The group editor also gives you the
option of numbering the items in a group for procedural instructions. a

rn b b e r this field?

To inspect the group strings, you may also "Switch to text" and then select "Show groups" to see
how the group is actually defined and how each field in the group is arrangned with its delimiter
and text solution. The '% delimiter is used to start a new line in the topic. a

a

a The "Next solution" string for a group can reference another group, a specific help text, or any
other solution. In this example, the "Next solution" refers to the original menu option help. Now
when F1 is pressed on the "Next (n) X option, the origianal help text will appear with a "Fl=rnore
help" prompt. When F1 is pressed now, the defined group will appear on the screen.

a

Help Rule Base Utility - DMHELP.UTL

When you use this utility, you should rename it DMHELP .ACC and run it as the help accessory
from your application. You can then press F1 in different context within the application and
examine what is in the information queue. The utility will open the application help file, if there is
no help file one will be created in the current directory.

Adding menu bar text

To enter in help topics, use the Add menubar text option from the File F2 Menu. This option will
add entries for the application menu options only. It will enter the solution string and the menu
option return code for each menu option. You then update these records by assigning a topic
string and the help text for each option using the help editor, DMEDITOR.PDM.

Adding new rules

The premises (IF entries) are displayed on the main screen. A rule can have up to 8 premise
lines each ANDed together. The conclusion (THEN entry) is the only field you enter. Add a
premise by selecting one of the queue items in the list box and pressing ENTER. The F4 menu
options become available when a queue item is selected. Remember that you must first get the
information registered in the queue by getting your application into the state you want to give help
on.

Group numbers

Group numbers are used to categorize rules. Depending on the state of the help queue, rules
with specific group numbers will be searched first. The following group numbers and their
functions are available.

Group Number Function

a

a
0 This rule group will always be scanned if a conclusion was not found in

groups 3 through 11.

This rule group is scanned if a group 0 rule's premise contains a solution.

This rule group is scanned last.

This rule group contains dialog box rules.

This rule group contains edit field, push button, check box, radio button,
icon button, and application-defined component rules.

This rule group contains message box rules.

This rule group contains menu rules.

This rule group contains menu option rules.

This rule group contains command event or accelerator rules.

1

2

3

4

5

6

7

8

#. -rL._ - I - _ _ _ _ ___._ .__ 1.- .

11 This rule group contains state and queue rules added by the application, @
see the ihm-new-entry and ihm-add-state functions in the Help
Manager section of the DeskMate Technical Reference.

This rule group contains the IHM internal rules. Internal

One of the groups 3 through 11 is always searched first, followed by group 0 and possibly gorup
1. If a conclusion is not found, the internal rules are searched and then finally group 2. If none of
the rules result in a conclusion, the help manager will "fire" the $$<SuperGroup> text solution and
provide general help.

This utility, DMHELP .UTL, creates only group 0 rules. Use the help editor, DMEDITOR.PDM, to
change the group numbers.

Queue Data

You can use any queue entry displayed in the list box as a premise to a rule. Each premise built
from a queue entry has the associated queue entry number stored with it. This means a rule built
from the queue is time-related, it depends on the order in which events occur.

Functions

The Functions F4 Menu allows you to make numeric comparisons to the data in a numeric edit
field, to negate the results of a premise, or to call a function.

TEST 0 Use this function to make numeric comparisons on data in a numeric edit
field. Format characters for an edit field or the number of decimal points are
NOT stored in the queue.

TEST puts 4 in the keyword field

NOT TEST puts 5 in the keyword field

Put the corresponding function number in the Variable # field

Put the call's parameters into the Value string field. If there is more than
one parameter, single space between them.

This function is available in two places, the first is when the queue entry
is a dialog box and the second is when the queue entry is a single edit
field which is currently running. In a dialog box, the edit field's tab
number in the box is required to identify the edit field. For the single edit
field, the tab number is zero. The parameters should be placed in the
value field of the premise.

The TEST functions available are:

1 EditFieldGT(Tab#, "dumber string>")

Test if areater than.

2 EditFieldLT(Tab#, "cnumber string,")

Test if less than.
0

3 EditFieldEQ(Tab#, "cnumber string>")

Test if equal to.

NOT Use the NOT clause to negate the results of the entire premise line. For
example, "NOT running.dlg.box Copy File" means: running any dialog box
except the Copy File box.

Some queue entries have data associated with them. Function calls are
available that allow a rule to access that data. These calls are designed to
make data and state comparisons.

CALL puts 2 in the keyword field

NOT CALL puts 3 in the keyword field

Put the corresponding function number 1 through 11, defined below, in the
Variable # field .

Put the call's parameters into the Value string field. If there is more than one
parameter, single space between them.

The instructions below also indicate how to enter a call premise if you use
the help editor DMEDITOR .PDM to enter the rule yourself. The function calls
available are:

CALL

L_

a
1 EditFieldEmpty(tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the edit fields tab number is
required. The second is when the queue entry is an edit field,
leave the value string field EMPTY. The function will check to
see if the string is null.

2 EditFieldCmp(tab #, tab#)

This function can be chosen when the queue entry is a dialog
box with more than one edit field. The function will compare the
edit field strings to see if they are the same.

3 ListBoxEmpty(tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the list box's tab number is required.
The second case is when the queue entry is a single list box,
leave the value string field EMPTY. The function will check to
see if the list box is empty.

e 4 ScanMessage("cstringr")

This function can be chosen when the queue entry is a message
box. The function will scan up to a 20 character message saved
for the <string>.

5 CheckBoxChecked(Tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the check box's tab number is
required. The second is when the queue entry is a check box,
leave the value string field EMPTY. The call will check to see if
the check box is selected.

6 lconButtonSelected(Tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the icon button's tab number is
required. The second is when the queue entry is an icon button,
leave the value string field EMPTY. The call will check to see if
the icon button is selected.

7 RadioButtonSelected(Tab#, Ordinal#)

This function is available when the queue entry is a dialog box
only. The call will check to see if the specified radio button
(Ordinal #) within the specified group (Tab #) is selected. a

8 MenultemGreyedO

This function is available when a menu is pulled down, the user
selects an item, and presses F1. The last entry made in the
queue will indicate if the item is enabled or disabled.

9 ClipBoardEmpty()

This function is available at all times. The function checks the
clipboard contents. The function is also available through the
Functions Menu, Check clipboard option.

10 PreviousKeyStrokes()

This function is available at all times. The function will check if
any keystrokes or mouse events occurred before the current
queue entry. The function is also available through the Functions
Menu, Previous keystrokes option.

11 KeyStrokesDuringO

This function is available at all times. The function will check if
anv kevstrnkes or mouse events occurred durina the current

DeskMate Help Editor - DMEDITOR.PDM

The help editor allows you to enter the information the user will see when help is requested.
Specific help given in the help window, help topics displayed on topic buttons, and procedural
help displayed on numbered buttons is all entered and edited using this tool. This documentation
assumes you will edit the help file created by DMHELP .UTL.

Working with rules

The default screen shows the current set of rules in the file. One rule is displayed at a time, use
the First, Next, Previous, and Last menu options from the F3 Menu to view other rules.

Editing a rule

The display shows the internal fields of a rule, the group number, the conclusion,
and each premise. Use the Insert menu option in the F3 Menu to add a new
premise to the rule being viewed.

Adding a new rule

You can also add a new rule by selecting New from the F3 menu. If the rule's
conclusion is a help topic, the rule and its premises must be in group 0. If not,
the rule WILL NOT fire.

Rules that chain

If the group number is 1 then this is a chaining rule. That is, this rule will fire
when a group 0 premise matches this rule's conclusion. This means that in order
to prove the premise of the group 0 rule, the group 1 rule must be proven as well.

0
Working with displayed text

To modify the text displayed use the Switch to text menu option in the File F2 Menu.

Size restrictions

The solution string can be up to 20 characters long.

The help text for one topic can be up to 900 bytes long.

Link to rules

The help text solution string must match a conclusion in one of the rules or a
conclusion returned by the internal rules. An entry is automatically added for any
rule created with the DMHELP .UTL utility. Rules added with this editor must also
have a corresponding text entry added.

@ Working with solution extensions

A menu options's solutions is its return code, a hexidecimal number, for instance F158. For other
entries in the queue, attach the following extension

Menu Namemm (for main menu)
Dialog Box Title.db
List Box Title.lb
Message Box Title.mb
Menu 0ption.g (for a grayed or disabled menu option)

Working with button topics

Use the Switch to groups menu option in the File F2 Menu to display the button topics and their
corresponding text. Use the Edit Topic option to give the topic a three line title, a solution string,
and select whether or not to number the button.

a

Help File Compression Utility - TOKEN.PDM

This utility replaces common strings in the application help file with a number or token. The help
file is made smaller on the disk and is untokenized as it is accessed. To tokenize a file, do the
following:

1) Create your application help file, MYAPP .HLP, using the Help tools, DMHELP .UTL and

0

DMEDITOR. PDM.

2) Build an ASCII token file, MYAPP . TKN, that contains the list of tokens for your help file.
Use the following guidelines for building your token file.

a) The token records must fit within two database pages which are 1 K bytes/page in size.
The format of each token record is

Token(N), Field Delimiter, Record Delimiter

where N in Token is the number of bytes in the Token, and the Delimiters are each
one byte.

b) Token strings should be 3 bytes or longer.

c) Each token should be separated by a CR/LF, EXCEPT for the last token which should
terminate the file WITHOUT a CR/LF.

d) You must manually create a file of token strings for the TOKEN-PDM compression
utility. The following is a procedure to accomplish this task:

1. Use the help editor to retrieve the application help file information. Use the F2
Menu to "Switch to text" and then "Print text ..." to a file MYAPP . TKN.

2. Open the file with your text editor. At the beginning of each page in MYAPP . TKN
is a header describing the file, for instance,

0

Help Data base Text in C :VIP PH EL P\MYAP P . H LP

Delete all Occurances of this header. On the left of the page is a list of all the
solutions. Delete these solution strings and the "Solutions" header. Also delete
the "Text" header at the beginning of each page. Your file should now only
contain the actual help text.

3. On the occurance of every string three or more characters in length, do a "search
and replace" of the string, replacing it with a space, or nothing. If your editor
displays the number of replacements made, note that number. If there were at
least three Occurances of the string, then you may enter it as a string to tokenize.
Each string must appear alone on a separate line, terminated by a carriage
returdline feed. As you repeat this process for every candidate string, the blanks
you have created will shrink the size of the file.

a 4. In the case of strings being substrings of longer strings (such as in plural versions
of a word), do a search for the longer string first, noting the number of
occurances. If the longer string only occurs twice and the substring occurs four
times, use the substring as the string to tokenize. For example,

You search for the string "removed" and replaced it with nothing,
noting 2 occurances. This is not enough to take advantage of
compression. However, doing a search and replace of the string
"remove" produced 2 occurances. So you know that the string
"remove" occurred 4 times in the file, allowing TOKEN.PDM to do a
slight compression.

Since you are replacing strings with nothing as you go along, it is important to
replace the longer strings first if possible, in order not to miss the opportunity to
use both the longer string and the substring as tokens.

TOKEN. PDM distinguishes case, so capitalized versions of words will need to be
included as well as the lower-case word.

3) Run the DeskMate application TOKEN. PDM giving it the name of your application help file,
MYAPP . HLP. The help file and token file, MYAPP . TKN, must be in the current directory
with the utility.

4) Token creates a MYAPP . LST file when it has tokenized the file. This file lists the number of
bytes each token saved. If the number of bytes for a token is less than or equal to zero,
remove the token and retokenize the file. Remember to always retokenize from the
original untokenized file. a

Help File Format

In order for you to better understand what information is stored in your help database file, the
database format for text and rules is outlined below.

There are two tables in your database file. The first is a TEXT table. It has the following columns:

Sol This is the Solution TAG. It is the solution that a rule produced.

Text The actual help that goes with this topic.

F1 The next help window to chain to when the user presses F1.

The second table is the table RULES. It has the following columns:

e,

GrP A rule group. Group 0 is always the group in which rules are
placed that will give a solution. If these rules cause any other
rules to fire, these rules should be in another group.

The number of the rule. The rules are sorted by rule number,
because you may want to try to fire one rule before another.

A premise or conclusion number. The records in the table are
also sorted by PorC#. The conclusion is number 0 because it is
the first thing pulled out of the table when the inference engine
atarts to fire a rule. (This is because it is doing Backward
Chaining- start with the conclusion , and then prove the
premises).

An identifier for the engine to do faster searching. Each new
variable added to the table has a unique identifier. The variables
are DeskMate components, like a dialog box.

The variable field is a string representing a variable for which a
value is expected such as "running.cmp" (DISABLED FIELD)

The String field for which contains a value. The if the value is the
current one for the variable, then the premise line will succeed.

A variable to bind to like " X . If a rule has a binding, the variable
will bind to the currently known value of the variable. This
eliminates repetition of rules that do the same exact thing. Only
premises can bind.

A number indicating the negation (NOT) of a premise, or a
TEST or CALL. TEST will do number comparisons, and
assumes the value string field is a numerical value. CALL is
used to execute a pre-defined function. The parameters of the
function are placed in the value field.

Rule#

PorC#

0
Var#

Var

Value

Bind

KeyW

0 Q# The number in the queue for which a premise line test applies. If

predefined facts.
the queue number = 0, it is assumed the premise does not use <--

a

Part 6
Writing Tutorials and Demos

0

Contents
e

The DeskMate Tutorial Technology 6-1
Authoring a Tutorial Script 6-3
The DeskMate Introductory Tutorial . DMINTRO.TUT 6-5

DMINTRO.DOC .. 6-6
INTR02.DOC ... 6-14
INTR03.DOC ... 6-19
0PTIONS.DOC .. 6-25
MOUSE.DOC .. 6-27
MOUSE1.DOC ... 6-37

Script Command Reference 6-41
ALLOW INHIBIT .. 6-43
CALL ... 6-44
CHANGE DIR ... 6-45
COUNT ABOVE .. 6-46
COUNT BELOW .. 6-47
COUNT DEC .. 6-48
COUNT EQUAL 6-49
COUNT INC .. 6-50
COUNT SET .. 6-51
DELETE DIR ... 6-52
DELETE FILE .. 6-53
DISK SPACE ... 6-54
ESC FLAG ... 6-55
EXPECT KEY ... 6-56
FILE EXIST ... 6-57

-

-

-
-

. a
.. .

.

.

.

.

.

.

.

.

GET ARROWS ... 6-58
GET DLGBOX CMP ... 6-59
GET KEY .. 6-60
GET LB ITEM .. 6-61
GET RB ... 6-62
GET TEXT ... 6-63

.

. .

.

..

.

.. a IF - FALSE - GOTO 6-66
IF TRUE GOTO ... 6-67
IGNORE INHIBIT ... 6-68
IN DLGBOX .. 6-69
IN FILE .. 6-70
IN LISTBOX ... 6-71
IN MSGBOX .. 6-72
INVERT OFF ... 6-73
INVERT ON .. 6-74
KEY INTERVAL ... 6-75
KEY WITHIN ... 6-76
LOOP TO .. 6-77
M PROMPT ORG ... 6-78
MESSAGE BUFFER ... 6-79
MESSAGE OFF .. 6-80
MESSAGE ON ... 6-81
ON QUIT GOTO ... 6-82
ON TIMEOUT CALL 6-83
OPTIONS .. 6-84
PASS KEY ... 6-85
PASS WHILE ... 6-86
PAUSE MODE ... 6-88
PICTURE OFF .. 6-89
PICTURE ON ... 6-90
POINT TO ... 6-91
PRESERVE DT CFG .. 6-92
PRESERVE FILE .. 6-93
PROMPT ... 6-94
RESTORE DT CFG ... 6-95
RESTORE FILE ... 6-96
RETURN ... 6-97
RUN RESOURCE ... 6 - 9 ~
START IN ... 6-99

- -

-
-

-
-
-

-

-

-

-
-

- -

-
-

-

- -
.. a - I

-

-
-
-
-

-
- -

-

- -

-

-

-
TAG .. 6-100

Tutorial Player . PLAY.PDM/DMPLAY.RES

Event Recorder . RECORD.PDM/DMRECORD.RES 6-107

....................... 6-105
Demo Launcher . DEMO.PDM 6-106

e
General Rules of Recording 6-107

Script File Interpreter and Compiler . DMEI.EXE/DMEC.EXE 6-109
Tutorial Compression Tools . DMPACK.EXE/DMUNPACK.RES 6-110

0

The DeskMate Tutorial Technology

The DeskMate Tutorial Technology allows a programmer to create store-demos and application
tutorials which use the actual application to execute. A tutorial interacts with the user, allowing
the user to enter information and perform tasks which teach the user how to operate the
application. A demo demonstrates the functions of the application, explaining key functions of an
application without the user's intervention. The same technology is used to build and execute
both demos and tutorials. Tutorials will be discussed in this documentation since demos are
simply a tutorial without user interaction.

Tutorials are written usingscripts which are compiled into event files. Pictures and data files
needed by the tutorial are stored along with the event files in a compressed tutorialfile . The
tutorials are launched from the Play portion of the technology. The application PLAY. PDM and its
resource, DMPLAY .RES, read in the tutorial file, extract files as needed or directed, interpret the
commands in the scripts, and send events to the application.

A comprehensive example of a tutorial is also included in this section. The DeskMate
Introductory Tutorial, DMINTRO . TUT, covers the key elements of a tutorial and makes a good
template or guide when writing your own tutorial. The actual "source" for the tutorial resides in the
SAMPLES\DMINTRO directory.

The script language used to write scripts is defined in the Script Command Reference. The
documentation for each of the tutorial tools provided with the kit follows the command reference.

a

a

{e Authoring a Tutorial Script

Step 1 - Create the Storyboard

The first step in developing a tutorial is deciding what the tutorial should teach. Tutorials should
be broken down into lessons the user can take at different times. The first lesson should be
introductory in nature, the following lessons should cover specific areas of your application, each
lesson increasing in difficulty and building on the information learned in the previous lessons. The
number of lessons you supply with your application is dependent on how much time you want to
spend on the tutorial and how much disk space you choose to dedicate to this on-line
documentation.

Step 2 - Record the Storyboard

Once you have decided what your tutorial will cover and how it will be organized you can record
the initial events by using the Record portion of the technology. This step is optional and once
you are familiar with the structure of events and the authoring of scripts you probably will not
want to record the storyboard to create a tutorial. Once the first lesson is written, you will
probably use it to build the next one and so on. Use the application RECORD. PDM and its
resource, DMRECORD .RES to record the events you want executed in your tutorial. Use the
DMEI .EXE utility to create the initial script file. You will want to strip out most of the information
recorded and concentrate on the actual events recorded.

Step 3 - Develop and Test the Tutorial

involves editing the script, compiling it into a event file, packing the files into a tutorial file and
actually running the tutorial. This is the longest process in building a tutorial. You may want to
make changes to the storyboard after using the tutorial. Considerable error checking and
processing must be done to insure the user does not perform actions which your tutorial does not
handle correctly.

Refer to the DeskMate Introductory Tutorial for examples of error handling and other tutorial
functions. Use the Script Command Reference for information about all the function commands
available in the tutorial technology.

Script Rules and Guidelines

1

Once the initial tutorial script file is built, you will then go into the development process which
~ ‘e

The script files must contain only printable ASCII characters and ODH for carriage
returns.

The TAB character is not allowed.

Commands and their parameters may be delimited by a space, comma, or carriage
return. The command descriptions use a space delimiterswhen the paramters are listed
on the same line as the command and a carriage return for string parameters. Multiple
commands appearing on the same line are delimited with commas.

Comment lines follow the C language convention, / * * /. Embedded comment lines are
nnt ctinnnrfnrl

a Text information, such as data for edit fields in dialog boxes is enclosed within brackets,

Never alter a user's data file.

{ 1 and should be on a line or lines by itself.
A/'

For example, the Address Book tutorial does not alter a user's address book
data file, the COPY-FILE command is used to save the original file before
the tutorial begins.

Always make sure there is enough disk space on the diskette to run the tutorial
before it begins.

The DISK SPACE command is used to insure that the player has enough
room on th; disk to create a working file.

Pauses should be added before the RETURN-KEY keystroke when selecting menu
options so that the viewer can detect which menu option was chosen. A delay of half a
second, 50 counts, is usually sufficient.

Tutorials should always tie up any loose ends prior to terminating, this includes
the removal of working files used by the tutorial.

The CHANGE-DIR and DELETE D I R commands are Used to Cleanup the
directory structure when a tutoxal ends in an unknown state. QUIT-OK
should be placed into the event sequence at any point where it is permissible
for the tutorial to end. Remember ESC will proceed until the next QUIT-OK is
encountered.

Tutorial Guidelines
\,e

The maximum size of an individual event file is 10K bytes. Scripts which produce larger
event files should be divided into separate scripts and the event files should be "chained
together.

The maximum size of a picture in a tutorial is 8K bytes. Larger pictures will not be
displayed and an enor condition will not be returned.

Printing and task switching are not supporled in tutorials.

The DeskMate Introductory Tutorial - DMINTRO.TUT

The DeskMate tutorial DMINTRO. TUT was built using the Tutorial Technology. The files needed
to create the tutorial are included in the SAMPLES\DMINTRO directory. The tools needed to build
the tutorial are in the TOOLS directory.

The MK. BAT is used to build the tutorial file.

e

del dmintro.tut
dmec dmintro
dmec intro2
dmec intro3
dmec options
dmec mouse
dmec mousel
dmpack dmintro.tut dmintro.evn intro2.evn intro3.evn options.evn bob.dft
dmpack dmintro.tut desktop.dft desktopd.dft dmcorkbd.dft desktext.fig
dmpack dmintro.tut mouse.evn mousel .evn listbox.fig arrow.fig mouse.fig rat.fig
dmpack dmintro.tut help2.fig compass.fig powerful.fig superfl .fig magnify.fig
dmpack dmintro.tut start.fig waiter.fig explorer.fig
dmpack dmintro.tut /u findtut.fig

The tutorial uses the following event files (.Em) , picture files (.FIG), and data files (.DFT):

DMINTRO.EVN , INTR02.EVN, INTR03.EVN, OPTIONS.EVN, MOUSE.EVN,
MOUSE1 .EVN

LISTBOX.FIG, MOUSE.FIG, ARROW.FIG, DESKTEXT.FIG, RAT.FIG, FINDTUT.FIG,
COMPASS.FIG , POWERFUL.FIG, MAGNIFY.FIG, SUPERFl .FIG, HELP2.FIG,
EXPLORER.FIG , WAITER.FIG, START.FIG

a
BOB.DFT, DESKTOPD.DFT, USERDICT.DFT, DESKTOP.DFT, DMCORKBD.DFT

a DMINTRO.DOC

PRESERVE DT CFG
* I /*--

I* Introductory Lesson : In t roduc t ion , P a r t Menu, and Part 1 *I
/*-- *I

PICTURE - ON 0 0 0 "FINDTUT.FIG"

- -

PRESERVE - FILE 0 "desktopd. cfg"

TAG VI s t u t I'
COUNT SET 9 0
CTRL U

ON QUIT GOTO "end lesson"
SET HELF 1
GOTU "options" I N - FILE "options .evn"

-

/*-- *I
/ * clean up form pa r t s *I
TAG, "menu"
MESSAGE - OFF PICTURE - OFF

COUNT EQUAL 9 0
I F - TRUE - GOTO "menul"

RESTORE - FILE 0 "dmcorkbd"

TAG "menul"

/*--- *I
GOTO "show menu" I N FILE "options .evn"

I /---

/*--- *I
I* P A R T O N E *I

a
- -

TAG "Section 1"
ON - QUIT - GOTO-"menu"

M PROMPT ORG 2200 4400
PICTURE UN 1 1900 1760 " s t a r t . f i g "
EXPECT - R E Y (c}

M PROMPT ORG 2200 2750
P7JINT TO- 450, 250, 1, 2
PROMPT 1 1400, 2310, 5200, 1100 {c} "C=confinue"
"The top l i n e on your screen is the \ C l t i t l e line\CO. The
t i t l e l i n e contains four items of information. The
f i r s t item reminds you which key t o press when you
need Help. You w i l l l ea rn a l l about Help i n Par t 2
of t h i s lesson. VI

I* p o i n t up *I

MESSAGE - OFF

POINT TO 1600, 250, 1, 2 I* poin t up *I
PROMPT 1 1200 , 2640, 5500, 220 I C } "C=continue"
"The second item on t h e t i t l e l ine i s t h e date."
MESSAGE OFF

POINT TO 4100, 250, 1, 2 / * point up * /
PROMPT 1 1200, 2530, 5500, 660 {c} "C=continue"
"The third item of information is the application name
and \Clcurrent path\CO. The current path is where DeskMate
is currently looking for data files on your disk."

MESSAGE - OFF
POINT TO 7400, 250, 1, 2 / * point up * /
PROMPT 1 1200, 2640, 5500, 220 {c} "C=continue"
"The last item on the title line is the time."
MESSAGE - OFF
POINT TO 2400, 1760, 1, 2 /* point up * /
PROMPT 1 1100, 2640, 5800, 660 {c} "C=continue"
"The Desktop displays \Clapplication boxes\CO. Each application

0

box contains the name of one DeskMate application. This
box represents the Address Book application."

PROMPT 1 1200, 2520, 5500, 880 {c} "C=continue"
"The Address Book application is used to store and
organize information about people and businesses. You
can use the Address Book to print mailing labels and
form letters .I1

MESSAGE - OFF

POINT TO 4000, 1760, 1, 2 / * point up * /
PROMPT 1 1200, 2640, 5600, 4 4 0 {c} "C=continue"
"Next is the Calendar application box. The Calendar

MESSAGE OFF
POINT TO 5600, 1760, 1, 2 / * point up * /
PROMPT 1 1200, 2640, 5500, 440 (c) "C=continue"
"PC-Link is a telecommunication application that

MESSAGE - OFF

application helps you organize your personal schedule."
-

provides access to a vast database of information."
a

POINT TO 800, 2090, 1, 2 / * point up * /
PROMPT 1 1200, 2530, 5500, 660 IC} "C=continue"
"Another type of application box appears in the form
of a list box. Using the arrow keys, you can scroll
through and choose from the items listed."

MESSAGE - OFF
POINT TO 1400, 770, 1, 0 / * point left * /
PROMPT 1 1200, 2520, 5500, 660 {c) "C=continuen
"The top of an application list box contains the name

MESSAGE - OFF
POINT TO 1500, 1430, 1, 0 /* point up * /
PROMPT 1 1200, 2640, 5500, 440 {c} "C=continue"
"The bottom contains the names of the files stored on
your disk that were created by the application."
MESSAGE - OFF
POINT TO 1100, 935, 1, 2 / * point up * /
PROMPT 1 1200 2520, 5600, 660 TAB KEY "move highlight"
"A \Clhighlight\CO is used to select €he DeskMate application

of the application. The Text application is used to
create and edit documents."

L L - L __-.. ..:-L t.. .-.-- r,,rrnn+lTr + h a TOV+ ~ n n l i p ~ t ~ n n i s

POINT TO 2400, 1540, 1, 2 /* point up * / a
PROMPT 1 1100, 2420, 5700, 880 {c} "C=continue"
"Great! The Address Book application is now highlighted.
Pressing ENTER will run the currently highlighted
application. You will run an application in Part 3 of
this lesson. I'

MESSAGE - OFF
POINT TO 7200, 2100, 1, 2 / * point up * /
PROMPT 1 1200, 2520, 5500, 660 {c} "C=continue"
"The Programs list box is unique; it displays a list
of all the applications on your disk. You can run any
application using the Programs list box."

PROMPT 1 1200, 2310, 5500, 1100 {c} "C=continue"
"The Programs list box is very useful because not
every application is represented on the Desktop with
an application box. In the lesson about Desktop! you
will learn how to customize your Desktop by adding
and deleting application boxes."
MESSAGE OFF

POINT TO 1600, 3960, 1, 3 / * point up */
PROMPT 1 1900, 2310, 5200, 1100 {c} "C=continue"
"This is the Teach Me application box. When you run
Teach Me, it presents you with a list of lessons.
Each lesson will guide you through one of the
DeskMate applications. You will learn how to run
Teach Me in Part 4 of this lesson."

-

a MESSAGE - OFF

/ * oint up * / E POINT TO 6400, 3960, 1, 3
PROMPT 1 1300, 2310, 4500, 1100 F10 "press F1 VI

"The final box is the Month \Claccessory\CO.
Accessories are special tools that can be
run anywhere within DeskMate. The F10 \Clmenu\CO
contains all the accessories that are
included with DeskMate."

MESSAGE OFF
PICTURE-OFF
PASS KEY

M PROMPT ORG 2200 4400
PICTURE UN 1 700 1760 "waiter.fig"
EXPECT K E Y (C}
PICTURE OFF
M - PROMPT - ORG 2200 2750

PROMPT 1 1700, 2310, 4100, 660 {c) "C=continue"
"This is a menu. To pull down a menu, you
press the function key appearing after
the menu's name."

-

PROMPT 1 1700, 2310, 4100, 880 LEFT ARROW "use \5\6"
"Once a menu is pulled down, you can u5e
\5\6 and \6\7 to view neighboring menus.
Use \5\6 to view all the Desktop menus.
Stop when you get to the File menu."

COUNT SET 5 6
TAG"MENU KEYS"
PASS KEY-
PROMPT 1 2400 3080 3200 220 ABORT KEY "use \5\6"
"You're doing f i n e ! Keep going." -
EXPECT KEY LEFT ARROW
LOOP TU 5 "MENUXEYS" -
PASS-KEY -

MESSAGE OFF
P O I N T TU 1600, 715, 1, 0 / * point up * /
PROMPT 1 1200, 2750, 5600, 660 (c) "C=continue"
"Some options i n a menu might be \Clshadowed\CO. The GET INFO
option i n t h e F i l e menu i s shadowed. A shadowed
option i s one t h a t is not cur ren t ly avai lable ."

MESSAGE - OFF

POINT TO 2650, 2035, 1, 0 /* point up * /
PROMPT 1 2900, 2750, 4400, 1100 DOWN ARROW "highlight option"

To choose a menu option you h igh l i h t i t

a

I1 -
Choose a Menu Option\r\n

and then press ENTER. \A \B and \8 ? 9 a r e used
t o move t h e highl ight . Use \A\B t o highl ight
t h e UPDATE SCREEN option."

COUNT SET 5 5
TAG"U5 KEYS"
PASS KFY
PROMPT 1 2 4 0 0 3300 3200 2 2 0 ABORT KEY "highlight option"
"You're doing f i n e ! Keep going." -
EXPECT KEY DOWN ARROW
LOOP TU 5 "US - KENS"
PASS-KEY -

MESSAGE OFF
PROMPT -1 2900, 2 6 4 0 , 4500, 1320 RETURN KEY "press ENTER"
"The UPDATE SCREEN option i s used t o upda€e
t h e contents of a l l t h e appl icat ion l i s t
boxes whenever you i n s e r t a d i f fe rFnt d i sk .
Press ENTER t o choose the menu option.
Because we a r e merely teaching you about
menus, you SHOULD NOT i n s e r t another disk."

MESSAGE OFF
PICTURE-OFF
PASS KEY
/ * Om - QUIT - GOT0 "Q" * /
POINT TO 400, 660, 1, 2 /* point up * /
PROMPT 1 3000, 2420, 4500, 880 F2 "pul l down menu"
"Did you not ice t h a t t h e screen was redrawn?
Let's look a t t h e F i l e Menu again. Use t h e
function key following t h e menu's name t o
p u l l down t h e menu."

0

MESSAGE OFF
PICTURE-OFF
PASS KEY

POINT TO 2650, 2035, 1, 0 / * point up * /
PROMPT 1 2900, 2750 4300, 1100 {c} "C=continuen
"Notice t h a t \"CTRLtU\" appears next t o

-

I L - 7 7 n n n r n n rrrrnl-r.rr ..-c: A _ ml.. 4 n : n ?_

a MESSAGE - OFF

ESC FLAG 1
PROFlPT 1 3000, 2640, 4500, 660 ESC KEY "p res s ESC"
"Let's use t h e a c c e l e r a t o r t o update €he

PASS KEY
ESC FLAG 0
PICTURE OFF
/ * ON - QUIT - GOT0 "Q" * /

PROMPT 1 1200, 2640, 5500, 440 CTRL U "use a c c e l e r a t o r "
"Press CTRLtU t o update t h e sc reen witliout p u l l i n g

PICTURE OFF
MESSAGE-OFF
PASS KEY

PROMPT 1 1100, 2640, 5800, 440 (c} "C=continue"
"Sometimes menu q p t i o n s need more information t o complete

MESSAGE - OFF

M PROMPT ORG 2200 3960
PICTURE UN 1 2100 1870 "exp lo re r . f ig"
EXPECT KEY I C }
PICTURE - OFF

PROMPT 1 1600, 3080, 4800, 220 ABORT KEY "choose menu opt ion"
"Choose t h e FORMAT op t ion from t h e Disk-menu."
GET TO MENU 4, 2, "Disk" "FORMAT" SPACE - KEY

POINT TO 3450, 1650, 1, 1 / * p o i n t r i g h t * /
PROMPT 1 1200, 3850, 5500, 440 (c} "C=continue"
"The format op t ion i s used t o format new d i s k e t t e s so
t h a t you can s t a r t s t o r i n g information on them."

MESSAGE - OFF

POINT TO 3650, 2090, 1, 1 / * p o i n t up * /
PROMPT 1 1100, 3850, 5800, 440 I C } "C=continue"
"The box next t o t h e Drive: prompt i s where you w i l l type
t h e name of t h e drive you wish t o use t o format a d i s k . "

MESSAGE OFF
PICTURE-OFF -

PROMPT 1 1200, 3850, 5500, 660 { a } " type \''A\1111
"The f l a s h i n g c u r s o r i n d i c a t e s t h a t t h e box i s a c t i v e

PASS KEY

PROMPT 1 1200 3850, 5500, 440 BKSPACE KEY "p res s BACKSPACE"
"The le t ter \"A\" appeared i n t h e box. ThE BACKSPACE

PASS KEY

PROMPT 1 1200 3850, 5500, 440 TAB KEY "move cu r so r "
"The l e t te r \ l lA\l l was removed. The TAB key i s used t o

sc reen aga in . F i r s t , remove t h e F i l e menu
from t h e sc reen by p r e s s i n g ESC."

down t h e F i l e menu."

-

a t a s k . When t h i s occurs a d i a l o g box w i l l appear ."

a - -

and w a i t i n g f o r you t o type a response. Let's p re t end
t h a t we a r e going t o format a disk on drive A . "

-

key i s used t o c o r r e c t mis takes . Try it."
-

move t h e c u r s o r t o t h e next component. Try it."
. .- - - - - - - - -

POINT TO 5100, 2530, 1, 0 / * point up * /
PROMPT 1 1200, 3850, 5500, 880 TAB KEY "move cursor"
"The cursor now appears i n t h e box neZt t o t h e Options
prompt. You do not need t o type any options t o do a
standard format. Use t h e TAB key t o move t h e cursor
t o t h e next component."

0
MESSAGE OFF
PASS KEY

POINT TO 2700, 2970, 1, 1 / * point up * /
PROMPT 1 1200, 3850, 5600, 660 SPACE KEY "press space bar"
"This i s a \Clcheck box\CO. I f you want-the d i s k e t t e t o

MESSAGE OFF
PASS - KEY

PROMPT 1 1100, 3850, 5700, 660 SPACE KEY "press space bar"
"The box is now checked. Since d isks usEd t o s t o r e f i l e s
c rea ted by DeskMate do not need t h e operating system,
uncheck t h e box by pressing t h e space bar again."

MESSAGE OFF
PASS KEY

P O I N T TO 3100, 3355, 1, 1 /* point up * /
PROMPT 1 1200, 3850, 5500, 880 TAB KEY "move cursor11
"When you a r e done providing a l l t h e information t o

-

be a bootable d i ske t t e , you would check t h e INSTALL
OPERATING SYSTEM box by pressing the space bar."

-

complete t h e t a sk of formatting a disk, you would
push t h e OK button. Move t h e cursor t o t h e OK button.
Can you guess what key t o use?"

MESSAGE OFF
PASS KEY

POINT TO 5000, 3355, 1, 0 / * point up * /
PROMPT 1 1200, 3850, 5500, 4 4 0 TAB KEY "move cursor"
"Since w e a r e not ac tua l ly going t o f5rmat a disk,

MESSAGE OFF
PICTURE-OFF
PASS - KEY

PROMPT 1 1200, 3850, 5500, 220 SPACE KEY "push CANCEL"
"Press space bar t o push CANCEL and a b 0 3 t h e format."
PASS - KEY

M PROMPT ORG 2200 2750
PROMPT T 1200, 2310, 5500, 1100 I C } "C=continue"
"The ESC key could a l s o be used t o cancel a d ia log
box. The ESC key is your e x i t key; it w i l l q u i t
appl icat ions, menus, and d ia log boxes. I f you press
ESC now, you would e x i t DeskMate and re turn t o DOS.
Now, l e t ' s review what you have learned."

- a
push t h e CANCEL button instead."

I1 a PROMPT 1 1625, 1540, 4700, 2420 IC} "C=continue"
- The Desktop is used to run DeskMate\r\n

applications.\r\n - Accessories are special tools that can run\r\n
anywhere within DeskMate.\r\n - The F10 menu contains all the accessories.\r\n - Title line provides information about\r\n
DeskMate and the date and time.\r\n - Menus contain the options available in an\r\n
application.\r\n - Menus are displayed using function keys."

PROMPT 1 1625, 1430, 4700, 2640 (c) "C=continue"

- To choose a menu option, you pull down\r\n

-
-

- TAB moves the cursor to the next choice.\r\n -
- ESC exits menus, dialog boxes, and\r\n

MESSAGE OFF
GOTO "m5nu"

TAG "get help arrows"
ESC FLAG-1 -

GET KEY
KE'IWITHIN DOWN ARROW []
IF FALSE GOTO " m a - not - - dn arrow"
PASS KEY-
COUNT DEC 0
COUNT-ABOVE 0 0
IF - TRUE - GOTO "get - help-arrows"

TAG "gha - - no more"

M PROMPT ORG 2100 2420
PROMPT 1-2000 2200 5000 440 ABORT KEY "press ESC"
"There are no more lines of inforEation. Press
ESC to exit Help."
PAUSE MODE 200
EXPECT KEY ESC KEY
MESSAGE OFF PICTURE - OFF
ESC FLAG 0

TAG "gha - exit"

PASS KEY
ESC FLAG 0

RETURN

TAG "gha - not - - dn arrow"

\ClPart 1: Lesson Summary\CO\r\n

11 \ClPart 1: Lesson Summary\CO\r\n

the menu, hi hlight the option, and then\r\n
press ENTER.?r\n
Accelerator ke s are a quick way to choose\r\n
a menu option.Yr\n
Dialog boxes ask you for information to\r\n
complete a task.\r\n

Space bar checks boxes and pushes buttons.\r\n

applications. I'

/ * ... /

a -

-

-

IF TRUE GOTO ha e x i t "
COUNT BELOW 0 -
IF - TRUE - GOTO "gha no more"

M PROMPT ORG 2100 2420
PROMPT 1~2000,2200,5000,440,ABORT KEY, "read information"
"Press ESC t o l eave Help o r press-\A\B t o cont inue
reading t h e information."

GOTO "get - h e l p - arrows"
I* ... I
TAG ''e2lr
ESC KEY
TAG-" e 1 'I
ESC KEY
GOTU "menu"

TAG, "no - space"

PROMPT 1 2000 1760 4000 660 I C) "C=continue"
"There i s no t enough room on your d i s k
t o run p a r t one of t h i s lesson ."
GOTO " teach play"

TAG, " t o play"
MESSAGE-OFF -

COUNT EQUAL 9 0
IF - TRUE - GOTO " teach play"

RESTORE - FILE 1 "dmcorkbd"

TAG " teach play"
CALL "post t u t " IN - FILE " i n t r o 3 .evn"
GOTO "menuT

TAG "end lesson"

TAG Ire nd "
F2 { R) RETURN KEY {play.pdm} RETURN - KEY
PICTURE ON 0 U 0 "FINDTUT.FIG"
RESTORE7 ILE 0 "des k t opd . c f g"
RESTORE-DT CFG

- -
7 a

- -

a INTRO2.DOC

TAG " In t roduc t ion 2"
M PROMPT ORG 2000-4500
ON QUIT - GOTO " r e t u r n - - t o main"

PICTURE ON 1 1900 1540 "he lp2 . f ig"
EXPECT KEY {c}
PICTURE - OFF

PICTURE ON 1 1900 1540 "compass.fig"
EXPECT KEY {c}
PICTURE - OFF

POINT TO 1000 1 0 0 1 0 / *

"Let's t r y us ing DeskMate On-Line Help."
MESSAGE - OFF PICTURE - OFF

/ * MESSAGE BUFFER 4200 1320 * /
MESSAGE BUFFER 4200 2500
I F TRUE-GOT0 "nuf mem"
PRUMPT T l500,154U, 5000,880 {c} "C=continue"
"There i s not enough memory t o run t h i s lesson"
GOTO " r e t u r n t o main"
TAG "nuf mem'" -
PASS KEY-

ON Q U I T GOTO " i n help"
PAUSE MODE 1 0 0 -
POINT-TO 1000 3400 1 3 /* info.box * /
PROMPT 1 1500,1540,5000,880 { c) "C=continue"
"Help i s d i s p l a y e d i n t h r e e types of boxes. One form of Help i s an

-

o i n t t o Fl=Help * /
PROMPT 1 2000,3000,4000,2 g 0 F1 "press F1"

-

a
\Cl informat ion box\CO. An information box provides d e t a i l e d
informat ion about a s p e c i f i c t o p i c .

I1

PICTURE - OFF

PROMPT 1 1900,1540,4200,1100 {c} "C=continue"
"Help i s \Clcontext sensi t ive\CO. This means t h a t no m a t t e r where you

a r e i n DeskMate -- i n an a p p l i c a t i o n o r i n an accessory --
DeskMate provides \C3specific\CO advice f o r t h e t a s k a t hand.

11

POINT TO 1600 800 1 0 / * p o i n t t o t e x t app l box * /
PROMPT 1 1900,1540,4200,1100 I C } "C=continue"
" In t h i s case , t h e Text a p p l i c a t i o n box was h i g h l i g h t e d .
Therefore , t h e informat ion box con ta ins s p e c i f i c i n s t r u c t i o n s
p e r t a i n i n g t o t h e Text a p p l i c a t i o n .

11

POINT TO 3000 5050 1 0 / * p o i n t t o a r rows=sc ro l l * /
PROMPT 1 1900,1540,4200,660 I C } "C=continue"
"When an informat ion box con ta ins more t e x t t han it can
d i s p l a y , t h e \8\9 and \A\B keys may be used t o s c r o l l t h e t e x t .

I1

PICTURE OFF -
PROMPT 1 1900,1540,4000,660 PGDN KEY ''press PAGE DOWN"
"The PAGE UP and PAGE DOWN keys Fan a l s o be used t o s c r o l l

POINT TO 250 4850 1 2 / * cur so r * /
PROMPT 1 1900,1540,4200,440 PGDN KEY "press PAGE DOWN"
"The c u r s o r moved t o t h e bottom Tine . Try p r e s s i n g PAGE DOWN aga in ."
PASS KEY
PICTURE OFF

PROMPT 1 1900,1540,4200,880 PGDN KEY "press PAGE DOWN"
"The c u r s o r i s s t i l l on t h e bottcm l i n e , bu t t h e t e x t

a
-

s c r o l l e d up one page. When you f i n i s h reading t h e page,
p r e s s PAGE DOWN one more time.

I1

PASS KEY

POINT TO 1600 3950 1 0 / * o i n t t o [END] * /
PROMPT 1 1900,1540,4200,66 a {c) "C=continue"
"The word [END] has appeared, i n d i c a t i n g t h a t t h i s i s t h e l a s t

-

l i n e of t h e Help informat ion .
I1

POINT TO 700 4860 1 3 / * o i n t t o fl=more Help * /
PROMPT 1 1900,1540,4200,8 1 0 F1 "press F1"
"Af ter reading t h e l a s t l i n e , you can e i t h e r e x i t Help us ing ESC
o r get more g e n e r a l he lp on t h e Desktop. To get a d d i t i o n a l he lp ,
p r e s s F1.

II

PICTURE OFF MESSAGE - OFF
PASS KEY

POINT TO 4000 1000 1 0 / * o i n t t o d o t t e d box * /

"General Help appears i n t h e form of \ C l t a s k / t o p i c boxes\CO.
Each box c o n t a i n s a ques t ion you might have about t h e
c u r r e n t DeskMate a p p l i c a t i o n . The d o t t e d box i s t h e cu r so r ;
it i s used t o select t h e question' you wish t o have answered.

-

PROMPT 1 1900,2000,4200,13 5 0 I C) "C=continue" a
I1

PICTURE - OFF MESSAGE - OFF

POINT TO 4000 2200 1 0 / * e s t i o n box * /
"Let's f i n d t h e answer t o t h e qiiestion, \"What i s an
PROMPT 1 1900,4000,5000,66 F TAB KEY "press TAB"

a p p l i c a t i o n ? \ " Move t h e c u r s o r t o t h e ques t ion us ing
t h e TAB key.

I1

PICTURE OFF
PASS KEY

POINT TO 1000 4850 1 3 / * enter=more d e t a i l s * /
PROMPT 1 3000,3100,4100,1320 RETURN KEY "press ENTER"

P res s ing ENTER w i l l e i t h e r provide an answer t o t h e ques t ion

PICTURE OFF MESSAGE - OFF
PASS KEY

POINT TO 1 0 0 0 3400 1 3 / * in fo .box * /
ESC FTAG 1
PROFIPT 1 4500,1000,2200,1980 ESC KEY "press ESC"
" In t h i s case , an information boZ appeared wi th an answer

-

It And The Answer I s? \ r \n \T \n

o r it w i l l p rovide more s p e c i f i c ques t ions on t h e t o p i c .
I1

-

I _ L L - ---- 1 1 , - x E c - - ..--A:*- t h f i 3 m n r . r a r m r p o p F C P +I\

a PASS KEY
ESC FLAG 0

POINT TO 4000 3300 1 0 / * e s t i o n box * /

"Since our t h i r s t f o r knowledge Knows no bounds,
l e t ' s seek out t h e answer t o t h e next ques t ion .
Another way t o move t h e c u r s o r is with \A\B.

-

PROMPT 1 1900,1540,4200,88 ;f.' DOWN ARROW "move cursor"

I1

PICTURE OFF MESSAGE - OFF
PASS KEY

PICTURE ON 1 1900 1540 "magnify.fig"
EXPECT K E Y RETURN KEY
PICTURE OFF MESSATZ - OFF
PASS - KEY

PROMPT 1 4500,1540,2200,880 { c) "C=continue"
" A r e you wondering why an informat ion box d i d no t

-

appear wi th an answer?
11

PROMPT 1 4500,1000,2200,2200 RETURN KEY "press ENTER"
"Well, Help sometimes provides a moTe detailed response
by a sk ing more s p e c i f i c q u e s t i o n s . Press ENTER aga in
t o see i f you w i l l get an answer t o t h e c u r r e n t l y
selected q u e s t i o n .

I1

PASS KEY

PROMPT 1 4500,1000,2200,1760 {c) "C=continue"
"Eureka! You've d i scove red t h e t h i r d and f i n a l type
of Help. I n s t e a d of an informat ion box, t h e answer
i s be ing d i s p l a y e d i n s tep-by-step boxes.

-

a
11

POINT TO 1500 100 1 1 / * t op l i n e */
PROMPT 1 4500,1540,2200,880 { c) "C=continue"
"The q u e s t i o n be ing answered i s d i sp layed a t t h e t o p of

PICTURE OFF
t h e sc reen . st

-
POINT TO 550 800 1 3 / * number of s t e p s * /
PROMPT 1 4500,1000,2200,1760 { c } "C=continue"
"Each s tep i s numbered i n t h e o r d e r t h a t t h e y a r e t o
be completed. You w i l l need t o e x i t Help b e f o r e you
can perform t h e i n s t r u c t i o n s .

I1

MESSAGE OFF
PICTURE-OFF -

PICTURE ON 1 1900 1540 "powerful . f ig"
EXPECT KEY RETURN KEY
PICTURE OFF MESSAT;E - OFF
PASS KEY

ESC FLAG 1
POIRT TO 1000 3400 1 3 / * info.box * /
PROMPT 1 4500,1540,2200,1100 ESC KEY ' 'press ESC"
"The informat ion box t e l l s you haw t o perform t h e

-

nrn kA" _ . -. T I . I

ESC - FLAG 0

PROMPT 1 4000,1540,3800,1100 HOME KEY ress HOME"

The HOME key w i l l always take you back t o t h e f i r s t

MESSAGE OFF PICTURE - OFF
PASS KEY

POINT TO 4700 4000 1 3 / * fl=more Help * /
PROMPT 1 1900,1540,4200,660 F1 "press F1"
"If you do not see a question o r t op ic of i n t e r e s t ,
you can always press F1 t o see addi t ional t a sk /
t op ic boxes.

I1 There's no place l i k e Home.Tr\n\r 7 n

a
set of questions. Try i t .

11

-

I 1

MESSAGE OFF PICTURE - OFF
PASS - KEY

ESC FLAG 1
PROMPT 1 1500,4000,5500,880 ESC KEY ''press ESC"
"Pressing F1 while i n Help will-give you addi t iona l
help. In t h i s case, you were iven s1x new topics
t o choose from. Let's e x i t He I? p and re turn t o t h e Desktop.

I1

MESSAGE OFF PICTURE - OFF
PASS KEY
ESC - FLAG 0

ON QUIT GOTO "return t o main"
POTNT TU 7500 370 1 T /"menu bar f10 * /
PROMPT 1 1900,1540,4200,880 F10 "pul l down menu"
"Let's look a t how u s e f u l Help can be to explore DeskMate.
Let's say you a r e curious about t he F10 menu. To f ind
out what it does, press F10.

0
I1

MESSAGE OFF PICTURE - OFF
PASS - KEY

ON QUIT GOTO " k i l l menu"
POTNT TU 1000 100 T 0 / * fl=Help on top l i n e * /
PROMPT 1 2500,1540,3000,660 F1 "use Help"
"Now, use Help t o f ind out what t h e options i n t h e

MESSAGE - OFF PICTURE - OFF

MESSAGE BUFFER 4300 440
PASS KEY

ESC FLAG 1
POINT TO 500 3400 1 3 / * info.box * /
PROMPT 1 1900,1540,4300,440 ESC KEY ''press ESC"
"Help informs you t h a t t h i s i s €he Accessories Menu.

MESSAGE OFF PICTURE - OFF
PASS KEY
ESC FLAG 0
F10-

F10 menu a r e .
I1

-

Press ESC t o e x i t Help.
I1

0 POINT TO 6000 1670 1 1 / *

"Now, l e t ' s see what k ind of he lp i s a v a i l a b l e f o r

hone l i s t op t ion * /
PROMPT 1 500,1540,4200,110 a F1 "use Help"

an i n d i v i d u a l menu op t ion . We have a l r eady moved t h e
h i g h l i g h t t o t h e PHONE LIST opt ion , a l l you need t o
do i s use Help.

11

MESSAGE OFF PICTURE-OFF
PASS KEY

ON QUIT GOTO " r e t u r n t o main"
POINT TU 500 3400 1 3 /" in fo .box * /
ESC FZAG 1
PROFlPT 1 1900,1540,4100,880 ESC KEY "press ESC"
"AS you can see, Help provided you wi th more d e t a i l e d
informat ion on t h e Phone L i s t accessory . Now, l e t ' s
review what you have l ea rned .

-

I1

PICTURE OFF MESSAGE - OFF
PASS KEY
ESC FLAG 0

PICTURE ON 1 1500 1200 " supe r f1 . f ig"
EXPECT KEY { c }
GOTO "Yeturn - - t o main"

TAG " i n help"
ESC KEY-

TAG " r e t u r n t o main"
GOTO "menu"-INTILE - "dmintro . evn"

TAG " k i l l menu"
GOTO " r e t u r n - - t o main"

-

-

a

INTR03.DOC
/*-- * /
/ * Introductory Lesson - Third Part *I
/*-- * /

a
TAG, "Introduction - 3"

ON QUIT GOTO "ea"
M - PROMPT - ORG 2200 2460

PROMPT 1 1900 1980 4200 1540 {c} "C=continue"
Pa r t 3: Write a Note\r\n

\ r \n
In t h i s p a r t we w i l l write a shor t
note using t h e Text ap l i ca t ion , and

have learned i n t h e previous pa r t s . "

PROMPT 1 1500 2200 5000 440 RETURN KEY "run TEXT box"
"The h ighl ight i s already on t h e TEXT box, so it i s
ready t o be run."

MESSAGE - OFF

/ * Setup f i l e s needed f o r p a r t

PICTURE ON 0 0 0 "f indtu t . f ig"
D I S K SPACE 2048
I F - FALSE - GOTO "no - space"

TAG "get wi th i t "

ON Q U I T GOTO rrebll

PROMPT 1-400 1320 5200 1320 ABORT - KEY "type \ " H i Robert\""
"Type t h e gree t ing f o r t h e
note. The exact words t h a t we want you t o type a r e
i n t h e lower-right corner of t h i s box enclosed i n
quotes. Type t h e words exac t ly a s they appear
there, but do not type t h e quotes. Remember, you
can cor rec t mistakes with BACKSPACE."

M PROMPT ORG, 200,1320
SFACE KEY BKSPACE KEY

11

prac t i ce some of t h e t R iqgs t h a t you

* /

RETURN - KEY 0
- -

M PROMPT ORG 500 1540

ON QUIT - GOTO "ee" -

GET - TEXT 0 " H i Robert"
-

END KEY, LEFT - ARROW

M PROMPT ORG 500 1760
PROMPT 1-400,1540,4700,660 ABORT KEY "erase \llRobert\""
"Very good. But l e t ' s make t h e gyeeting less
formal. Use BACKSPACE t o e rase Robert's name
so t h a t you can change it t o Bob."

COUNT SET, 0 , 6

-

BKSPACE KEY 0
PROMPT T 400 1540 3200 220 ABORT - KEY "erase \'lRobert\lf"
"Keep pressing BACKSPACE. 'I

LOOP - TO 0 "erase - loop"

TAG "erase do"

LOOP - TO 0 "erase - loop"

TAG "zzapped"

PROMPT 1 400 1540 3000 220 ABORT-KEY "type \lrBob\ll"
"Now, type Robert I s nickname. I'

GET TEXT 0 rrBObt'
END-KEY -

/ * Autotype t h e remainder of t h e message * /

M PROMPT ORG 2200 2420
PROMPT 1-2000 2200 4000 440 { c } "C=continue"
"Great! Now l e t u s type t h e rest of
t h e no te f o r you."

BKSPACE - KEY {, }

MESSAGE OFF
KEY INTERVAL 2
RETURN KEY RETURN - KEY

MESSAGE OFF
PICTURE-OFF -

{I j u s t got my new Tandy Computer and i t ' s t e r r i f i c .
Right now I am 1
{learn ing how t o use DeskMate. }
{With it, I can do many home and o f f i c e t a sks)
(without having t o buy ex t ra software. }
{Such a deal!}
RETURN KEY RETURN - KEY

MESSAGE OFF
TAB KEY- TAB KEY TAB KEY TAB - KEY
TAB-KEY TAB-KEY TAB-KEY -
(Coiiie and seF i t ! }
KEY INTERVAL 0

M PROMPT ORG 2200 3960
PROMPT 1-2000 3960 4000 880 ABORT KEY "choose menu option"
"NOW t h a t w e have completed t h e n5te
you need t o save it on t h e d i sk
before you e x i t Text. Choose SAVE AS
from t h e F i l e Menu."

GET TO MENU 2 4 "File" "SAVE AS" SPACE - KEY
ON - QUIT - GOT0 'feet'

BKSPACE KEY -

a -

-

-

M PROMPT ORG 2200 3960
PROMPT 1-1900 3740 4200 880 ABORT KEY "type \llBOB\""
"The f i r s t s tep i s t o type t h e naiiie of
t h e f i l e t o save t h e note t o a t t h e
Save as: prompt. The cursor i s already
there , so type t h e name of t h e f i l e . "

M PROMPT ORG 2000 3300
GET - T E X T 0 rrBobll

M PROMPT ORG 2200 3740
PROMPT 1-2200 3740 3600 440 TAB KEY "move cursor"
"Next, press TAB t o move t h e cuTsor
t o t h e SAVE button."
PASS KEY

PICTURE - ON 0 0 0 " f ind tu t . f ig"

COUNT SET 7 2
FILE EXIST 0 "bob.doc"
I F FALSE - GOTO "push ok"

PRESERVE FILE 0 "bob.doc"
DELETE FILE 0 "bob.b"
COUNT - S E T 7 1

ON - QUIT - GOTO "remove - bob"

TAG "push ok"
PROMPT 1 1700 3740 4800 220 SPACE KEY "push button"
"And f ina l ly , press space bar t o Save t h e note ."
PASS KEY

M PROMPT ORG 2 0 0 0 3960
PROMPT 1-1200 3960 5600 880 ABORT KEY "choose menu option"
"Your no te has been saved t o disk: I f t he re had been a
problem with t h e saving of t h e f i l e DeskMate would
have n o t i f i e d you. L e t s e x i t Text and go back t o t h e
Desktop. Choose EXIT from t h e F i l e Menu."

GET TO MENU 2 9 l l F i l e l l "EXIT" SPACE - KEY
ON - QUIT - GOTO ''ea"

MESSAGE - OFF

a

-

-

- 0

LOOP TO 7 "delete saved"
RESTURE FILE 0 ltbob.docll
GOTO "DUNE"

TAG "delete saved"
DELETE FILE 0 "bob.doc"

TAG "done"

ON QUIT - GOTO rrebll

PICTURE ON 0 110 880 "desktext.f ig"
POINT TU 1400, 1100, 1, 0 / * P o i n t t o t h e l e f t * /

-

-

-
M PROMPT ORG 2200 2420 --_..-- * - ~ A A A C I ~ A A A A A A A A A 1 - l t ~ m - - - - & : - . . ~ I l

a PICTURE - OFF

PROMPT 1 1900 2200 5400 1100 { c) llC=lesson menu"
"In pa r t t h r e e of t h i s lesson, w e have reviewed:\r\n
\ r \ n - How t o use dialog boxes.\r\n - How t o choose an opt ion from a menu."

F2 { r) RETURN KEY ESC KEY
GOTO ''earr

TAG "no ex t ra"
RETURN - K E Y

/ * problems with lesson * /
TAG "no - space"

PROMPT 1 880 2000 4100 440 { c } "C=lesson menu"
"There i s not enough room on your d isk
t o run p a r t t h r e e of t h i s lesson."

GOTO "exi t I'

TAG "remove bob"
MESSAGE OFF-
ESC KEY-
I N FISGBOX "Save Changes"
IFTALSE GOTO "del - bob"
ALT N -

TAG "del bob"
LOOP TO 7 "delete saved q"
RESTURE FILE 0 "bob.doc"
GOTO rreZ.rr

TAG "delete saved q"
DELETE FILE 0 "bob.doc"
GOTO F a I'

TAG 'le f 'I

MESSAGE OFF
ESC KEY-

TAG "ee"

- -

-

a

-

MESSAGE OFF
ESC K E T
ALT-N
GOTU "menu" I N FILE "dmint r o . evn"

TAG "ed"
MESSAGE OFF
ESC KEY-

TAG "ec"
MESSAGE OFF
ESC KEY-

TAG "eb"

-

-

-

MESSAGE OFF _ _ _ _.-

TAG "exit I'
GOTO "menu" IN - FILE "dmintro .evn"

TAG "post tut"
ON - QUIT - GUT0 "on - their - own"

M - PROMPT - ORG 2100 2420

POINT TO 1600 3960 1 3
PROMPT 1 2000 2200 4900 1100 TAB KEY "move highlight"

\r\n
To run other Teach Me lessons, first move the
highlight to the Teach Me box. Use TAB to move
the highlight. 'I

PASS KEY

COUNT - SET 0 4
TAG "to teach me loop"
POINT TU 1600-3960 1 3
PROMPT 1 400 2640 3300 220 TAB KEY "move highlight"
"You are doing fine. Keep going."
PASS KEY
LOOP-TO 0 "to teach - - me loop"
PICTURE OFF -

M PROMPT ORG 500 2860
PROMPT 1'400 3080 5000 220 RETURN KEY "press ENTER"
"To run the Teach Me application,-press ENTER."
MESSAGE OFF
PASS KEY

ON - QUIT - GOTO "quit play"

a
/*-- * /

!I Part 4: Using Teach FIe!\r\n

-

-

-

a
HOME KEY HOME - KEY HOME - KEY HOME - KEY HOME - KEY HOME - KEY

M PROMPT ORG 2200 2420
-

PROMPT 1-1400 2200 4900 660 (c) "C=continue"
"Teach Me lets you run other lessons. Each
lesson will guide you through the fundamentals
of a DeskMate application."
MESSAGE - OFF

M PROMPT ORG 300 3080
PUINT TO-4000 2200 1 1
PROMPT 1200 2860 3800 1100 IC} "C=continue"
"The list box to the right contains
a list of the available lessons.
To run a lesson, use \A\B to move
the highlight to the lesson that
you want and then press ENTER."
PICTURE OFF
MESSAGE-OFF -

a M PROMPT ORG 300 2200
PUINT TO-4100 1320 1 1
PROMPT 1 200 1980 4100 1100 {c} "C=continue"
"\ClDeskMate: An Introduction\CO is the
lesson that you are currently running.
Feel free t o run it again or to run
any of the others that you see listed
after you have completed this lesson."
PICTURE OFF
MESSAGE-OFF -

ESC FLAG 1
M PROMPT ORG 2200 2640
PROMPT 1-1400 2420 4000 660 ESC KEY "press ESC"
"TO exit Teach Me without runnixg a
lesson, just press ESC. Try it now
to return to the Desktop application."
MESSAGE OFF
PASS KEY
ESC - FLAG 0

ON QUIT - GOTO "on - their - own"

PROMPT 1 1600 2200 4700 660 IC} "C=lesson menu"
"You can use Teach Me to become familiar with
a new DeskMate application and to get ideas
about what you can do with that application."

GOTO "on their - own"

TAG "quit play"
MESSAGE OFF PICTURE - OFF
ESC - KEY-

TAG "on their own"
MESSAGE-OFF PICTURE - OFF
RETURN -

-

-

a

0PTIONS.DOC

TAG "options"
LEFT ARROW LEFT ARROW RIGHT ARROW
DOWN-ARROW LEF T-ARROW LEFT ARROW
UP - ARROW CTRL-HOME - - KEY UP - ARROW

ON QUIT GOTO "end lesson"
M FROMPT - ORG 1000 1760

/ * MESSAGE BUFFER 6400 3190 * /
MESSAGE BUFFER 6400 2900
IF TRUE-GOT0 "MEMORY OK"
PRUMPT U 1300 1320 5500 1980 IC) "c=end lesson"

Your computer does not have enough memory to complete
this lesson. You may be able to complete the lesson
using a lower resolution video mode (read dmvid.doc
to change the video mode). You can also save memory
by eliminating any programs that terminate, but stay
resident in memory. Also make sure that you do not
use the TASKSWITCH option from the Accessories Menu
before taking a lesson.

0

-

Not Enough Memory\r\n

I1

GOTO "end lesson"

PROMPT 1 9OU, 1540,6200,2420 {c} "C=continue"

\r\n
This lesson will introduce you to the fundamentals of
DeskMate and
do with it.\r?n
\r\n
First, let's see how to use this lesson. The lower right
corner of each instruction box (like this one) will tell you
how to get to the next step of the lesson. In this case,
the C=continue message means that you should press C on
your keyboard to continue. Please press it now."
M PROMPT ORG 1500 1760
PROMPT 1-1400 1540 5300 1760 {c} "C=continue"
"If you are new to DeskMate or computers, you are
going to make some mistakes. Don't worry about it,
making mistakes is an important part of learning.
In particular, don't worry about pressing the
wrong key. We will catch it and tell you what you
need to do next. If you are ever unsure of what
to do, try something and we will guide you through.
You can press the ESC key to quit during a lesson."

MESSAGE - OFF

TAG "MEMORY OK"
11 Teach Me About DeskMate\r\n

ive you a sampling of the things you can 0

TAG "show menu"
ON - QUIT - GUT0 "end lesson"
CTRL U
LEFT-ARROW LEFT ARROW RIGHT ARROW
DOWN-ARROW LEFT-ARROW LEFT ARROW
UP ARROW CTRL-HOME KEY UP ~ ARROW

OPTIONS 1 6 30 2400 1320
I' Teach Me About DeskMate"
"1. Desktop Basics" "Section 1"
"2. Use Help" "Sect ion-2)I

"3. Write a Note" "Sect ion-3 If
" 4 . Run Other Lessons" " to play"
"5. Use a Mouse" "AV1-
"6. Exit This Lesson" "end lesson"

TAG "no mouse o t"
OPTIONS 1 5 30 8 4 0 0 1320
'I Teach Me About DeskMate"
"1. Desktop Basics" "Section 1"
"2. Use Help" It Sect ion-2 If

"3. Write a Note" I* Sect ion-3)I

" 4 . Run Other Lessons" Y o play"
"5. Ex i t This Lesson" "ens lesson"

TAG "Section 1"
MESSAGE OFF PICTURE OFF
GOTO "S5ction - 1'' I N T I L E - "dmintro .evn"

TAG "Section 2"
MESSAGE OFF 'PICTURE OFF
GOTO "Ixtroduction - 2" I N - FILE " i n t r o 2 .evn"

TAG "Section 3"
MESSAGE OFF 'PICTURE OFF
GOTO "Ii i troduction - 3" I N - FILE " i n t r o 3 .evn"

TAG " t o play"
MESSAGE-OFF PICTURE OFF
GOTO " tB - play" I N - FILE "dmintro .evn"

0

a
TAG "A"
MESSAGE OFF PICTURE OFF
GOTO "Aw I N - FILE "mBuse.evn"

TAG "end lesson"
MESSAGE OFF PICTURE OFF
GOTO "eiid lesson" In - FILE "dmintro .evn"

MOUSE.DOC
.

/*_____-_------------* Mouse Lesson *,,----------------- * / .

e
TAG "A"
M - PROMPT - ORG 2700 3300

MOUSE - ON

ON - QUIT - GOTO "QQ1"

PICTURE ON 0 1000 440 "mouse.fig"
EXPECT - KEY IC)
PICTURE ON 0 1000 440 "rat.fig"
EXPECT - KEY { c)

PICTURE ON 0 1000 440 "arrow.fig"
EXPECT - KEY IC)
F2 {R) RETURN - KEY {hangman) RETURN - KEY
CTRL T

ON - QUIT - GOTO "Q"

PAUSE - MODE 10

IN MSGBOX l'Hangmanll
IF-FALSE GOTO llMclll
TAB KEY SPACE - KEY

TAG "Mcl"
TAB KEY SPACE KEY SPACE KEY SPACE KEY
TABTEY TAB KEY TAB KEY-
POINT - TO 3000, 3850, 1, 1

PROMPT 1 800, 440, 6500, 1100 ABORT KEY "push OK"
"A mouse gives DeskMate and other popuTar business, educational,
and entertainment programs \"point and click\" convenience. To
see how, let's use the mouse to play Hangman. To start the

oint to the OK button and

-

-

/ * 1 word per game * /
/ * point to the right*/

-

a

ame, move the mouse pointer to
(T"push\" it by clicking one of t E e mouse's buttons."
COUNT SET 1 3000, COUNT SET 2 3740, COUNT - SET 3 900, COUNT - SET 4 440
GET MUUSE 0 MS CLICK 1 Z 3 4
PICTURE OFF -
MESSAGE-OFF
IF FALSE GOTO "CL1"
PASS MOUSE
GOTO-"C2 11

TAG I' CL 1 I'

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "FlO" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO ''Ell"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "F12" - --..- ..e-- I\ . a n r v ~ ~ n 1 9 '3 A

0 G0TO"E 13"

TAG"E 1 0 "
PROMPT 1 1500 4180 5000 660 ABORT KEY "cl ick mouse"
"TO c l i c k t h e mouse, b r i e f l y t a p €he mouse

GOTO"AGAIN1"

TAG" E 1 1 I'
PROMPT 1 1500 4180 5000 440 ABORT KEY "cl ick mouse"
"DO not double-click. J u s t b r i e f l y tap t h e mouse

GOTO"AGAIN1 'I

TAG" E 1 2 It

PROMPT 1 1500 4180 5000 440 ABORT KEY "c l ick mouse"
"DO not press t h e SHIFT key when Elicking. Try

GOTO"AGAIN1 'I

TAG "E 13 I'
PROMPT 1 1500 4180 5000 660 ABORT KEY "c l ick mouse"
"Before c l i ck ing t h e mouse, pos i t ion t h e mouse

button; do not hold t h e b u t t o n down. Try again
t o c l i c k on OK."

bu t ton once. Try again t o c l i c k on OK."

again t o c l i c k on OK."

po in te r so t h a t it poin ts t o t h e center of t h e
but ton. Try again t o c l i c k on OK."

TAG"AGAIN1"
GET MOUSE 0 MS CLICK 1 2 3 4
IF - FALSE - GOTO"CL1"

MESSAGE OFF
PASS - MOUSE

TAG"C2 'I

PROMPT 1 2000, 4290, 4000, 220 ABORT-KEY "type your name"
"Type i n your name and press enter."

COUNT SET 1 12
PASS WHILE 1 { A } .. { z } RIGHT - ARROW LEFT - ARROW BKSPACE - KEY DELETE - KEY [I
MESSAGE OFF
RETURN K E Y

CTRL - W (mouse} RETURN - KEY

ON QUIT GOT0 "Q2"
POTNT TU 1450, 4510, 1, 1 / * Point t o t h e r i g h t * /

0
/*-- * /

-
/*-- * /

-

PROMPT 1 200, 3080, 2500, 660 ABORT KEY "click on \ l lA\l l l l
"Let's try to guess the
word. T o start click ,

on the letter \ ' lA\ll . l l

- a
COUNT S E T 1 1500, COUNT S E T 2 4 4 0 0 , COUNT S E T 3 200, COUNT S E T 4 320
GET MUUSE 1 MS CLICK 1 2 3 4
MESSAGE OFF -
PICTURE-OFF
I F TRUE-GOT0 "C3"

TAG"CL2"
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
I F TRUE GOTO "F2O" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
I F TRUE GOTO "F21"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
I F TRUE GOTO "E22" -
WAS MOUSE 0 MS HOLD 1 2 3 4
I F TRUE GOTO "AGAIN2"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
I F TRUE GOTO "AGAIN2"-
GOTO" E 23"

TAG"E2 0"
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"TO click the mouse, briefly tap €he mouse
button; do not hold the button down. Try again
to click on \ l tA\ll . l '

GOTO"AGAIN2 I'

TAG"E2 1 I'
PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY "click mouse"
"DO not double-click. Just briefly tap the mouse

GOTO"AGAIN2 'I

TAG"E22"
PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY "click mouse"
"Do not press the S H I F T key when clicking. Try
GOTO"AGAIN2 'I

TAG"E23"
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse

- -

- -

button once. Try again to click on \ ' lA\ll . l l

0

again to click on \ l lA \ l l . l l

pointer so that it points to the center of the
button. Try again to click on \11A\11.11

TAG"AGAIN2 I'

GET MOUSE 0 MS CLICK 1 2 3 4
I F FALSE GOTO"CL2"

MESSAGE OFF
PASS - MOUSE

TAG" C 3 'I
PROMPT 1 200, 3080 2500, 660 ABORT KEY "click on \llE\t ' ll
"Try the letter \ "E\"

- -

/*-- *I

-
, ..-\ ..

COUNT SET 1 3050, COUNT SET 2 4400, COUNT SET 3 200, COUNT SET 4 320
GET MUUSE 1 MS CLICK 1 2 3 4
MESSAGE OFF -
IF - TRUE-CALL - "C4"

TAG"CL3"
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E30" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E31"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "F32" -
WAS MOUSE 0 MS HOLD 1 2 3 4
IF TRUE GOTO "AGAIN3"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN3"-
G0TO"E 33"

TAG" E 3 0 I'
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"TO click the mouse, briefly tap €he mouse
button; do not hold the button down. Try again
to click on \llE\ll.ll
GOTO"AGAIN3"

TAG" E 3 1 It

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"DO not double-click. Just briefly tap the mouse

GOTO VI AGAIN3 I'

TAG " E 3 2 'I
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"DO not press the SHIFT key when Flicking. Try
GOTO "AGAIN3 I'

TAG"E 3 3"
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse

- -

button once. Try again to click on \11E\11.11

a
again to click on \llE\ll.ll

pointer so that it points to the center of the
button. Try again to click on \llE\ll.ll

TAG"AGAIN3"
GET MOUSE 0 MS CLICK 1 2 3 4
IF - FALSE - GOTO"CL3"

MESSAGE OFF
PASS MOUSE -
/*-- * /
TAG "C4 I'
PROMPT 1 200, 3080 2500, 220 ABORT - KEY "click on \llI\llll
"Try the letter \"I\". I'

COUNT SET 1 4650, COUNT SET 2 4400, COUNT - SET 3 200, COUNT - SET 4 320
GET MUUSE 1 MS CLICK 17 3 4
MESSAGE OFF -
IF TRUE-GOT0 - "C5" -

TAG" C L 4 'I
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "F40" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "F41"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "F42" -
WAS MOUSE 0 MS HOLD 1 2 3 4
IF TRUE GOTO "AGAIN4"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN4"-
GOTO"E43"

TAG" E 4 0 'I
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"TO click the mouse, briefly tap €he mouse
button; do not hold the button down. Try again
to click on \llI\ll.ll

e

GOTO"AGAIN4 'I

TAG "E 4 1 I'
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"DO not double-click. Just briefly tap the mouse
GOTO"AGAIN4"

TAG " E 4 2 sf
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not press the SHIFT key when Flicking. Try
GOTO "AGAIN 4 'I

TAG "E 4 3 I'
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse

button once. Try again to click on \811\11.11

again to click on \11I\11.11

0
pointer so that it points to the center of the
button. Try again to click on \llI\ll.ll

TAG "AGAIN 4 'I
GET MOUSE 0 MS CLICK 1 2 3 4
IF FALSE GOTO"CL4"

MESSAGE OFF
PASS - MOUSE

TAG " C 5 VI

PROMPT 1 200, 3080 2500, 220 ABORT KEY "click on \llO\llll
"Try the letter \ "O\" . I'

COUNT SET 1 1850, COUNT SET 2 4840, COUNT SET 3 200, COUNT - SET 4 320
GET MUUSE 1 MS CLICK 1 7 3 4
MESSAGE OFF -
IF TRUE-GOT0 "C6"

TAG"CL5 'I
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E5O" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E51"-

- -

/*-- * /

-

-

- -

.--- .._.- n .._ _..-- m - ~ r n - ~ - n - a

e WAS MOUSE 0 MS BUTTON UP 1 2 3 4
I F TRUE GOTO "AGAIN5"-
GOTO"E53"

TAG "E 5 0 'I
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
" T o c l i c k t h e mouse, b r i e f l y t a p €he mouse
bu t ton ; do no t ho ld t h e b u t t o n down. Try aga in
t o c l ick on \''0\''.''

GOTO"AGAIN5 I'

TAG" E 5 1 I'
PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY " c l i c k mouse"
"DO n o t double-c l ick . J u s t briefly t a p t h e mouse

GOTO"AGAIN5"

TAG" E 5 2 'I
PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY "click mouse"
"DO no t press t h e S H I F T key when F l i c k i n g . Try

GOTO I' AGAIN 5 I'

TAG"E 5 3 I'
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before c l i c k i n g t h e mouse, p o s i t i o n t h e mouse

b u t t o n once. Try aga in t o c l i c k on \''0\''.''

a g a i n t o c l i c k on \O\"."

p o i n t e r so t h a t it p o i n t s t o t h e c e n t e r of t h e
b u t t o n . Try a g a i n t o c l ick on \''0\''.''

TAG"AGAIN5"
GET MOUSE 0 MS CLICK 1 2 3 4
I F FALSE - GOTO"CL5"

MESSAGE OFF
PASS MOUSE

a -

-
/*-- *I
TAG" C 6 'I
PROMPT 1 200, 3080 2500, 220 ABORT - KEY " c l i c k on \'VU\1111
"Try t h e let ter \ Y J \ " . I'

COUNT SET 1 4 2 5 0 , COUNT SET 2 4 8 4 0 , COUNT - SET 3 200, COUNT - S E T 4 320
GET MUUSE 1 MS CLICK 17 3 4
MESSAGE OFF -
I F TRUE-GOT0 - "C7"

TAG " CL 6 VI

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
I F TRUE GOTO "F60" -
WAS Mom 0 MS DBL CLICK 1 2 3 4
I F TRUE GOTO "F61"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
I F TRUE GOTO "F62" -
WAS MOUSE 0 MS HOLD 1 2 3 4
I F TRUE GOTO "AGAIN6"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
I F TRUE GOTO "AGAIN6"-
G0TO"E 63"

TAG"E 6 0 I'

-

n n r \ . . n m I i c n n ??nn cnnn c c n nnnnrp upv 1 f p l i p t mn11qO)I

G0TO"AGAIN 6"

TAG" E 6 1 I'
PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY "click mouse"
"DO not double-click. Just briefly tap the mouse

GOTO "AGAIN 6 I'

TAG I' E 6 2 'I
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"DO not press the SHIFT key when 'Clicking. Try
GOTO 'I AGAIN 6 'I

TAG" E 6 3 I'
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse

0
button once. Try again to click on \llU\ll.ll

again to click on \llU\ll.ll

pointer so that it points to the center of the
button. Try again to click on \''U\''.''

TAG"AGA1N 6"
GET MOUSE 0 MS CLICK 1 2 3 4
IF - FALSE - GOTO"CL6"

MESSAGE OFF
PASS - MOUSE

TAG" C 7 'I

PROMPT 1 200, 3080 2500, 220 ABORT - KEY "click on \ ' 'M\I1I1

"Try the letter \"M\". I'

COUNT SET 1 6300, COUNT SET 2 4400, COUNT - SET 3 200, COUNT - SET 4 320
GET MUUSE 1 MS CLICK 1'2 3 4
MESSAGE OFF -
IF - TRUE-GOT0 - "C8"

TAG"CL7 I'
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E70" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E71"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E72" -
WAS MOUSE 0 MS HOLD 1 2 3 4
IF TRUE GOTO "AGAIN7"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN7"-
GOTO I' E 73"

TAG"E70"
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"TO click the mouse, briefly tap €he mouse
button; do not hold the button down. Try again
to click on \"M\''.''

/*-- * I

a

GOTO"AGAIN7 I'

TAG"E71"
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not double-click. Just briefly tap the mouse

* , , m - - - J - L - - 1 1 -1- -- \ 11n1\ 11 11

a TAG"E72 It

PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY " c l i c k mouse"
"DO no t press t h e S H I F T key when F l i c k i n g . Try

GOT 0 "AGAIN 7 'I

TAG " E 7 3 'I
PROMPT 1 1500 2200 5000 660 ABORT KEY " c l i c k mouse"
"Before c l i c k i n g t h e mouse, p o s i t i o n t h e mouse

aga in t o c l i c k on \"M\"."

p o i n t e r s o t h a t it p o i n t s t o t h e c e n t e r of t h e
b u t t o n . Try aga in t o c l i c k on \''M\''.''

TAG" AGAIN7 'I
GET MOUSE 0 MS CLICK 1 2 3 4
I F FALSE - GOTO"CL7"

MESSAGE OFF
PASS MOUSE

-

-

/*-- * /
TAG" C 8 'I

PROMPT 1 200, 3080, 2500, 4 4 0 ABORT - KEY " c l i c k on \ l l S \ l l l l
"You j u s t about have it;
Try t h e let ter \ t l S \ l t . l l

COUNT SET 1 3 4 5 0 , COUNT SET 2 4 8 4 0 , COUNT - SET 3 200, COUNT - SET 4 320
GET MUUSE 1 MS CLICK 1 2 3 4
MESSAGE OFF -
I F - TRUE-GOT0 - "C9"

TAG"CL8"
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
I F TRUE GOTO "E80" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
I F TRUE GOTO "E81"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
I F TRUE GOTO "F82" -
WAS MOUSE 0 MS HOLD 1 2 3 4
I F TRUE GOTO "AGAIN8"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
I F TRUE GOTO "AGAIN8"-
GOTO"E83"

TAG"E 8 0"
PROMPT 1 1500 2200 5000 660 ABORT KEY " c l i c k mouse"
"TO c l i c k t h e mouse, b r i e f l y t a p €he mouse
bu t ton ; do no t ho ld t h e bu t ton down. Try aga in
t o c l ick on \ l l S \ l l . l l

GOTO"AGAIN8"

TAG "E 8 1 'I
PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY " c l i c k mouse"
"DO no t double-c l ick . J u s t b r i e f l y t a p t h e mouse

GOTO"AGAIN8"

TAG" E 8 2 It

PROMPT 1 1500 2200 5000 4 4 0 ABORT KEY " c l i c k mouse"
"Do not p r e s s t h e S H I F T key when F l i c k i n g . Try

a

b u t t o n once. Try aga in t o c l i c k on \ l l S \ l l . l l

aga in t o c l i c k on \''S\''.'' _ _ _ _ _ _ _ -_ ___,...

TAG "E 8 3 I'
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \llS\ll.ll

a
TAG"AGAIN8"
GET MOUSE 0 MS CLICK 1 2 3 4
I F - FALSE - G O T O T L 8 "

MESSAGE OFF
PASS - MOUSE

TAG I' C 9 'I
I N MSGBOX "Hangman"
IF-FALSE - - GOTO "C9"

ON QUIT GOTO "N1"
PRUME'T -0 1 4 0 0 , 4 4 0 0 , 5000, 4 4 0 ABORT KEY "push NO"
"Click on NO to exit Hangman and well1 show you

COUNT SET 1 4 5 0 0 , COUNT SET 2 3190, COUNT - SET 3 700, COUNT - SET 4 330
GET MUUSE 0 MS CLICK 1 7 3 4
I F - TRUE - GOTO T A 2 "

TAG" CL 9 'I
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
I F TRUE GOTO "F90" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
I F TRUE GOTO "F91"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
I F TRUE GOTO "F92" -
WAS MOUSE 0 MS HOLD 1 2 3 4
I F TRUE GOTO "AGAIN9"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
I F TRUE GOTO "AGAIN9"-
G0TO"E 93"

TAG" E 9 0 'I
PROMPT 1 1 4 0 0 4 4 0 0 5000 660 ABORT KEY "click mouse"
"TO click the mouse, briefly tap €he mouse

GOTO"AGAIN9 I'

TAG "E 9 1 I'
PROMPT 1 1 4 0 0 4 4 0 0 5000 4 4 0 ABORT KEY "click mouse"
"DO not double-click. Just briefly t ap the mouse

GOTO "AGAIN 9 It

TAG"E92"
PROMPT 1 1 4 0 0 4 4 0 0 5000 4 4 0 ABORT KEY "click mouse"
"DO not press the S H I F T key when Flicking. Try

GOTO 'I AGAIN 9 I'

TAG" E 9 3 VI
DDAMDT I 1dnn ddnn ~ n n n 66n BRnRT KRY "click mouse"

/*-- * /

how to use the mouse in other ways."

a

button; do not hold the button down. Try again
to click on NO."

button once. Try again to click on NO."

again to click on NO."

a TAG "AGAIN 9 I'
GET MOUSE 0 MS CLICK 1 2 3 4
IF - FALSE - GOTO 'TL9"

TAG"CA2 I'
MESSAGE OFF
PASS MOUSE
GOTO-"CA" IN - FILE "MOUSE1 .DOC"

.
/*--------------* Exit Tutorial (From Lesson Menu) *-------------- * / .
TAG "DE" / * EXIT APP * /
PROMPT 1 1500 4180 5000 4 4 0 IC} llC=continuell
"There is not enough space on this disk space to
GOTO " Q 1 I'
run this tutorial. . 'I

TAG "Q3" / * EXIT APP * /
MESSAGE OFF PICTURE - OFF
ESC KEY-
GOTU "Q"

MESSAGE OFF PICTURE - OFF
ESC KE'T

TAG "N1"
MESSAGE OFF PICTURE - OFF
ALT N -

TAG "Q"
MESSAGE OFF PICTURE - OFF
MOUSE OFF
TAG "Ql" / * EXIT */
TAG " QQ 1 'I
MESSAGE OFF PICTURE OFF
F2 {R} RETURN-KEY ESC - KEY

TAG 11 END It

GOTO "menu" IN - FILE lldmintro .evn"

TAG "Q2" / * EXIT APP * /

-

a -
/ * EXIT - TUTORIAL * /

-

MOUSE1 .DOC

TAG" CA"
ON - QUIT - GOTO "Q" IN - FILE "I1

POINT TO 1400, 770, 0, 0 / * Point to the left * /
PROMPT 1 1200, 2640, 5600, 1100 ABORT KEY "double-click mouse"
"Let's go into the Text application. T5 run a program

/*-- * / e

from the Desktop with the mouse, you must double-click
on the ap lication name. Position the mouse pointer on
the word Y"TEXT\" and click one of the buttons
twice without pausing between clicks."

TAG"DX2 'I
COUNT SET 1 300, COUNT SET 2 715, COUNT - SET 3 1000, COUNT - SET 4 220
GET MUUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE - GOTO llDX" -
WAS MOUSE 0 MS CLICK 1 2 3 4
IF TRUE GOTO ''DXl"
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO ltDXlll -
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "DXl" -
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "DXll' -
WAS MOUSE 0 MS HOLD 1 2 3 4
IF - TRUE - GOTO "mCl"

PROMPT 1 1500 4180 5000 440 ABORT KEY "double-click mouse"
"Position the mouse on the word \mTEXT\" before

GOTO "DX2 I'

TAG"DX1"
PROMPT 1 1500 4180 5000 880 ABORT KEY "double-click mouse"
"TO double-click the mouse, brieffy tap the mouse
button twice; do not pause between clicks and do
not hold the mouse button down. Try again to
double-click on \"TEXT\". I'

-

double-clicking . I' a

GOTO "DX2"

TAG "DX"
MESSAGE OFF
PASS MOUSE

ON QUIT GOTO "Q3" IN - FILE "MOUSE.DOC"
CTKL HOFIE - KEY

POINT TO 500, 660, 1, 2 / * Point to the right * /
PROMPT 1 2650, 3300, 5200, 880 ABORT KEY "click on file menu"
"Let's change the document we created-earlier in

-

-
/*-- * /

Text. Retrieve this file using the OPEN option
from the File Menu. To choose the menu option with
a mouse, first, click on the File Menu."

COUNT SET 1 100, COUNT SET 2 330, COUNT - SET 3 600, COUNT - SET 4 220
GET MUUSE 0 MS CLICK 1-2 3 4 -- -n..- mfirnn ,,-I,

* TAG"CL9"
WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
I F TRUE GOTO "E90" -
WAS MOUSE 0 MS DBL CLICK 1 2 3 4
I F TRUE GOTO "E91"-
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
I F TRUE GOTO "F92" -
WAS MOUSE 0 MS HOLD 1 2 3 4
I F TRUE GOTO "AGAIN9"
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
I F TRUE GOTO "AGAIN9"-
G0TO"E 93"

TAG "E 9 0 I'
PROMPT 1 1400 4400 5000 660 ABORT KEY " c l i c k mouse"
"TO c l i c k t h e mouse, b r i e f l y t a p €he mouse
b u t t o n ; do not h o l d t h e but ton down. Try again
t o c l i c k on t h e F i l e Menu."

GOT 0"AGA I N 9 'I

TAG "E 9 1 It

PROMPT 1 1400 4400 5000 440 ABORT KEY " c l i c k mouse"
"DO no t doub le -c l i ck . J u s t briefly t a t h e mouse
GOTO"AGAIN9"

TAG"E92"
PROMPT 1 1400 4400 5000 440 ABORT KEY " c l i c k mouse"
"DO no t p r e s s t h e SHIFT key when F l i c k i n g . Try

GOTO "AGAIN 9 'I

bu t ton once. Try again t o c l i c k on t E e F i l e Menu."

again t o c l i c k on t h e F i l e Menu."

PROMPT TAG" E 9 3 1 'I 1400 4400 5000 660 ABORT KEY " c l i c k mouse" a
"Before c l i c k i n g t h e mouse, posit ion t h e mouse
p o i n t e r so t h a t it po in t s t o t h e center of t h e
menu. Try a g a i n t o c l i c k on F i l e Menu."

TAG "AGAIN 9 It

GET MOUSE 0 MS CLICK 1 2 3 4
I F FALSE - GOTO T L 9 "

TAG "CD"
MESSAGE OFF
PICTURE-OFF
PASS - MOUSE

PICTURE ON 0 0 0 "FINDTUT.FIG"
DISK SPACE 1024
I F FALSE - GOTO "DE"

PROMPT 1 2650, 3300, 5200, 220 ABORT KEY "choose menu op t ion"
"TO choose t h e OPEN op t ion , doub le -c l i ck on OPEN."

TAG"DE2 'I

COUNT SET 1 0, COUNT SET 2 880, COUNT SET 3 2600, COUNT SET 4 220
GET MUUSE 0 MS DBL CZICK 1 2 3 4
I F TRUE GOTO "ITJ" -

-

* / /*--

-

- -

- -
r . n c manric-w n map -1 rnv I c) 2 A

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "ISEl" -
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "ITE1" -
WAS MOUSE 0 MS HOLD 1 2 3 4
IF - TRUE - GOTO "ISE1"

PROMPT 1 1500 4180 5000 440 ABORT KEY "double-click mouse"
"Position the mouse on the OPEN oFtion before

GOTO "DE2 'I

TAG"DE1"
PROMPT 1 1500 4180 5000 880 ABORT KEY "double-click mouse"
"TO double-click the mouse, brieffy tap the mouse
button twice; do not pause between clicks and do
not hold the mouse button down. Try again to
double-click on File Menu."

double-clicking . 'I

GOTO "DE2"

TAG "D J"
MESSAGE OFF
PASS MOUSE
PICTURE - ON 0 2400 2255 "1istbox.fig"

PROMPT 1 1200, 4520, 5600, 220 ABORT KEY "choose list box option"
"Open BOB.DOC by double-clicking on thE filename."

TAG " D Z 2 VI

COUNT SET 1 2900, COUNT SET 2 2695, COUNT - SET 3 1200, COUNT - SET 4 220
GET MUUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "DZ" -

WAS MOUSE 0 MS CLICK 1 2 3 4
IF TRUE GOTO "DZ1"
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "ITZ1" -
WAS MOU% 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "DZ1" -
WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "ITZ1" -
WAS MOUSE 0 MS HOLD 1 2 3 4
IF - TRUE - GOTO "DZ1"

PROMPT 1 1500 4180 5000 440 ABORT KEY "double-click mouse"
"Position the mouse on BOB.DOC be€ore

GOT 0 'I D Z 2 I'

TAG"D Z 1 I'
PROMPT 1 1500 4180 5000 880 ABORT KEY "double-click mouse"
"TO double-click the mouse, brieffy tap the mouse
button twice; do not pause between clicks and do
not hold the mouse button down. Try again to
double-click on B0B.DOC.I'

/*-- * /

- -
a

double-clicking . I'

GOTO I' D Z 2 'I

TK 1 ~ 7 . 1 1

e INVERT ON 0 2900 2695 1200 220
TAB KEY (BOB.DOC}
INVERT OFF
R E T U W E Y -

ON - Q U I T - GOTO"Q3"

PROMPT 1 1000, 3200, 6000, 1320 ABORT KEY "select Text"
"Let's change t h e g r e e t i n g i n t h i s let€er from \ " H i Robert\"
t o \ " H i Bob\". To c o r r e c t t h e greetinc(rRszlect \"Robert\"
by p o i n t i n g t h e mouse p o i n t e r t o t h e . Press and ho ld
t h e mouse b u t t o n down w h i l e moving t h e mouse p o i n t e r r i g h t
u n t i l \ l lRobert\ l l and only \"Robert\" i s selected. When t h e
e n t i r e word i s selected, release t h e mouse bu t ton . "

/*-- * /

HOLD SEQ 300 660 100 220, 880 660 120 220, 0 220 6400 4400
- 1 " t h e s t a r t of \11Robert\1111 "the end of \11Robert\1111

/*-- * /
M PROMPT ORG 2000 3300
PROMPT T 1200, 3200, 5500, 220 ABORT KEY " type \rtBob\rrrr
"Replace t h e selected t e x t by typ ing \"Bob\"."

GET TEXT 0 ''BobVr

PAUSE - MODE 120

/*--- * /
PROMPT 0 1000, 1320, 6000, 3080 I C } "C=lesson menu"

\ r \ n
Congra tu la t ions , you have completed t h e mouse l e s son .

\ r \ n

\ r \ n

\ r \ n

\ r \ n

-

I1 a Lesson Summary\r\n

You have l e a r n e d i n t h i s l e s s o n : \ r \ n

- How t o p o i n t t h e mouse p o i n t e r . \ r \ n

- How t o press a b u t t o n by \ "c l i ck ing \ " . \ r \ n

- How t o choose an op t ion by \lldouble-clicking\".\r\n

- How t o select an item by \"dragging\" t h e mouse\r\n
p o i n t e r . I'

TAG "Q3"
MESSAGE OFF PICTURE-OFF
ESC KEY-
I N FISGBOX "Save Changes"
IF-FALSE GOT0 "Q2"
ALT N -

TAG "(22"
RESTORE FILE 0 "BOB.DOC"
MOUSE O F F
GOTO"Q1" I N - FILE "MOUSE .DOC"

-

Script Command Reference

Command Index:

ALLOW-IN H I BIT suspend during unexpected events
CALL call a subroutine
CHANGE-DIR change the current directory
COUNT-ABOVE test for counter above a value
COUNT-BELOW test for counter below a value
COUNT-DEC decrement the counter
COUNT-EQUAL test for counter at a value
COUNT-INC increment the counter
CO U NT-S ET set the counter to a value
DELETE-DIR delete a directory
DEL ETE-FI LE delete a file
D IS K-S PAC E check for room on the disk
ESC-FLAG allow the script to expect Escape
EXPECT-KEY get a key from the user and check it
FIL E-EX1 ST check for a file's existence
GET-ARROWS a get arrows to the specified location
G ET-D LG B OX-C M P get keys to dialog box component
GET-KEY get any key from the user
G ET-LB-ITEM get keys to list box item
GET-RB get keys to the radio button
GET-TEXT get the string from the user
G ET-TO-M EN U get keys to the specified menu
GOT0 transfer control to the label
I F-FALSE-GOT0 transfer if the last check was FALSE
I F-TR U E-GOT0 transfer if the last check was TRUE
I GN 0 R E-l NH I BIT do not suspend on unexpected events
I N-D LGBOX is the dialog box active?
IN-FILE specifies the file a TAG is in
I N-LI STBOX is the list box active?
IN-MSGBOX is the message box active?
I NV E RT-0 F F turn off any INVERTing region
I NVE RT-ON invert a region of the screen
KEY-I NTERVAL pause a time period between events
KEY-W lTHl N check if the key is in a list
LOOP-TO decrement count and loop if not zero
M-PROM PT-ORG specify origin of automatic messages
M ESSAGE-BUFFER preallocate memory for screen saves
MESSAGE-OFF restore the screen under the message
MESSAGE-ON put a message on the screen
ON-Q U IT-GOT0 designate transfer on quit
ON-TIMEOUT-CALL designate transfer on timeout
OPTIONS process a menu of options
PASS-KEY pass a retrieved key to the application
PASS-WH I LE pass matching keys to the application
PAUSE-MODE pause for a time period
PI CTU R E-0 FF restore the screen under the picture

0

DIPTIIDC nhi ni It a nidi ire nn the screen

a PRESERVE-FILE subtitute a .DFT file for another
PROMPT prompt the user for input
R ESTORE-DT-C FG restore DESKTOP.CFG
R ESTORE-FILE restore a preserved file
RETURN return from a subroutine
RUN-RESOURCE run a DeskMate resource
START-I N
TAG mark routine
UNPACK-FILE unpack a file

start in a PDM other than DeskTop

0

ALLOW-INHIBIT

ALLOW-INHIBIT is no longer supported.
8

m

CALL "label"

CALL is used to call a script subroutine. \- Q

"label" is the name of the routine.

ecial Not=

The script return stack only has room for eight (8) entries. Calls must not be nested more than
eight deep. If the subroutine is not in the current file, the label must be followed by the proper
IN-FILE designation.

Examble
CALL "query - user", IN - FILE "user .ernv1

@

CHANG E-DI R "directory"

CHANGE-DIR is used to force your tutorial or demo to execute from the designated directory.

Parameters

"directory" is the destination directory.

St>ecial Not=

The directory must exist. The directory must either contain the entire pathname, or it must be a
direct descendent of the current directory.

EXamDle

CHANGE - D I R " t e s t "

e

e

e COUNT-ABOVE counter value

COUNT-ABOVE sets the TRUE condition if the count is greater than the specified value, FALSE
otherwise.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal number.

Special Notes

The general purpose counter can be used to keep track of errors and for looping. See also,
COUNT-BELOW and COUNT-EQUAL.

ExamDle

COUNT ABOVE 1 2 -
I F TRUE - GOT0 "end" -

a

COUNT-BELOW counter value

COUNT-BELOW sets the TRUE condition if the count is less than the specified value, FALSE
otherwise.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal number.

Special Notes

The general purpose counter can be used to keep track of errors and for looping. See also
COUNT-ABOVE and COUNT-EQUAL.

a

ExamDle

COUNT BELOW 1 2 -
I F TRUE - GOT0 "end" -

a

a COUNT-DEC counter

COUNT-DEC decrements the counter value. Sets the TRUE condition if the result is not negative,
FALSE otherwise.

Parameters

counter is the number of the counter from 0 through 9.

Special Notes

The general purpose counter can be used to keep track of errors.

Example

COUNT DEC 9
I F - TRUE - GOT0 "end"

-

a

COUNT-EQUAL counter value

COUNT-EQUAL sets the TRUE condition if the count is equal to the specified value, FALSE
otherwise.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal number.

Special Notes

The general purpose counter can be used to keep track of errors and for looping. See also
COUNT-ABOVE and COUNT-BELOW.

ExamDle

0

COUNT - EQUAL 1 2
I F - TRUE - GOT0 "end"

0

a COU NT-INC counter

COUNT-INC increments the count value.

Parameters

counter is the number of the counter from 0 through 9.

Special Notes

The general purpose counter can be used to keep track of'errors.

ExamDle

COUNT INC 4
COUNT - EQUAL 4 3
IF - TRUE - GOT0 "end"

-

a

COUNT-SET counter value

COUNT-SET sets the count value.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal value.

Special Notes

The general purpose counters can be used to keep track of errors.

ExamDle

COUNT - SET 9 3

0

TAG llloop'l
GET KEY

COUNT - DEC 9

I F - TRUE - GOT0 llloopll

-

a

e D E L ET E-D I R "d i rectory "

DELETE-DIR is used to delete directories which you may have created during your tutorial of
demo.

parameters

"directory" is the directory to be deleted.

SDecial Notes

The directory must either contain the entire pathname, or it must be a direct descendent of the
current directory. The directory must of course be empty.

Example

DELETE - DIR " t e s t "

a

DELETE-FILE DMCONFIG-flag "filename"

DELETE-FILE is used to delete a file.

Paramete rS

DMCONFIG-flag is 0 (zero) if the file to be deleted is in the current directory, 1 if the file is in
the DMCONFIG directory.
"filename" is the pathname of the file to be deleted.

Special N o t a

If "filename" does not contain path information, the file will be deleted within the current
directory.

Examr>le

a

DELETE - FILE 0 "test.doc"

a

0 DISK-SPACE number-of-bytes

DISK-SPACE is used to verify the indicated amount, number-of-bytes, of free space required
by the tutorial or demo exists on the disk.

Parameters

number-of-bytes is the decimal number of bytes of the disk space required.

a e c i a l Notes

If DISK-SPACE is immediately followed by IF-TRUE-GOT0 or IF-FALSE-GOT0 playback
execution will resume based on the returned state. If DISK-SPACE is not asscociated with a
conditional GOTO, playback execution will terminate if the number of bytes indicated does not
exist on the disk. The minimum number of bytes to check for is 1024 since modifying the
directory structure can cause the directory information itself to grow by 512 bytes.

Example

DISK - SPACE 1024

0

ESC-FLAG Flag

ESC-FLAG allows the script to accept an escape key without quitting.

Parameters

Flag is set to one if ESC-KEY is expected, zero otherwise.

e

Special Notes

Be sure to set ESC-FLAG to zero when ESC-KEY is not expected, as there is no way to quit
when ESC-FLAG is one.

Example

ESC FLAG 1

EXPECT - KEY ESC - KEY

ESC - FLAG 0

-

a

a EXPECT-KEY KEY

EXPECT-KEY will get keystrokes from the user until the correct key is input. If the key matches
on the first try the TRUE condition will be set, if not FALSE will be set. If FALSE is set, any
previously drawn message will have been removed.

Parameters

KEY is the value of the key expected.

Spec ial No tes

EXPECT-KEY combines the functions of GET-KEY and KEY-WITHIN in a single call. If a
specific key is expected, this call is more efficient.

EXPECT-KEY will prompt the user if the correct key is not typed. If the user types the wrong key
twice, the keyboard is displayed with a finger pointing to the appropriate key.

ExamDle

MESSAGE - ON 1 1000 1100 2000 440
"Press ENTER to cont inue"
EXPECT KEY RETURN KEY
MESSAGE - OFF

- -

a

i

FILE-EXIST "filename"

FILE-EXIST is used to verify the existence of a file.

Parameters

"filename" is the pathname of the file to be located.

a e c i a l Notes

If "filename" does not contain path information, the file will be searched for within the current
directory. If FILE-EXIST is immediately followed by IF-TRUE-GOT0 or IF-FALSE-GOT0
playback execution will resume based on the returned state. If FILE-EXIST is not asscociated
with a conditional GOT0 and the file does not exist, playback execution will terminate.

0

-famule
F I L E - EXIST "test .doc"

a

a GET-ARROWS x Y xo YO x i y i

GET-ARROWS will get arrows from the user until the location is reached. Keys which would
cause the user to leave the bounding area will be accepted. Non-arrow keys will cause an error
message to be displayed.

Parametera

X is the number of horizontal arrows, negative number for left arrows and positive for right
arrows.
Y is the number of vertical arrows, negative numbers for up arrows and positive for down arrows.
XO YO X1 Y1 designates the bounding area within which arrowing is allowed. The current cursor
position should be thought of as (0,O). XO and YO should be less than or equal to zero. X1 and
Y1 should be greater than or equal to zero.

Special Not=

You must specify the bounding area correctly or the counters will get copfused. For instance, if
the cursor in on the last line in Text, down arrows produce no action, so Y1 must be zero.

ExamDle I

GET - ARROWS 3 4 -2 -1 4 5
~

Allows arrowing within 2 columns left and 1 line above and 4 columns left and 5 lines below
of the point 3 columns right and 4 lines down. I

I

I 0

~

I
I

i
~

i

G ET-DLGBOX-CMP tab# "string"

GET-DLGBOX-CMP will pass keys from the user which move the focus to the specified dialog
box component. If the component is a push button, this call will not return until the push button
has been "pressed."

Parameters

tab# is the number of TABS which must be pressed to get to the component.
"string" is used to identify the component in any prompting messages caused by the user
entering destructive keys.

Special Notes

The dialog box must be the selected component prior to this call. GET-DLGBOX-CMP will use
the push button accelerator if the component is a push button. UP ARROWS and DOWN ARROWS
will be accepted only when the current component is not a list box7This call should m-be used if
the dialog box has side scrolling list boxes.

ExamDle

a

/ * Display t h e Open d i a l o g box * /
F2 t o } RETURN - KEY

/ * Go t o t h e ex tens ion f ield * /
GET - DLGBOX - CMP 2 "Extension E d i t f i e l d "

0

a GET-KEY

GET-KEY will get a keystroke from the user.

Parameters

None.

Special Notes

GET-KEY is used when we do not know what to expect from the user. It is more efficient to use
EXPECT-KEY if a preferred key is known. GET-KEY should generally be followed by
KEY-WITHIN.

ExamDle

GET KEY

KEY - WITHIN t a l .. { z) [I
I F TRUE - GOT0 lllabelll

-
I

I
-

I

i
i

~ a
I

I
I
I

I
I

j
I

I
I
I
I

I

I

G ET-L B-ITE M "string "

GET-LB-ITEM will pass keys from the user which lead to selecting a list box item.

parameters

"string" is the exact string contained within the list box. The length of the string must not be
greater than 32 characters.

S pecial Notes

0

The list box must be the selected component prior to this call. GET-LB-ITEM will accept
UP ARROWS, DOWN - ARROWS, and character keys. This call cannot be used for side scrolling list
boxes.

If the user types any improper keys, the following message will appear:

T o go to the "string" option,
press the "appropriate arrow" key!
or press the "first letter of string" key
until the option is highlighted.

Examr, If2

GET LB ITEM "PR - DOC.DOC" - -

a

a G ET-R B but ton-nu m be r "string"

GET-RBT will accept arrow keys to move the focus to a particular radio button.

Parameters

button-number is the integer from 0 to nButtons-1 that specifies the button.
"string" is used by the automatic prompts when the user presses an unacceptable character.
The string length must not be greater than 32 characters.

Special Notes

Control returns when the focus is on the desired radio button. If the user types something other
than a valid key, a message stating "Please use only [appropr i a t e] keys t o get
t o t h e [s t r i n g] 'I will be displayed, where [appropr i a t e] lists the proper arrow keys and
[s t r i n g] is the user defined string.

ExamDle I

M - PROMPT - ORG 0 4000
F2 (r) RETURN-KEY (draw} RETURN - KEY

F6 { p } RETURN - KEY

GET - RB 1 4 "Brick P a t t e r n "

I

a
,

I

GET-TEXT flag "string"

GET-TEXT will get a string from the user.

Parameters

flag is the integer 0 if you wish to be case insensitive, 1 if you wish to be case sensitive, and 2 if
you only wish to accept 0 through 9.
"string" may be up to 63 printable characters.

0

ecial Notes

All printable characters will be passed to the application until the length of the string is reached.
The input will then be compared to the desired string, and a message asking the user to try again
will be displayed if the result was not obtained. The routine will not end until the correct string is
entered. RIGHT ARROW, LEFT ARROW, BKSPACE KEY, and DELETE KEY are accepted to aid
the user in editing. Note that the cursor position is 6 t known when theroutine returns. If the user
mistypes the phrase, the user will be prompted to correct the mistakes. If the user continues to
make mistakes, or pauses too long between keystrokes, the user can press the space bar to
have the string auto-typed.

ExamDle
GET - TEXT 1 "Zimbabwe is a nice place to live."

a

a G ET-TO-ME N U function-key item-num ber "menu st ring" "item st ring"
accelerator-key

GET-TO-MENU will get keystrokes from the user until the desired menu item is reached.

Parameters

function-key is the number of the function key which pulls down the menu.
item-number is the number of the item on the menu.
"menu string" is the string which will be used in all messages guiding the user to the menu.
The string must not exceed 32 characters.
"item string" is the string which will be used in all messages guiding the user to the item. The
string must not exceed 32 characters.
accelerator-key is the menu item accelerator, use SPACE - KEY if none exists.

%cia1 No tes

Messages will be displayed to guide the user to the correct menu item if any keys are detected
which do not lead to the correct destination.

I

Example I

GET - - TO MENU 4 4 'lTextll "Center" CTRL - C I

If the user enters keys which other than those which lead to the proper menu option, the following
messages will appear:

To choose Center from t h e Text Menu,
f i r s t f i n d t h e word Text on t h e menu bar across t h e top of t h e
screen. Following it i s t h e function key which p u l l s down t h e Text
menu. Press t h a t function key now.

The next step t o choose Center from t h e Text Menu, i s t o h i g h l i g h t
i t . Press down arrow u n t i l t h e Center option i s h ighl ighted .

To choose t h e Center option,
press ENTER.

a

I

I

I

GOTO "label"

GOTO forces script event execution to resume after the corresponding label.

Parameters

"label" is the string associated with the TAG where event execution is to resume.

Soecial Notes

If associated TAG statement does not exist within the same event file, the IN-FILE option should
be used. If the TAG cannot be located, execution will terminate.

ExamDle

e

GOTO "Run - T e x t "

F2 {r} RETURN - KEY

{draw) RETURN - KEY

TAG "Run - T e x t "

F2 {r} RETURN - KEY

{text} RETURN - KEY a

IF-FALSE-GOT0 "label"

IF-FALSE-GOT0 forces script event execution to resume after the corresponding label if a
previous command has resulted in the FALSE condition.

Parameters
"label" is the string associated with the TAG where event execution is to resume.

Sbec ial No teg

If associated TAG statement does not exist within the same event file, the IN-FILE option should
be used. If the TAG cannot be located, execution will terminate.

ExamDle

db

FILE - EXIST "test .doc"

IF FALSE - GOT0 "Run - Text" -

j F2 {r} RETURN - KEY
{draw) RETURN - KEY

TAG "Run-Text a' u a
F2 {r} RETURN-KEY

{ t e x t 1 RETUFW-KEY I

1

~

I

IF-TRUE-GOT0 "label"

IF-TRUE-GOT0 forces script event execution to resume after the corresponding label if a
previous command has resulted in the TRUE condition.

Parameter3

"label" is the string associated with the TAG where event execution is to resume.

m

If associated TAG statement does not exist within the same event file, the IN-FILE option should
be used. If the TAG cannot be located, execution will terminate.

Example

FILE - EXIST "test .doc"
IF TRUE GOTO "Run - Text

GOTO "doesn't exist", I N - FILE "test2 .evn"

- -

. TAG "Run - Text"
F2 (r) RETURN - KEY e { t e x t } RETURN - KEY

I G N 0 R E-I N HI BIT

IGNORE-INHIBIT is no longer supported
a'?

I

u 0'

I

MESSAGE-ON Screensave Xorg Yorg Xext Yext

MESSAGE-ON displays an information box on the screen.

Parame ters

Screensave is 0 if you do not want to save the screen background, 1 otherwise.
Xorg and Yorg specify the world coordinate origin of the information box.
Xext and Yext specify the world coordinate dimensions of the box.
"Text of message" is the string to be displayed in the box.

SDecial Notes

MESSAGE-ON is used to communicate with the viewer. The message will remain on the
screen until a MESSAGE-OFF or another MESSAGE-ON command is encountered.

The screen background of the message box will be preserved. If the size of the box exceeds the
available memory for storing the background, the box will not be drawn and the FALSE condition
will be set.

To place a message box on the screen during recording, use the " S h i f t - F 1 rnn1 command. A
default size INFO BOX will appear on the screen. The arrow keys are used to reposition the box.
The CTFu+AEmO~keys are used to resize the box. To edit the message press [TAB], to cancel
it press [ESC] , to accept it without a message press [TAB] [TAB] . When editing the
message NEVER have two carriage returns in succession. If this is necessary use: [ENTER],
SPACE, [ENTER] instead. To accept the message press [TAB], to cancel press [ESC] . This
procedure will write the MESSAGE-ON, it's maprect, the message, a long pause (700 which is 7
seconds), and a MESSAGE-OFF command.

If you wish to use the arrow icons in your messages, use the string '1R6 for a left arrow, '16\7"
for a right arrow, 'W9" for an up arrow, and '1AW for a down arrow.

The accessory icon is 'T.

If you wish to specify a function key, you may use '1RF" for F1, '1E\lO" for F2,'1E\11 I' for
F3,'1E\12 for F4,"\\13" for F5, '1R14" for F6,'1E\15" for F7,'1E\16" for F8, '11 B\l C" for F10.

ExanQh2

A message box starting at column 10, row 5 and is 40 columns wide and 2 rows tall would have
the following map rectangle (characters are 100 world coordinates wide and 220 world
coordinates tall).

e "Text of message"

*

MESSAGE - ON 0 1000 1100 4000 4 4 0

"This is a message box"

PAUSE-MODE 700,MESSAGE - OFF

ON-QUIT-GOT0 "label"

ON-QUIT-GOT0 forces script event execution to resume after the corresponding label when
user presses Esc.

Parameters

"label" is the string associated with the TAG where event execution is to resume.

SDecial Notes

This instruction affects all following events until another ON-QUIT-GOT0 is encountered.

ExamDle

4B

ON - Q U I T - GOT0 "End"

/ * Any user q u i t s a f t e r t h i s po in t w i l l goto t h e end * /
F2 {r} RETURN - KEY

{draw} RETURN - KEY

TAG llEndll

I -e/

I

I

I

IN-DLGBOX "Title String"

IN-DLGBOX returns TRUE if the specified dialog box is active.

Parameters

"Title String" is the title displayed in the dialog box frame.

Special Not=

The "Title String" must match exactly.

!zumQk

0

F2 { r) RETURN KEY

I N DLGBOX "Run File", I F FALSE GOT0 "something w r o n g "
-

- - -

a

IN-FILE "filenarne.ext"

IN-FILE is associated with any label not within the current file.

Parameters

"filenarne.ext" is the name of the file containing the label.

Special Notes

IN-FILE should immediately follow a branching label.

ExamDle

GOTO l l l abe l l l , I N - FILE "test .evn"
I F - FALSE - GOTO " labe l" , I N - FILE "test .evn"
ON - QUIT - GOTO " l a b e l , I N - FILE "test .evn"
I F - TRUE - GOTO " labe l" , I N - FILE "test .evn"
CALL " l abe l " , I N - FILE "test .evn"

I

I

I

IN-LISTBOX "Title String"

IN-LISTBOX returns TRUE if the specified list box is active.

Parameters

"Title String" is the title of the list box.

Special Notes

The "Title String" must match exactly.

ExamDle

TAG "get t o t e x t l i s t box"

a

I N LISTBOX 11TEXT11, I F - TRUE - GOTO "on t e x t l i s t box"
EXPECT KEY TAB - KEY

GOTO "get t o t e x t l i s t box"

-
-

TAG "on t e x t l i s t box"

a

0 IN - MSGBOX "Title String"

IN-MSGBOX returns TRUE if the specified message box is active.

Parameters

"Title String" is the title of the message box.

Special Notes

The "Title String" must match exactly.

ExamDle

F2 { r) RETURN KEY
IN - MSGBOX "Save Changes", IF - FALSE - GOT0 "something wrong"

-

I
l

e

I NV ERT-OFF

INVERT-OFF is used to restore an inverted area of the screen.

Parameters

None.

s. gecial Notes

e

INVERT-OFF will assure that the area is not left inverted if the area was flashing.

ExamDle

INVERT - ON 1 1000 1000 4000 220

PAUSE - MODE 500
INVERT OFF -

a

(I) INVERT-ON FlashFlag Xorg Yorg Xext Yext

INVERT-ON is used to invert an area of the screen.

parameters

FlashFlag is 1 if you want the area to flash, 0 otherwise.
Xorg and Yorg are the world coordinate origins of the area to INVERT.
Xext and Yext are the extents of the area.

Special Notes

INVERT-ON will invert the specified area once a second.

Example

INVERT - ON 0 1000 1000 4000 220

PAUSE - MODE 500
INVERT OFF -

l

a

KEY-INTERVAL Interval

KEY-INTERVAL sets the time delay between the playback of each recorded event.

Parameters

Interval specifies the number of hundredths of seconds to pause between each playback event.

Seecial Notes

KEY-INTERVAL is used to pace the playback of recorded events. If the playback is terminated
by the user pressing E s c , the pauses will be ignored.

Example

KEY - INTERVAL 50

a

/ * Pause f o r 1 / 2 second b e t w e e n each event * /

0

a KEY-WITHIN token list

KEY-WITHIN will compare a keystroke from the user to the values in a token list. If the key is
within the token list, the TRUE condition will be set, if not FALSE will be set.

Parameters

token list contains all of the values expected for the key. All tokens must be seperated by
spaces or commas, and the list must be terminated by the end of block token ' [3 '. The range
token 1 . . I may be contained within the token list.

SDecial Notes

KEY-WITHIN will operate on the last key retrieved. It should follow GET-KEY or
EXPECT-KEY.

Example I

GET KEY -
KEY WITHIN { a } . . { z } SPACE - KEY [I
/ * r e t u r n s t r u e i f a key from a t o z i s typed, o r * /

* I

-

/ * a space key i s typed
IF FALSE GOT0 " l a b e l " a - -

MESSAGE - ON 1 1000 1100 2000 4 4 0

"You have h i t an a lpha key"
GET KEY RETURN - KEY -

MESSAGE - OFF

TAG 'I 1 abe 1 'I

LOOP-TO counter "label"

LOOP-TO decrements the COUNT and forces script event execution to resume after the
corresponding label if the COUNT is greater than zero.

Parameters

counter is the number of the counter from 0 through 9.
"label" is the string associated with the TAG where event execution is to resume.

0

ecial N&s

The COUNT is used for looping, any instructions which affect it should be used inside the loop
with great care. Loops can be nested.

If associated TAG statement does not exist within the same event file, the IN-FILE option should
be used. If the TAG cannot be located, execution will terminate.

Exam de

COUNT - SET 2 3
TAG "loop 3 times"
GET - KEY PASS - KEY
LOOP - TO 2 "loop 3 times" a

0 M-PROMPT-ORG Xorg Yorg

M-PROMPT-ORG sets the origin for all automatically displayed messages.

Parameters

Xorg and Yorg are the world coordinate origins of the messages.

SDecial Notes

This call should be made prior to EXPECT-KEY, GET-ARROWS, GET-TO-MENU or any other
self prompting call.

ExamDle

M - PROMPT - ORG 2000 4000
EXPECT - KEY {k)

\

I

0

M ESSAGE-B U FFER Xext Yext

MESSAGE-BUFFER preallocates memory for subsequent MESSAGE-ON and PICTURE-ON
calls.

Parameters

Xext is the world coordinate width of the largest message or picture you plan on displaying.
Yext is the world coordinate height of the largest message or picture you plan on displaying.

Special Notes

PICTURE-ON and MESSAGE-ON can both save screen backgrounds if memory is available to
do so. MESSAGE-BUFFER allows you to "set aside" memory for this purpose if your
application allocates all of available memory. If the size of the box exceeds the available memory
for storing the background, the FALSE condition will be set.

ExarnDle

e
$

MESSAGE - BUFFER 2000 4 4 0

a

a M ESSAG E-OFF

MESSAGE-OFF removes the current message, and restores the screen background.

Parameters

None.

Special Notes

PICTURE-OFF and MESSAGE-OFF both restore screen backgrounds. Great care should be
taken in the order of restoration when message boxes and pictures overlap.

The screen background of the message box will be preserved. If the size of the box exceeds the
available memory for storing the background, the box will not be drawn.

Examt>le

MESSAGE - ON 0 1000 1100 2000 440
"This i s a message box"
PAUSE - MODE 700,MESSAGE - OFF

a

MESSAGE-ON Screensave Xorg Yorg Xext Yext
"Text of message"

MESSAGE-ON displays an information box on the screen.

Parameters

Screensave is 0 if you do not want to save the screen background, 1 otherwise.
Xorg and Yorg specify the world coordinate origin of the information box.
Xext and Yext specify the world coordinate dimensions of the box.
"Text of message" is the string to be displayed in the box.

%cia1 Notes

MESSAGE-ON is used to communicate with the viewer. The message will remain on the
screen until a MESSAGE-OFF or another MESSAGE-ON command is encountered.

The screen background of the message box will be preserved. If the size of the box exceeds the
available memory for storing the background, the box will not be drawn and the FALSE condition
will be set.

To place a message box on the screen during recording, use the "Sh i f t -F1 mrr command. A
default size INFO BOX will appear on the screen. The arrow keys are used to reposition the box.
The CTRLtARROfkeys are used to resize the box. To edit the message press [ENTER], to
cancel it press [E X] , to accept it without a message press [TAB]. When editing the message
NEVER have two carriage returns in succession. If this is necessary use: CR, SPACE, CR
instead. To accept the message press [TAB], to cancel press [E X] . The MESSAGE-ON will
write the MESSAGE-ON, it's maprect, the message, a long pause (700 which is 7 seconds), and
a MESSAGE-OFF command.

If you wish to use the arrow icons in your messages, use the string '15\6" for a left arrow, '16\7"
for a right arrow, '78\9" for an up arrow, and 'W\B for a down arrow.

The accessory icon is '1T".

If you wish to specify a function key, you may use '1E\F" for F1, '1E\lO" for F2,'1E\11" for
F3,'1E\12 for F4,"\E\13" for F5, '1E\l4" for F6,'1E\15" for F7,'1E\16 for F8, '11 B\ l C" for F10.

a

a

ExamDle

A message box starting at column 10, row 5 and is 40 columns wide and 2 rows tall would have
the following map rectangle (characters are 100 world coordinates wide and 220 world
coordinates tall).

MESSAGE - ON 0 1000 1100 4000 4 4 0

"This is a message box"
PAUSE - MODE 700,MESSAGE - OFF

a ON-QUIT-GOT0 "label"

ON-QUIT-GOT0 forces script event execution to resume after the corresponding label when
user presses Esc.

Parameters

"label" is the string associated with the TAG where event execution is to resume.

Spec ial No tes

This instruction affects all following events until another ON-QUIT-GOT0 is encountered.

Examele

ON - QUIT - GOT0 rrEnd'l

/ * Any user quits a f t e r t h i s point w i l l goto t h e end * /
F2 (r) RETURN - KEY

(draw} RETURN - KEY

TAG "End"

a

ON-TIMEOUT-CALL seconds "label"

ON-TIMEOUT-CALL forces script event execution to call the corresponding label when lack of
user input results in the TIMEOUT condition.

Parameters

seconds in the time period to wait for a key.
"label" is the string associated with the TAG where event execution is to resume.

0

ecial Notes

To disable the timeout function, set the "seconds" length to zero, and supply any string as the
label. This instruction affects all following events until another ON-TIMEOUT-CALL is
encountered.

Examele

GOT0 It S t a r t I'

TAG I r P romp t 'I

MESSAGE - ON 0 1000 1000 1000 1000
I' Are you there?"
GET KEY
MESSAGE - OFF

-

0 RETURN

TAG I' S t a r t 'I
ON - TIMOUT - CALL 5 "Prompt"

/ * Any user timeout a f t e r t h i s point w i l l c a l l * /
/ * t h e prompt rout ine * /
GET KEY -

/ * If t h e user doesn' t e n t e r a key i n 5 seconds, * /
* / / * Prompt w i l l be executed.

a OPTIONS Screensave number max-length Xorg Yorg
"Title String"
"Option1 " "Tag1"

"Option N" "Tag N"

OPTIONS displays a menu of options, and processes it.

Parameters

ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.
number is the number of options to be presented.
max-length is the length of the longest option.
Xorg and Yorg specify the origin to display the menu.
"Title String" is displayed on the first line of the menu.
"OptionN" is the string to be displayed for the option.
"TagN" is a TAG within the current event file to which control will transfer if the option is
selected.

Spec ial No tes

A string giving selection instructions will be displayed at the bottom of the box. Any previously
displayed messages will be removed by this command.

ExamDle

OPTIONS 1 3 20 1000 2000

"Des kMa t e Les sons I'

'I one VI

VI t wo I' "second"

I' three "

a
'I first I'

'It h i rd"

TAG I' first I'
GOTO "end"

TAG "second"

GOTO ''end''

TAG It t h i rd"

GOTO "end"

TAG "end"

PASS-KEY

PASS-KEY will pass a "key" to the user.

Pa ram et ers

None.

Special Notes

PASS-KEY should generally follow GET-KEY or EXPECT-KEY. The key passed will be the
last key value set by one of these instructions. If a key has not been previously retrieved,
garbage may be passed to the application.

ExamDle

0

GET - KEY,PASS - KEY

0

a P ASS-W H I L E count er-num be r to ken-l ist

PASS-WHILE will compare keystrokes from the user to the values in a token list. Keys will be
obtained from the user and passed on to the application as long as they appear in the token list,
or the maximum is not exceeded. If the max is exceeded, the counter will contain zero. If the
key is not within the token list, FALSE will be set. The KEY value will be set to the last key and
processing of the Script file will continue.

Parameters

counter-number is the counter to be used.
token list contains all of the values expected for the key. All tokens must be seperated by
spaces or commas, and the list must be terminated by the end of block token I [] I . The range
token 1 . . I may be contained within the token list.

SDecial Notes

PASS-WHILE acts as if it were the following sequence:

TAG 'Is t a r t I'
GET KEY KEY WITHIN token l i s t I F FALSE GOTO "cont inue"
P A S S KEY -
COUNT DEC n COUNT EQUAL n 0 I F FALSE GOTO " s t a r t "
TAG "Fontinue"

- -
- - -

Examr, le

COUNT - SET 1 1 0 a
TAG 'I a r r o w s 'I

PASS - WHILE 1 RIGHT - ARROW [I
I F - TRUE - GOTO llenough keys?"
PROMPT 2000 2000 2000 660 I C) "Any Key" "You Pressed A Wrong K e y "

PAUSE - MODE 1 0 0

MESSAGE - OFF

TAG "enough keys?"
COUNT - EQUAL 1 0 IF - TRUE - GOTO "good job"

TAG " p r o m p t I'

PROMPT 0 2000 2000 2600 4 4 0 RIGHT - ARROW " R i g h t A r r o w "

" P r e s s #1 more r i g h t a r r o w s "

I F FALSE - GOTO 11prompt11

MESSAGE - OFF
-

COUNT EQUAL 1 0
I F TRUE GOTO "good job"

GOTO "arrows"

-
- -

a

a

0 PAUSE-MODE Duration

PAUSE-MODE pauses the playback for the indicated time period.

Parameters

Duration specifies the number of hundredths of seconds to pause the playback.

a e c i a l N o t a

To pace the playback of recorded events, see KEY-INTERVAL. If the playback is terminated by
the user pressing ESC, the pauses will be ignored.

Examele

PAUSE MODE 700
/ * Paiise f o r seven seconds * /

0

PICTURE-OFF

PICTURE-OFF removes the current picture and restores the screen background.

Parameters

None.

SDecial Notes

PICTURE-OFF and MESSAGE-OFF both restore screen backgrounds. Great care should be
taken in the order of restoration when message boxes and pictures overlap.

ExamDle

PICTURE - ON 0 1000 1100 "picture.fig"
PAUSE - MODE 700
PICTURE - OFF

a

a

0 PICTURE-ON Screensave Xorg Yorg "picture.fig"

PICTURE-ON displays a graphics form on the screen.

Parameters

Screensave is 0 if you do not want to save the screen background, 1 otherwise.
XORG and Yorg specify the world coordinate origin of the picure.
"picture.fig" is the pathname of the Draw compatible file containing the Form to be displayed.

Special Notes

PICTURE-ON is used to communicate with the viewer. The picture will remain on the screen
until a PICTURE-OFF or another PICTURE-ON command is encountered.

Examole

PICTURE - ON 0 1000 1100 "picture.fig"
PAUSE - MODE 700
PICTURE - OFF

0

POINT-TO Xorg Yorg Screensave Direction

POINT-TO displays a hand icon with the index finger pointing to the designated coordinate.

Parameters

Xorg and Yorg specify the world coordinate origin of the picure.
Screensave determines if the background will be preserved, 1 for preserve, 0 for overwrite.
Direction is the direction the hand points, 0 is a left poining hand, 1 is a right pointing hand, 2 is
an up pointing hand, 3 is a down pointing hand.

%cia1 N o t a

If the screen background is saved, any previously displayed picture will be removed. The hand
will remain on the screen until a PICTURE-OFF or another PICTURE-ON command is
encountered.

If the size of the hand exceeds the available memory for storing the background, the hand will not
be drawn and the FALSE condition will be set.

a

Example

POINT - TO 1000 1100 1 1
PAUSE - MODE 700
PICTURE - OFF 0

a PRESERVE-DT-CFG

PRESERVE-DT-CFG makes an alias copy of the DESKTOP. CFG file in the DMCONFIG directory,
and vectors all file i/o to the alias file.

Parameters

None.

SDecial Not=

PRESERVE-DT-CFG must be executed prior to the termination of PLAY. PDM.
Any combination of START-IN, PRESERVE-FILE, and COPY-FILE may precede it in the event
file, but nothing else.

The file DESKTOP .DFT will be searched for in the current . TUT file, and copied to filename
DESKTOP. B in the DMCONFIG directory. If this can be done successfully, all file i/o calls to
DESKTOP .CFG will be rerouted to DESKTOP. B. If not, playback will terminate with an error.
Re-routing will continue until the RESTORE-DT-CFG command is encountered, or playback
terminates.

Example

PRESERVE DT CFG - -

a

PRESERVE-FI LE DMCONFIG-flag "filename.ext"

PRESERVE-FILE copies the associated .DFT file in the .TUT file to filename . B in the
current directory. All file I/O calls to the original will be rerouted to the alias.

Parameters

DMCONFIG-flag is set to 1 if the file to be preserved is in the DMCONFIG directory. If the file to
be preserved is in the current directory, set this to 0.
"filename.ext" is the name of the file in the DMCONFIG or current directory which you wish to
preserve.

a

ecial Notes

The indicated files .DFT counterpart will be searched for in the current . TUT file, and copied to
filename . B in the current directory if it exists. After this is done, all file I/O calls referencing
the original will be re-routed to the alias. PLAY. PDM will terminate if the required .DFT file is not
located in the . TUT file.

Examl>le

PRESERVE - FILE 1 "PERSONAL .ADR"

0

e PROMPT Screensawe Xorg Yorg Xext Yext key-value
"key string"
"Text of message'*

PROMPT displays an information box on the screen and pauses until the user enters a key.

Parameters

ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.
Xorg and Yorg specify the world coordinate origin of the information box.
Xext and Yext specify the world coordinate dimensions of the box. An extra line will always be
added to the box to display the quit and key strings.
key-value is the key expected from the user. If this is ABORT-KEY, no EXPECT-KEY will be
performed.
"key string" is the string to be displayed in the bottom right hand corner of the box.
"Text of message" is the string to be displayed in the box.

Special Notes

PROMPT adds the ability to specify a variable value in messages. If the character '# is
encountered in the text string, followed by a number from 0 through 9, the contents of the
corresponding counter will be substituted for the two characters.

If you wish to use the arrow icons in your messages, use the string '15\6" for a left arrow, '16\7"
for a right arrow, '18\9" for an up arrow, and '1A\B" for a down arrow.

The accessory icon is "\T".

If you wish to specify a function key, you may use '1E\F for F1, '1E\lO" for F2,"\E\11" for
F3,'1E\12 for F4,"\E\13" for F5, '1E\l4" for F6,"\E\15" for F7,"\E\16 for F8, "\1 B\l C" for F10.

"\C4" can be used to turn Highlight on.

'1C1" can be used to turn Bold on.

"\C3" can be used to turn Underline on.

'1CO" turns any of the above attributes off.

"Esc=quit" will always be displayed in the bottom left hand corner of the box.

Example

PROMPT 1 1000 1000 2600 440 IC) "C=continue" "This is an example"

a

RESTOR E-DT-C FG

RESTORE-DT-CFG deletes the alias file DESKTOP. B in the DMCONFIG directory, and
restores DESKTOP. CFG as the primary file.

Parameters

None.

Sgecial Notes

The DESKTOP. B file will be deleted from the DMCONFIG directory. After this is done, file i/o to
DESKTOP. CFG will return to normal.

WARNING ... Although RESTORE-DT-CFG will close the temporary environment files
associated with DESKTOP. PDM, DESKTOP. PDM will use the current screen configuration to write
out DESKTOP . CFG when it exits. Therefore, playback must not exit while running Desktop, or the
"real" configuration will be overwritten.

Examele

0

RESTORE DT CFG - -

0

RESTORE-FILE DMCONFIG-flag "filename.ext"

RESTORE-FILE finds the alaised copy of the indicated file in the current directory, and deletes
it. It then restores the original as the primary file.

Parameters

DMCONFIG-flag is set to 1 if the file to be restored is in the DMCONFIG directory. If the file to be
restored is in the current directory, set this to 0.
"filename.ext" is the name of the file in the DMCONFIG directory which you wish to restore.

Special N U

The alaised . B file will be located in the current directory. After this is done, filename. B will
be deleted and"filename.ext" will be accesed on all subsequent file calls.

ExamDle
RESTORE - FILE 1 "PERSONAL. ADR"

RETURN

RETURN is used to return from a Script subroutine.

parameters

None.

aecial Notes

The script return stack only has room for eight (8) entries. Calls must not be nested more than
eight deep.

Examble

a

RETURN

a

e RUN-RESOURCE function-number "RES' "Parameter String"

RUN-RESOURCE executes the indicated function within the specified resource. The return
value of the function will be stored in the KEY variable.

Parameters

function number is an integer specifying which of the resources routines to execute.
"RES' is the filename of the resource, you must not specify the extension.
"Parameter String" is an up to 64 character string which is passed to the resource.

Special Not=

The function number will be passed to the resource in the ax register. A short pointer to the
parameter string will be at SS : BP. Playback will be suspended while the resource runs. The
returned parameter from the resource will be placed into the global KEY variable.

Exam 81 e

RUN - RESOURCE 0 "RES" " T h i s is a string"
KEY W I T H I N {q} [I IF - TRUE - GOT0 " q u i t " -

a

START-IN "program.pdm" "data.fil"

START-IN causes PLAY. PDM to call dm-SetNextApp to the specified program, rather than
returning to DeskTop.

Parameters

"program.pdm" must be the name of the DeskMate application you wish to run.
"data.fil" should be the filename of the data file you wish to begin in. This should be set to " " if
no file is desired.

a e c i a l Notes

START-IN must be executed prior to the termination of PLAY. PDM. Any combination of
PRESERVE-DT-CFG, PRESERVE-FILE, and COPY-FILE may precede it in the event file, but
nothing else.

J 3 G m Q k

a

START I N "TEXT. PDM" "MYFILE. DOC" -

0

a TAG "label"

TAG marks a point in the script where event execution may be transfered.

Parameters

"label" is the string associated with the TAG where event execution is to resume.

SDecial Notes

The "label" strings of TAG statements should be unique within the event file.

Examde

F I L E - E X I S T "test .doc"
I F FALSE GOT0 " R u n T e x t "

F2 { r} RETURN - KEY {draw} RETURN - KEY
- -

TAG "Run - T e x t "

F2 (r } RETURN - KEY (t e x t } RETURN - KEY

0

UNPACK-FILE DMCONFIG-flag "filenamel" "filename2"

UNPACK-FILE is used to unpack a file from the compressed TUT file to disk.

Parameters

DMCONFIG-flag is 0 if the file is to be copied to the current direstory, 1 if the file is to be copied
to the DMCONFIG directory.
"filenamel" is the pathname of the file to be copied.
"filenameT is the name to copy the file to.

a e c i a l Notes

If "filenamel" or "fiIename2" do not contain path information, the files will be copied within the
current directory. Path information will be used i f it is supplied. If "filename2" already exists, it
will be overwritten.

You should always use FILE-EXIST to insure that the source file exists, as well as
DISK-SPACE to insure that sufficient space exists on the disk.

e

ExamDle
UNPACK - FILE 0 " t e s t .doc" " t e s t .bak"

0

I

Keystroke Definitions

I* CTRL'ed A-Z *I
CTRL A ... CTRL Z

a
- -

I* ALT'ed A-2 *I

I* Arrow keys *I

ALT A ... ALT Z - -

UP ARROW
DOWN ARROW
LEFT-ARROW
RIGHT ARROW

SHFT UP ARROW
SHFTDOWN ARROW
SHFT-LEFT-ARROW
SHFTTIIGHT - ARROW

CTRL UP ARROW
CTRLDOWN ARROW
CTRL-LEFT-ARROW
CTRLTIIGHT - ARROW

ALT UP ARROW
ALTDOWN ARROW
ALT-LEFT-ARROW)
ALT-RIGHT ARROW

SHFT CTRL UP ARROW
SHFT-CTRLDOWN ARROW
SHFT-CTRL-LEFT-ARROW
SHFT-CTRL-RIGHT - - - ARROW

I* Function keys *I
F1 ... F10
SHFT F1 ... SHFT F10
CTRLT1 . . . CTRLT10
ALT F1

-

-

-

- -

0

... ALT - F10 -

I* HOME, END, PGUP and PGDN keys *I
HOME KEY
END REY
PGUP KEY
PGDNXEY -

SHFT HOME KEY
SHFT-END KEY
SHFT-PGW KEY
SHFT-PGDNXEY) - -

CTRL HOME KEY
CTRL-END KEY
CTRLTGW KEY
CTRL-PGDNXEY -

SHFT CTRL HOME KEY
SHFT-CTRLTND K'EY

-

CUU'P-f 'PRT.-PCTm KEY

a INSERT KEY
DELETE-KEY -

SHFT INSERT KEY
S H F T D E L E T E T E Y - -

CTRL INSERT KEY
C T R L T E L E T E T E Y - - 1

/* ENTER, ESC, SPACEBAR, BACKSPACE and TAB keys */
RETURN KEY
ESC KEY
SPACE KEY
BKSPACE KEY
TAB KEY-

SHFT RETURN KEY
SHFT-SPACE KEY
SHFT-BKSPAm KEY
SHFT-TAB KEY-

CTRL - SPACE - KEY

ALT SPACE KEY
ALT-BKSPACE KEY
ALT-TAB KEY-

/* Miscellaneous keys */
BRK KEY
P R I N T KEY
A B O R T T E Y
ALT EQUAL

/* Big select keys */
B I G SLCT UP ARROW
BIG-SLCTDOWN ARROW
BIG-SLCT-LEFT-ARROW
BIG-SLCT-RIGHT ARROW
BIG-SLCT-HOME KEY
BIG-SLCTXND R E Y

-

- -

- -

a -

- - -

Tutorial Player - PLAY.PDM and DMPLAY.RES

Use the DeskTop's File Run command to play back a tutorial or demo. From a runtime execution,
you may chose to provide the user with a tutorial and demo menu option which will invoke the
tutorial or demo. Run PLAY .PDM and enter the base file name used in the tutorial. If you do not
specify a file name for the tutorial, a screen will appear presenting all available tutorial files.

Pictures used in tutorials or demos can be a maximum size of 8K bytes. Larger pictures
will simply not display and an error condition is not returned.

0

a

Demo Launcher - DEMO.PDM

The source file MODIFY. C in the TOOLS\DEMO directory must be modified to create a customized L.J e
DEMO.PDM demo launcher for your demo. The L0ADMSG.H include file contains an array of
characters which define a Form Manager draw list that displays a message while the demo is
loading.

To create your customized DEMO. PDM file, do the following:

1) To customize the graphics form for your demo

a) run Draw and open the file LOADMSG .FIG, change the string as required, and
copy the revised picture to the clipboard.

b) run Drawlist, at the prompt, type the name of the array, 'loadmsg' (this
string must be spelled exactly as shown here). Press the OK pushbutton to
accept the name. A message box will display size information. Press the OK
pushbutton to remove the message box. Use 'Save as ...' on the 'File' menu
to save the file under the name, I loadmsg . h ' .

2) To name the demo to be launched, in MODIFY .C change the following string to the
name of your demo:

c h a r s I n t r o T u t [I = "DEMO.TUT";

3) If you must change the size of the box containing the message, you may want to

\ e change the world coordinates at which it is displayed.

i n t x o r i g i n = 1 9 * CHAR XEXT / 2;
i n t y r o r i g i n = 5 * CHAR - YEXT;

4) If your demo is so large that all of the files will not fit on one disk, by not putting the
demo file, the user will be prompted for a second disk which must contain the file.
Change the message box strings if your demo requires this message box.

c h a r I n s e r t D i s k 2 T i t l e S t r [] = "Ready For Disk 2"-
c h a r I n s e r t D i s ~ 2 M s g S t r [] = " P l e a s e i n s e r t d i s k 5 of t h e Your Name \
Demonstrat ion. ;

9

Event Recorder - RECORD.PDM and DMRECORD.RES

The recording application, RECORD.PDM, is used to record a sequence of keystrokes or events
which are played back at a later time. The playback application, PLAY. PDM, will simply playback
the keystrokes entered during the recording session. If PLAY is begun at a state other than
where RECORD was begun, the events issued will not correspond to what was recorded.

Use the File Run command from the DeskMate DeskTop to initiate a recording session. Run
RECORD. PDM and enter the base file name of the file which will hold your recorded events, the
extension will default to "EVN". If you do not use the proper extension, RECORD will issue an error
message and terminate. If you do not specify a file name, you will be prompted to enter a file
name.

The screen will be redrawn to erase the Run dialog box, all keystrokes are recorded until the
session is terminated with the A L T t F 1 0 key combination.

Special commands are provided during recording to enhance a script. These commands are
described in detail in the Script Command Reference of Part 6, Writing Tutorials and Demos.

a

S h i f t t F 1 M allows you to create a message box for display during playback. See
the MESSAGE - ON command description for details.

allows you to add a comment to the event file to aid in the editing of
the event file at a later time.

allows you to chain event files together. This is most useful for
creating a sequence of demos, and also allows you to chain event
files to themselves for continuously running of demos.

S h i f t t F 1 C

S h i f t t F 1 F a
General Rules of Recording:

A recording session should always be issued from the DeskMate DeskTop to guarantee
a stable start.

We recommend the environment variable DMCONFIG point to a separate demo directory
to insure that the user's data files such as calendar information, address books, etc. are
not lost.

The RECORD application requires that a copy of the DESKTOP .CFG configuration file
named DESKTOP .DFT reside in the directory pointed to by the environment variable
DMCONFIG. The DESKTOP .CFG file is saved and replaced by DESKTOP .DFT during
recording and playback. This insures tnat the playback sequence always begins from the
same DeskTop configuration as the recording and does not alter the user's working
DeskTop configuration. Store Demos should use the default DeskMate DeskTop
configuration, otherwise simply copy your DESKTOP. CFG to DESKTOP .DFT.

To avoid having a playback session fail because of different DeskTop configurations, run
applications from the DeskTop menubar rather than arrowing or tabbing to application
boxes on the screen to execute the application. You can never be sure that the player's

I - - I *I, -_._ L I L - _---- A-2-

a Script File Interpreter and Compiler - DMELEXE and DMEC.EXE

The utility programs, DMEI .EXE and DMEC.EXE, allow for the editing of script files which are
compiled into event files. The new script or event file will have the same name as the event or
document file, and will destroy any file which has the same name without asking for verification to
overwrite. The maximum size for an event file is 10K bytes.

DMEI TUTORIAL will create a script file TUTORIAL. DOC from the event file
TUTORIAL. EVN.

will create an event file TUTORIAL. EVN from the script file
TUTORIAL.DOC.

DMEC TUTORIAL

The script file can be modified to add new events, delete events, remove or add pauses or
messages, or perform any of the recording commands. When you have completed your
modifications, run DMEC . EXE on the document file to create a new event file with your changes.

By editing your event files, you can verify that necessary files exist, that there is sufficient disk
space to execute, copy files, delete files, change directories, and delete directories. These
commands are provided to insure that your demo will run properly, and to insure that it restores
the state of the machine to what it was before you began.

0

Tutorial Compression Tools - DMPACK.EXE and DMUNPACK.RES

The Tutorial Compression Utility merges all of the files needed by a tutorial into one tutorial file.
The only rule is that the first event file to be executed must have the same base name as the
tutorial file. For instance, for the DMINTRO. TUT tutorial the first event file executed is
DMINTRO . EVN. The order files are packed into a tutorial is not important. The syntax for the
command is

DMPACK t u t o r i a l - f i l e <list o f f i les i n t u t o r i a l ,

where t u t o r i a l f i l e is the name of the resultant tutorial file. Subsequent calls to DMPACK
with the same tutorial file name will add the files to the tutorial. For this reason, you should
always delete the old tutorial file BEFORE creating a new one.

The list of files in the tutorial follows, each file is delimited by a space.

The decompression algorithm resides in the DMUNPACK. RES resource which should be
distributed with your product.

e

a

e

Appendix A
DeskMate 3 File Formats

a

Contents a
Introduction ... A-1

Address Book/Phone List A-3
Calendar ... A-5

Draw . A-9

Filer/Form Setup . A-11

Text ... A-15
Worksheet . A-21

Introduction

This document contains the file formats for the basic DeskMate 3.0 applications. The Address
Book application and Phone List accessory share the same file. The Filer and Form Setup
applications also share data files. The Address Book, Calendar, and Filer applications all use the
Database Resource for their file inputloutput. The Draw application using the Form Manager in
the Core Services Resource. Refer to the DeskMate Technical Reference for m r e information.

Each file contains a 22-byte Page Setup information header.

a

Byte Descr ip t ion

0 Appl ica t ion i d e n t i f i e r (*see d e f i n e s below)
1 -> 3 Defaul t f i l e ex tens ion
4 -> 2 1 PGSETUP d a t a s t r u c t u r e (* * see d e f i n i t i o n below)

*Applicat ion I d e n t i f i e r s

..

FILER FILE 3
OFFICE-TEXT - FILE 13
WORKSHEET FILE 1 4

DRAW FILE 16
CALENDAR FILE 17

DRAW88 FILE 20

-

-

-
-

-
** Page Setup Data S t r u c t u r e D e f i n i t i o n

s t r u c t margin defn
I

a
-

cha r l e f t ; / * l e f t margin (i n c h a r a c t e r s) * /
cha r lnwidth; / * l i n e width (i n c h a r a c t e r s) * /
cha r l i nepp ; / * t o t a l l i n e s p e r page * /
cha r p l inepp ; / * p r i n t e d l i n e s p e r page * /

1;
typedef s t r u c t margin - defn MARGIN;

s t r u c t pgsetup - defn

/ * NOTEBOOK,LANDSCAPE,PORTRAIT * /
* /

cha r mode ;
I

MARGIN mNotebk; / * notebook margin d e f i n e s
MARGIN mlandscp; / * landscape margin d e f i n e s * /

cha r bD s pa ce ; / * double space boolean f l a g * /
cha r bPgpause; / * pause between pages f l a g * /
cha r bscon t ro l ; / * send c o n t r o l sequences f l a g * /

bGraphic; / * graphic mode boolean f l a g * /
* / char

cha r bText ; / * t e x t mode boolean f l a g

MARGIN mPor t r a i t ; / * p o r t r a i t margin d e f i n e s * /

1;
typedef struct pgsetup - defn PGSETUP;

Address BooWPhone List

The data file (PERSONAL.ADR) contains three (3) tables. The CONFIG and NAMES table
definitions are static (their column definitions do not change). The DATA table's definition is
dynamic and controlled by the user.

CONFIG :

This table contains the user's (or users' in the Shared file) configuration information.

a

UserId Unique network u s e r id, up t o 1 0 c h a r a c t e r s .
Las tL i s t

ConfigInfo User's address book c o n f i g u r a t i o information, up t o

Name of l i s t l a s t accessed by t h e user, up t o 20
c h a r a c t e r s .

200 c h a r a c t e r s .

NAMES :

This table contains the internal column names and the external names, those the user sees when
building a form letter, for the address book data file.

I n t e r n a l I n t e r n a l column names f o r t h e f i rs t 15 columns of
t h e DATA t a b l e , up t o 20 c h a r a c t e r s .

Users Names t h e u s e r sees f o r t h e f i r s t 15 columns of t h e
DATA t a b l e , up t o 20 c h a r a c t e r s .

DATA :

This table contains the user's address and phone numbers. The firs? 15 columns are static.
Columns 16 through 40 are used for the user-defined lists. The table is sorted by the fields
LastName/FirstName. The Database Manager call GET COLUMN NAMES may be used to
retrieve the names of all the columns in the table. The returnvalue isThe number of columns in
the table. The number of columns minus 15 is the number of user-defined lists in the Address
Book.

a

Ti t le 5 c h a r a c t e r t i t l e f i e ld (Mr., Mrs., e tc .) .
F i r s tName 18 c h a r a c t e r first name f ie ld .
LastName 20 c h a r a c t e r l a s t name f ie ld .
Address 38 c h a r a c t e r street address f ie ld .

(43 i n DeskMate 3.3)
C i t y 20 c h a r a c t e r c i t y f ie ld .
S t a t e 8 c h a r a c t e r s t a t e f ie ld .
Zip 10 c h a r a c t e r z i p code f ie ld .
CompanyName 2 9 c h a r a c t e r company name f ie ld .
Wo rkPhone 20 c h a r a c t e r work phone number f ie ld .
H omeP hone 20 c h a r a c t e r home phone number f i e ld .
DateOne 8 c h a r a c t e r j u l i a n d a t e format (s t o r e d) f i e ld .
NoteOne 12 c h a r a c t e r no tes f ie ld .
DateTwo 8 c h a r a c t e r j u l i a n d a t e format (s t o r e d) f ie ld .
NoteTwo 1 2 c h a r a c t e r no tes f ie ld .
Notes 40 c h a r a c t e r no tes f ie ld .
First L i s t 1 c h a r a c t e r (Y/N i s e n t r y ass igned t o l i s t) .

Last L i s t 1 c h a r a c t e r (Y / N i s e n t r y ass igned t o l i s t) .

(10 i n DeskMate 3.3)

...

Calendar

The data file (PERSONAL. CAL) contains one table for every calendar of information stored in the
file up to a maximum of 20 calendars. The default file contains one calendar table named
PERSONAL. All newly created calendar tables are given user defined names.

Each time CALENDAR. PDM is run, a check is made to see which table was open the last time the
program was exited. The bText element of the PGSETUP structure (struct pgsetup-defn) stored
with the file PERSONAL. CAL is used as an index to the calendar table to open. The index should
be greater than or equal to 1 and less than or equal to the number of tables minus 1 (DBCOLS
table should not be included in the number of calendar tables) and correlate to the order of the
table names returned by the call db mgr (GET TABLE NAMES, &pInfo) . DBCOLS table is the
first table name returned in the bufferwith an inzex of Oand thus an index of 1 would relate to the
first valid calendar table name.

Each calendar table contains 7 columns.

e

Column name Length Type

Date 3 C (c h a r a c t e r)
DayOfWeek 1 C (c h a r a c t e r)
Durat ion 1 C (c h a r a c t e r) (NOT USED)
S t a r t T i m e 1 C (c h a r a c t e r)
EndTime 1 C (c h a r a c t e r)
Protected 1 C (c h a r a c t e r)
Description 120 K (i n t e r n a t i o n a l c h a r a c t e r)

..

The table sort order is by Date/DayOfWeek/StartTime/EndTime/Description.

Each calendar table has a configuration record. The configuration record is stored with data in
the following three columns:

a
Date
Protected
Desc r ip t ion

The Date column of the configuration record has the following values: 0x20, 0x20, OxFF

The Protected column of the configuration record has the following value: 0x30

The Description column of the configuration record has values from the following
c a l - c o n f i g - data data structure:

struct c a l - c o n f i g - data
I

cha r Star tHour; / * f i r s t hour d i sp l ayed on weekly grid * /
cha r Screen; / * screen l a s t d i sp l ayed * /
cha r NumChanges; / * number of changes made t o ca l enda r * /
cha r Date [31; / * d a t e of l a s t change * /
cha r ChangedByName[81; / * user name who made changes * /
cha r Code [ill ; / * code t o i d e n t i f y password * /
cha r CalendarPassword[l6]; / * password associated wi th calendar * /

1;

The first byte of the configuration record Descr ip t ion column (StartHour) will be the @
constant value 0x61 added to the starting hour displayed on the weekly screen graph. The
default value in a new file is 8, thus 0x69 would be stored in the database if this value has not
changed.

The second byte of the configuration record Desc r ip t ion column (Screen) will be the
constant value 0x61 added to a constant for the screen type as follows:

YEARLY SCREEN 1
MONTHLY SCREEN 2
WEEKLY 'SCREEN 3
DAILY 'SCREEN 4 -

Thus the second byte will be 0x62, 0x63, 0x64, or 0x65 depending on which screen was
displayed when CALENDAR. PDM was last exited.

The third byte of the configuration record Descr ip t ion column (NumChanges) will be the
constant 0x61. This value will not change and is not used.

The fourth, fifth, and sixth bytes of the configuration record Desc r ip t ion column
(Date [31) will all be the constants 0x61. These values will not change and are not used.

The next eight bytes of the configuration record Description column
(ChangedByName [83) will all be the constants 0x61. These values will not change and are
not used.

The next eleven bytes of the configuration record Desc r ip t ion column (Code [11 j) will be a
the hex values representing the string "@PaSsWoRd@=". These values will not change and
are not used.

No data is written to the configuration record Desc r ip t ion column for the
CalendarPassword [161 element of the structure.

There are three other types of records that may be added to the file: (1) events, (2) reminders,
and (3) annual occasions

A maximum of 20 events per day may be added to each calendar table. A maximum total of 70
reminders and annual occasions may be added to each calendar table. The Description column
is limited to 120 characters for events, 60 characters for reminders, and 30 characters for annual
occasions.

The event, reminder, and annual occasion records are stored with data in the following six (6)
columns:

Date
Day0 f Wee k
S t a r t T ime
EndTime
Protected
nncrri nt i nn

Event records:

The Date column of an event record has the constant values of 0x61 added to the values for
year, month, and day. The value for year will be the actual year minus 1980 (thus 8 for 1988),
while the value for month will be between 1 and 12, and the value for day will be between 1 and
31. The Date column will is stored as: 0x61 + year, 0x61 + month, 0x61 + day

The DayOfWeek column of an event record has the constant value of 0x61 added to a value
between 1 and 7 (1 = Sun, 2 = Mon, etc.). The value is stored as: 0x61 + DayOfWeek

The StartTime and EndTime columns of an event have the following value if both the start time
and end time were blank in the dialog box: 0x80

If only the end time was blank in the dialog box, the EndTime column is stored as: OxFO

All valid times stored in StartTime and EndTime columns will be stored as follows (where bit 7
is the most significant bit):

m

b i t 7 - value 1
b i t s 6,5,4,3, and 2 - value representing hours 0 through 24
b i t s 1 and 0 - value representing quarter hours (0 = 0 minutes,

1 = 15 minutes, 2 = 30 minutes, 3 = 45 minutes)

The time 12:OO am (midnight) is stored as 0x80 if it is a start time and OxEO if it is an end time.
All other times have only one value regardless of whether the time is a start time or end time.
Examples follow:

12:15 am 0x81
01:OO am 0x84
11:45 pm OxDF

a
The P r o t e c t e d column of an event record has the following value if there is not an alarm
associated with the event: 0x31

The P r o t e c t e d column of an event record has the following value if there is an alarm
associated with the event: 0x71

The Desc r ip t ion column of an event record has values from a string which is limited in length
to 120 characters.

Annual Occasion records:

The Date column of an annual occasion record has the constant values of 0x61 added to the
values for year, month, and day. The value for year will be 0, while the value for month will be
between 1 and 12, and the value for day will be between 1 and 31. The Date column will thus be
stored as: 0 ~ 6 1 ~ 0 x 6 1 + month, 0x61 + day

The DayOfWeek column of an annual occasion record has the constant value of 0x61 added to
the value 8 which identifies the record to not be an event (which has values between 1 and 7).

0 The S t a r t T i m e column of an annual occasion record has the value 0x80 and the E n d T i m e
column has the value OxBC if the annual occasion date is not February 29 of a leap year. If the
date of the annual occasion is February 29 of a leap year, the value in both the S t a r t T i m e and
E n d T i m e column will be 0x80 added to the value of the year (4 for 1984,8 for 1988, etc.). Thus
the stored values for S t a r t T i m e and E n d T i m e will be:

0x80 (or 0x80 + year)
OxBC (or 0x80 + year)

StartTime
EndTime

The P r o t e c t e d column of an annual occasion record has the following value: 0x31

The Description column of an annual occasion record has values from a string which is limited in
length to 30 characters.

Reminder records:

The D a t e column of a reminder record has the constant values of 0x61 added to 0 for year,
month, and day and is thus stored as: Ox61,Ox61,0x61

The D a y O f W e e k column of a reminder record has the constant value of 0x61 added to the value
8 which identifies the record to not be an event. Thus the value is stored as: 0x69

The S t a r t T i m e and E n d T i m e columns of a reminder record has the following value in each
column: 0x80

The P r o t e c t e d column of a reminder record has the following value: 0x31

The D e s c r i p t i o n column of a reminder record has values from a string which is limited in
length to 60 characters.

m

Draw

A Draw data file consists of the Page Setup header followed by a FORM HEADER which describes
the graphics form which follows. Following the graphics form is the palette information for the
picture. The GUF Resource High-level File I/O calls are used to access the file, see the File I/O
Manager section of the DeskMate Technical Reference for details.

See the Introduction section of this document for information on the Page Setup header.

See the Form Manager section of the DeskMate Technical Reference for more information about
graphics forms.

See the Video Manager section of the DeskMate Technical Reference for information on
retrieving and setting the video palettes.

a

Byte Descr ip t ion

22 -> 39 FORM HEADER d a t a s t r u c t u r e .
4 0 -> 43 FORM-SIZE BUF d a t a s t r u c t u r e .
4 4 -> eoform Grapliics €orm information (*see be low) .
eoformt l -> eoformt64 P a l e t t e information (**see below).

* How t o determine t h e s i z e of t h e form

eoform = FORM - SIZE - B U F . l i s t t FORM - SIZE - BUF.strokes t 4 4 ;

* * P a l e t t e information format

Byte Descr ip t ion

..
0 -> 21 F i l e header.

..
0 P a l e t t e number (COLOR1).
1 Red va lue (0-255).
2 Green va lue (0-255).
3 Blue va lue (0-255).

0

...
60 Palette number (COLOR16) .
6 1 Red va lue (0-255).
62 Green va lue (0-255).
63 Blue va lue (0-255).

Filer/Form Setup

Each file contains either two (2) or three (3) tables, depending on whether the file contains
graphics or not. The LAYOUTS and GRAPHICS table definitions are static. The DATA table's
definition is dynamic and controlled by the user.

LAYOUTS :

This table contains the descriptions of the Record and Report forms. It is made up of thirteen
(13) COlUrnnS. It is sorted by START - ROW/START - COL.

0

ITEM# Unique s e q u e n t i a l number (0-999) , orde r items were
added t o t h e t a b l e .

F IELD I D Unique s e q u e n t i a l number (0 -999) , orde r t h e f i e l d s
were added t o t h e t a b l e .

f i e l d being summarized.

(11, ,Summary (2 1 , Footer (3)) .

For summary f i e l d s , con ta ins t h e f i e l d i d of t h e

For r e p o r t markers, i d of marker (Header (O) , Body

TYPE Type of item (see Table A)
FORMAT 1 Format Information (see Table B)
FORMAT2 Format Information (see Table C)
FMT - CHARS For f i e l d s and summaries, t h e format s t r i n g used

when e d i t i n g t h e f i e ld information i n F i le r .
For s t a t i c t e x t , t h e !ext s t r i n g .

DESCRIP For f i e l d s and summaries, t h e name of t h e u s e r gave
t h e f i e l d o r summary.

START - COL For a l l items except r epor t markers, con ta ins t h e
s t a r t i n g column of t h e item on t h e layout (0 -
1 3 1) .

For r e p o r t markers, unused.
For a l l items except r e p o r t markers, con ta ins t h e

s t a r t i n g row of t h e item on t h e l a y o u t , (0 - 2 2) .
For items i n t h e r e p o r t , s t a r t i n g row i s
r e l a t i v e t o t h e s e c t i o n i t e m appears i n .

on.

item (1-131).
For a l l items except r e p o r t markers, t h e number of

rows used by t h e item (1 - 2 2) .
For r e p o r t markers, number of l i n e s i n t h e s e c t i o n .

For f i e l d s and r epor t f ields, number of decimal
p l a c e s t o t h e r i g h t of t h e decimal . For a l l
o t h e r items, unused.

START - ROW a
For r e p o r t markers, l i n e of form a c t u a l marker i s

NUM COLS For a l l items, t h e number of columns used by t h e

NUM ROWS

COL OFFSET Not used.
ROW-OF F SE T

-

-

-

DATA :

This table may contain up to 22 columns which are defined by the user. Each column in this
table is represented by a field entry in the LAYOUTS table. The Database Manager call
GET COLUMN NAMES may be used to retrieve the names of all the columns in the table. The
return value isthe number of columns in the table. The table's sort order is determined by the
user, the name of the index is "DATAINDEX.

e GRAPHICS :

This table contains the binary graphics data in an encrypted format since the Database may
contain only ASCII data.

RECORD
BITS

Table A

1 0 1 S t a t i c t e x t
102 Field
103 Not used
1 0 4 Summary F i e l d
105 Date templa te
1 0 6 Page number template
107 Report Marker
108 Report s t a t i c t e x t
1 0 9 Report f i e l d

Table B

S t a t i c t e x t Text a t t r i bu te
Field Label l o c a t i o n and o u t l i n i n g
Summary Field Label l o c a t i o n and o u t l i n i n g
Date Not used
Page number Not used
Rep0 r t Marker Nbr of blank l i n e s a t t o p of s e c t i o n
Report s t a t i c t e x t Text a t t r i bu te
Report f i e l d Label l o c a t i o n and o u t l i n i n g

Table C

S t a t i c t e x t Always 1 (f o r Body s e c t i o n)
F i e l d Type of f i e ld
Summary Field
Date Not used
Page number Not used
Report Marker
Report s t a t i c t e x t Sec t ion of r e p o r t i t s i n (0-3)
Report f i e l d 'Type of f i e l d

Text a t t r i b u t e :
NORMAL
BOLD
UNDERLINE

Label Locat ion and O u t l i n i n a :
1 0 0 Label t o t h e l e f t of f i e l d
1 0 1 Label c e n t e r e d a t t o p of f i e l d
1 0 2 No l a b e l appears
103 Ou t l ined f i e l d , l a b e l t o t h e l e f t of f i e l d
1 0 4 Ou t l ined f ie ld , l a b e l cen te red a t t o p of f i e l d
105 Out l ined f i e l d , no l a b e l appears

............................

..

a
..

Type of summary f i e l d

Nbr of blank l i n e s a t bottom of s e c t i o n

Field T m e s :
201 Single-line, left justified
202 Single-line, right justified
203 Numeric
204 Multi-line
205 Internal use
206

Summarv Field TvDes :
401 Summation
402 Average
403 Count

0
Numeric with fixed decimal point

fib uses 4% mne- & H d &A 5 d~ v m%Ud /A &.
c()rn;ood lMmagsr. 53. p y c 4-@,

0

Text

The Text application can create an ASCII file as well as its own non-ASCII data file. The GUF
Resource High-level File I/O calls are used to access the file, see the File I/O Manager section of
the DeskMate Technical Reference for details.

See the Introduction section of this document for information on the Page Setup header.

e

ASCII (and IBM extended) characters:

OD OA Carr iage r e t u r n l i n e feed combination used t o :
t e rmina te s a l i n e i n program source code o r ba tch
f i l e s

end a paragraph i n documents

1.

2 .
1A EOF End of f i l e marker
20 -> FF Visible o r p r i n t a b l e c h a r a c t e r s

Note 1 : 09 (Tab), OC (Form Feed), and other values below 20 are not allowed in the file.
When reading in a file which is not a "Text application" file (does not include a Text
application header at beginning of file), any characters other than OD and OA in the
range between 00 and 1 F inclusive will be converted to a space.

Note 2: ASCII files use default page setup settings. A header is not stored at the beginning
of ASCII files.

A Text application file becomes a non-ASCII file once any of the following actions have been
taken upon a previously ASCII file:

Merge in a non-ASCII Text application document.
Change the Page Setup information from the default settings.
Paste in text which contains underlined or bold characters.
Paste in a Draw application picture.
Make selected text bold.
Make selected text underlined.
Indent or center a paragraph.
Create a header or footer.
Insert a page number field which will automatically number pages.
Insert a today's date field which will print the system date.
Insert a database field which will allow printing form letters.

Note: The above actions result in control characters being stored in the file. The file can be

a

restored to an ASCII file with the "To ASCII" menuitem (i.e all non-ASCII modifications
to the file will be removed).

Non-ASCII files have the following format:

Byte Descr ip t ion

0 -> 3
4 -> 2 1 18 (decimal) by te s of page s e t u p informat ion
22 -> EOF All ASCII and c o n t r o l d a t a o t h e r t han page s e t u p

..
Four by te Text a p p l i c a t i o n i d e n t i f i e r (OD 4 4 4 F 4 3)

a HEADERS AND FOOTERS

After reading in a non-ASCII file, you must determine if the file has a header, a footer, or both.
This is done by searching the file for the EOF marker (1A). If an EOF marker is found before
reaching the last byte of the file (excluding 1As representing control information within pictures
and margin settings), there is a header or footer. If two EOF markers are found before the last
byte in the file, there is both a header and a footer. Following is a dump of four very simple files
with different combinations of headers and footers:

File with no header or footer:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..+--.d--.FB*
0010 3C 00 00 00 00 01 54 68 69 73 20 69 73 20 74 68 *<.....This is th*
0020 65 20 64 6F 63 75 6D 65 6E 74 2E 1A 00 00 00 00 *e document*

At byte 16 hex, the document starts. This is the only case where there is no control information
preceding the document text (note the two OD's in the following three examples which precedes
the document text). At byte 2B, the file ends with the EOF marker (1A).

File with a header, but no footer:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..t--.d--.FB*
0010 3C 00 00 00 00 01 48 OD OD 54 68 69 73 20 69 73 *<.....H..This is*
0020 20 74 68 65 20 68 65 61 64 65 72 2E 1 A OD OD 54 * the header.. ..T*
0030 68 69 73 20 69 73 20 74 68 65 20 64 6F 63 75 6D *his is the docum*
0040 65 6E 74 2E 1 A 00 00 00 00 0 0 00 00 0 0 00 00 00 *ent *

a At byte 16 hex, the control information for the header starts. The first byte will be either 'H' or 'h'
followed by two OD's. At byte 19 hex, the text of the header starts. At byte 2C, the header ends
with an EOF marker. At byte 2D, two OD's provide control information before the start of the
document which is at byte 2F. The document ends at byte 44 with an EOF marker.

File with a footer, but no header:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..t--.d--.FB*
0010 3C 00 00 00 00 01 46 OD OD 54 68 69 73 20 69 73 *<.....F..This is*
0020 20 74 68 65 20 66 6F 6F 74 65 72 2E 1 A OD OD 54 * the footer T*
0030 68 69 73 20 69 73 20 74 68 65 20 64 6F 63 75 6D *his is the docum*
0040 65 6E 74 2E 1A 00 00 0 0 00 0 0 00 00 0 0 00 00 00 *ent *

At byte 16 hex, the control information for the footer starts. The first byte will be either 'F' or 'f'
followed by two OD's. At byte 19 hex, the text of the footer starts. At byte 2C, the footer ends
with an EOF marker. At byte 2D, two OD's provide control information before the start of the
document which is at byte 2F. The document ends at byte 44 with an EOF marker.

File with a header and a footer:

0010 3C 00 00 00 00 01 48 OD OD 54 68 69 73 20 69 73 *<..... H..This is*
0020 20 74 68 65 20 68 65 61 64 65 72 2E 1 A 46 OD OD * the header..F..*
0030 54 68 69 73 20 69 73 20 74 68 65 20 66 6F 6F 74 *This is the foot*
0040 *er....This is th:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..+--.d--.FB*

65 72 2E 1 A OD OD 54 68 69 73 20 69 73 20 74 68
0050 65 20 64 6F 63 '75 6D 65 6E 74 2E 1A 00 00 00 00 *e document..

_. _.

be either 'F or 'f' followed by two ODs. At byte 30, the text of the footer starts. At byte 43, the
footer ends with an EOF marker. At byte 44, two OD's provide control information before the start
of the document which is at byte 46. The document ends at byte 5B with an EOF marker.

The following is a sample of code used to determine if a header and/or footer exists:

I*------------------------ * I
unsigned int num-bytes - read; / * size of file excluding header, number * /

/ * of bytes in text*buffer, returned from * /
/ * fil menu open() /

unsigned char *save original tbuf; / * ptr-to beginning of the text buffer * /
/*-----------------=------ *I-
unsigned char *get EOF-pointer(ptr) /*called by check-for-header - - and footer()*/
unsigned char *ptrS

register unsigned char *p;
(

p = ptr;
while (TRUE)
{

a

switch (*p)
{

case END OF FILE:
retufn (p) ;
break;

case START PICTURE:
EGak;

K a k ;

break;

PICTURE-END - POINTER (p) ;

case START MARGIN:
MARGIN END POINTER (p) ; - -

default:

1
++p;

I
* I 1 /*------------------------

I*------------------------ * I
check-for-header-and-footer()

unsigned char *p;
{

unsigned char *tbuf;
/* initialize fla s to assume there is no header or footer * /
header exists = N8 HEADER;
footer-exists - = NO-FOOTER; -

/ * initialize fbuf to
tbuf = save-original-tguf;
/ * find the first EOF marker in the file * /
p = get-EOF-pointer (tbuf) ;
/*if the EOF marker is not the last byte read, we have a header or footer*/
if ((unsigned) (p - tbuf) + 1 < num-bytes-read)
(

0
/* called after opening a non-ASCII file * /

oint to the beginning of the text buffer*/

if (*tbuf ==,'HI)
else if (Tbuf == 'h')

else if (T b u f == ' F ')

else if (Tbuf == 'f')

num bytes read -= (unsigned) (p - tbuf) -t 1;
tbuf = p 7 1;
p = get-EOF-pointer(tbuf);

header exists = HEADER-ONALL-PAGES;
header exists = HEADER-ON-ALL-PAGES - EXCEPT-1ST;
footer exists = FOOTER-ON-ALL-PAGES;
footer - exists = FOOTER-ON-ALL-PAGES-EXCEPT-1ST;

/ * find the 2nd EOF marker in the file * /
'nntpr * I 1 - , - _ _ L I _ _ 7 - - L _. .Le ---A ..^ I.....,. I

e. footer exists = FOOTER-ON-ALL-PAGES;
footer - exists = FOOTER-ON-ALL-PAGES-EXCEPT-1ST;

else if (Y b u f == 'f')

1
1

* / 1 /*______-------___--------

Following is a list if #defines used in the above code and in future examples for the Text
application:

/"-------___---------__-_- * /
/ * Character attribute switches * /
#define BOLD ON 0x13
#define BOLD-OFF 0x12
#define UNDERLINE ON 0x11
#define UNDERLINE-OFF Ox10
/*__-__--_--_____=-_------ * /

/*__-----_-__-__--------__ * I
#define START PICTURE 1
#define END PICTURE 2
#define PICTURE CLIP LENGTH (p) (* (int *) (p t sizeof (char)))
#define PICTURE-COLUMN (p) (*(int *) (p t sizeof(char) +

#define PICTURE-WIDTH-WORLD-COORDS (p) (* (int *) (p t sizeof (char) t 12 *

#define PICTURE-HEIGHT-WORLD-COORDS (p) (* (int *) (p t sizeoj(char1 t 14

#define PICTURE-START POINTER(p)

#define PICTURE END POINTER(p)
#define PICTURE DRAW POINTER (p) (p t sizeof(char) t 2 * sizeof(int))
#define PICTUREIHEIGHT-CHAR-BLOCKS@) (PICTURE-HEIGHT-WORLD-COORDS(p) /

#define PICTURE-WIDTH-CHAR-BLOCKS@) (PICTURE-WIDTH WORLD COORDS(p)-/

/"-------_--____----.-----_ * /
#define START MARGIN 3
#define END MARGIN 4
#define MARGIN START POINTER (p) (p - 4 * sizeof(char))
#define MARGIN-END PUINTER(p) (p t 4 * sizeof(char))
#define MARGINTIRST LINE INDENT(p) (* (p t 1 * sizeof (char)))
#define MARGIN-LEFT TNDENT(p) *(p t 2 * sizeof(char)))
#define MARGIN-RIGHT - INDENT (p) I*(P t 3 * sizeof (char)))

struct paragraph-margin-defn
{

sizeof (int)))

sizeof int) t sizeof(F0RM HDR)) -t 100)

sizeof (int) t sizeof (FORM HDR)) t 100)
/ * 100 kludges for-fat lines * /

sizeof (int) - sizeof (char))
sizcof (ctiar) t 3 sizeof (int))

CHAR YEXT t 1)

- - CHAR XEXT t 1)

-

I* 100 klud es for €at lines * /

(p - (*(int *) (p - sizeof (in!))) - 3 *
(p t PICTURE CLIP LENGTH(p1 t

-

- -

a -

unsigned char first line indent;
unsigned char left Tndenf;
unsigned char righf-indent;

1 ;
typedef struct paragraph margin-defn
/*__------________-----_=_ * /
/ * START FIELD and END-FIELD enclose Date, Page #, and Address Book fields * /
#define START FIELD 5
#define END-FTELD 6

/ * these values are stored as 1st byte after START-FIELD - identify field type*/
#define DATE FIELD TYPE 0 I
#define DATE-FIELD-TYPE7 8
#define PAGE-NUMBEK FIELD 9
/*_-__-----_=_-_---=------ * /

/ * # of chars from left margin * /
/ * # of chars for all lines except lst*/
/ * # of chars from right margin * /

PARAGRAPH - MARGIN;

CHARACTER ATTRIBUTES

The Text application supports boldfaced and underlined text. Character attribute control
characters are embedded between the characters where the change in character attribute is to
take place. All characters following a 13 (BOLD ON) will be displayed/printed in boldface and all
characters following a 12 (BOLD OFF) will be &played/printed in normal type. All characters
following a 11 (UNDERLINE 0N)vvill be displayedlprinted with an underline and all characters
following a 10 (UNDERLINE - EFF) will be displayedlprinted without an underline.

DRAW APPLICATION PICTURES

Draw application pictures pasted into a Text application file are surrounded by the control
characters 01 (START PICTURE) at the beginning of the picture and 02 (END PICTURE) at the
end of the picture. The01 (START PICTURE) must be preceded by a OD OA (carriage return line
feed combination) or a 02 (END PYCTURE). This is because each picture is considered to be a
paragraph and thus must be preceded by one of these two end-of-paragraph markers.

The first two bytes after the 01 (START PICTURE) are used to store (as an integer) the length of
the picture data as it was copied from the clipboard. Use PICTURE CLIP - LENGTH (p) , where p
is the pointer pointing to the 01 (START - PICTURE), to access this value.

The third and fourth bytes after the 01 (START PICTURE) are used to store (as an integer) the
column position at which the picture is to be displayed. Use PICTURE - COLUMN (p) , where p is
the pointer pointing to the 01 (START - PICTURE), to access this value.

The fifth byte after the 01 (START PICTURE) is the first byte of the actual Draw application
picture data. Use PICTURE D R A f POINTER(p), where p is the pointer pointing to the 01
(START PICTURE), to access this pointer. For example, to display the picture in the Text
applicakn, the following call is made:

m

e*
v i d draw form (PICTURE DRAW POINTER (p) ,

(PICTURE COLUMN(p) - first-column-displayed) * CHAR XEXT,

At the end of the actual Draw application picture data, there are another two bytes of data which
are used to store the length of picture data as it was copied from the clipboard. These length
bytes are followed by the 02 (END - PICTURE).

Because the data used to draw a picture will most likely contain data which could be confused
with control codes used for other purposes, it is necessary to skip over the entire picture when
searching for specific control characters (such as the 1A end of file marker). Use
PICTURE END POINTER(p), where p is the pointer pointing to the 01 (START PICTURE), to
find the address of the corresponding 02 (END PICTURE). If searching backwar& through the
file, use PICTURE START POINTER(p), where p is the pointer pointing to the 02
(END - PICTURE), to find the address of the corresponding 01 (START - PICTURE).

PARAGRAPH MARGINS

Paragraph margin information is stored between 03 (START MARGIN) and 04 (END MARGIN)
control characters. Margin information is always stored beforethe first visible/printablecharacter

- -
- *row * CHAR - YEXT);

0 The first byte after the 03 (START MARGIN) is used to store first line indention. Use

to access this value.

The second byte after the 03 (START MARGIN) is used to store the left margin indention of all
lines other than the first line of the paragraph. Use MARGIN LEFT - INDENT (p) , where p is the
pointer pointing to the 03 (START - MARGIN), to access this value.

The third byte after the 03 (START MARGIN) is used to store right margin indention. Use
MARGIN RIGHT INDENT(p), wherep is the pointer pointing to the 03 (START - MARGIN), to
access t i is value.

Because the data used to control margin settings may likely contain data which could be
confused with control codes used for other purposes, it is necessary to skip over the margin
when searching for specific control characters (such as the 1A end of file marker). Use
MARGIN END POINTER (p) , where p is the pointer pointing to the 03 (START MARGIN), to find
the address of the corresponding 04 (END MARGIN). If searching backwardsthrough the file,
use MARGIN START POINTER(p) , wherep is the pointer pointing to the 04 (END - MARGIN), to
find the address of the corresponding 03 (START - MARGIN).

FIELDS

The Text application uses 05 (START FIELD) and 06 (END FIELD) to enclose control
data that is to be used as a single pi&e of data. There arefifteen Address Book database fields,
two date fields, and a page number field. Fields can be stored anywhere in the document, but
data within a field is treated as a unit and may not be modified.

For Address Book fields, the 05 (START FIELD) is always followed by an asterisk, which is
followed by the name of one of the Address Book field, which is followed by another asterisk,
which is followed by the 06 (END FIELD). If the user prints form letters, actual data from the
database will be substituted (at print time only) for the data between the 05 (START - FIELD) and
06 (END - FIELD) inclusive for each letter to be printed.

In the date fields, the 05 (START FIELD) is followed by either 07 (DATE FIELD TYPE 0) or 08
(DATE FIELD TYPE 1) which isfollowed by a string which represents the form the datewill print
out as, whichis folkwed by the 06 (END FIELD). At print time the data between the 05
(START FIELD) and 06 (END FIELD) inclusive will be substituted with the system date in the
form specified (MM-DD-YYYY or MMM DD, YYYY).

In the page number field, the 05 (START FIELD) is followed by 09 (PAGE NUMBER FIELD),
which is followed by the string "###", whichis followed by the 06 (END FIELD)- At printtime the
data between the 05 (START FIELD) and 06 (END - FIELD) inclusive hi l l be substituted with the
page number of the current page being printed.

MARGIN FIRST LINE - INDENT (p) , where p is the pointer pointing to the 03 (START - MARGIN), L

'i, r.

Worksheet

A Worksheet data file consists of the Page Setup header followed by a description of the pad, an
array of the five (5) list structures, the cell definitions, and the asci string data. The GUF
Resource High-level File I/O calls are used to access the file, see the File I/O Manager section of
the DeskMate Technical Reference for details.

See the Introduction section of this document for information on the Page Setup header.

0,

Byte Descr ip t ion -----------------_______________________----------------------------
0 -> 2 1 F i l e header.

22 -> 1 2 1 Column Widths f o r columns 0-99 (4 t o 77)
1 2 2 Extreme row of pad (0-99)
123 Extreme column of pad (0-99)
124 -> 125 Ignore
126 -> 175
176 -> eof cells Cell information s t r u c t u r e s * *
eof cells t 1 -> eof S t r i n g d a t a

Array of 5 TOPLIST s t r u c t u r e s *

*TOPLIST d a t a s t r u c t u r e

s t r u c t
I

cha r * s t a r t ;
cha r *end;

i n t s i z e ;
i n t s t a t u s ;
i n t num;

/ * address of t h e f i r s t ce l l i n t h e l i s t * /
/ * address of t h e f i r s t unused b y t e a f t e r t h e

* /
/ * t h e s i z e of t h e ce l l i n by te s

l a s t e n t r y i n t h e l i s t
* I

/ * t h e number of e n t r i e s i n t h e l i s t * /
1;

e
The lists, and their respective cells, are in the following order :

1) labels
2) numbers
3) formulas
4) inputs
5) text blocks

Ignore the s t a r t and end elements, they are the actual addresses of the data in memory when
the file was last saved; these addresses must be resolved at load time.

The number of entries in the list num will always include the extra "dummy" cell entry which
terminates each list of cell definitions. Therefore an empty worksheet will have one (1) cell of
each type located at R100,ClOO.

**Cell Data S t r u c t u r e s .

struct
I

cha r row; / * Cell row * /
cha r c o l ; / * Cell column * /
i n t s t a t u s :

a struct
I c h a r row; / * Cell row * / L

cha r c o l ; I* Cell column * /
i n t s t a t u s ;
c h a r * s t r P t r ; /* o f f s e t t o s t r i n g * /
cha r rows; / * Number o f rows * /
c h a r c o l s ; / * Number of columns * /

The CELL structure is used for formula, input, and numeric cells.

} TEXT CELL; -

s t r u c t
I

cha r row; / * Cell row * /
cha r c o l ; / * Cell column * /
i n t s t a t u s ;
c h a r * s t r P t r ; / * o f f s e t t o s t r i n g * /
double va lue ; / * va lue of t h e ce l l * /

} CELL;

The string stored is the ascii representation of (1) the label the user entered in a text cell, (2) the
text the user entered in a text block, (3) the number entered in a numeric cell, (4) the formula
entered by the user in a formula cell, and (5) the name of an input cell.

The offset to the string is from the start of the TOPLIST array (byte 126).

The strings are all null-terminated and start immediately after the last cell structure. To
determine the end of the cells, sum the size of each of the lists (number of cells in list times the
size of the cell type in bytes).

The following is an example of a worksheet file with one cell of each data type.
--T.

2931:OlOO OE 57 4B 53 0 0 05 1E 28-1E 05 46 28 1E 05 46 42 .WKS...(..F(..FB
2931:OllO 38 0 0 00 00 0 0 01 OA OA-OF 14 OA OA OA OA OA OA E...............
2931:0120 OA OA OA OA OA OA OA OA-OA OA OA OA OA OA OA OA
2931:0130 OA OA OA OA OA OA OA OA-OA OA OA OA OA OA OA OA
2931:0140 OA OA OA OA OA OA OA OA-OA OA OA OA OA OA OA OA
2931:0150 OA OA OA OA OA OA OA OA-OA OA OA OA OA OA OA OA
2931:0160 OA OA OA OA OA OA OA OA-OA OA OA OA OA OA OA OA
2931:0170 OA OA OA OA OA OA OA OA-OA OA 09 04 1D 02 00 67 g 2931:0180 OC 67 06 00 OA 00 02 00-OC 67 28 67 OE 00 02 00 .g.......g (g
2931:0190 02 00 28 67 44 67 OE 00-02 00 02 00 44 67 60 67 .. (gDg: Dg' g
2931:OlAO OE 00 02 00 02 00 60 67-70 67 08 00 00 00 02 00 pg
2931:OlBO 01 01 OA 00 AF 01 64 64-75 72 00 00 02 02 02 00 ;... / .d8ur
2931:OlCO A7 01 77 BE 9F 1A 2F DD-5E 40 64 64 75 6D 00 00 :w>../l^@ddurn..
2931:OlDO 20 69 6E 20 74 68 65 20-04 04 D5 00 91 01 3C DF in the .. U...<
2931:OlEO 4F ED 97 EE 6B 40 64 64-65 74 00 00 29 2E OD OA O..nk@ddet..)..T
2931:OlFO 46 69 72 73 03 03 92 00-9B 01 00 00 00 00 00 00 Firs
2931:0200 Y@ddn ..20 chara
2931:0210 06 01 01 00 A2 00 03 03-64 64 74 20 00 00 64 72 ddt ..dr
2931:0220 54 68 69 73 20 69 73 20-62 6C 6F 63 6B 20 6F 66 This is block of
2931:0230 20 74 65 78 74 20 64 65-66 69 6E 65 64 20 69 6E text defined in
2931:0240 20 74 68 65 20 73 70 72-65 61 64 73 68 65 65 74 the spreadsheet
2931:0250 2E 20 20 54 68 65 20 OA-74 65 78 74 20 69 73 20 . The .text is
2931:0260 77 6F 72 64 2D 77 72 61-70 70 65 64 20 61 75 74 word-wra ped aut
2931:0270 omatical? by th
2931:0280 e editfieyd .corn
2931:0290 70 6F 6E 65 6E 74 2E 01-01 01 01 01 01 01 01 01 ponent
2931:02A0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01
2931:02B0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01
2931:02CO 01 01 01 01 01 01 01 01-01 01 01 01 0 1 01 01 01
2931302DO 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01
2931302EO 01 01 01 01 01 01 01 01-01 01 01 01 01 01 0 1 01
q a 2 i . n m n n i n i n i n i n l n i n i n i - n i n i n i n i n i n i n i n i

...............

59 40 64 64 20 20 00 00-32 30 20 63 68 61 72 61

6F 6D 61 74 69 63 61 6C-6C 79 20 62 79 20 74 68
65 20 65 64 69 74 66 69-65 6C 64 20 OA 63 6F 6D

	Addendum for DeskMate 3.05
	Addendum for DeskMate Users
	The DeskMate System Architecture
	Memory Map Example
	DeskMate Functions
	General Design of a DeskMate Application
	System Overview
	 DeskMate 3.3 Modifications and Enhancements
	 Introduction
	 Compatibility and Programming Issues
	 The DeskMate Checklist
	 Installation and Upgrade Procedures
	 Determining DeskMate Product Versions
	 Runtime Distribution Guidelines

	About This Kit
	Chapter 1 - Introduction
	 Contents of the Kit
	 Using the Kit

	Chapter 2 - System Overview
	 Technical Overview
	 DeskMate 3.05 Modifications and Enhancements
	 DeskMate 3.03 Modifications and Enhancements

	Chapter 3 - Getting Started
	Chapter 4 - Registration and Technical Support
	Chapter 5 - The DeskMate Runtime License
	Appendices

	DeskMate Style Guide
	Contents
	Chapter 1 - Introduction
	 How to Use This Manual
	 Before You Begin

	Chapter 2 - The Keyboard and the Mouse
	 Special Keys
	 Basic Mouse Operation
	 Cursors and Pointers
	 Selecting Data
	 Scrolling
	 Text Entry and Editing

	Chapter 3 - Screen Design
	 General Guidelines
	 Parts of the DeskMate Screen
	 Some Special-Purpose Screens
	 Screen Design for 40-Column Applications

	Chapter 4 - Menu Bars and Menus
	 What Are Menu Bars and Menus?
	 When to Use a Menu Bar
	 General Rules and Guidelines for Menu Bars
	 Rules and Guidelines for Application Menu Bars
	 Rules and Guidelines for Accessory Menu Bars
	 Rules and Guidelines for Menu Bar Components
	 Menu Bar Examples

	Chapter 5 - The Interface Components
	 General Guidelines
	 Component Classes
	 Interactive Components
	 Static Components
	 Using Components in the Work Area

	Chapter 6 - Pop-Ups
	 When to Use a Pop-Up
	 Types of Pop-Ups
	 Rules and Guidelines for Pop-Ups
	 Pop-Up Operation
	 User Interfaces to Pop-Up Windows

	Chapter 7 - Special Menus
	 Message
	 Accessories
	 File
	 Edit

	DeskMate Development Guide
	About the Guide
	Contents
	Part 1 - Getting Started
	 Contents
	 Introduction
	 Memory Models and Development Tools
	 DeskMate Coordinate Systems
	 Compatibility and Programming Issues
	 Overview of the Tools, Utilities, and Examples

	Part 2 - Programming Examples
	 Contents
	 WELCOME.PDM
	 VIDEO.PDM
	 High-Level File I/O - FILEIOHL.PDM
	 Low-Level File I/O - FILEIOLL.PDM
	 Database File I/O - DBCARS.PDM
	 Page Printing - DEVICE.PDM
	 Direct Printing - DIRECT.PDM
	 FORMS.PDM
	 Running Components in the Work Area - COMPS.PDM
	 Managing Windows and Events
	 Interfacing with the Clipboard
	 Writing a 40 Column Application
	 Writing a DeskMate Resource
	 Writing a DeskMate Accessory

	Part 3 - Tools and Utilities
	 Contents
	 Menu bar Builder - MENUBLD.PDM
	 Dialog Box Builder - DLGBUILD.PDM
	 Bitmap Editor - HYPERBIT.PDM
	 Graphics Form Generator - DRAWLIST.PDM
	 Clipart File Builder - CLIPART.PDM
	 Stroke Font Editor - STROKE.PDM
	 Memory Map Generator - MEMMAP.PDM
	 The Desk Header Utility - DESKHDR.EXE
	 Disk Label Generator - DMLABEL.PDM
	 Customized Runtime Utility - RUNTMBLD.PDM
	 Customized Installation Launcher Utility - INSTLBLD.PDM

	Part 4 - Distributing Your Application
	 Contents
	 The DeskMate Checklist
	 Installation and Upgrade Procedures
	 Determining DeskMate Product Versions
	 Runtime Distribution Guidelines

	Part 5 - DeskMate Help Systems
	 Contents
	 Overview
	 Writing the Application Help File
	 Writing the Help Window Text
	 Writing the Help Screen Text
	 Creating the Sample Help File VIDEO.HLP
	 Help Rule Base Utility - DMHELP.UTL
	 DeskMate Help Editor - DMEDITOR.PDM
	 Help File Compression Utility - TOKEN.PDM
	 Help File Format

	Part 6 - Writing Tutorials and Demos
	 Contents
	 The DeskMate Tutorial Technology
	 Authoring a Tutorial Script
	 The DeskMate Introductory Tutorial - DMINTRO.TUT
	 Script Command Reference
	 Keystroke Definitions
	 Tutorial Player - PLAY.PDM and DMPLAY.RES
	 Demo Launcher - DEMO.PDM
	 Event Recorder - RECORD.PDM and DMRECORD.RES
	 Script File Interpreter and Compiler - DMEI.EXE and DMEC.EXE
	 Tutorial Compression Tools - DMPACK.EXE and DMUNPACK.EXE

	Appendix A - DeskMate 3 File Formats
	 Contents
	 Introduction
	 Address Book/Phone List
	 Calendar
	 Draw
	 Filer/Form Setup
	 Text
	 Worksheet

