,|~

Addendum for DeskMate 3.05

Cat. No. 25-1351

® To make the best use of DeskMate’s new font capabilities in Draw the follow-
ing information should be noted:

¢ If you are using a hard drive system, all fonts must be stored in a single
directory. DeskMate’s Install program automatically copies all fonts to
the same directory, but if you add additional fonts, be sure they are in
that directory. '

+ [f you are using a diskette-based system, the diskette containing the
fonts must be in the drive so that Draw can access them. (If you are
using data diskettes, you can copy your font files (*.ff1) to your data
diskettes. You should also copy your printer driver (dmpdxxxx.res and
dmpexxxx.res) to these diskettes.) .

o If Draw cannot find a font, the application substitutes large, block let-
ters on. the screen. These are your indication that the requested font
was not accessible.

» If you are using MS-DOS version 2.11, you must add the following com-
mand to your autoexec.bat program so that you can use Draw’s font ca-
pabilities:

set dmfont=deskmate font path

(If you need information about creating or changing your autoexec.bat
file, refer to your MS-DOS documentation.)

» For best results, the point size you use for fonts should create charac-
ters that are no larger than the size of the screen.

* When you access the Text option from the Options Menu, the dialog
box that appears contains choices for Printer or OQutline. Use the fol-
lowing criteria to make your choice:

Choose the Printer button to use the fonts built into your printer. This
will allow you to print more quickly and with higher quality. You cannot,
however, change the point size, width, or color of the characters.
Choose the Outline button if you want the flexibility to make point
size, width, or color modifications to your font characters.

® In the Setup option from the F10 Menu, please note the following information
about your mouse setting:

4

s The COM setting you set for your mouse will supersede a COM setting
you have previously set for your Communications option. When you ac-
cess your Communications option, the COM port setting currently used
by the mouse will be shadowed so that it is not available for your Com-
munications option.

875-8508

The page printing function allows mixing of system text and graphics on a page. Currently
10, 12, and 16.7 characters per inch printing is supported. The driver controls the adjusting of
graphics on a page to reflect the current cpi - shrinking the graphics to maintain the same aspect
ratio as the system text.

General User Functions Resource (DMGUF) :

GUF provides two levels of file VO as well as the Environment functions and some
miscellaneous file handling calls, such as error messages, dialog boxes routines, file-checks, disk
queries, etc..

The lowest level supports direct file access such as seeks, reads, and writes but performs no
user interaction or error handling other than the processing of critical /O errors.

The second level supports applications which keep data in a single contiguous block (less
than 64K) of memory. This level of file I/O is simple and complete, managing all disk I/O, all
possible errors, and full interaction with the user.

The Environment Manager handles the creation, loading, and writing of configuration data
files to disk as well as their in-memory management.

DataBase Resource (DMDB) :

The DataBase provides an indexed record manager which contains functions to create files,
-add, modify, and delete records, fetch single and multiple records, query, sort (stored index &
secondary temporary index), and merge data.

The files are made up of application defined "tables” which are defined by their "columns”
(fields) and "rows" (records). Each table has its own stored index, columns may contain numeric
or character ASCII data which may be labeled as being unique (two records may not contain the
same data in the same field).

The database also provides easy access to the Workgroup shared database server for
support of muiti-user database applications.

Autoload Resource (AUTOLOAD) :

Applications which need a resource to be loaded when Desk is executed use the Autoloader
to register the resource’s information - resource name, initialization information, and load priority -
in the configuration file. Desk uses the Autoloader to load the requested resources. Desk uses
the priority information when deciding when the resource should be loaded and unioaded.

Spell Checker Resources (SPELL, SPL) :
The Spell resources is used by the Spell Checker accessory and by application which wish to

proof selected text. The spell engine resource, Spl, is the actual spell checker and dictionary
which must be licensed separately from the Microlytics company.

Page 4

Addendum for DeskMate Users
Cat. No. 25-1350

Please note the following changes to your DeskMate Getting Started
magazine:

The “Starting DeskMate” section indicates that the introductory tutorial
appears automatically the first time you run DeskMate. This no longer
occurs.

However, we highly recommend that you run the introductory tutorial
before you begin using DeskMate. To access the tutorial, press TAB until
the Teach Me box is highlighted, and then press ENTER. When the list of
tutorials appears, the introductory tutorial, DeskMate: An Introduction, is
highlighted. Simply press ENTER to begin.

For Hard Disk Users — You need to use the following procedure
(instead of the one described in your Getting Started magazine) to install
DeskMate on your hard disk.

1. Turn on your monitor and computer.
2. Insert the DeskMate Diskette 1 into any drive.

3. If necessary, change to the appropriate drive. For example, if you
insert the diskette into Drive A, simply type a: and press ENTER.

4. Type install and press ENTER.

Follow the instructions as they appear on the screen.

875-8359

The DeskMate System Architecture

The DeskMate system consists of two major parts - the Desk User Environment and
DeskMate Applications and Accessories. The User Environment is made of the System
Resources, the Executive (Desk or Runtime), and the DeskMate Bindings.

DeskMate DeskMate
Applications User
and _ Environment
Accessories
MS-DOS

The DeskMate System Resources (CSR, GUF, DB, etc.) are the individual modules which
contain the system functions. These resources are divided by functionality so only those
functions required by the application are loaded into memory. See the detail section DeskMate
Functions which follows for a detailed description of the functionality provided.

The Desk Executive handles the system level tasks which include the loading and unloading
of the system resources, applications (both DeskMate and non DeskMate), and accessories.
The Executive dynamically links resources to applications, allowing multiple applications to share
aresource. Desk allocates and manages the Clipboard. The Executive also performs task-
switching, which allows a second application (DeskMate or non-DeskMate) to run while a
DeskMate application is loaded. The user may then toggle between both tasks via a "hot-key".

The Bindings are the "bridge” between the DeskMate application and the Desk Executive and
the Resources. The DeskMate Library (dm.lib and dmmed.lib) contains the entry points to all
functions in the Executive and the Resources. When an application wishes to use one of these
functions it informs the Executive which in turn loads the function into memory and dynamically
links it to the application.

DeskMate applications are the controlling modules in the system. DeskMate applications are
“event driven", accepting an input command from the user and acting upon it. The Core Services
Resource provides advanced user interface features which allow an applications to register its

‘graphic components (listboxes, pushbuttons, etc.), then it manages these components returning

the user actions to the application as single events. Event categories include Character
(keyboard), Mouse, Command (menubar functions and components), Application (task-switch &
accessories), as well as special purpose events required by the system and available to the
application.

Memory Map Example

DeskMate runs in a range of system memory configurations from a minimum of 384K on a
RAM machine to the maximum of 640K on a ROM machine. The following picture illustrates the
memory map for a 640K RAM system configuration.

Tandy 4000 using MS-DOS 3.2, 640K of memory, and EGA video :

Arena Qwner Size in Bytes

DMDB.RES 60768

DMCSR.RES 4896 *Screen Save Buffer

DMMDSERI.RES 1824

DMVDEGA.RES 22368 *Video Driver

DMGUF .RES 30416

DMCSR.RES 76896

Clipboard 16400 (8K in 384K configuration)

DESK.EXE 18528
CGA 3048 DMVDCGA 21K
1000 6048 : DMVD1000 22K
EGA 4896 DMVDEGA 22K
HERC 6064 DMVDHERC 24K
TC1l6 12096 DMVDTC16 20K
VGA 0 DMVDVGA 21K

Page 2

DeskMate Functions

Executive (DESK or RUNTIME) :

The Executive handles the DeskMate system level tasks such as loading and unloading of
resources, applications, and accessories.

The Clipboard allows the user to transfer data from one DeskMate application to another, or
solely within an application. The DeskMate Clipboard can contain any type of ASCII, binary, or
mixed data which the application requires. The Clipboard remains intact at all times whule
DeskMate is active and is available at the application's request.

Application chaining is supported through the capability of setting the next application to
execute after the current application terminates.

Core Services Resource (DMCSR) :

The CSR handles the user interface portion of an application including video output
(graphics, system and stroke font text, and components), keyboard and mouse input, printing,
and communications.

All video graphics are drawn onto an 8000 x 5500 world coordinate plane. World coordinates
are automatically mapped to the resolution of the video device by the currently loaded video
driver so that one version of an application can be written to run on any video resolution.
Normalized world coordinates allow the application to perform exact pixel-by-pixel graphics.

Windows, viewports, and clipping regions are supported by the CSR. Screen
saving/restoring, scrolling, filling, and clearing functions are provided.

Character (system and stroke font) and graphic outputs are supported. Bold and undertined
character attributes are currently supported. Graphics functions include point, line, rectangle,
beveled rectangle, ellipse, polygon, polyline, arc, and bitmaps. Color, line style, and pattern
attributes are supported. The "Forms Manager” provides the functionality required to store,
display, and manipulate (move, size, find, change, reorder, etc.) graphics elements on the screen
as well as transfer the information via the clipboard to other applications.

Currently the Tandy 1000, CGA, EGA, VGA, MCGA, and Hercules video modes are
supported. The video mode is automatically detected and the appropriate driver loaded or the
user may override the automatic detection by selecting the driver to load (dmvid.exe).

The Component, Window, and Event Managers process the applications components,
funneling the user actions back to the application as events.

The Dialog Box Manager controls execution of dialog boxes, returning to the application as
necessary for information updating. Cursoring through the components, redrawing components,
and handling pushbuttons are all done by the resource.

Message Boxes display word-wrapped messages, saving and restonng the screen under the
box for the application. ‘

The printer functions allow both page printing, handling printing to the screen, printer, or file
for the application and direct printing which gives the application full control. Currently ASCII,
IBM graphics, Tandy, Daisy Wheel, and LaserJet printer drivers are provided. :

Page 3

General Design of a DeskMate Application

DeskMate applications are typically "transaction centers", user inputs are processed and
results are displayed. The application usually contains its initialization phase, its "event-ioop”
where user input is accepted, and its clean-up phase when the user chooses to exit the

application.

The application is always in control, it decides when it is ready to receive input and call the
event read function. For example, when the user selects a command from the application
menubar, the system handles the user interface and returns the selected item to the application

for processing.
The following is a general outline of a DeskMate application's main processing loop.

main()
{

/* Initialization Phase */

bind to any resources;

create any child windows in the work area;
draw the menubar and any default information;
open any file passed on the parameter line;

do
read the event;
?witch(type of event)

case is command event :
* the user selected a menu option, */
/* pushed a button, etc. */
ProcessCommand(event parameter);
break;

case is character event :
/* the user entered an alpha-numeric */
ProcessKeystroke(event parameter);
break; .

case is mouse event :
/* the user positioned the mouse */
/* started a selection, double-ciicked */
ProcessMouse{ event);
break;

case is an application event :
/* the user selected an accessory or task switching */
run the accessory or task switch;
break;

} /* end of switch on type of event */
} while { user has not chosen quit);
/* Clean Up Phase */
release any resources;
exit; .
} /* end of application main module */

Page 5

0

LT
O

[

RESEARCH AND DEVELOPMENT

Ta ndy E IeCtro n i cs | 1300 Two Tandy Center

Fort Worth, TX 76102

A DIVISION OF TANDY CORPORATION Telephone (817) 390-2181

Fax (817) 878-6575

November 20, 1989

Dear DeskMate Developer,

We are building the new DeskMate Development System, the kit, and would like to give you an
opportunity to review some of the new information presented in the kit that may affect your
development efforts. The enclosed documentation appears in the new About This Kit and
DeskMate Development Guide manuals. Please review this documentation and make any

comments as soon as possible.
You may mail your responses to:

Attn: DeskMate Support Services
Tandy Electronics

1300 Two Tandy Center

Fort Worth, Texas 76102

or FAX your responses to: (817) 390-2964.

Sincerely,

ochil 772?‘%“/

Rachel McKenzie
Manager, DeskMate Support Services

cc: S. Cutler
H. Elias
D. Tanner
G. Schenberg

System Overview

DeskMate 3 was introduced in the fall of 1988. This version of DeskMate enabled developers to
write applications for the interface and environment. This software is referred to as DeskMate
3.0 (or simply 3.0) and was not compatible with previous versions of the DeskMate product.
DeskMate 3.0 includes the following versions:

1000 SL DeskMate 03.00.00
1000 TL DeskMate 03.00.00
Retail DeskMate 03.00.00 and DeskMate 03.02.00
Runtime DeskMate 03.02.01

This year's DeskMate 3 product is version 3.3 which is DeskMate 3.0 compatible. DeskMate 3.3
includes the following versions:

1000 SL/2 DeskMate 03.03.00
1000 TL/2 DeskMate 03.03.00
Retail DeskMate 03.03.01
Runtime DeskMate 03.03.01

Technical Overview

The DeskMate 3 environment consists of the executive and the resources that contain the
system functions. These resources provide the user interface, three levels of file input and
output including a database, and printing support for the application.

DESK.EXE, the executive, loads and unloads DeskMate programs - applications, accessories,
and resources, as well as non-DeskMate applications. The executive expects DeskMate
programs to contain specific information in the program header used when the program is loaded.
Refer to the DESKHDR.EXE documentation in the DeskMate Development Guide, Tools and
Utilities section for more information.

DeskMate applications (.PDM extension) are the controlling modules in the environment.

Accessories (.ACC extension) are mini-applications which can pop-up over an application.
Accessories are small programs that perform very specific tasks for the user and have
functionality in several applications.

DeskMate resources (.RES extension) are the work-horses of the environment. They provide the
common functionality required by most applications - user interface, file i'o, communications,
printing, etc.. These resources are terminate and stay-resident (TSR) programs which have a
focused scope of functionality. They may be shared by more than one program at a time.
Resources are also used to provide device-specific functionality determined at execution time,
such as, video and printer drivers.

All DeskMate programs must link with a DeskMate library to make use of functionality in the
executive or any of the resources. The DeskMate libraries, DM.LIB and DMMED.LIB, contain

the bindings, or bridge, used by a program to call a function in the resource.
When a program requires functionality provided by a resource, it binds to the resource by calling

the executive and requesting the resource. The program binds to the resource once, before
calling any functions in the resource. The bind call requests the executive to 1) find and load the

Page 1

resource and 2) inform the application of where the resource was loaded. When the executive
loads the resource it resolves the resource's service request vector (srqv) in the bindings - the far
address of the resource’s entry point, and increments the resource’s use count.. The vector is
used to make far calls from the application into the resource. The use count allows the executive
to determine how many programs are using the same resource. When the program no longer
requires the resource, it frees the resource. The executive decrements the resources' use count.
The resources is not unioaded until all programs using the resource have freed the resource (its
use count is zero) and the memory is needed to load another program.

The DeskMate 3.0 system used different file extensions to distinguish between the product
resources (RES) and the runtime resources (RRS). Which resource was loaded is determined by
the executive, DESK.EXE or customized RUNTIME . EXE, respectively.

The DeskMate 3.3 system uses the same file extension (RES) for both the product and the

runtime resources. DeskMate system resources which must be used by the 3.3 system use the
R89 extension to differentiate them from the 3.0 resources. The executive determines which

resource to load.

These file conventions only affect developers who write their own resources. Resources
developed for the 3.0 system have to be shipped with RES and RRS extensions for installation on
a product or DeskMate 3.2 runtime. Resources developed for the DeskMate 3.3 system use the
RES extension.

The executive, resources, and Setup, Page Setup, and Help accessories are distributed in the
DeskMate runtime. These files are referred to as the DeskMate system files. Chapter 5 of this
manual details how to obtain the runtime software. '

The DeskMate executive and resources include:

DESK.EXE The Executive handles the system level tasks for the environment and
the applications.

DESK Managers include:
Clipboard Manager
Desk Executive
DBBUILD.RES This Database Resource allows applications to create database files.

DBREAD.RES This Database Resource allows applications to open and read database
files.

DBUPDATE.RES This Database Resource allows applications to open, read, and update
database files.

Page 2

DMCSR.R89

DMDB.R89

DMGUF.R89

DMFORM.RES
DMMD*.RES
DMPD*.RES

DMVS*.RES

PRGUF.RES

The Core Services Resource handles the user interface and "core"
functionality for applications. This resource is always used by a
DeskMate application.

CSR Managers include:
Communication Manager
Component Manager
Configuration Manager
Dialog Box Manager
Event Manager
Information Box Manager
Keyboard Manager
Menu bar Manager
Message Box Manager
Mouse Manager
Print Managers
Titleline Manager
Video Manager
Window Manager

This Database Resource provides database file access for applications
developed with the 3.2 development system on a 3.3 system.

The General User Functions Resource provides high- and low-level file
IO functionality. See the Executive section for details on what
functionality each GUF resource provides.

GUF Managers include:
Environment Manager
File 10 Manager

The Form Manager Resource provides vector graphics and stroke font
support for applications.

The pointing device drivers JOY (Tandy 1000 joystick), SERI (serial
mouse), P (Micro-Channel mouse)

The printer drivers ASCI (ASCIl), IBMM (IBM-compatible graphics),
LASR (Laserjet-compatible), 1 (DMP 105), 2 (DMP 200, 420, 430)

The 80 column video drivers CGA, 1000 (TGA), TC16 (ETGA), EGA,
VGA, MCGA, and HERC. The 40 column video drivers LRES, TC40,
T256, H (Hercules), E (EGA), and M (Monochrome EGA)

The Power and Run General User Functions Resource, provides a
subset of the GUF functionality. See the Executive section for details on
what functionality each GUF resource provides.

The DeskMate libraries contain functionality which is linked into the application. The Library
Manager lists all functions available in the libraries.

Page 3

DeskMate 3.3 Modifications and Enhancements .

The DeskMate 3.3 system added the following modifications or enhancements to the user
interface and environment. For more information about how these changes affect your
application's compatibility on all DeskMate 3 systems, refer to the DeskMate Development Guide,
Getting Started section. For more information about the user interface changes refer to the
DeskMate Style Guide. For more information about the enhanced calls, see the appropriate
section in the DeskMate Technical Reference; the new calls are clearly marked as "1989
DeskMate 03.03.0x ONLY". For information on the new utilties mentioned, refer to the
DeskMate Development Guide, Tools and Utilities section.

User Interface

The title-line was rearranged to have the Help F1 prompter appear at the far left over the
function key on the keyboard. The time indicator was moved to the far right.

In dialog boxes and message boxes, the default push button - button which will be
pressed by the Enter key - appears with a dashed box around it to notify the user.

The "Sticky Menu" interface was added to the user interface. See the Development
Guide, Getting Started section for more information if your application was predicting
menu bar events.

Grayed menu items can be highlighted by the user, although they are not selectable
(enhancement added for new help).

The busy icon is now animated, it cycles through a pattern.
An About menu option standard was adopted for all applications.

The "arrow algorithm" used in dialog boxes was optimized to eliminate "dead spots”,
components in a dialog box that could not be accessed via the arrow keys.

Environment

Applications written with the DeskMate 3.0 system used SETHEAP.EXE to set their

minimum and maximum load size requirements. DeskMate 3.3 applications should use
the new DESKHDR.EXE utility which also contains the program's split allocation, code
shed size, and version number. The 3.3 executive will use the information stored in the
new header when loading a program and when deciding how much code to shed when
more space is needed to load an accessory. The 3.0 executive will ignore the extra
information.

Additional accessories can now be accessed through the More‘option on the F10 Menu.

Context-sensitive help is now available in all pop-ups, dialog boxes, message boxes, and
accessories, and on menu items. '

The Form Manager which was part of the Core Services Resource, DMCSR.RES, was
split out as a resource, DMFORM.RES. The CSR on a DeskMate 3.3 system will
automatically load the resource on a form_open call for a 3.0 application.

. Page 4

®

‘\

The General User Functions Resource was split into two resources, DMGUF .R89 and
PRGUF .RES.

The Core Services Resource, CSR, only saves the first six (6) colors in the configuration
file. Colors 7 through 16 are now considered to be application specific. The application
must decide whether to save the colors with the data file or in its own configuration file.

The dm_file_search function honors diskette label files created with DMLABEL.PDM, a
DeskMate utility.

The dm_file_search function no longer prompts the user to search the entire system
before doing so.

The printer drivers were enhanced to support new line style widths, the patterns were
changed to match the video drivers, the maximum number of characters printed on a line
was increased, and several printing problems were fixed. For a complete list of changes,
see the DeskMate Development Guide, Getting Started section.

A set of new video drivers was added, allowing applications to "video swap” into a 40
column screen resolution. These drivers require a DeskMate 3.3 system.

The Runtime executive now supports parameter passing to the runtime application and
the execution of the runtime module from a DeskMate 3.0 DeskTop. This feature is
important to applications which require the DeskMate 3.3 system to operate.

Application Data Files

In data files for the DeskMate 3.3 product have the same format as was used in the
previous DeskMate 3 versions. The Address Book data file lengthened the Title and
Address fields. Refer to Appendix A, DeskMate 3 File Formats in the DeskMate
Development Guide for details.

Page 5

Introduction

After reading About This Kit, reviewing the DeskMate Style Guide, and installing your DeskMate
3 product and development system you are ready to develop a DeskMate application. Before you
begin development, we should review the key information discussed so far and introduce some
new topics which you should find beneficial in the development of your application.

The Kit contains the 1) development files, 2) samples, and 3) tools and utilities need to
develop a DeskMate applications. The DeskMate Technical Reference defines every
function call available in the DeskMate libraries.

DeskMate applications are primarily written in C but may also be written in assembly
language. Programs may be written in any of the memory models but only the small and
medium memory models have DeskMate libraries. Refer to Memory Models and
Development Tools, in this section, for a detailed discussion of memory models, and
compiling, linking, and debugging of DeskMate applications.

The DeskMate Style Guide defines the DeskMate User Interface. DeskMate applications
use menus, dialog boxes, message boxes, and interface components to communicate
with the user. DeskMate applications support both a keyboard and mouse interface. Your
application should meet the DeskMate standards defined in this guide.

From the System Overview in About This Kit, you learned about DESK, the DeskMate
Executive, and the key DeskMate resource - Core Services Resource (Core or CSR),
and the other resources available in the DeskMate environment. Applications
communicate with these resources through the DeskMate libraries.

There are now two versions of DeskMate 3 in distribution, DeskMate 3.0 (includes 3.2)
and DeskMate 3.3. Your application should check the system version number, when it is
initially loaded, by calling dm_inquire_product to determine which version of the
environment the application is running on.

Now, let's introduce some new DeskMate programming topics.

DeskMate uses a world coordinate system to access the video. In the programming
examples and the function call descriptions in the DeskMate Technical Reference you
will often see the defines, CHAR_XEXT and CHAR YEXT used. These defines allow the
programmer to reference points on the screen as character locations. DeskMate also
allows the video to be accessed at a pixel or device level. See DeskMate Coordinate
Systems for a detailed discussion about world and device coordinates.

DeskMate applications are event-driven, they wait for the user to perform an action and
then act upon the action. The CSR provides an Event Interpreter or Manager which
translates the user's actions into events the application can process. Applications can
write their own event interpreters to capture events before and after the CSR's Event
Manager has handled them. For more information, see the Event Manager section of the
DeskMate Technical Reference.

Page 6

DeskMate allows mini-applications, called accessories, to pop-up over the current
application. When there is not enough available memory to load the accessory, Desk will
try to make room for the accessory by getting rid of parnt of the application’s code and
moving the rest. This process is referred to as code shedding. The following criteria is
used to determine if your application can be code shed to run an accessory. [f your
application cannot be code shed then it MUST call dm_exec_dont_shed when initially
loaded to insure that it is not code shed to run an accessory. Your application should
also set the code shed size using the DeskMate utility DESKHDR . EXE.

1) An overlaid application cannot be code shed since it cannot be guaranteed
that it will be restored from the disk in the same configuration it was in before
the accessory was run.

2) An Application which uses event interpreters or interrupt handlers cannot be
code shed because the interpreters and handlers are address dependent.
When the application is moved during the code shed, the handlers are moved
and may no longer function correctly.

Note: On a DeskMate 3.3 system the application may be able to code
shed if the handlers are placed in the IMPURE segment which is
not altered during a code shed. Refer to the detailed information
for DESKHDR . EXE in the Tools and Utilities section of this guide for
more information about splitting applications.

3) A medium or large model application which has too many fix-ups (more than
200), cannot code shed in a DeskMate 3.0 system but can on a 3.3 systems
which supports unlimited fix-ups.

Note: This deficiency in the 3.0 system can be overcome by naming the
code segments and limiting the number of code segments used to
a smaller number. Refer to your compiler documentation for more
information about overriding the default code segment name.

The executive and the resources often use the application's stack. The CSR and its
drivers require the application stack for busy icon and mouse processing. A packed
executable has a very small temporary stack while it is being loaded before the stack is
expanded. This stack can be overflowed during the loading of the application if the busy
icon or mouse processing consume more of the stack than is available. You should not
pack your DeskMate executable and should allow at least 2048 bytes of stack space for
the executive and DeskMate resources, and 4096 bytes if the Form Manager Resource
is used.

- Page 7

Compatibility and Programming Issues
Runtime Executive

The 3.3 runtime executive allows an application to be launched from a 3.0 DeskTop as a
runtime. This enhancement was added for applications which require the 3.3
environment to operate in but still want to be launched from 3.0 DeskMate products. An
application making use of the new 40 column video drivers would be an example of an
application requiring the 3.3 system.

To run from a 3.0 DeskTop your application can provide a small “compatibility”
application which checks the current system and then runs the application. The
compatibility check should also be performed within your application in case the user
executes the application from the DeskTop. If your application is large, you should
consider providing the compatibility application since it will take less time to load and
unload it rather than your application.

The function dm_compat, a DeskMate Library function, checks the version of desk
currently running and decides if the application

can run on the system. _
cannot run because the user is task-switched.
needs to run from the new runtime.

The compatibility application calls dm_compat, sending it the name of your customized
runtime module, and checks the return code and handles it as follows:

main ()
int product info;
char RuntimeName[] = "VENDOR.EXE";
product_info = dm compat (¢RuntimeName(0]);
if ((product info & DM _VERSION) == 0)

if ((product info & DM COMPAT FLAG) == ()
{ _ - -
csr init();
display "Cannot run while task-switched.”
} csr_end();
} /* running on a 3.0 system */
else
/* running on a 3.3 system */
dm SetNextApp(to VENDOR.PDM);
exit();

} /* end of compatibility application */

If the application is running on a DeskMate 3.0 system and is not in a task-switched context, then
dm_compat will call dm_SetNextApp to your application's 3.3 runtime. The compatibility
application will either cause the application to run on the current system or as a runtime or inform
the user that the application cannot run in the current context.

Page 8

*

@

The Help System

DeskMate 3.0 Operation

Help is provided through an accessory. Application help is therefore only available when
an accessory can be executed. The application always knows when the user requests
help. Applications can write their own event interpreters to capture the F1 key and
provide the user with the level of context-sensitive help they deem appropriate.

DeskMate 3.3 Operation

Context-sensitive help is now provided through an Intelligent Help Manager which
captures the context of the application and gives specific and general help, specific to the
application state. Help is now available in pop-ups, including accessories, and while the
menu bar is being accessed. Help may be given at any time, for instance while the user
is in a dialog box, and the application is not always aware of when the user requests
help. The application can register call-back functions which will be called prior to and
after help is given. Refer to the Help Manager section of the Technical Reference for
more information.

Compatibility Issues
For applications written for the DeskMate 3.0 system, running on a 3.3 system:

In applications which are not providing any context-sensitive help (by trapping the F1
key), or are not providing help for all the new context possibilities, the user will get a
message stating that help is not available. The developer can decide if this is acceptable
or do one of following to ensure the user is always presented with help in any DeskMate
3 system.

1) Distribute a Help Compatible System consisting of:

a) An application help data file.

b) The help compatibility accessory, DMHELP88.ACC.

c) The DeskMate 3.3 Intelligent Help Manager, DMHELP.ACC and
DMHELPENG.RES.

Upgrade DeskMate 3.0 user's DMHELP . ACC file with the new Intelligent Help
Manager, see the Distributing Your Application section in this manual for
more information. The new help accessory will chain to the compatibility
accessory and provide general application help from the help data file on the
upgraded 3.0 system and context-sensitive help on a DeskMate 3.3 system.

2) Handle the new areas of context-sensitive help by using an event interpreter
and trapping the F1 key. Refer to the Event Manager section of the Technical
Reference for details about writing an event interpreter.

The F10 Tandy Menu

The user can now run new accessories from the More option on the F10 menu or from
an upgraded Setup accessory. To run accessories on all DeskMate 3 systems, your
application should not perform any range checking on the accessory value before running
the accessory. The F10 menu distribution, number of items and their names, varies from

Page 9

system to system depending on the capabilities of the DeskMate system. Your
application should not make any exceptions or assumptions when running accessories, it
should simply run the accessory the user requested.

Code Shedding when Running Accessories

DeskMate 3.0 Code Shed Operation

In this environment when an accessory does not fit, the executive code sheds 32K of the
application. Applications which can not have their code shed and replaced from disk
called dm_exec_dont_shed. See the discussion of code shedding in the Introduction of
this section for a discussion of code shed criteria.

DeskMate 3.3 Code Shed Operation

In this environment the amount of code shed space for an application is stored in the
application's header built by DESKHDR.EXE, the DeskMate utility. The executive looks at
this information to determine how much, if any, of the application to shed in order to load
the accessory. If the code shed size is less that 32K, applications should call
dm_exec_dont_shed to register that information with the DeskMate 3.0 executive.

Programming and Compatibility Issues

Your application may not function properly if the application cannot be code shed
and it does not inform the executive by either setting the code shed size using
DESKHDR.EXE and/or by calling dm_exec_dont_shed.

Your application will not function properly if does its own code shedding to make
room for an accessory for the following reasons.

1) The DeskMate 3.0 accessories were generally less than 32K, so most
accessories would run if that amount of memory was available. In the
3.3 system, most of the accessories use more than 32K. Freeing a
specific amount of memory will probably not cover all cases.

2) Accessories can load one or more resources when they run.
Depending on the function of the accessory, the resource may stay
loaded after the accessory exits. For instance, the Spell Checker
allows the user to turn on auto-proofing and exit the accessory. The
spell resource stays resident to handle the auto-proof function. Your
application will not be able to recover the memory it freed for the
accessory.

3) New accessories may be executed through the new More option, your
application cannot predict how these new accessories will operate or
how much memory they will require.

If there isn't enough room to load an accessory, the executive will wam the user.
It is. better not to run an accessory, than to run an accessory and not recover
properly.

Page 10

o~

To run accessories on all DeskMate 3 systems, your application should do the
following:

1) Set the code shed size (0 up to code size) for your application using
DESKHDR.EXE.

2) If the code shed size is less than 32K, call dm_exec_dont_shed on a
DeskMate 3.0 system.

3) For applications which use all available memory and cannot be code
shed, consider doing one or more of the following:

a) shed data which can be regenerated after returning from the
accessory.

b) shrink the unused data size to free memory for the accessory.
Your application must handle not being able to expand out
the data if the memory is no longer available.

c) free resources which can be reloaded after returning from the
accessory. Your application must handle not being able to
reload the resources if the memory is no longer available.

"Sticky Menus" and Selectable Grayed Menu ltems

Since the menu bar processing is done within the DeskMate environment, this
enhancement is transparent to the application. Applications which use their own event
interpreters and are predicting the state of the menu bar based on the mouse or arrow
events are affected by this change.

In the DeskMate 3.0 system, a single mouse click did not affect the state of a menu bar.
In the 3.3 system, a single mouse click can cause a menu to drop or will change the
selection of a menu item.

In the 3.0 system, the up and down arrows skipped over grayed menu items. In the 3 3
system, the up and down arrows do not skip grayed menu items.

To be compatible on all DeskMate 3 systems, applications which predict user events
must handle the differences in the menu bar user interface in each system. To aid the
developer, the new mb_get_status call was added to get menu bar status information.

Animated Busy lcon
The Tandy busy icon is now animated. The icon processing can cause problems for
applications which are accessing video memory directly and are making timing

assumptions about the busy icon. If your application meets this criteria, make sure your
application disables the busy icon while it is accessing video memory.

Page 11

Form Manager and GUF Resource
Loading of the Resources for 3.0 Applications

The DMFORM.RES is automatically loaded on the first form_open call. Both GUF
resources, DMGUF .R89 and PRGUF . RES are loaded with the guf_bind_init call.

If the resource does not fit in available memory or the resource file couid not be
found, the form_open and guf_bind_init calls will return an error. You should
ensure your application is checking the return code from both call and handles
the conditions properly.

If your application uses ali available memory, the form_open call should be
made BEFORE all of memory is allocated.

Loading of the Resources for 3.3 Applications

The new binding call for the Form Manager resource, csr_form_bind_init will return
an informative error DM_EXISTS if the application is running on a 3.0 system.

Both GUF resources, DMGUF .R89 and PRGUF . RES are loaded with the guf_bind_linit
call. To load only the PRGUF . RES resource, call prguf_bind_init.

Video Drivers
Driver Names

The DeskMate 3.0 video drivers used the DMVD prefix, the 3.3 drivers use the DMVS
prefix. The video drivers must match the version of the CSR being used, mixing of
systems is not allowed. Applications using the cfg_get_vid_driver call to determine what
video driver is loaded are affected by this change and should handle the differences in
the systems.

Video Detection

The VGA video driver, DMVDVGA.RES, incorrectly returned VID EGA in the
VID DEVICE.card element when the vid_inquire_device call was made. In order to
determine if the video was in fact VGA, the calling program compared the
VID DEVICE.dc_yext element to 480. The VGA video driver, DMVSVGA.RES,
correctly returns VID VGA from the vid_inquire_device call. If your application makes
use of the vid_inquire_device call, you should ensure you handle the differences
appropriately.

Palettes
The DMVSVGA driver uses different paleties than those used by the DMVDVGA driver. if

your application accesses the palette information directly, then your application will
exhibit different default color settings in the 3.0 and 3.3 environments.

Page 12

fa

Printer Drivers

Line Styles

The line widths, LINE_WIDTH1 and LINE_WIDTH2 are now supported for the dotted,
dashed, and dot-dash line styles. These widths were only supported for LINE_WIDTH1
which exhibited printing problems when a line crossed a print band.

The line style DENSE_DASHED is now supported by the printer drivers.

The thickness of the wider line widths was changed to match the world coordinate width
used by the video drivers. '

LINE_WIDTH1 1 pixel wide

LINE_WIDTHZ2 "best look", normally 2 pixels wide

LINE_WIDTH3 50 world coordinates wide

LINE_WIDTH4 75 world coordinates wide

LINE_WIDTH5 100 world coordinates wide

Print regions

The 132 character maximum line has been removed and now as many characters as will
fit into the width of the print band will be printed. The width of the print band for printers
with a wide carriage is 13200 world coordinates. This translates to the following number
of characters depending on the current character per inch setting: ’

10 CPI 132 characters

12 CPI 158 characters

condensed 220 characters

The dimensions of the printable region for the 3.0 printer drivers was sometimes less
than 8 x 11 1/2 inches. The 3.3 printer drivers now print exactly to 8 x 11 1/2 inches. This
apply to IBM-compatible graphics printers. The Tandy 2100P with micro line-feed control
prints a page 11 3/8 inches instead of 11 1/2. Other non-Tandy printers exhibit the same
incompatibility.

The quarter-inch on the left and right side of the paper is the default “unprintable region”
for printers. The laser printer has its own specific unprintable region.

Landscape printing

The DeskMate 3.0 drivers did not do a form feed at the end of a landscape printed page,
the new drivers do.

Page 13

The DeskMate Checklist

Programs that will be sold by Radio Shack as DeskMate applications must meet these
requirements:

1.

©

9.

The program must be implemented using the DeskMate Development System and use
- the DeskMate environment.

. The program must be installable using the DeskTop's F7 Menu, Install option. Refer to

the Installation and Upgrade Procedures section which follows this Checklist for more
information.

The program must support the DeskMate 3.2 and use the DeskMate 3.3 help system.

The program should run all accessories (including "More...") and have the F10 menu
button on its menu bar.

The program must permit task switching from the F10 menu.

If the program uses a cut/copy/paste function, the program should support the DeskMate
clipboard as its cut/copy/paste buffer. If the program has graphics capabilities, it should
use the DeskMate Forms Manager to permit the data to be transferred in the DeskMate
graphics format.

The program must have the F9 notification menu button enabled.

If the program changes the user-defined colors, the program must restore the colors to
those specified by the user when the program terminates.

The program must not use DOS overtays. If new portions of code must be overlaid onto
an executing program, the program should use DeskMate Resources instead of overlays.

10. The program should use the DeskMate printer drivers. If a specific driver is not available,

the printer development kit should be used to write the necessary driver.

11. The product must be submitted to Radio Shack Computer Merchandising for interface

and style guide approval before the application can bear the trademarked DeskMate
User Interface logo.

12. The product package should display the trademarked DeskMate User Interface logo.

- Page 14

Installation and Upgrade Procedures

All DeskMate applications should have an installation program which is itself a DeskMate
application. The installation program should be easy to use and not alter the user's system
without the user being notified.

The installation program should not perform DOS commands which might alter the user system
(other than creating directories and copying files), such as setting the date and time, deleting
AUTOEXEC . BAT or CONFIG. SYS files, modifying AUTOEXEC . BAT or CONFIG. SYS files such that
the user cannot easily recover.

Whenever appropriate, the user should be given a choice to continue the process or cancel. For
instance, if the installation is about to delete all system files from a previous version of your
product, the program should inform the user giving the option to approve or cancel the process.

Every application must:

Have an INSTALL.EXE program which launches the application's INSTALL.PDM file
from a DeskMate 3.3 runtime. This program is used to install stand-alone versions of a
product. Use the INSTLBLD.PDM program to build your customized INSTALL.EXE

program. This file must be on the same diskette as the application's customized version
of RUNTIME .EXE.

Have an INSTALL.PDM application which copies files to the user's hard disk using the
following guidelines:

Create a directory for the user in which the files are installed. Present the user
with a default pathname which can be modified.

When installing on a DeskMate product, do not copy the DeskMate system files
unless an upgrade has been recommended or your product requires the version
of your runtime. The installation program should determine the DeskMate version
by the method outlined in the Determing the DeskMate Product Version section
which follows.

To install as stand-alone system copy the DeskMate system files along with your
application's files to the directory.

If your product uses the DeskMate Help system, copy the application help file to
the directory along with the application.

Neither the INSTALL.PDM nor INSTALL.EXE files should be copied to the hard
disk.

For 40 column applications, the INSTALL.PDM must also be a 40 column
application.

Do not install the DeskMate system files in a directory which contains a
DeskMate product or another vendor's runtime, unless Tandy has recommended
you upgrade a system due to an incompatibility or to fix a known problem. A
runtime installation should never downgrade/upgrade a user's DeskMate system
as it might inadvertently cause the system to no longer function properly. Check

Page 15

the version number of a file before upgrading the user to ensure the user's
product is not mistakenly downgraded.

Provide a DESKTOPD . CFG configuration file which is used by the Desktop install function.
This file should be copied along with the other application files during the installation.

Create this file using the DeskTop Menu (F7) Createauto option.

DESKTOPD .CFG is used by the AUTOCONFIG application box on the DeskTop.
When the user changes directories to your directory, the box will change to show
your application and list of data files.

Have a diskette label file, LABEL.LBL, created with DMLABEL.PDM which contains
diskette information used in file searching and for diskette prompts. The file also
contains instruction flags for each file which tell the installation program how to copy the
file. The diskettes must also have unique volume id's used by your customized
INSTALL.EXE and the file search function to prompt for diskettes. The diskette label file
should not be copied to the hard disk.

To provide help during the installation process, an INSTALL.HLP help file can be
supplied with the product. This file must reside with INSTALL.PDM and should not be
copied to the hard disk. If you choose not to provide help during the installation process
then this file is not needed.

The user documentation for installation on a DeskMate DeskTop should give the
following directions:

1) The user should be told to insert the diskette (use the name from the label
program) which contains INSTALL.PDM into any floppy drive.

2) Direct the user to use the Desktop Menu (F7) Install option to install your
application on the DeskTop.

3) The user should then follow the prompts given by your installation program.
To reinstall or upgrade on a DeskMate 3.2 system, the user should be instructed to use
the Desktop Menu (F7) Delete option to remove the application's definition and then
follow the installation directions outlined above.

The user documentation for installation or upgrade of a stand-alone system should direct
the user to:

1) The user should be told to insert the diskette (use the name from the label
program) which contains INSTALL.EXE into any floppy drive.

2) Direct the user to change to that drive.
3) The user should then run INSTALL. EXE to do the installation.
If your application allows the user to make backups of the product diskettes, then the

user should be directed to use the DISKCOPY command to insure the volume id's are
copied when the diskettes are copied.

Page 16

-

P

Determining DeskMate Product Versions
installation launched from the DeskTop

The installation program, INSTALL .PDM, can detect if it was invoked from the DeskTop through
the F7 Install option by calling env_open with the following ENVDATA structure.

ENVI?ATA your_env =

"USER.CFG",
"DMCONFIG",

"ENV NO CREATE",
"USER",™

(char far *)0,

14
}i
if env_open does not return DM_ERROR, then install was invoked from the DeskTop.

If invoked from the Desktod;;ﬁdp the following to determine the DeskMate version:
ret code = inquire product();
if T(ret code & DM VERSION) != 0)
user has DeskMate 3.3
else
user has DeskMate 3.2 or less

Before copying the necessary files (based on the DeskMate version) to a directory you must
make sure the DeskMate product is not in that directory. If none of these files are found, then
DeskMate is not in the directory.

1) Ensure DESK . EXE is not present.

2) If it is not present, then check for a Tandy ROM machine in which the file is in ROM.
Check that at least three of the following files are not in the directory, since it is possible
that one of these applications may be in ROM:

ADDRESS.PDM
CALENDAR.PDM
FORMSET .PDM
FILER.PDM
DRAW.PDM
TEXT.PDM

If your runtime executive and application files are present, you can consider this installation to be
an upgrade and copy the files. ‘

If your executive and application files are not present, see if any DeskMate 3.0 runtime resource,
_RRS extension, or your runtime files are present. If so, there is another runtime application in that

directory and you should not install in this directory.

- Page 17

L

Installation launched from the INSTALL.EXE

If INSTALL.EXE invoked INSTALL.PDM, you have to search the system to determine if
DeskMate is present.

ret code = dm file search("DESK.EXE", pPathbuffer, 0);

if Tret code == 1)

The file was found and the path is in pPathbuffer

else
The file was not found, so call dm file search for the
DeskMate application files listed aboveT

If none of these files are found, the user does not have the DeskMate product.

How to get the file version

] As long as your application, accessory, and resource files use the DESKHDR . EXE utility, you can
determine the version of your files in the manner described below. Do the following to determine
the version of the file:

1) Open the file, refer to this FileHeader structure for variable offsets.

?truct FileHeader =
int MagicBytes([12};

int RelocSeek;
int VersionNum;
char DM89Key [4];

i

2) The element RelocSeek must be greater than 25H.

3) The element DM8 9Key must contain the four bytes "DM89".

If items 2 and 3 are meet, then the DeskMate file is version 3.3 or greater. This method can
be used by your INSTALL.PDM for upgrading only files with prior versions. The element
VersionNum contains the DeskMate 3.3 (or greater) version number. The format of this
element is file dependent, for DeskMate resource files, *.RES, the version number is binary.
DeskMate application and accessory files use ASCII version numbers. '

Page 18

o~

"5

Runtime Distribution Guidelines

Only distribute files listed in Exhibit A of the DeskMate Distrbution License. Files marked for non-
distribution should not be distributed.

Do not distribute mixed versions of the DeskMate system files. For instance, do not distribute the
3.2 versions of any of the accessories with the 3.3 resources or vice versa.

Files which MUST be distributed with your product:
RUNTIME.EXE Executive - Distribute your customized version

INSTALL.TEM Runtime Installation Launcher - Distribute your customized
INSTALL.EXE version. You must write the INSTALL.PDM program
which is launched by this program.

INSTALL.PDM DeskMate application which installs your application onto a hard disk.

DMSETUP.ACC Setup Accessory
DMSETUP.HLP Setup Accessory Help File

DMCSR.R89 Core Services Resource
PRGUF.RES Power & Run General User Functions Resource

DMMDJOY.RES Tandy 1000 Joystick Driver
DMMDP.RES Micro-Channel Serial Mouse Driver
DMMDSERI.RES Serial Mouse Driver

DMVID.EXE DeskMate video force utility.
DMVID.DOC Video force utility documentation.

Distribute the video driver resolution set which is required by your application. If your application
is a standard 80 column application, distribute ONLY these drivers:

DMVS1000.RES Tandy 1000 (TGA), 4 color video driver
DMVSCGA.RES CGA, 2 color video driver '
DMVSEGA.RES EGA, 16 color video driver
DMVSHERC.RES Hercules, 2 color video driver
DMVSVGA.RES VGA, 16 color video driver
DMVSTC16.RES Tandy TL/SL (ETGA), 16 color video driver
DMVSMCGA.RES MCGA, 2 color video driver

If your application is a 40 column application, distribute ONLY these drivers:
DMVSLRES.RES 40 column, low resolution video driver

DMVST256.RES 40 column, vga video driver
DMVSTC40.RES 40 column, Tandy 1000/TL/SL video driver

DMVSH.RES 40 column, Hercules video driver
DMVSE.RES 40 column, EGA video driver
DMVSM.RES 40 column, Monochrome EGA video driver

Page 19

DMPGSET.ACC
DMPGSET.HLP

DMHELP.ACC
DMHELP88.ACC
DMHLPENG.RES

DMGUF.R89

DMDB.R89
DBBUILD.RES
DBREAD.RES
DBUPDATE.RES

DMFORM.RES
DMTHES.RES

DMPDASCI.RES
DMPDIBMM.RES
DMPD1.RES
DMPD2.RES
DMPDLASR.RES

PLAY.PDM
DMPLAY.RES
DMUNPACK.RES
DEMO.PDM
TUTKBD.RES

Files which must be distributed ONLY if your applications uses the specific function or resource:

DeskMate Page Setup Accessory
DeskMate Page Setup Accessory Help File

Help Accessory
DeskMate 3.0 Compatible Help Accessory
DeskMate Intelligent Help Resource

General User Functions Resource

Database Control Resource, is required by the DeskMate Help System
Database File Build Resource

Database File Read Resource, is required by DeskMate Help System
Database File Update Resource

Form Manager Resource
Thesaurus resource (see local dealer).

Daisy-wheel, or other non-supported printer, printer driver
IBM-compatible graphics printer driver

Tandy DMP 105 printer driver (Tandy mode)

Tandy DMP 200, 420, or 430 printer driver (Tandy mode)
HP Laserjet Plus or Laserjet-compatible printer driver

Play application, launches tutorial or demo
Play resource

Tutorial Decompression Resource
Customized Runtime Demo Launcher
Keyboard Layout Resource

Page 20

WP
0O+
afibn

[

Tandy Electronics RESEARCH AND DEVELOPMENT

Fort Worth, TX 76102
Telephone (817) 390-2181
Fax (817) 878-6575

A DIVISION OF TANDY CORPORATION
April 20, 1990

Dear DeskMate Developer,

Tandy is pleased to let you know that the development of the DeskMate 03.04.00 product is well
underway. LIM and shadow ram support for DeskMate applications and resources are among
this year's product enhancements, both of which will be provided in the DeskMate retail and
runtime products.

System requirements for using DeskMate in LIM are:

Expanded memory with an EMM driver (TEMM.EXE, QEMM.EXE, etc.).
OR e
Hardware expanded memory such as RamPage or AboveBoard

Using DeskMate in Shadow RAM requires an XMS driver.

Tandy is providing this feature in the retail and runtime products to compliment the memory
savings available on our DeskMate ROM machines. With the basic DeskMate environment in
LIM, an additional 90K is available for your application. The basic environment includes
DESK.EXE, DMCSR.R89, DMGUF.R89, and PRGUF.RES. With the environment in Shadow
RAM as well as LIM, an additional 89K of system memory is available - total 179K. The amount
of memory required by the XMS and/or EMM driver used is not included in this calculation and
will reduce the total amount of memory available.

To ensure your DeskMate applications run successfully in this new configuration, we are making
Beta versions of the product available for your testing needs. To receive your copy, simply
complete the enclosed Order Form and return it to Tandy as soon as possible.

We also encourage developers to take advantage of the DeskMate LIM support in their own
DeskMate applications and resources. Coding changes to your application or resource may not
be required if your program follows these general guidelines.

o The program does not use overlays.

o The program can be split between its pure segments, code/data which does
not change, and impure segments, code/data which does change.

o The code segment(s) is 64K or smaller and does not contain interrupt routines
or DeskMate event handlers. The code segment must also be at the
beginning of the program.

If you are interested in supporting LIM in your DeskMate program, simply check the box
labeled "LIM Support Technical Information" on the Order Form.

Thank you for your support of the DeskMate environment and development. We wish you
continued success in your DeskMate development efforts.

Sincerely,

: R@ac@/ e s

acHel McKenzie
Manager, DeskMate Support Services

Enclosures

M'u:'wlj C?)
3.¢" version .08

oa'ué;] but Dlj}ﬂj

jomw(-T‘ao((d“é {3

“mn C/[amd cw@.

_— - - LR S

[

Tandy Electronics 1500 Two Tancy Conter

Fort Worth, TX 76102
A DIVISION OF TANDY CORPORATION Tg|ephgne (817) 390-2181

Fax (817) 878-6575

April 19, 1990

Dear Software Developer,

This is your opportunity to join the growing number of software developers that are helping create
an industry-standard user interface for MS-DOS software. This interface which is part of the
DeskMate Development System, can help you create friendly, easy-to-use software.

Tandy is offering a two-day technical seminar, with a wide range of both introductory and
advanced topics, to expand your knowledge of DeskMate and the DeskMate Development
System. Come and find out just how easy it.is to develop-DeskMate-applications.

Some of the companies currently using the DeskMate Development System include Lotus,
Symantec, Logitech, and The Software Toolworks.

You should make plans to attend this seminar if you are a software developer:
o currently developing DeskMate applications
o interested in developing new applications using the DeskMate User interface
o interested in simply leaming more about the DeskMate Interface

See the attached information and registration form to sign up!
Hope to see you in Fort Worth,

Lo

Terry Taylor
DeskMate Support Services

0

Attachment A: PC-LINK
of the on-line technical

-
. Follow the steps outlined below to make us
support service.

1) Follow the steps outlined in your/PC-Link Connect Guide,
enclosed in your DeskMate 3 box,/to familiarize yourself and
register with the service. Contact PC-Link’s Customer Service,
informing them you are a DeskMate developer. This will speed
up the approval process if you/ experience any delays.

2) Call the DeskMate Support Services hotline at 817-390-3664 to
notify us that you are registered. TLeave-a message with your
name, company name, and(PC-Link screen nam We will contact
PC-Link to give you acce Center.

3) IOnce you are cleared, use the "deskhq" keyword to get access to
the DeskMate Center. Please register in the "Vendor Directory”

area in Information Exchange so others can identify you by
screen name. :

4) Read the welcome message and the News from Tandy to familiarize
yourself with the system.

5) Send confidential problems through E-Mail to TCTerryT or
TCMikeH.

6) Post general problems in the Q&A sections.

7) Software updates are made through the Software Exchange and
will be announced in News from Tandy.

8) Important messages will be broadcast by E-Mail to insure you
receive them. The names appearing in the vendor directory will
be sent the mail, be sure to register.

=

]

- RESEARCH AND DEVELOPMENT
2T2 Tandy Electronics 500w Tanch G
4 C Fort Worth, TX 76102
w)] A DIVISION OF TANDY CORPORATION Telephone (817) 380-2181
L Fax (817) 878-6575

October 23, 1989
Dear DeskMate Developer,

Tandy provides on-~line technical support, through PC-Link, for
software developers writing DeskMate applications. The copy of
DeskMate 3 which accompanied your development system includes a copy
of PC-Link, the program used to access the service. The DeskMate
Support Services group provides on-line support in the DeskMate Center
forum through E-Mail, a Software Library for software updates, and
message boards for problem reporting. We encourage all DeskMate
developers to register and use this on-line service. Refer to
attachment A for details about accessing PC-Link.

For software developers unable to use PC-Link, we recommend FAXing
problem reports. Use the attached problem sheet to report problems by
FAX. Scheduled software and documentation updates and news of
importance will be made to you by regular mail. Please fill in and
return the enclosed registration form to ensure the correct address
information is used in our distribution list.

Fax Problem Reports to:
DeskMate Support Services
Attn: Problem Reports
817-390-2964

Tandy also provides telephone support, for assistance call
817-390-3664. Your call will be answered 24-hours a day by a
voice-mail system. Leave a message, stating your name, company name,
phone number, and the nature of your problem or question. Refer to
Attachment B, the Problem Report Guidelines for suggestions on what
information to include in your message. Your call will be returned
between 9 a.m. and 5 p.m. CST and will be handled within one business
day.

For timely and effective responses to your technical questions and
problems, use one or more of the methods described above. We look
forward to supporting you in the future in your DeskMate development
efforts.

Sincerely,
DeskMate Support Services

Radlb ’ haek® Consultant Liaison Program (817) 390-2900

A Division of Tandy Corporation 1400 One Tandy Center, Fort Worth, Texas 76102

Service and Solutions ...

... that’s what the personal computer industry is all about. As a consultant or software developer,
you’re working daily to keep your clients “up and running,” and still keep your business profitable.

Radio Shack’s Consultant Liaison Program will help do that in more ways than one.

Tandy Computers: The broadest line of PCs in America. Radio Shack Computer Centers
carry the full line of Tandy computers from our #1 selling PC-compatibleTandy 1000 family
to our state-of-the-art Tandy S000 MC.

We service what we sell: No more headaches from clients with “hardware” problems. Tandy
Service Plans provide either on-site or carry-in service, freeing you from the hardware/
service loop. Clients deal directly with Radio Shack factory trained representatives.

No “Information Overload”: The Radio Shack CLP believes in providing you important
information, like new product announcements, as quickly as possible. We’ll also keep you
up to speed with COM1: The Radio Shack Newsletter for Consultants. Published quarterly,
a copy of this valuable newsletter is enclosed.

Nationwide Distribution Network: Over 290 Computer Centers nationwide, and an additional
400 Radio Shack PLUS Computer Centers dedicated to serving small and medium sized
business, the home office and education.

Consultant Liaison Program members enjoy other benefits from the program including business
and technical support, use of Computer Center facilities for consultant-sponsored seminars and a
Finder’s Fee Agreement.

Providing the best service and solutions for our customers has made Radio Shack a leader in our
industry. Working together with industry specialists, like yourself, we make an unbeatable team.

Fill out and return the enclosed postage paid application. Or stop by a Radio Shack Computer
Center for more information. Let’s get started working together.

Yours truly,

Kate Titsworth
Manager
Consultant Liaison Program

TANDY-Computers

. El t RESEARCH AND DEVELOPMENT
iT: Ta ndy Elec romcs 1500wt Tany Gonr
= -2 Fort Worth, TX 76102
[(: n A DIVISION OF TANDY CORPORATION Telephone (817) 390-2181
] i ' Fax (817) 878-6575
To DeskMate Developers
From : Rachel McKenzie
CC : Radio Shack, Customer Service

Subject : DeskMate 03.02.00 Addendum - Logitech Mouse Problem

Date : October 27, 1988

It has come to our attention that a bug in the Logitech mouse
click.exe program causes the 03.02.00 versions of DeskMate and the
runtime to lock up after displaying the copyright message. Tandy has
found a way to work around the problem for users, with non-ROM
machines, which require the program exist for their system to work.
Users with the Tandy 1000 TL and SL models will have to remove the
word "click" from their autoexec.bat file and may not use the command
if they intend to run DeskMate.

We recommend you include the following information in your
application documentation or contact your customer service group with
the information so they can pass it on to your customers.

We recommend customers (and developer’s) remove the word "click"
from their autoexec.bat file. Those customers which require the click
program should use the following procedure to fix their copies of
DESK.EXE or RUNTIME.EXE :

Use the patch.com MS-DOS command to implement the following
program changes to your DeskMate 03.02.00 executive.

PATCH DESK.EXE,2B64,Cl1,C6 - (retail version)
PATCH DESK.EXE,2B7B,Cl1,C6

or
PATCH RUNTIME.EXE,2BB8,C1,C6 (runtime version)

PATCH RUNTIME.EXE, 2BCF,C1,C6

Sincerely,

Q@é,(/(e W

Rachel McKenzie
Senior Project Leader
DeskMate Vendor Support

cc LaDonna Womochel
Gene Schenberg
Dennis Tanner

http://patch.com

Attachment B: Problem Report Guidelines

1) State the nature of the report

2)

3)

4)

o B B B o I o |

have a question about DeskMate...

am having a problem with my DeskMate application...
need more information about the function call...
have a suggestion to make...

want to report a bug in DeskMate...

would like to register a complaint...

If you need more information on a DeskMate function or function
call, state the name of the function or the function you
require and what information you desire.

If you think the problem you are encountering might be a bug in
the DeskMate system, note the following:

a)

b)

c)

d)

e)

Version/type of DeskMate environment exhibiting the problem,
for instance DeskMate 03.00.00 or Runtime 03.03.01.

Date and model of DeskMate library linked with your
application, for instance DM.LIB dated 6/15/89.

Whether or not you can duplicate the bug with a Tandy
DeskMate application. 1If only your application exhibits the
problem, note your application’s memory requirements (code
and data), memory model used, and whether or not its
overlayed or packed.

Function call causing the bug and parameters passed to the
call along with a duplication sequence.

Machine configurations on which bug occurs (DOS version,
memory, video, any TSRs used, etc.)

Fill out the attached problem report, having your problem in
writing will help when recording your message.

DeskMate Support Services
Problem Report

Date Submitted:

Company Name: Number : ()
Contact Name: FAX: ()
Address:

Product/Project Name:

Circle One: Question / Suggestion / Bug Report / Complaint / Other

Dear DeskMate Developer,

This kit contains all of the necessary information to update your DeskMate Development Systerﬁ T

version 03.03.00 to version 03.05.00.
The items contained in this update kit are explained below.

1. DeskMate Development Guide Replacement Pages. These pages replace existing pages in

your Development Guide. There is a completely new section About. This Kit which explains in.; .

detail all of the new features of the DeskMate Development Kit version 03.05.00.

2. DeskMate Technical Reference Replacement Pages. There are two parts to this section.
The first pant, labeled 03.05 Replacement Pages, replace existing pages in your Technical
Reference. The second part, labeled 03.05 Updaies, is an update list. The Update lists minor
changes to the Technical Reference. Replacement pages were not printed due to the number of
pages required and the significance of the change .

3. Diskettes. All of the 03.05.00 Development Files are included. Also there are new
SAMPLE.EXE and TOOLS.EXE to reflect the new sample programs and the updated
development tools. x

We have tried to make this Development Update Kit easy to understand and easy for you to
assemble. As always we want to make your DeskMate Development effort as easy as possible.

Thank you for your continued support,

DeskMate Support Services

e i AR R S T

o

DeskMate Development System
03.05.00 Updates

e R e S RO S

0/{500/' /7/‘5 K/‘/L !

@

DeskMate Development Guide
Replacement Pages

Changes to the DeskMate 3.03 Development Guide

About This Kit
This entire section is replaced by a new About This Kit.

DeskMate Development Guide
Title Page is replaced by new title page

Existing Pages 1-9 thru 1-10 are replaced by new Pages 1-9 thru 1-10.
Existing Pages 2-57 thru 2-64 are replaced by new Pages 2-57 thru 2-64.4.
Existing Pages 3-17 thru 3-20 are replaced by new Pages 3-17 thru 3-20.
Existing Pages 3-25 thru 3-26 are replaced by new Pages 3-25 thru 3-26.
Existing Page 4-1 is replaced by new Page 4-1.

Existing Pages 4-3 thru 4-9 are replaced by new Pages 4-3 thru 4-9.
Existing Pages 6-3 thru 6-4 are replaced by new Pages 6-3 thru 6-4.
Existing Pages 6-43 thru 6-44 are replaced by new Pages 6-43 thru 6-44.
Existing Pages 6-65 thru 6-68 are replaced by new Pages 6-65 thru 6-68.

Existing Pages 6-81 thru 6-82 are replaced by new Pages 6-81 thru 6-82.

Existing Pages 6-105 thru 6-106 are replaced by new Pages 6-105 thru 6-106.

DeskMate Development System
03.05.00
About This Kit

Contents

Chapter 1 - Introduction 1
Contents of the Kit ... ittt iietieieernanrenceneeannna 1
Using the Kit...voiiiiiiiiiioittneneteneeeeeeaeaeananeaannans 5
Chapter 2 System ~ Overview 6
Technical OVeIrVieW. ... iieeetenroecnoansaneasasasasssnsnasa 6
DeskMate 3.05 Modifications and Enhancements................ 10
DeskMate 3.03 Modifications and Enhancements................ 10
Chapter 3 - Getting Started 12
Install DeskMate.....utiirniteinnnnseatonsonnsassscscansnonnns 12
Identify your Development System...........cciiiiieiiennnnnn. 12
Chapter 4 - Registration and Technical Support 14
PC-Link Information....cceeereeieienennnoecenacoonsasnncaans 15
Problem Report Guidelines.....c.viiiiieriennceeennenns e 16
Chapter 5 - The DeskMate Runtime License 17
Appendices 18

A - Duplication License
B - Registration Form

C - Problem Report

DeskMate Development System
03.05.00
DeskMate Development Guide

Chapter 1
Introduction

The DeskMate Development System (The Kit) allows software developers to write applications
which run in a DeskMate environment. The DeskMate environment is provided by the DeskMate
3 product and runtime. This kit contains the documentation and software needed to develop a
DeskMate application as well as a copy of the latest DeskMate 3 products. The DeskMate 3
products are included so programmers can acquaint themselves with the user interface, and
execute and test their applications. The DeskMate 3.2 product should be used for compatibility
testing. The DeskMate 3.03 product can be delivered up request. The runtime software is
licensed and obtained separately, see Chapter 4 of this manual for more information.

The documentation in this kit is intended for experienced programmers who may or may not be
experienced with DeskMate. Developing an application requires a proficiency in either the C
programming language or assembly language on IBM PC-compatible machines. C and
assembly language are the only languages Tandy currently supports for DeskMate development.

Contents of the Kit

The Kit includes two volumes of documentation. The first, DeskMate Development System
03.05.00 Development Guide contains three sections: About This Kit, DeskMate Style Guide, and
the DeskMate Development Guide. The DeskMate Technical Reference is the reference for all
function calls available in the environment and includes the Tandy Sound Toolkit | documentation
and all of the new 3.05 information.

In addition to the documentation, the Kit includes three 3 1/2" diskettes which contain the
development files, samples, tools, and utilities used in writing DeskMate applications and the
Tandy Sound Toolkit .

3 1/2" Package:

Disk #1 DeskMate Development System 03.05.00
Development Diskette

AUTOLOAD.H Autoload Resource header file
CSRBASEH Header file for the Core Services Resource
CSRCFG.H CSR Configuration header file
CSRCMPS.H CSR Components header file
CSRFORM.H CSR Form Manager header file
CSRKEYS.H CSR Keyboard header file

CSRPRTH CSR Print header file

CSRVID.H CSR Video header file

DMDECL.H DeskMate Function Prototype header file
DMDB.H Database Resource header file
DMEXEC.H Desk Executive header file ‘
DMGUF.H General User Functions Resources header file
DMTHES.H Thesaurus header file

SPELLH Spell Checker header file

VENDOR.H Vendor header file

AUTOLOAD.INC Autoload Resource header file
CSRBASE.INC Header file for the Core Services Resource

CSRCFG.INC
CSRCMPS.INC
CSRFORM.INC
CSRKEYS.INC
CSRPRT.INC
CSRVID.INC
DMDB.INC
DMEXEC.INC
DMGUF.INC
DMTHES.INC
SPELL.INC
THES.INC

DM.LIB
DMMED.LIB

DESK.MAP

SAMPLES.EXE
TOOLS.EXE

DEMO1.EXE
DEMO1.C
DEMO1.H
DEMO2.EXE

DEMO2.C
DEMO2.H

DEMOS.EXE

DEMO3.C
DEMOS.H

DGETBUF.C
DSETUP.C
DRECORD.C
DPLAY.C
DSAVE.C

CSR'Configuration header file
CSR Components header file
CSR Form Manager header file
CSR Keyboard header file

CSR Print header file

CSR Video header file
Database Resource header file
Desk Executive header file
General User Functions Resources header file
Thesaurus header file

Spell Checker header file
Thesaurus Resource header file

SMALL Module DeskMate Library

MEDIUM Module DeskMate Library

Note: Large model programs are not supported through the
DeskMate library.

Map file for DESK.EXE used in DeskMate 3 product shipped

Disk #2 DeskMate Development System 03.05.00
Samples, Tools, and Utilities

Sample programs in a packed, self-extracting file
Tool and utility programs in a packed, self-extracting file

Disk #3 DeskMate Development System 03.05.00
Tandy Sound Toolkit |

Executable demo #1 which records a sound and plays it back.
Main source file for demo #1.
Main include declaration file for demo #1.

Executable demo #2 which records a sound, compresses it and
stores it to disk.

Main source file for demo #2.

Main include declaration file for demo #2.

Executable demo #3 which reads a compressed sound from a
file, decompresses it and plays it.

Main source file for demo #3.

Main include declaration file for demo #3.
Allocates butfers for the SOUND and SNDHDR structures.
Initializes the buffers for the sound library.
Records a sound into allocated memory.

Plays back a sound from memory.

Takes a sound saved in the allocated buffers, compresses it and
writes it to a file. -

Page 2

@

DLOAD.C
SOUND.H
DSETUPH
DGETBUFH
DRECORD.H
DPLAY.H
DSAVEH
DLOADH
DEMO
SOUND.LIB

BUILD.BAT

Decompresses a sound and loads it into the sound buffers.
Main include file for use with the Tandy Digital Sound Library.
Include file for initialization.

Include file for buffer allocation.

Include file for the record function.

Include file for the playback function.

Include file for the compress and save function.

Include file for the decompression and load function.

Make file.

Tandy Digital Sound Library.

Batch file for compiling all 3 demos if make is not available.

The disk also contains a DeskMate sub-directory which contains a demonstration program
utilizing the DeskMate interface.

DMDEMO.PDM

DMDEMO.C
DMGETBUF.C

DMSETUP.C
DMRECORD.C
DMPLAY.C

DMSAVE.C
DMLOAD.C

DMJOY.ASM
DMDEMO.MKE

DEMOINFO.H

DeskMate executable which records a sound and plays it back,
compresses and stores a sound to disk, reads a compressed
sound from a file, decompresses it and plays it.

Main source file for DeskMate demo.

DeskMate allocation of buffers for the SOUND and SNDHDR
structures.

DeskMate initialization of the buffers for the sound library.
Records a sound into DeskMate allocated memory.
Plays back a sound from memory utilizing DeskMate.

Takes a sound saved in the DeskMate allocated buffers,
compresses it and writes it to a file.

Decompresses a DeskMate sound and loads it into the
DeskMate sound buffers.)

Sets and resets the int 33 vector for the joystick.
Make file for the DeskMate applications.

Contains all of the defines and structures for the DeskMate
information boxes.

Page 3

DEMODLG.H Contains all of the defines and structures for the DeskMate
dialog boxes.

All other *.H files are the same as the ones used in the non-DeskMate demos.

DMSEGS.INC Include file for DMJOY.ASM.

DMDEMO.LNK The link file which is called by the DeskMate make file.
DMDEMO.MAP The map file for the DMDEMO.PDM program.
SOUND.LIB Tandy Digital Sound Library.

Page 4

o

Using the Kit

About This Kit, this manual, orients the programmer to the kit and how to use it. The System
Overview which follows, describes the DeskMate operating environment and introduces most of
the terminology used in DeskMate. It also highlights the changes made from the DeskMate 3.0
system through the current DeskMate 3.05 system. The Getting Started chapter discusses
required development tools and installing the software. Registration, technical support, and the
runtime license are discussed in Chapters 4 and 5. This manual should be read first since it
answers many of the general questions you might have about DeskMate and developing for the
environment.

The DeskMate Style Guide describes the DeskMate User Interface standards and guidelines that
your application should follow. Conforming to the DeskMate standard is important since
DeskMate users will expect your application to "look and feel" like the other DeskMate
applications they already use. You should read this manual before and during the application
design phase, especially while designing the application menus, dialog boxes, and screens.
Review the guide again when the application is complete to ensure it meets the DeskMate
standards. :

The DeskMate Development Guide takes the programmer through the development life cycle of
an application from getting started to distributing the software, including the development of help
files, tutorials, and demos for the application. The manual includes an extensive set of
programming examples that can be used as templates for your application. Also included in the
guide is the documentation for the tools and utilities provided in the Kit, including the help and
tutorial tools.

The DeskMate Technical Reference is divided by functional entities and includes a description of
every function call available to an application. The reference makes up the bulk of the
documentation in the kit. The reference is divided by resources and managers within a resource.
Refer to the Technical Overview which follows to identify a resource or manager.

The Development Diskettes contain the header files (*.H and *.INC) and libraries (DM.LIB
and DMMED . LIB) needed to build a DeskMate application. DeskMate does not suppornt large
model programs through these libraries. Refer to the DeskMate Development Guide, Getting
Started section for a discussion of the implementation of large model programs under DeskMate.

The Samples and Tools Diskettes contain the sample programs and the tools and utilities
supplied with the kit. The documentation for using these tools is also included in the DeskMate
Development Guide.

The Tandy Sound Toolkit | diskette contains the header files, the Tandy Digital Sound Library (or
simply sound library), and sample code (DeskMate and MS-DOS programs) needed to add
sound to your application. The sound library includes a compression and decompression
algorithm which produces results identical to that used in DeskMate 3 Sound and Music
applications. For more information about the Sound Toolkit, see the Sound Library section of the
DeskMate Technical Reference. Demo programs, for MS-DOS and DeskMate, are included on
the Tandy Sound Toolkit | diskettes, for use as program templates.

Page 5

Chapter 2
System Overview

DeskMate 3 was introduced in the fall of 1988. This version of DeskMate enabled developers to
write applications for the interface and environment. This software is referred to as DeskMate
3.0 (or simply 3.0) and was not compatible with previous versions of the DeskMate product.
DeskMate 3.0. DeskMate 3.03 was later released as an update to the 3.0 system. The following
is a list of previously released versions:

1000 SL DeskMate 03.00.00

1000 TL DeskMate 03.00.00

Retail DeskMate 03.00.00, 03.02.00, 03.03.01
Runtime DeskMate 03.02.01, 3.03.01

1000 SLy2 DeskMate 03.03.00

1000 TL/2 DeskMate 03.03.00

1000 RL DeskMate 03.04.00, 03.04.01

The latest DeskMate 3 product is version 3.05 which is compatible with earlier DeskMate 3
versions. DeskMate 3.05 includes the following versions:

Retail DeskMate 03.05.00
Runtime DeskMate 03.05.00

Technical Overview

The DeskMate 3 environment consists of the executive and the resources that contain the
system functions. These resources provide the user interface, three levels of file input and
output including a database, and printing support for the application.

DESK.EXE, the executive, loads and unloads DeskMate programs - applications, accessories,
and resources, as well as non-DeskMate applications. The executive expects DeskMate
programs to contain specific information in the program header used when the program is loaded.
Refer to the DESKHDR.EXE documentation in the DeskMate Development Guide, Tools and
Utilities section for more information.

DeskMate applications (.pDM extension) are the controlling modules in the environment.

Accessories (.ACC extension) are mini-applications which can pop-up over an application.
Accessories are small programs that perform very specific tasks for the user and have
functionality in several applications.

DeskMate resources (.RES extension) are the work-horses of the environment. They provide the
common functionality required by most applications - user interface, file /o, communications,
printing, etc.. These resources are terminate and stay-resident (TSR) programs which have a
focused scope of functionality. They may be shared by more than one program at a time.
Resources are also used to provide device-specific functionality determined at execution time,
such as, video and printer drivers.

All DeskMate programs must link with a DeskMate library to make use of functionality in the
executive or any of the resources. The DeskMate libraries, DM.LIB and DMMED.L:5, contain
the bindings, or bridge, used by a program to call a function in the resource.

Page 6

When a program requires functionality provided by a resource, it binds to the resource by calling
the executive and requesting the resource. The program binds to the resource once, before
calling any functions in the resource. The bind call requests the executive to 1) find and load the
resource and 2) inform the application of where the resource was loaded.. When the executive
loads the resource it resolves the resource’s service request vector (srqv) in the bindings - the far
address of the resource's entry point, and increments the resource's use count.. The vector is
used to make far calls from the application into the resource. The use count allows the executive
to determine how many programs are using the same resource. When the program no longer
requires the resource, it frees the resource. The executive decrements the resources’ use count.
The resource is not unloaded until all programs using the resource have freed the resource (its
use count is zero) and the memory is needed to load another program.

- The DeskMate 3.0 system used different file extensions to distinguish between the product

resources (RES) and the runtime resources (RRS). Which resource was loaded is determined by
the executive, DESK . EXE or customized RUNTIME . EXE, respectively.

The DeskMate 3.05 system uses the same file extension (RES) for both the product and the
runtime resources. DeskMate system resources which must be used by the 3.05 system use the
R89 extension to differentiate them from the 3.0 resources. The executive determines which
resource to load. - -

These file conventions only affect developers who write their own resources. Resources
developed for the 3.0 system have to be shipped with RES and RRS extensions for installation on
a product or DeskMate 3.2 runtime. Resources developed for the DeskMate 3.05 system use the
RES extension.

The executive, resources, and Setup, Page Setup, and Help accessories are distributed in the
DeskMate runtime. These files are referred to as the DeskMate system files. Chapter § of this
manual details how to obtain the runtime software.

The DeskMate executive and resources include:

DESK.EXE The Executive handles the system level tasks for the environment and
the applications.

DESK Managers include:
Clipboard Manager
Desk Executive
DMDBBLD.RES This Database Resource allows applications to create database files.

DMDBRD.RES This Database Resource allows applications to open and read database
files.

DMDBUPD.RES This Database Resource allows applications to open, read, and update
database files.

Page 7

DMCSR.R89

DMDB.R89

DMGUF.R89

DMFORM.RES

DMMD*.RES

DMPD*.RES

DMPD*.RFD

DMPE*.RES

DMVS*.RES

The Core Services Resource handles the user interface and “"core”
functionality for applications. This resource is always used by a
DeskMate application.

CSR Managers include:
Communication Manager
Component Manager
Configuration Manager
Dialog Box Manager
Event Manager
Information Box Manager
Keyboard Manager
Menu bar Manager
Message Box Manager
Mouse Manager
Print Managers
Titleline Manager
Video Manager
Window Manager

This Database Resource provides database file access for applications
developed with the 3.2 development system on a later system.

The General User Functions Resource provides high- and low-level file
IO functionality. See the Executive section for details on what
functionality each GUF resource provides.

GUF Managers include:
Environment Manager
File VO Manager

The Form Manager Resource provides vector graphics and stroke font
support for applications.

The pointing device drivers J (Tandy 1000 joystick), S (serial mouse), P
(Micro-Channel mouse)

The printer drivers ASCI (ASCII), IBMM (IBM-compatible graphics),
LASR (Laserjet-compatible), 1 (DMP 105), 2 (DMP 200, 420, 430), S
(24-pin)

The resident font definition files needed for the video and printer drivers
ASCI (ASCIi), IBMM (IBM-compatible graphics), LASR (Laserjet-
compatible), 1 (DMP 105), 2 (DMP 200, 420, 430), S (24-pin)

The enhanced printer drivers ASC! (ASCIl), IBMM (IBM-compatible
graphics), LASR (Laserjet-compatible), 1 (DMP 105), 2 (DMP 200, 420,
430), S (24-pin)

The 80 column video drivers CGA, 1000 (TGA), TC16 (ETGA), EGA,

VGA, MCGA, and HERC. The 40 column video drivers LRES, TC40,
T256, H (Hercules), E (EGA), and M (Monochrome EGA)

Page 8

Q

DMVE*.RES The 80 column enhanced video drivers CGA, 1000 (TGA), TC16
. (ETGA), EGA, VGA, MCGA, and HERC.

PRGUF.RES The Power and Run General User Functions Resource, provides a
subset of the GUF functionality. See the Executive section for details on
what functionality each GUF resource provides.

The DeskMate libraries contain functionality which is linked into the application. The Library
Manager lists all functions available in the libraries.

Page 9

DeskMate 3.05 Modifications and Enhancements

The DeskMate 3.05 system added the following modifications or enhancements to the user
interface and environment. For more information about how these changes affect your
application's compatibility on all DeskMate 3 systems, refer to the DeskMate Development Guide,
Getting Started section. For more information about the user interface changes refer to the
DeskMate Style Guide. For more information about the enhanced calls, see the appropriate
section in the DeskMate Technical Reference; the new calls are shown as “DeskMate 03.03 and
later" in the Special Notes section of each call.

Environment

Font support has been provided to add new type faces through the use of the Form
Manager.

Communications support now includes COM3 and COM4.
Extended memory support is now provided that adheres to the LIM standard.

Additional printer support is available, ihcluding the Epson 24-pin color printer.

DeskMate 3.03 Modifications and Enhancements

The DeskMate 3.03 system added the following modifications or enhancements to the usef
interface and environment. For information on the new utilities mentioned, refer to the DeskMate

Development Guide, Tools and Utilities section.
User Interface

The title-line was rearranged to have the Help F1 prompter appear at the far left over the
function key on the keyboard. The time indicator was moved to the far right.

In dialog boxes and message boxes, the default push button - button which will be
pressed by the Enter key - appears with a dashed box around it to notify the user.

The "Sticky Menu" interface was added to the user interface. See the Development
Guide, Getting Started section for more information if your application was predicting
menu bar events. :

Grayed menu items can be highlighted by the user, although they are not selectable
(enhancement added for new help).

The busy icon is now animated, it cycles through a pattern.
An About menu option standard was adopted for all applications.

The "arrow algorithm" used in dialog boxes was optimized to efiminate "dead spots”,
components in a dialog box that could not be accessed via the arrow keys.

Page 10

Q

o

“

Environment

Applications written with the DeskMate 3.0 system used SETHEAP.EXE to set their
minimum and maximum load size requirements. DeskMate 3.03 applications should use
the new DESKHDR.EXE utility which also contains the program's spliit allocation, code
shed size, and version number. The 3.03 executive will use the information stored in the
new header when loading a program and when deciding how much code to shed when
more space is needed to load an accessory. The 3.0 executive will ignore the extra
information.

Additional accessories can now be accessed through the More option on the F10 Menu.

Context-sensitive help is now available in all pop-ups, dialog boxes, message boxes, and
accessories, and on menu items.

The Form Manager which was part of the Core Services Resource, DMCSR.RES, was
split out as a resource, DMFORM.RES. The CSR on a DeskMate 3.03 system will
automatically load the resource on a form_open call for a 3.0 application.

The General User Functions Resource was split into two resources, DMGUF .R89 and
PRGUF .RES.

The Core Services Resource, CSR, only saves the first six (6) colors in the configuration
file. Colors 7 through 16 are now considered to be application specific. The application
must decide whether to save the colors with the data file or in its own configuration file.

The dm_file_search function honors diskette label files created with DMLABEL.PDM, a
DeskMate utility.

The dm_file_search function no longer prompts the user to search the entire system
before doing so.

The printer drivers were enhanced to support new line style widths, the patterns were
changed to match the video drivers, the maximum number of characters printed on a line
was increased, and several printing problems were fixed. For a complete list of changes,
see the DeskMate Development Guide, Getting Started section.

A set of new video drivers was added, allowing applications to "video swap" into a 40
column screen resolution. These drivers require a DeskMate 3.03 system.

The Runtime executive now supports parameter passing to the runtime application and
the execution of the runtime module from a DeskMate 3.0 DeskTop. This feature is
important to applications which require the DeskMate 3.03 system to operate.

Application Data Files

Data files for the DeskMate 3.05 product have the same format as was used in previous
DeskMate 3 versions. The Address Book data file lengthened the Title and Address fields
in DeskMate 3.03. Refer to Appendix A, DeskMate 3 File Formats in the DeskMate
Development Guide for details.

Page 11

Chapter 3
Getting Started

Install DeskMate

If you have not already done so, install the DeskMate product now. [f you are not familiar with
DeskMate, now is a good time to try out the product. The documentation in this kit often
references the product when giving examples or explaining a concept.

Refer to the DeskMate Getting Started magazine for instructions on how to install and operate
the software. DeskMate 3 operates on standard PC-compatible computer using MS-DOS 2.11 or
later. The product requires a minimum of 384K of system memory to operate.

Identify your Development System

DeskMate applications are primarily written in C but may also be written in assembly language.
The Kit does not contain the development tools necessary to write software, an editor, compiler,
assembler, linker, or debugger, only those required to write a DeskMate application. Tandy
recommends you use one of the following development systems for DeskMate development.

Compilers/Assemblers/Linkers
Microsoft C 4.0, 5.0, or 5.1 with Microsoft MASM 5.0
Microsoft C 6.0
Microsoft Quick C
Turbo C and Assembler 2.0

Debuggers
Microsoft's SYMDEB from MASM 4.0
Microsoft's CodeView
Periscope
Turbo Debugger

The kit supports small and medium model programs through its DeskMate libraries. It is possible '

to write a large model program by linking with the medium model library, DMMED . LIB, and
managing your data model correctly. The Turbo C compiler requires modification to its startup
code before it can be used for DeskMate development. Refer to the DeskMate Development
Guide, Getting Started section for more information on both of these topics.

Install the DeskMate Development System

The Development Diskettes contain the header files and libraries needed to build an application.
You may want to put the C header files (*.H) in your INCLUDE directory and the libraries in your
LIB directory. If you are doing assembly language development, also place the header files
(*.INC) in the INCLUDE directory.

Page 12

Ay

\
Ly

The Samples and Tools Diskettes contain two packed files, SAMPLES.EXE and TOOLS.EXE.
Each file is self-extracting and contains the sub-directory structure information within the file. To
build the DeskMate samples and tools directories do the following:

>mkdir c:\desk\samples
>a:samples -d c:\desk\samples

>mkdir c:\desk\utility
>a:tools -d c:\desk\utility

The entire development system requires approximately 2 Meg of hard disk space for the
development files, samples, and tools.

Page 13

Chapter 4
Registration and Technical Support

Tandy provides on-line technical support, through PC-Link, for software developers writing
DeskMate applications. The copy of DeskMate 3 which accompanied the kit includes a copy of
pc~Link, the program used to access the service. The DeskMate Support Services group
provides on-line support in the DeskMate Center forum through E-Mail, a Software Library for
software updates, and message boards for problem reporting. We encourage all DeskMate
developers to register and use this on-line service. Refer to the PC-Link information which
follows for details about accessing PC-Link.

For software developers unable to use PC-Link, we recommend FAXing problem reports. Use
the enclosed problem sheet to report problems by FAX. Scheduled software and documentation
updates and news of importance will be made to you by regular mail. Please fill in and return the
registration form to ensure the correct address information is used in our distribution list.

Fax Problem Reports to:
DeskMate Support Services
Attn: Problem Reports
817-390-2964

Tandy also provides telephone suppon, for assistance call 817-390-3664. Your call will be
answered 24-hours a day by a voice-mail system. Refer to the Problem Report Guidelines which
follow for suggestions on what information to include in your message. Your call will be returned
between 9 a.m. and 5 p.m. CST and will be handled within one business day.

For timely and effective responses to your technical questions and problems, use one or more of

the methods described above. We look forward to supporting you in the future in your DeskMate
development efforts.

Page 14

e

PC-Link Information

Follow the steps outlined below to make use of the on-line technical support service.

1) Follow the steps outlined in your PC-Link Connect Guide, enclosed in your DeskMate
3 box, to familiarize yourself and register with the service. Contact PC-Link's
Customer Service at 800-458-8532, informing them you are a DeskMate developer.
This will speed up the approval process if you experience any delays.

2) Call the DeskMate Support Services hotline at 817-390-3664 to notify us that you
are registered. Leave a message with your name, company name, and PC-Link
screen name. We will contact PC-Link to give you access to the DeskMate Center.

3) Once you are cleared, use the "deskhq" keyword to get access to the DeskMate
Center. Please register in the "Vendor Directory” area in Information Exchange so
others can identify you by screen name.

4) Read the welcome message and the News from Tandy to familiarize yourself with the
system.

5) Send confidential problems through E-Mail to TCTerryT or TCBobT.
6) Post general problems in the Q&A sections.

7) Software updates are made through the Software Exchange and will be announced in
News from Tandy.

8) Important information and announcements will be provided in the Information
Exchange section. :

Page 15

Problem Report Guidelines ‘
A 4

1) State the nature of the report
| have a question about DeskMate...
| am having a problem with my DeskMate application...
| need more information about the function call...
| have a suggestion to make...
| want to report a bug in DeskMate...
| would like to register a complaint...

2) If you need more information on a DeskMate function or function call, state the name
of the function or the function you require and what information you desire.

3) If you think the problem you are encountering might be a bug in the DeskMate
system, note the following:

a) Version/type of DeskMate environment exhibiting the problem, for instance
DeskMate 03.00.00 or Runtime 03.05.00.

b) Date and model of DeskMate library linked with your application, for instance
DM.LIB dated 6/15/89.

¢) Whether or not you can duplicate the bug with a Tandy DeskMate application.
If only your application exhibits the problem, note your application’s memory
requirements (code and data), memory model used, and whether or not its
overlaid or packed.

d) Function call causing the bug and parameters passed to the call along with a \Q
duplication sequence.

e) Machine configurations on which bug occurs (DOS version, memory, video,
any TSRs used, etc.)

4) Fill out the attached problem report, having your problem in writing will help when
recording your message.

Page 16

Chapter 5
The DeskMate Runtime License

The DeskMate Development System allows software developers to write DeskMate applications.
These applications will run from the DeskMate DeskTop. To run these applications in a stand-
alone environment (for customers who do not own the DeskMate 3 product), the software
developer must use and distribute the DeskMate Runtime. To obtain a copy of the runtime
software the software developer should sign and return the DeskMate Runtime Duplication
License supplied in this kit. The license should be returned to

Dennis Tanner

Radio Shack

1600 One Tandy Center
Fort Worth, Texas 76102

Tandy will in tum sign the agreement and return a copy of the license to the developer along with
a copy of the runtime software. The software is distributed in the 3 1/2" diskette format.

Refer to the DeskMate Development Guide, Distributing Your Application section for more
information about how to distribute your DeskMate product.

Page 17

|

Appendices

Page 18

IMPORTANT NOTICE:

READ THE TERMS AND CONDITIONS OF THE LICENSE AGREEMENT BELOW
CAREFULLY BEFORE OPENING THE SEALED DISK PACKAGE CONTAINING
THE SOFTWARE. BY OPENING THE DISK PACKAGE YOU AGREE TO BE
BOUND BY THE TERMS AND CONDITIONS, INCLUDING THE SOFTWARE
LICENSE DISCLAIMER OF WARRANTIES AND LIMITATIONS OR
LIABILITY CONTAINED THEREIN. IF YOU DO NOT AGREE TO THE
TERMS AND CONDITIONS OF THE LICENSE AGREEMENT, YOU MUST
RETURN THE PRODUCT WITH THE DISK PACKAGE UNOPENED TO THE
PLACE OF PURCHASE WITHIN THREE (3) DAYS OF RECEIPT FOR A
FULL REFUND.

TERMS AND CONDITIONS OF THE LICENSE AGREEMENT

I. SOFTWARE LICENSE
TANDY CORPORATION, its divisions and any
associated subsidiary (hereinafter referred to as
"LICENSOR"), grant to the original customer
(hereinafter referred to as "LICENSEE") a
non-exclusive paid-up license, to use the Software
on one computer, subject to the following
provisions.

A. Except as otherwise provided in this Software
License, applicable copyright law shall apply to
the Software.

B. Title to the medium on which the Software is
recorded (cassette or diskette) or stored (ROM) is
transferred to LICENSEE, but not title to the
Software.

C. LICENSEE may use the Software on a multiuser or
network system only if the Software is expressly
labeled to be for use on a multiuser or network
system or if one copy of the Software is licensed
for each node or terminal on which the Software is
to be used simultaneously.

D. LICENSEE agrees not to use, make, manufacture or
produce copies of the Software except for use on
one computer or as specifically provided in the
Software License. LICENSEE is expressly
prohibited from disassembling the Software.

E. LICENSEE is permitted to make additional copies of
the Software only for backup or archival purposes
or if additional copies are required in the
operation of one computer with the Software but
only to the extent the Software allows a backup
copy to be made.

F. LICENSEE may transfer the Software to a third
party provided that all original disks and
documentation are included and the third party

II.

III.

G.

agrees to be bound by the terms and conditions of
this License Agreement.

All copyright notices shall be retained on all
copies of the Software.

LIMITED WARRANTY; OBLIGATIONS OF LICENSEE

A.

LICENSOR makes no warranty as to the design,
capability, capacity or suitability for use of the
Software, except as provided in this section. .
Software is licensed on an "AS IS" basis without
warranty. o

For a period of Ninety (90) days from the date of
receipt of the Software, LICENSOR warrants to
LICENSEE that the Software is properly stored on
the medium and that the medium itself is free from
defects in materials and workmanship. This
warranty is void if the Software has been
subjected to improper or abnormal use. Defective
Software must be returned to the place of purchase
within the warranty period accompanied by a copy
of the original receipt. LICENSEE's exclusive
remedy, in the event of a Software manufacturing
defect, is repair or replacement at LICENSOR's
election.

LICENSEE agrees to assume full responsibility that
the Software meets the specifications, capacity,
capabilities, versatility and other requirements
of LICENSEE. LICENSEE agrees to assume full
responsibility for the condition and effectiveness
of the operating environment in which the Software
is to function, and for its installation.

LICENSEE agrees to perform backups of all data on
a daily basis and assumes full responsibility for
any loss of data or other consequences arising in
whole or in part from the failure to do so.

Except as provided herein, no employee, agent,
dealer, distributor, or other person is authorized
to give any warranties of any nature on behalf of
LICENSOR.

EXCEPT AS PROVIDED HEREIN, LICENSOR MAKES NO
EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE IS LIMITED IN ITS DURATION TO THE DURATION

OF THE WRITTEN LIMITED WARRANTIES SET FORTH
HEREIN.

LIMITATION OF LIABILITY

A‘

EXCEPT AS PROVIDED HEREIN, LICENSOR SHALL HAVE
NO LIABILITY OR RESPONSIBILITY TO LICENSEE OR
ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY
LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO
BE CAUSED DIRECTLY OR INDIRECTLY BY THE
SOFTWARE, INCLUDING, BUT NOT LIMITED TO, ANY

‘

Iv.

INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR
ANTICTPATORY PROFITS OR CONSEQUENTIAL DAMAGES
RESULTING FROM THE USE OR OPERATION OF THE
SOFTWARE. 1IN NO EVENT SHALL LICENSOR BE

LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF ANY BREACH OF WARRANTY OR IN ANY MANNER

ARISING OUT OF OR CONNECTED WITH THE LICENSE,

USE OR ANTICIPATED USE OF THE SOFTWARE.

NOTWITHSTANDING THE ABOVE LIMITATIONS AND
WARRANTIES, LICENSOR'S LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY LICENSEE OR OTHERS SHALL
NOT EXCEED THE AMOUNT PAID BY LICENSEE FOR THE

LICENSE.

No action arising out of any alleged breach of
warranty, express or implied, may be brought
more than one (1) year after the cause of
action has accrued or more than two (2) years
after the date of receipt of the Software,
whichever first occurs.

SEVERABILITY

Where a determination is made in any
jurisdiction that any term or condition of
this Agreement is invalid, unenforceable,
illegal, or contrary to public policy, that
provision shall be deleted but the remaining
terms and conditions shall continue in full
force and effect.

STATE LAW RIGHTS

A.

Some states do not allow limitations on how
long an implied warranty may last, or the
limitation or exclusion of incidental or
consequential damages, so the above
limitation(s) or exclusion(s) may not apply to
LICENSEE.

The warranties contained herein give the
original LICENSEE specific legal rights, and
the original LICENSEE may have other rights
which vary from state to state.

Tandy DeskMate Runtime Version 03.03.01

Exhibit A

Executive Files and Accessories:
Runtime Executive,

RUNTIME .EXE
DMSETUP.ACC
DMPGSET .ACC

DeskMate Help:
DMHELP .ACC
DMHELP88 .ACC
DMHLPENG .RES
DMSETUP.HLP
DMPGSET .HLP

Resources:
DMCSR.R89
DMGUF .R89
PRGUF.RES
DMDB .R89
DBBUILD.RES
DBREAD .RES
DBUPDATE.RES
DMFORM.RES
DMTHES .RES

Setup Accessory
DeskMate Page Setup Accessory

Help Accessory

DeskMate 3.0 Compatible Help Accessory

Distribute Customized File

DeskMate Intelligent Help Resource
Setup Accessory Help File

DeskMate Page Setup Accessory Help File

Core Services Resource

General User Functions Resource
Power & Run General User Functions Resource
Database Control Resource required by DeskMate Help
Database File Build Resource
Database File Read Resource required by DeskMate Help
Database File Update Resource
Form Manager Resource

Thesaurus resource (displays see local dealer message).

Joystick and Mouse Drivers:
Tandy 1000 Joystick Driver
Micro-Channel Serial Mouse Driver
Serial Mouse Driver

DMMDJOY .RES
DMMDP .RES
DMMDSERI .RES

Printer Drivers:
DMPDASCI.RES
DMPDIBMM.RES
DMPD1 .RES
DMPD2 .RES
DMPDLASR.RES

Video Drivers:
DMVS1000.RES

Daisy-wheel, or other non-supported printer, printer driver
IBM-compatible graphics printer driver

Tandy DMP 105 printer driver (Tandy mode)
420, or 430 printer driver
HP Laserjet Plus or Laserjet—compatible printer driver

Tandy DMP 200,

Tandy 1000

(TGA),

4 color video driver

(Tandy mode)

/.

DMVSCGA.RES
DMVSEGA.RES
DMVSHERC . RES
DMVSVGA.RES
DMVSTC16 .RES
DMVSMCGA.RES
DMVSLRES .RES
DMVST256 .RES
DMVSTC40.RES
DMVSH.RES
DMVSE .RES
DMVSM, RES

CGA,
EGA,

Hercules,

VGA,

2 color video driver

16 color video driver

2 color video driver
16 color video driver

Tandy 1000 TL/SL (ETGA), 16 color video driver

MCGA,

40
40
40
40
40
40

column,
column,
column,
column,
column,
column,

Tutorial and Demo Technology:
Play application, launches tutorial or demo
Play resource

Tutorial Decompression Resource

Keyboard Layout Resource

Demo Laucher, Distribute Customized File

PLAY.PDM
DMPLAY .RES
DMUNPACK .RES
TUTKBD .RES
DEMO.PDM

Others:
DMVID.EXE
DMVID.DOC
INSTALL.TEM
RUNTIME .MAP*
RUNTMBLD . PDM*
INSTLBLD.PDM*

Mulit-color video driver

low resolution video driver
VGA video driver

Tandy 1000 TL/SL video driver
Hercules video driver

EGA video driver

Monochrome EGA video driver

DeskMate video force utility

Video force utility documentation

Runtime Installation Launcher, Distribute Customized File
Runtime Executive Symbol Map File

Customize Runtime Utility

Customize Installation Launcher Utility

* File is NOT for distribution.

142\5\88-51la.msg
11-151k

DeskMate Support Services

Problem Report
Date Submitted:
Company Name: Number:
Contact Name: Fax:
Address:

Product/Project Name:

Circle One: Question / Suggestion / Bug Report / Complaint / Other

DeskMate Style Guide

,’/)esk/v ate f(fy/c Coide”

Contents

Chapter 1 - Introduction

How to Use This Manual........cccceeeeveiverevreeeemmmnissseiinireseereennines 2
Before You Begincccocvvevreerernnceiiiniininicneiniisnsssssneece 3

Chapter 2 - The Keyboard and the Mouse

SPecial KeYs...oouooceiiiriieeieeeneererrecenitrents s sne e sseeseneeens 5
ACCELETALOTS ..o veeveieirreiiiiecereranrereecietirnanssiessesssssentnnessannssses 5
Basic Mouse Operation...........cocueevvirnmnermreverenrreirieeeneeeenneenns 7
Cursors and Pointers........cccccvverveeeeeieeeeeeeiiseeeecccsnnrannniireeeennn 8
CULBOTS eeeeeeeeeeeeeeeeeseeessrrrernnsnassnsasaseeeeeeaesessmsssunnsssesssaannnns 8
Pointer IMagesvveeeereeeiieiiiitiemeniieesneesseneninassseese 9
Selecting Data.........cocccvvveerirveeerineeeriiiriieni e e ssaeeeeses 9
TEXrMINOLOZY ...vvvvvrrrivreieeereerenneerreiiittsiienssssensissnssssrrrrrensaanee 9
Selecting Graphics......ccovoeiveiviiiii e 11
Keyboard Interface..........ccccevivuriiiiiiiiiiniinennnnniinenenecnnns 12
Mouse INterfacecccvvieiiiiiiiiiieecececcririrrerrere e eaeaen 13
SCIOLIIIE ..cvvvieieiiie e ceevtesesenseneereee s seeee s ressssnraesssnraasssnns 13
Keyboard interface.......cccccccovvvemriiiiiiiiieneennnniiineceninnnnne 13
Mouse Interface..........vveeveeeeiiienirieecrieiiiinenn e eseereneiaene 14
Cursor Movement and Scrolling...........cccceeeeiviniieiiniinnnnes 14
ATroW KeYS....ouvvviiieeiiicciiiiecrriivne et e s ee e 15
Home, End, Page Up, Page Down.......ccccovvveerriiineeen. 15

Text Entry and EQiting.......cccoooveveeriniiiiiiinniiicnnniceeees 17

DeskMate Style Guide

Chapter 3 - Screen Design

General GUIdelines.........cocovvvvieiiiieeicceeeeeeeeeeeeeeceerie e e e e 19
Parts of the DeskMate Screencoovvevveeveeeeeenvereceeinveenne 20
The Title Line......ccovvvviriiiiiiiieereeiee e cecccrrereee e eerrnanane 21
Help Prompler..........ouvvieeiviiiviimmeiniiieieeeresseeeeeesinsnneeeane 21

DALE ..ot r e e e aaaes 21
Application NAme...........evvriveeemmmeuniiniiennnnnneecssnssnnnnnnnns 22
DataFile Name......c.cccooueirvvinniieiiieciiireeeeeeceeeevieeaannee 22

THINC..... e eeeeetreeeeeeerereeereeeeeeaaraasnsaeseeeeeaannne 23

The Application or Accessory Menu Barcceveeeeen.e. 23
The WOTK ATeaocoieeeeeeeeeiieeeeeevtcieeeeeeeeevvvein e s s e e eeeaanaes 24
GIAPRICE. ...vvveeieeiieiiieeeieiertrsererrsereenererarrsasssnsassansssnnnnnnses 24
WANAOWS. .. .veviiieieeiciiieiieeeeeeeeceeerneeeeseeeeeaeansnnnraseeaanaans 24
Monochrome and Color Supportc.ooeeeveiieeeeeennnnn. 25

Some Special-Purpose SCreens..........cocovcevveriereeeeciieeeeeecaanans 25
The Welcome SCreen.........civevveieiieeeeiriiiiiireeeeeeeeiienieaeaaaees 25
The Default Screen............ooooevrviviiiiiviiiiieeveveeeeeeeees 25
The Working SCreemncooeevuueeeeeeeiiieceeiierieeeeeeseeeennenes 26
Screen Design for 40-Column Applications........ccccoccevvnnnnnee 28

Chapter 4 - Menus and Menu Bars

What Are Menu Bars and Menus?.......cccooeevveeeevvvimiieereenennnees 29
Whento UseaMenuBarccoovvvveveiieniiiiiiieiereecccvrecenees 31
General Rules and Guidelines for Menu Bars....................... 31
Menu Operation.........cccceeiveeeieeciivereeeceeercrcnrieereeeesseesenneene 31
Keyboard INterfacecevcuviveeemnnrencniiinneeenieeenneenenans 31
Mouse INterfaceccoveeiiiiiiniieeeenniiiica e cecnnnenneeeeens 33
Menu Button Titles......coevieiivieiiiviieeiririeereieieceeennie s eeeeeaeens 33
Menu Option Names...........ccoceiuiveeemieniininreneeeeneennn 34
Choosing and Using Menu Options.........cccccoevviviicvinnennnne 35
Accelerators and Selectors.........ccc..coeveeerievvureeeecerennns 35
Enabled and Disabled Optionscocceeeneiinnnnnniinnns 37
Classes of Menu Options..........ccooceeeeveriricernncrnniriieenenenn 37
Extended Command Options............eeevveveveerevemmmrnenenans 37
Check Options....c.ccoiveiii i receeeeeen s anaenes 37
Menu Option Groups..........ccoeeeeeiieiiviieeieeeieeeeeeeceeeeeee e 38

i

P
y’

I\ 4

Rules and Guidelines

for Application Menu Barsccccceevvviiiriiereeeeeiiieeenennenieneenns 40
Usage and Location.............oouviieeeeeeeiiiiiiieeeeereeeeeeeeeeeseseans 40
CONEENLS ..oeeeiiieieeee ettt eeenee e eaeesees 40

On-Line Help.....ooovvieeeiieeiiire e cree e eeveesree e 41
Exit, Run, and About..........ccccooovvmveeriiiiiiiieeeei s 41
The Message Menu.........c..cocoveevieeeeninieecniveeeeennnsnenens 42
The Accessories MenUccouvvvvvveeeveeereerireerererersenneeeens 43

Rules and Guidelines

for Accessory Menu Bars..........ccocceveeiiiiciiiinceieeeeeee e 44
CONEENLS ..ottt e e 44

Rules and Guidelines

for Menu Bar Components............cooccceeeiiieeiiiineeeeeeieieeeeeeeennn 44
Usage and Location.........ccccccooevveeeiiiiiecinieeeeieseereeeeeeenns 45
L0703 4 177=3 o1 =TSR 45

Menu Bar EXamples.........ccccvereeieeiiiireeeceeieeece e eeeens 46

Chapter 5 - The Interface Components

General Rules and Guidelines..........ccccvvviceeveeiiiiniiiiineniinnnnnns 49
Component Classes............ccoeeeeueereiiiiiiieeeeeeiiireeeeeeeenavereeens 50
Interactive Componentsccccceevveeceeeeeeeeiciieeeeeeeeeciveenn 51
Check BOXES ...coovvvereeiiiiiiiiiniiiiiinnaririirerrereererseeeseseeeissneans 51
When to Use Check BOXES.....coooccvvvvvvmmeeiiiiieieeeeeeeeeeeeens 52
Rules and Guidelines for Check Boxes.......cccccevvvvvennnes 53
TASE BOXES .ouvviniieei it e e eeeeaa e 54
When to Use List BOXES ...ccooeovievveeeniereeiierrieeeeveveeens 54
Rules and Guidelines for List Boxesccccevvvvvvennnn. 54
Edit Fields........oovviieiiieeeeeee et eeevvrer e e 56
When to Use Edit Fieldsccocvvevvvveveieieieeeneeennnn. 56
Rules and Guidelines for Edit Fieldsccvvvvveuenn 57
Edit Field/List Box Combinations.......ccccccovvvvvviviimrienneenes 58
When to Use Edit Field/List Box Combinations......... 58
Rules and Guidelines for Edit Field/List Box Combinations 5
8

iii

DeskMate Style Guide
Push Buttonscoovveviiiiiiviiiricccee et 59
When to Use Push Buttons.............cooeeiiieiiinicniiininannn. 59
Rules and Guidelines for Push Buttons............ccccceeeee 59
Special Push Buttons - OK and CANCEL................... 61
RAdIio BULLONS ..ccvvveeierireeieeiiiicieeeeeerrririeseesseeeeeeieeasiinesnas 61
When to Use Radio Buttons..........ccoeveveeereieniiiiiinninnnn. 62
Rules and Guidelines for Radio Buttons...................... 62
TcON BUuttons........cccvvvvivrvviriveiiireieieieireeeeireeeree e e e e e eaaeeeeeaeseas 64
When to Use Icon Buttons........cocooovvnieienieicceninnnnnnnn. 65
Rules and Guidelines for Icon Buttons..........c.eceeeeeeee. 65
Scroll Barscoocvvvviiveerieiiiiitccieeceeeceeiicesiee e 65
When to Use Scroll Bars........cooovvviiiirivenieicrieiicicieinninns 65
Rules and Guidelines for Scroll Bars........c.ccceeeeeiiieeenn 66
M =5« AP P PN 67
When to Use Text ..ot rini e 67
Rules and Guidelines for Text.......coovveeniiiiiiniereiiinnnnnnn. 68
(o) < TSSO OTPOPRUS 68
When to Use IComS ...cuuuuireeiieeeiiiiriireereeeeceeenaeeeeeeneenenns 68
Rules and Guidelines for Icons........cccccceeeiieiiniiiieennnnne. 68
BOXES..uuuuuiiieeiiiiiiiriitriiesseeseretreriaseerrrraern et e s eraaanaie s 68
When to Use BOXES.....ccvvvvviiveiireieiieierieeeeeeeneeeneneeneene s 69
Rules and Guidelines for Boxes........ccoveveeeenireerrnnineinnn 69
Using Components in the Work Area..........ccocoevnvvveeniiniinnnns 69
LISt BOXES ..oiiiiiiiieeeiieie e iieeeeervnvaare e e e e e e 69
EQIt FIlldS ...oooeeeeeeeeeiiiiiiiiiiiieiieeeevevveerevensesaseeseeeeeeeeseaeneeeaes 70
Push Buttonscevvvvviiriveieriereeererririiiieseererereeseeseereseneees 70
Jeon BUuttons........ocvveeiiiieiiieiiiiieeee e eererereei e 70
Chapter 6 - Pop-ups
When to Use @ Pop-Up...cccoiviiiiiiiieeiierireree st 71
TYPes Of POP-UPS ...ocovviieeeriieceie et 72
MesSage BOXES........vvvveeeeeeeeeiiiirriereeeeeseeesmvenreeecesnessnsnnns 73
Dialog BOXES......ceviiiieeiecceiiee e e eeeeccrareree e e essnneeeesannas 74
ACCEBBOTIES ..coeeeeverernreeeeeeeeeeeeeeieeeeeeeeeeeeeeisseraeeeeseceennmnenaassas 75
iv

é

Rules and Guidelines for Pop-Ups.........ceeeeereiiiiiiniiiiiininiannnn. 75

Size and Positionceeeeiiiiiiiiiieieiiiieeceenneeenis e 75
Size and Position of Dialog Boxesccccccvivvrrmrvimineennen. 76

Size and Position of Message Boxesccoveiiiivinnianniee 76
THELES unvieiieiiee e e e et e e ee e e rvs e eeremaesesssaasesrasnssaanens 76
Dialog Box Titles....coviviuueiieriiiieeeeeeimeeinviieee e ee e 77
Message Box Titles.......ccccceiiimiiiniicniiiiiiniiiiiiicenenees 77
Message Text......ccccvieieeeceiiireeneeceecree e rviaee s 77
Pop-Up Operation...........cceevveeeieeeeieiceiiiniiiinnneeeeennnnreee e 78
Default States.......ccccviiiiiiiiiiiiiieeee e 78
Disabled Components............cceeeeeeeeeiiimemneeriiiieenerreeeeeeeans 78
Component Behavior............ccocvvevreeecinieniceniniieeienenn, 79
Push Buttons in Message Boxes.....cccccceevviiiiiniiiiniiiiniinnnes 79
Assigning Default States.........cccocovciocmnviiiiniin 80
Removing Dialog Boxes.......cooveeeeiererricenniiiiinninriiseeeienens 81
User Interfaces to Pop-Up Windows........cccccevuviviiinveniiinnnannes 81
Keyboard Interface............coooviiieeiiiicinriiininiiinnieeeenee 81
Mouse INterfaceouvviveiiieieiiiiiieerreeeeeeeiiin e 83

Chapter 7 - Special Menus

MEBBAZE ..vveeeeeriiiiieiiiiiiie e eeeee e e et a e e e eees 85
A CCEBSOTILE. .o eitvreeeiiiiieeeeeertteeeertierassesnnnsaeesaeanaasestaniesarnnrnnenes 85
L e et ee e e e ettt reeearaeeeaaaaeertar e reeaaeaeearaanaaan 86

Chapter 1

Introduction

The Tandy DeskMate User Interface enables communication
between users and DeskMate applications. It is a graphic
interface that uses pop-up windows, pull-down menus, and a
variety of other interface components to communicate with the
user.

This manual provides the information you need to design and
develop applications that meet the Tandy DeskMate User
Interface standard. It presents rules (requirements) and guidelines
(strong recommendations) for achieving the "look and feel” that
users expect of DeskMate applications.

The main goal of the DeskMate standard is to help produce
applications that are predictable and therefore easy to use.
However, ease of use is only one benefit you receive from
following the DeskMate standard.

The graphic nature of the DeskMate interface is a benefit to you
and your users. You can use the graphic components to focus the
user’s attention where you want it. From the user’s point of view,
a graphic interface is appealing, not intimidating. It helps the
user to feel comfortable with the application and confident about
learning how to use it.

Using standardized components and interface techniques enables
you to concentrate on improving your application, not on deciding
how the interface components should operate.

Application Style Guide

The standard is flexible enough to support all the functionality
you want in an application. It allows the freedom to implement
unique features and functions. By following the standard, you can
avoid forcing the user to learn a new interface with every
DeskMate application.

How to Use This Manual

Read this manual before beginning development of a DeskMate
application. It will help you select the interface components most
appropriate for your application. If you have already started
developing a DeskMate application, read this manual to ensure
that your application conforms to the DeskMate standard.

This manual includes a large number of examples to help you
understand the rules and guidelines in the standard. It includes
subjects such as:

- screen design

- keyboard and mouse support

- how to use components in pop-up windows
- menus and menu bars

- special menus and functions

- special requirements for 40-column applications and
accessories

This manual describes the look and feel of a DeskMate
application. We recommend that you use DeskMate resources and
functions in your application. If you create an application without
using the DeskMate functions, the appearance and operation of
your application should not violate any of the rules in this
standard. For example, if your application uses pull-down menus,
it is not essential that they all be sticky menus, but they must be
consistent. Do not mix sticky menus and non-sticky menus.

Introduction

If you use DeskMate functions to create and display the
components your application uses, the application will
automatically conform to a large portion of the standard.

Before You Begin

If you are not familiar with the DeskMate product, we recommend
that you spend some time exploring the copy that is shipped with
this kit. Understanding how to use DeskMate will help as you
develop your application.

Most of the examples used in this manual are taken from the
DeskMate product itself. If you are familiar with DeskMate, you
will more quickly understand the context of the examples.

Chapter 2
The Keyboard and the Mouse

The keyboard is the standard input device for any DeskMate
application. Some users prefer working with a mouse, however, so
mouse support should be included whenever possible. All
DeskMate applications should accept input from the keyboard, a
mouse, or both.

This chapter describes the rules and guidelines that apply to
using the keyboard or a mouse. It is organized according to the
major tasks for which the mouse or keyboard is used. In addition,
it includes a summary of basic mouse operation, and a summary
of special keys and key combinations.

Special Keys

The keys and key combinations described in this section have
special meaning in specific environments. Do not use these keys
or key combinations for other purposes.

Accelerators

You can assign a combination of keystrokes, called an accelerator,
to a particular function in your application. Accelerators provide
quick access to menu options and other functions. Assign
accelerators only to the most commonly used functions. Avoid
accelerating every menu option, because the user cannot
remember a large number of accelerators.

Application Style Guide

Esc
Esc, the Escape key, is the accelerator for the CANCEL
button in dialog boxes and message boxes. It is also the
accelerator for the Exit option in applications and accessories
when a menu is not displayed. When a pull-down menu is
displayed, Esc retracts the menu.

Enter
Enter is the accelerator for the currently highlighted push
button in a dialog box.

Spacebar
Select objects such as a radio button, push button, and entry
in a list box, or a graphic object.

Del
In a text entry window, Del deletes any selected text or the
character to the right of the cursor. It can also be used as an
accelerator. For example, in Text’s Edit Menu, Del is the
accelerator for the Clear option.

Function Keys
F1 is the accelerator for on-line help. F2 through F8 are
accelerators to menu buttons. F9 is the accelerator for the
Message Menu, and F10 is the accelerator for the Accessories
Menu. Do not assign any other use to these keys.

Alt+key
You can use Alt+key combinations as accelerators. Alt+first
letter is the standard accelerator for any push button. You can
also use Alt with other keys as accelerators for menu options.

For example, in the Calendar accessory, Alt+P is the
accelerator for the Prev (previous month) push button, and
Alt+N is the accelerator for the Next (next month) push
button.

You can also use Alt + special keys for cursor movement. For
example, Alt+—> could move to the end of a word in a text
entry window.

The Keyboard and the Mouse

Ctrl+key
Ctrl+key combinations are menu option accelerators. For
example, Ctrl+Ins selects the Copy option on the Edit Menu.

You can also use Ctrl + special keys for cursor movement. For
example, Ctrl+—> could move to the end of a line in a text
entry window.

Shift+key _
You can use Shift with other keys as menu option
accelerators. You can also use the Shift key with Home, End,
Page Up, Page Down or the arrow keys to select text or
graphics in the work area. For example, Shift+Up Arrow is
used to select items in a multi-select list box. See the
"Selecting Data" section of this manual for specific key
combination standards.

Shift+key is often related to the function of key. For example,
Shift+Del selects the Cut option on the Edit Menu. This
deletes currently selected text from the editing window and
transfers it to the clipboard. Shift+1Ins selects the Paste option
on the Edit Menu. This inserts text from the clipboard into
the current text window, at the current cursor location.

Shift+key may reverse the action of key. For example, Tab
moves the highlight forward in a window; Shift+Tab moves
the highlight backward in a window.

Basic Mouse Operation

We use the term mouse to refer to a pointing device. A pointing
device can be either a mouse or a joystick. Using a mouse can
expedite data selection and scrolling.

The DeskMate mouse interface requires only one button. If your
mouse has more than one button, use the left one to interact with
DeskMate applications. This section describes the basic actions of
a mouse.

Application Style Guide

o

Click
Press and quickly release the mouse button once. This action
re-positions the text cursor or selects an object.

Double Click
Click the mouse button twice in rapid succession. Used to
select and immediately execute an option.

Shift Click
Press the Shift key and the mouse button at the same time.
Used to make discontiguous selections.

Drag
Press the mouse button and hold it down while moving the
mouse. Release the mouse button when the pointer rests at
the desired location. Used to make contiguous selections.

Cursors and Pointers

The cursor indicates the point where activity will occur in a
DeskMate application. For example, in a text application, the
cursor indicates the location at which text can be inserted,

deleted, or changed. ‘

The pointer indicates the presence of the mouse. When you move
the mouse, the pointer moves. When you click the mouse, the
cursor moves to the position of the mouse pointer.

Cursors

Standard DeskMate functions provide three predefined text
cursors: a block, a bar, and a line. If you prefer, you can define a
custom cursor and use it instead.

Use the block cursor or the bar cursor in a text entry window.

Use the line cursor to focus on a component or an application-
defined object.

/‘

The Keyboard and the Mouse

Pointer Images

DeskMate defines a standard mouse pointer image that is
available for use by all applications. An application can define
other images for the mouse pointer and use them as long as the
application is running. When the user exits the application, it
must redefine the mouse cursor to the standard DeskMate mouse
cursor.

Selecting Data

The DeskMate user interface is action-oriented. The user selects
data, then performs some action on that data. When data is not
selected, the actions in the applications should be disabled.

DeskMate applications can support selection of text, graphics, or
any other kind of data that is appropriate for the application.

If an application supports the selection of any kind of data, it
must support the clipboard. The clipboard is a temporary storage
area for data. Your application can use the clipboard to move data
from one location in a file to a different location in the same file,
or to a different file.

Terminology

Some important terms that relate to text selection are defined
below. These terms apply whether you use the mouse interface or
the keyboard interface. Understanding these terms will help you
understand the mouse and keyboard descriptions later in the
chapter.

Anchor Point
The point where an extended text selection begins. The
anchor point must be the top or bottom of the selected text; it
cannot be in the middle of the selected text. The user makes
extended text selection with Shift+key combinations on the
keyboard, or by dragging the mouse. For the keyboard, the

Application Style Guide

anchor point is the position of the cursor at the time the first
Shift+ key combination is invoked. For the mouse, the anchor
point is the position of the first character selected when the
user begins the drag operation.

Character
Any single character, including a space or a punctuation
mark.

Word
A group of characters separated from other characters on
either side by a space, a tab character, or a new-line
character.

Line
One row of characters with application-defined boundaries on
each end. For example, the characters within an edit field
frame are a line, according to this definition. The screen
border can also serve as a line boundary.

Extended selection
Expansion of the current selection to include additional
characters, words, or lines.

Discontiguous selection
Selection of two or more items that are not adjacent.

Deselected data
A selection is deselected when the user moves the cursor
without extending or contracting the current selection.

Whenever possible, the application should deselect data for
the user, rather than requiring the user to do so. For example,
after executing the Copy option to store the information on
the clipboard, the application should deselect the data and
position the cursor at the anchor point.

The application should position the cursor at the anchor point
after completing an operation involving the data.

10

.

The Keyboard and the Mouse

Selecting Graphics

When a graphic object is selected, it appears in a select box:

The small squares around the perimeter of the select box are size
handles. To change the size of a graphic object, the user clicks and
drags any one of the size handles. The shape of the object changes
as the user drags the handle. To move a graphic object, the user
clicks and drags the object itself.

If your application allows selection of graphics, it must support
the following keys:

Arrow Keys
Use the arrow keys to position the cursor on the graphics or
the handles of an object you want to select.

Space bar
The space bar highlights the graphic element at the current
cursor location, and selects the handle.

Your application should also support graphic selection by the
mouse. The user can click on any handle to select graphics with
the mouse.

11

Application Style Guide

Keyboard Interface

The key combinations described in this section move the cursor
and select text.

Shift+Up Arrow
Moves the cursor up one line and scrolls if necessary.
Selects/deselects data from the original cursor location to the
new cursor location.

Shift+ Down Arrow
Moves the cursor down one line and scrolls if necessary.
Selects/deselects all text from the current cursor location to
the new cursor location.

Shift+ Right Arrow
Moves the cursor to the right one character and scrolls if
necessary. Selects/deselects the character. At the end of a line,
the cursor moves down one line and to the left edge of the new
line.

Shift+ Left Arrow
Moves the cursor to the left one character and scrolls if
necessary. Selects/deselects the character. At the end of a line,
the cursor moves up one line and to the right edge of the new
line.

Shift+Home
Selects all text from the current cursor location to the
beginning of the current line and scrolls if necessary.

Shift+End
Selects from the current cursor location to the end of the
current line and scrolls if necessary.

Shift+ Ctrl+Home
Selects from the current cursor location to the beginning of
the file and scrolls if necessary.

12

®

The Keyboard and the Mouse

Shift+ Ctrl+ End
Selects from the current cursor location to the end of the file
and scrolls if necessary.

Shift+ Page Up :
Selects/deselects text and scrolls if necessary. The cursor
positioning and scrolling rules for Page Up apply.

Shift+ Page Down
Selects/deselects text and scrolls if necessary. The cursor
positioning and scrolling rules for Page Down apply.

Shift+ Cerl+ Page Up
Selects/deselects text and scrolls if necessary. The cursor
positioning and scrolling rules for Ctrl+Page Up apply.

Shift+ Ctri+ Page Down
Selects/deselects text and scrolls if necessary. The scrolling
rules for Ctrl+Page Down apply here.

Mouse Interface

Pointing, pressing the mouse button, and then dragging the
mouse selects or deselects text or graphics. At window boundaries,
scrolling occurs as necessary.

Scrolling

When data does not fit in the available space on the screen or in a
window, the application must support scrolling. This section
describes the keys and mouse actions used while scrolling.
Keyboard interface

DeskMate uses a variety of keys and key combinations to support

scrolling through a file. Refer to "Selecting Data" for information
about the effects of these keys on cursor positioning and scrolling.

13

Application Style Guide

Mouse Interface

The mouse supports scrolling with arrow buttons on the menu bar
or a scroll bar component. This section describes mouse operations
that are equivalent to pressing the keys listed in the last section.

* Clicking on an arrow button in a menu bar or on a scroll bar
is equivalent to pressing the corresponding arrow key.

* Clicking in the gray area above or below the vertical scroll
bar elevator is equivalent to pressing the Page Up or Page
Down key.

* Clicking in the gray area to the left or right of the horizontal
scroll bar elevator is equivalent to pressing the Ctrl+Page Up
or Ctrl+Page Down key combination.

Dragging the scroll bar elevator moves the cursor quickly
through the file. The cursor the same relative distance from
the top of the file as the elevator is from the top of the gray
area in the scroll bar.

Cursor Movement and Scrolling

DeskMate uses a variety of keys to move the cursor on the screen.
You can also use most of the keys in this section to select data.
Refer to "Selecting Data" for more information.

Tab
Moves the highlight (cursor) forward to the next component or
field.

Shift+Tadb
Moves the highlight backward to the next component or field.

14

The Keyboard and the Mouse

Arrow Keys

The arrow keys (Up, Down, Left, and Right) provide rapid motion
through a file. You can use these keys as described in this section.

Up Arrow
Moves the text cursor directly up one line. If the cursor is at
the top of a window that scrolls up and down, pressing the up
arrow scrolls the text down one line without moving the
cursor.

Down Arrow
Moves the text cursor directly down one line. If the cursor is
at the bottom of a window that scrolls up and down, pressing
the down arrow scrolls the text up one line without moving
the cursor.

Right Arrow
Moves the text cursor right one character on the same line.
Scrolls the text to the right if the cursor is at the far right of a
side-scrolling window.

Left Arrow
Moves the text cursor left one character on the same line.
Scrolls the text if at the far left of a side-scrolling window.

Home, End, Page Up, Page Down

You can use Home, End, Page Up, and Page Down alone, or
paired with the Ctrl key to position the cursor. This section
describes the effect of each of these keys.

Home
Moves the text cursor to the beginning of the current line and
scrolls the text if necessary.

End
Moves the text cursor to the end of the current line and scrolls
the text if necessary.

15

Application Style Guide ‘

Ctrl+Home

Moves the text cursor to the first character in the first line of
the file (also called homing the cursor).

Ctrl+End

Moves the text cursor to the last character in the last line of
the file.

Page Up

Re-positions the text cursor and scrolls the text if necessary.
When the cursor is not on the top line of the screen, the cursor
moves to the top of the current screen. When the cursor is
already at the top of the screen, it moves one screen toward
the beginning of the file each time the user presses the key.
The top line of each screen becomes the last line of the next
screen, so the user always sees one line from the previous
screen of text.

Page Down

Re-positions the text cursor and scrolls the text if necessary.

When the cursor is not at the bottom of the screen, the cursor

moves to the bottom of the current screen. When the cursor is

already at the bottom of the screen, it moves one screen X
toward the end of the file each time the user presses the key. ‘
The bottom line of each screen becomes the first line of the

next screen, so the user always sees one line from the previous

screen of text.

Ctrl+ Page Up

Re-positions the text cursor and scrolls the text if necessary.
When the cursor is not at the left edge of the screen, the
cursor moves to the far left edge of the screen, in the current
line of text. When the cursor is already at the left edge of the
screen, it moves one screen toward the left edge of the file
each time the user presses the key sequence. The first column
of one screen appears as the last column of the next screen, so
the user always sees one column from the previous page of
text.

16

o
‘

The Keyboard and the Mouse

Ctrl+Page Down
Re-positions the text cursor and scrolls the text if necessary.
When the cursor is not at the right edge of the screen, the
cursor moves to the right edge of the screen, in the current
line of text. When the cursor is already at the right edge of
the screen, it moves one screen toward the right edge of the
file each time the user presses the key sequence. The last
column of one screen appears as the first column of the next
screen, so the user always sees one column from the previous
page of text.

Text Entry and Editing

Entering and editing text is largely a keyboard activity. This
section describes the keys that DeskMate uses to support text
entry and editing.

Del
Deletes any selected text or the character to the right of the
text cursor.

Enter
Inserts a line feed and a carriage return, which moves the
cursor to the left margin. If text is selected, it is replaced
with a line feed and carriage return.

Space bar
Inserts a space in the text. If text is selected, it is deleted and
replaced with a space.

Tab
Moves the text cursor forward one tab stop.

Shift+Tab
Moves the text cursor back one tab stop.

17

Chapter 3

Screen Design

This chapter describes the major areas of the screen and the rules
and guidelines that apply to each area. In addition, it defines a
few special types of screens used in many DeskMate applications,
and includes a section on 40-column applications.

General Guidelines

Screen design is a broad topic, and the guidelines are
correspondingly broad:

Keep the screen organized to minimize confusion.

Use screen areas consistently to maintain familiarity and
help the user locate information quickly. For instance, try to
position the 0k and CANCEL buttons in the same place in every
dialog box.

* Use dialog and message boxes effectively. Be sure the dialog
is organized and contains all the information the user needs.
Too much information at once will confuse users; a lack of
needed information will frustrate them.

19

Application Style Guide

Parts of the DeskMate Screen

The DeskMate screen is divided into three major parts:

appears immediately below the title line

application’s functions are performed

The title line, the first line of the application screen

The application menu bar or accessory menu bar, which

The work area, the space below the menu bar, in which all the

Help Fy Jul 6, 1989 DeskMate - C:\DESK89

$ IXT ¢

DESKTOP. DOC

DESKTOP2, DOC l ADDRESS I LCRLENMRJ ' PC-LINK
DIVID. BoC

INTRO. DOC

Teach le!

Helcone

To DeskMate

ADDRESS. PDN
CALENDAR. PDN
DESKTOP. PDR
DRAH. PDN

Each of these parts serves a specific purpose, and each has its own

set of design rules and guidelines.

20

Screen Design

The Title Line

All applications must include a title line at the top of the main
screen. The title line contains:

* the Help prompter

the current date

the name of the application

the name of the current data file

the current time

If you use DeskMate functions to display your title line, the title

line will automatically be formatted to conform with the rules in
this section.

Help Prompter

A prompter is a display of a particular task’s accelerator in a
DeskMate application. F1 always provides on-line help; the
prompter is Help Fi, Display this prompter at the left end of the
title line.

Date

Display the current date as the second element in the title line.
The date appears in the format mmm dd, yyyy, as in Aug 24,
1989.

21

Application Style Guide

Application Name

The application name is the third element in the title line.

Use a maximum of 16 characters for the name.
Center the name horizontally.

Capitalize the first letter of each word (for example, Text,
Worksheet, Address Book, Form Setup).

Insert a hyphen (-) between the application name and the data
file name (described next).

Data File Name

If an application or accessory uses a data file, display the data file
name to the right of the application name.

Use uppercase characters, such as EXAMPLE.DOC,

If the drive, path, and data file name exceed 28 characters,
display only the drive and data file name, as in
C:\...\EXAMPLE.DOC,

If the application or accessory does not use a data file, display
Untitied in place of a data file name.

Some applications, such as Address Book, use only one data
file. When this is the case, the application can use the data
file name location for some other purpose.

22

Screen Design

For instance, Address Book uses this location to display the
name of the current address list.

Help F; May 9, 1989 Address Book - A1l
File - Edit 7 jList <. Address - View-

[adex

Birthday
Anniversary -
Notes

Total entries: B Current field: Title

Time

Display the current time as the last element in the title line, at
the right end of the title line. The time appears in the format
hh :mm, followed by am or pm.

The Application or Accessory Menu Bar

All full-screen applications must include an application menu bar
immediately below the application’s title line. This menu bar
must provide access to application functions, the DeskMate
Accessories Menu and the DeskMate Message Menu. See Chapter
4, "Menu Bars and Menus," for detailed rules and guidelines on
the application menu bar.

23

Application Style Guide

The title line and menu bar usually appear together. If an
accessory uses a title line, it must include an accessory menu bar.
However, an accessory that uses an accessory menu bar is not
necessarily required to use a title line. See Chapter 4, "Menus
and Menu Bars," for details. :

The Work Area

The application work area is immediately below the menu bar.
Developers can use graphics, windows, and color to focus the
user’s attention on the current task. Any DeskMate interface
component can be used in the work area.

The rules that apply to the work area depend on how you use the
area. See Chapter 2 if you are using the work area for data
selection. See Chapter 5 if you are using interface components in
the work area. Some guidelines are provided here.

Graphics

Graphics can be used to make the work area look like a familiar
object. For example, the Address Book work area looks like a page
from an address book. Users know automatically what to do with
the form; little explanation is needed.

We realize this is not as simple in all applications as it is in
Address Book. In general, simpler screen designs are easier to
use. Make your screens as recognizable and usable as possible.

Windows

Windows can be used to concentrate the user’s attention on a
specific action. In DeskMate applications, windows can be used to
get information from the user or just to send a message to the
user. DeskMate applications use tiled windows and pop-up
windows. Both types of windows are described in Chapter 6.

24

o

Screen Design

Monochrome and Color Support

DeskMate runs in a variety of video, color, and resolution modes.
DeskMate applications must support monochrome (2-color), 4-
color, and 16-color resolution environments.

Some Special-Purpose Screens

The following sections describe three special screens that help
create the look and feel users expect in a DeskMate application:

The welcome screen

* The default screen

The working screen

The Welcome Screen

Use a welcome screen to convey any information that the user
should read before using the application. Copyright information,
which can also be displayed with the About option, is an example.

The Default Screen

Applications should have a default screen that is displayed as
soon as the user starts the application.

Create a default screen that represents the function of your
program. For instance, the Address Book screen looks like an
address book entry page with an index pad on the side.

25

Application Style Guide .

Data entry, editing, and viewing are all done on this screen.

Help F| May 9. 1989 Address Book Al

Sy List, address” jUiew -,

Dates to Remember
Bi rt hday
Anniversary

Notes

1 Total entries: 8 Current field: Title

The Working Screen /.

If your application includes more than one "mode" of operation,
create a working screen for each mode. Working screens should
visually identify the current mode of operation. For example,
Calendar has daily, weekly, monthly, and yearly viewing modes.
The current mode is easily identified by the screen’s design.

26

Screen Design

The following examples illustrate the monthly mode and a daily
schedule planner.

Help F; Jul 6, 1989 Calendar - CONFERENCE RM 1:87 pm
il =Tt ipios e v olendors = 14 6]

July 1989

Sunday Honday Tuesday Hednesday Thursday Friday Saturday
1

I ——— "

Help Fy Jul 6, 1989 Calendar - CONFERENCE RH

Schedule for Friday July 7, 1989
8:08 A1 - 5.30 P DeskMate Seminar
12:09 PH - 1:00 PN Lunch

6:08 PM - Depart for home

27

Application Style Guide ‘

Screen Design for 40-Column Applications

Screen design rules for 40-column applications are the same as for
full-screen applications, with the following exceptions:

* Include only the Help prompter, the application name, and
the current time on the title line. do not include the current
date or the data file name.

* Do not include the Accessories Menu or the Message Menu on
the accessory menu bar.

.

28

Chapter 4

Menu Bars and Menus -

This chapter introduces menu bars and menus and defines the
requirements of each of DeskMate’s classes of menu bars. In
addition, it discusses the appearance, design, operation, and
interface support required for each class of menu bar.

In addition, this section discusses the rules and guidelines that
apply to menu options, and discusses the types of commands that
can be included in a menu.

What Are Menu Bars and Menus?

A menu bar is a group of rectangular buttons, always displayed
horizontally across the screen. Each button has a title, and each
button activates (pulls down) a menu that has the same title. A
menu is a group of related commands or settings. Each entry in a
menu is called a menu option.

For DeskMate versions 3.03 and higher, all DeskMate menus are
sticky menus. This means that a menu, once selected, remains
displayed until the user selects an option from that menu, selects
another menu, or cancels the current operation. If the user selects
another menu, the first menu is erased from the screen and the
second one is displayed instead.

DeskMate uses three types of menu bars. The first type is called
the application menu bar. Each DeskMate application has a unique
application menu bar.

29

Application Style Guide

The following illustration shows DeskMate’s application menu
bar. The Accessories Menu is pulled down.

Help F| May 26, 1989 DeskMate - C:\DESK89 8:11 an
File “irectory F.0iskF.Juiow FfSort byl DesktapF By
1 a3 Setup

DHVID. DOC Spell Checker

Calculator
Phone List
Corkboard
Honth

Alarn

To Do List
Task Switch

Teach Me? $AUTOCONFIG4

Helcome
To DeskMate

The application menu bar allows access to all application menus,
and the DeskMate menus.

The second type of menu bar is the accessory menu bar. An
accessory menu bar serves the same purpose in an accessory that
the application menu bar serves in an application.

The third type of menu bar is a menu bar component. Any menu
bar that is included in a pop-up window, such as a dialog box, is a
menu bar component.

30

Menu Bars and Menus

When to Use a Menu Bar

Use a menu bar to present groups of related commands to the
user. The menu bar interface is preferred over a series of push
buttons because:

* It is the standard interface for presenting commands (actions)
to the user.

It is easier to access with the keyboard than a series of
buttons, which must be cycled through or accelerated.

General Rules and Guidelines for Menu Bars

The rules and guidelines in this section apply to all menu bars.
Rules and guidelines that apply specifically to a particular type of
menu bar component are presented later in this chapter.

Menu Operation

Applications must provide access to menu options through the
keyboard or the mouse. DeskMate functions support both
interface devices as described in this section. The descriptions
given here are general. Specific requirements for the various
types of menu bars are given later in this chapter.

Keyboard Interface

To display an application menu, the user must press the
appropriate function key, F2 through F10. If an application menu
is already displayed, the user can retract it and display another
by pressing a different function key or the left or right arrow key.
The Esc key retracts a displayed menu without displaying
another.

Function keys enable the user to display a menu from the menu
bar. The Enter key, the alphabetic keys, and the up and down

31

Application Style Guide

arrow keys allow the user to highlight an option from the current
menu.

A brief description of each major part of the keyboard interface
follows:

F2 through F10
Pulls down a menu. Retracts the current menu if one is
displayed.

Esc (Escape)
Retracts the pull-down menu without displaying another.

Right Arrow
Retracts the current menu and displays the one on its right. If
the current menu is on the right end of the menu bar, displays
the menu on the left end.

Left Arrow
Retracts the current menu and displays the one on the left. If
the current menu is on the left end of the menu bar, displays
the menu on the right end.

Enter
Executes the highlighted option and retracts the menu.

A through Z
Highlights the first option in the current menu that begins
with the pressed letter. For example, pressing P while in the
Edit Menu highlights Paste.

Up Arrow
Moves the highlight up one option in the current menu. If the
first option in the menu is highlighted, moves the highlight to
the last option in the menu.

Down Arrow
Moves the highlight down one option in the current menu. If
the last option in the menu is highlighted, moves the
highlight to the first option in the menu.

32

Menu Bars and Menus

Mouse Interface

To display an application menu, the user must click on the
appropriate menu button, F2 through F10. If a menu is already
displayed, the user can click on a different button to retract the
menu and display another.

If the application supports scrolling and does not use a scroll bar,
the application menu bar must support arrow buttons. Menu bar
components must not support arrow buttons.

A brief description of supported mouse actions follows:

Clicking on a menu button
Pulls down the corresponding menu. This is equivalent to
pressing a function key.

Clicking a menu button and dragging the mouse to an option
Selects and executes the option, and retracts the menu. This is
equivalent to pressing a function key, a series of down arrows,
and the Enter key.

Double clicking on a menu option
selects and executes the menu option, and retracts the menu.
This is equivalent to pressing the Enter key.

Clicking on a point that is not in the menu or menu bar
Retracts the current menu without displaying a new one. This
is equivalent to pressing the Esc key.

Menu Button Titles

Each menu button must have a title, or name, stating its purpose
as clearly as possible. When titling a menu button:

* Make short titles. Use a single word or a short phrase.

The title can be a noun (such as File, Text, or Picture) or a
verb (such as Edit, Search, or Zoom).

33

Application Style Guide ‘

Do not include numbers.
Do not pad the titles with spaces.

Capitalize the first letter of the title.

Menu Option Names

Menu options should always relate to the menu title.

For example, the Page setup, Save, and Save options in the
File Menu all relate to the current application data file, as the
word File implies.

Menu option names must be unique within a menu; however,
the same name can be used in different menus.

If the menu name is a noun, the menu option names must be
verbs, for example:

File Menu options are Open, Save, and Merge.
Text Menu options are Bold and Underline. ‘
Picture Menu options are Move, Size, Hide, and Show.

If the menu name is a verb, the menu option names must be
verbs or adjectives, for example:

Edit Menu options are Cut, Copy, and Paste.
Search Menu options are Find, Find next, and Substitute.
Zoom Menu options are Normal, Twice, and All.

If the menu name is a phrase, the menu option names should
complete the phrase. For example:

Sort by Menu options are Date, Type, and Name.

34

Menu Bars and Menus

* Spell out option names in full, and capitalize the first letter of
the first word.

Ekamples of proper option names are: New, Open, Page setup,
Save as, and Select all.

Do not repeat the name of the menu in the menu option.

For example, if the menu name is File, the menu option
should be Open, not Open file or File open.

Choosing and Using Menu Options

The DeskMate User Interface provides quick, easy access to
application functions and data. This section describes some of the
features that provide easy access to menu options.

Accelerators and Selectors

Accelerators provide quick keyboard access to menu buttons or
menu options. Menu button accelerators are function keys. Menu
option accelerators are usually a sequence of keys, although a
single key can be used in some instances. Pressing a menu button
accelerator displays the associated menu. Entering a menu option
accelerator is equivalent to displaying the menu, choosing the
option, and pressing Enter.

Selectors also provide access to menu options. Selectors are single
keys, usually the first letter of the option name. A selector
highlights an option, but the user still must press Enter to start
the option.

Accelerators are required for all buttons on a menu bar. Display
the accelerator to the right of the menu name on each menu
button. If you use DeskMate functions to create and display your
menu bar, menu button accelerators will be assigned and
displayed automatically.

35

Application Style Guide

Accelerators are not required for menu options. If you assign
accelerators to menu options, display each accelerator sequence to
the right of the appropriate option name. The following example
illustrates the use of accelerators in a menu.

Records F4
First Ctri+F
Next Ctri+N
Previous Ctrl+P
Last Ctri+L

The displayed accelerator sequence is called the prompter.
* Capitalize the first letter of each word in the prompter.

Use a plus sign to connect the words in a prompter. Do not
insert spaces between the plus sign and the words.

* Use Shift to indicate the Shift key, Ctrl to indicate the Ctrl
key, and Alt to indicate the Alt key.

* All prompters must begin one character beyond the longest
option name on the menu. If you use standard DeskMate
functions, DeskMate can automatically format the menu as
required by this standard. The following example, Calendar’s
Edit Menu, illustrates accelerator prompters.

Edit F3
Cut Shift+Del
Copy Ctri+ins
Paste Shift+Ins
Clear Del

36

Menu Bars and Menus

Enabled and Disabled Options
* Whenever using a menu option is not appropriate, the
application must disable the option. Display disabled option
names in gray type. For example, in the Text application, the
user must select text before assigning attributes to it.
Therefore, all character attribute options in the Text Menu
(Plain, Bold, and Underline) are grayed until text is selected.

* If the user presses F1 while a grayed option is highlighted,
the application should display help information about the
option.

Classes of Menu Options

When the user selects a menu option, the application might
simply perform a task, as indicated by the name of the option,

" without requiring any further action from the user. This section
describes two special classes of menu options, extended options
and check options. Using extended or check options can make
your application more powerful, more flexible, and easier to use.

Extended Command Options

An option that will request more information from the user is
referred to as an extended command. When an extended command
is chosen, a dialog or message box appears. This box provides the
user with information needed for further input. Include an ellipsis
(...) after the name of an extended command.

Check Options

A check option (also known as a toggle option) has two possible
states, on and off. A check mark in front of a menu option
indicates that the option is active (selected). The application
automatically toggles the state of the option whenever a user
selects the option. Check options are often used in groups.

37

Application Style Guide

Menu Option Groups

When two or more menu options are related, or provide similar
functions, display the options as a group. To visually separate
groups within a menu, draw a solid line between groups.

In the Draw application, for example, the Flip horizontal, Flip
vertical, and Rotate options on the Actions Menu are related; each
of these commands changes the orientation of a selected object.
These commands are listed together on the menu and are
separated from other commands or groups by a solid line, as
illustrated in the following example. Similarly, the Move to top
and Move to bottom options appear together, in a separate
grouping; these commands move an object to the top or bottom of
the print queue. All menu options are left-aligned. Related
options are grouped, and groups are separated by solid lines.

Example: The Actions Menu from Draw

Actions F4
Duplicate

Move to top
Move to bottom

Flip horizontal
Flip vertical
Rotate

Make object
Break object

In some cases, the options within a group are mutually exclusive.
For instance, the options on Draw’s Zoom Menu are mutually
exclusive. Only one zoom ratio can be used at any given time. If a
user selects an option in such a group, the application must
automatically deselect all the other options in the group. A group
of mutually exclusive options is analogous to a group of radio
buttons (see Chapter 5) in a dialog box.

38

o

Menu Bars and Menus

When a user selects an option in a non-mutually exclusive group,
the application must not change the state of any other option in
the group. Options in the group must be individually selected to
change from on to off, or from off to on. A group like this is
analogous to a group of check boxes (see Chapter 5) in a dialog
box.

For example, Form Setup’s Text Menu allows the Bold and
Underline options to be active simultaneously.

Do not mix mutually exclusive and non-mutually exclusive
options within a single option group.

39

Application Style Guide

Rules and Guidelines for Application Menu Bars

The application menu bar is the interface component that
provides access to the options defined in an application. It can
include up to nine rectangular buttons. Seven of these buttons are
available for custom application menus. The other two are
reserved for special DeskMate menus.

Usage and Location

All applications, 80-column and 40-column, must use include a
title line and application menu bar. Place the application menu
bar immediately beneath the application’s title line. The menus
on the application menu bar must provide access to all the major
functions of the application.

Contents

Each element that can be included in an application menu bar is
discussed in the following sections. This section outlines the
requirements for application menu bars in 80-column and 40-
column applications.

If your application interfaces with the clipboard, its application
menu bar must include an Edit Menu. See Chapter 7 for more

information about the Edit Menu.

The application menu bar in an 80-column application must
contain the following elements:

* Support for on-line help (F1)
* The Message Menu (F9)

* The Accessories Menu (F10)

40

Menu Bars and Menus

* Exit and Run options on the F2 menu (usually the File Menu).
If the application includes an About option, it must also be
included on the F2 menu in its own group.

The application menu bar in a 40-column application must

include:
Support for on-line help (F1)

* an Exit option on the F2 menu (usually the File Menu). If the
application includes an About option, it must also be included
on the F2 menu in its own group.

The application menu bar in a 40-column application must not
include:

* The Message Menu (F9)

* The Accessories Menu (F10)

On-Line Help

On-line help is accessed by pressing F1. Do not assign an
application menu to F1.

If on-line help is not available about the application, the F1 key
accesses DeskMate’s on-line help. The Help prompter is displayed
on the title line above the application menu bar. It is not a button
on the application menu bar or a menu option within a menu.

Exit, Run, and About

All applications must provide Exit and Run commands on the
menu accessed by F2. Usually, this menu is called File.

If your application includes an About command, it must also be
included on the F2 menu. An About command is recommended
but not required. About displays copyright information and other

41

Application Style Guide

general information about the application. See Chapter 7 for more
information on the File Menu.

The Message Menu

The Message Menu, accessed by F9, displays messages to the user
from Calendar, Workgroup, and PC-Link. For example, it notifies

the user if an alarm goes off in the Calendar application.

Do not include the Message Menu in 40-column applications.

| No MOTSREes

Help F; May 26, 1989 DeskMate ~ C: \DESK89 12:85 pn

[roDioctars iy Juiou FSort b i Bestan',)
1 e [3 5 ;4

DnVID. DOC ADDRESS. PDN
CALENBAR. PDN
DESKTOP. PBH
DRAH. PDi

Teach He! $AUTOCONFI G4

Helcome
To DeskMate

42

Menu Bars and Menus

The Accessories Menu

The Accessories Menu, which is accessed by pressing F10, allows
task switching and provides easy access to all currently installed
accessories. -

| Fg

Setup

Spell Checker
Calculator
Phone List
Corkboard
Month

Alarn

To Do List
Task Switch

Do not include the Accessories Menu in 40-column applications or
in menu bar components.

43

Application Style Guide .

Rules and Guidelines for Accessory Menu Bars

Accessories are not required to use either a title line or a menu
bar. If an accessory uses a title line, it must also use a menu bar,
and if a menu bar is used, it must meet all the requirements of an
application menu bar. However, the converse is not true; an
accessory is not required to use a title line simply because it uses
the menu bar.

Contents
The accessory menu bar must include:

* Support for on-line help (F1)

¢ Exit and About commands on the F2 menu (usually the File
Menu)

The accessory menu bar must not include:
* The Run option
* The Accessories Menu (F10) ‘

Rules and Guidelines for Menu Bar
Components

A menu bar component can be used in any pop-up. Menu bar
components are not required in any application, but they are the
preferred presentation technique in some circumstances. This
section describes those circumstances along with the rules and
guidelines for using menu bar components.

Rules concerning application menu bars and accessory menu bars
are presented in the preceding section.

44

Menu Bars and Menus

Usage and Location

A menu bar component can be used in a dialog box. When you use
a menu bar component, place it at the top of the dialog box.

Do not use a title line with a menu bar component.

You can include an Exit option in the F2 menu in a menu bar
component. This option will provide closure to the dialog box and
is an alternative to using the 0K and CANCEL buttons in the dialog
box.

Contents

Menu bar components must not include:

* the F1 (Help) prompter

NOTE: If the dialog box uses an Exit option in a menu rather
than a CANCEL push button, pressing F1 must still access
on-line help, even though the prompter is not explicitly shown
in the dialog box.

the Message Menu

the Accessories Menu

NOTE: F9 and F10 should not be used for any purpose in
menu bar components.

45

Application Style Guide

Menu Bar Examples
Example: Extended Command Options

The following menu includes extended command options. The
ellipsis after an extended command option signals the user that
the application requires more information before it can complete
the command. Esc, the accelerator for Exit, is printed one space
beyond the longest command name, Page Setup.

File F2
New
Open...
Save
Save as...
Merge...
Page setup...
Print...
Exit Esc
Run...
About ...

The ellipsis is part of an extended command name. If the longest
command is the name of an extended command, accelerators in
the menu must be printed one space beyond the ellipsis. If a menu
includes more than one accelerator, display the longest

accelerator one space beyond the longest command name, and left-

align all other accelerators with the longest one.

46

Menu Bars and Menus

Example: Check Options

The Text application’s Text Menu is an example of the
appropriate use of check (toggle) options. On the left, none of the
check options is active. On the right, selected options are active
(checked).

Text F5 Text F5
Plain Plain
Bold Bold
Underline Underline
Italic Italic
Center Center
Un-Center Un-Center
Indent ... Indent ...

The options in the first two groups describe the weight of printed
characters. The first option, Plain, is mutually exclusive with the
options in the second group. The options in the second group
(Bold, Underline, and Italic) are mutually exclusive with Plain
but not with each other. It is possible, for example, to have bold
and underline active simultaneously. If any option in the second
group is selected, Plain is automatically deselected.

47

Chapter 5

The Interface Components

This chapter defines each of the components in the DeskMate
User Interface. A section called "When to Use" is included for
each component. Read this section to determine whether a certain
component is appropriate for the task you are trying to
implement. After you decide which components to use, read the
rules and guidelines for those components.

All DeskMate interface components can be used in pop-up
windows and accessories. Some can also be used directly in the
work area. The last section of this chapter lists these components,
discusses their recommended usage in the work area, and gives an
example of a current DeskMate accessory that uses each
component in the work area.

General Rules and Guidelines

Whether you use components in pop-ups or in the work area, you
can make the screen easier to read by distributing components
evenly and minimizing empty space around them. A margin of
one character-height or character-width is recommended:

Between horizontally adjacent components

Between vertically adjacent components

* On each side of a static box

49

Application Style Guide

Between components within a group

Between a component group and the box surrounding it

Components and component 1labels can be drawn in either a
normal state or a grayed state. Use the grayed state when the
component is disabled. Use the normal state when a component is
enabled, whether it is highlighted or not. A component must be
disabled whenever selecting it would produce an error condition.

In dialog boxes, components should appear three-dimensional. In
the work area, components should appear two-dimensional. Push
buttons and icon buttons are exceptions. They must always be
three-dimensional so that they can appear in raised (not pressed)
or lowered (pressed). :

One exception applies to this rule. If the screen design is three-
dimensional, the components on the screen should match.
Component Classes

Interface components can be broadly classified as either
interactive or static. Interactive components convey information to
the user, and return information from the user to the application.
Static components simply convey information, such as a message,
to the user.

Interactive components include:

* Check boxes

* List boxes

* Edit fields

* Edit field/list box combinations

* Push buttons

50

The Interface Components

* Radio buttons

Icon buttons
* Scroll bars
Static components include:

* Text

Icons

Boxes

Interactive Components

Interactive components send information to the user and allow
the user to send information back to the application. They are
used when the application needs information from the user to
complete a requested task.

A list box is an example of an interactive component. If the user
requests a file operation, such as Open, but does not specify a file
name, you can use a list box to allow selection of a file name. The
application sends the user a list of existing file names, and the
user selects a single file name from the list. After the file name is
received, the application continues with the task.

Check Boxes
A check box indicates the state (on or off) of a toggle option. If the

toggle option is off, the check box is empty. If the option is on, the
box is marked with an X.

51

Application Style Guide

When to Use Check Boxes

Use a check box whenever the option can be phrased as a yes-or-
no question. Examples are the Double space and Pause between
pages options in the Page Setup dialog box.

Page Setup :

o

il
0
il

Left margin:

Printed line width: | I
Total lines per page:
Printed lines per page:

[] Double space
D Pause between pages

Use check boxes for short lists (five to six items) only. If you want
to present a long list, use a list box (described later) instead.

Check boxes are not recommended for use with lists of file names
for two reasons. First, a list of file names is usually too long.
Second, the list will probably change every time the application is
run. Only static text or static icons can be used with check boxes.

Check boxes are not recommended for use in the work area. Since
the application menu bar is accessible from the work area, you

52

The Interface Components

should use checked menu options instead.(See "Check Options" in
Chapter 4 for more information.)

Check boxes can also be used to select one or more options from a
group of non-mutually exclusive options. Such a group of options
is called a check box group.

If the options in a group are mutually exclusive, present them as
a radio button group, not as a check box group. (See "Radio
Buttons," later in this chapter, for more information..)

A user accesses a check box by clicking on the box with the
mouse, or by pressing Tab or an arrow key until the check box is
highlighted. After highlighting the check box, the user presses
the space bar to toggle the state of the check box.

Rules and Guidelines for Check Boxes

A check box must be labeled by text or an icon. The label or icon
must clearly identify the purpose of the option. Use and icon when
a picture describes the function more clearly and easily than
words.

When you use a text label:

* Capitalize the first letter

* Do not use a colon (:) as the last character

* Make the label brief and descriptive

Place a static box around a check box group.

Keep some vertical space between check boxes that are arranged

in a column. A space equal to one-half the width of a character is
recommended.

53

Application Style Guide ‘

List Boxes

A list box is used to scan a list of text items, such as file names.
DeskMate supports two types of list boxes, single-select and multi-
select.

In a single-select list box, the user can select only one item at a
time. In a multi-select list, the user can select more than one
item. These items may or may not be adjacent in the list.

When to Use List Boxes

Use a list box when:

* A list is too long for radio buttons or check boxes.

* The items in the list are likely to change frequently.

Many DeskMate applications are list-oriented. When a list is too
large for the available display space, the application should use a
scrolling list box. Scrolling can be performed with the mouse or
the keyboard.

List boxes can be used in the work area. Refer to "Using '
Components in the Work Area," in this chapter, for details.

Rules and Guidelines for List Boxes

The user should be able to select the title of a list box or any item
in the list. Selecting the title should produce a different result
from selecting a list item. For example, the desktop includes a list
box for the Text application. The application name appears at the
top of the list box, and the available data files appear in the list
box. If the user selects the application name, DeskMate executes
Text without a data file. If the user selects a file name, DeskMate
executes Text with that file as a data file.

54

The Interface Components

List boxes can be drawn in flat or raised (also called pyramid)
style. Flat style is recommended in the work area. Pyramid style
is recommended in pop-ups. DeskMate includes functions to draw
a list box in either style.

List box items can be displayed in one or two columns. If a single
column is used, the cursor should scroll up and down. If two
columns are used, the cursor should scroll from side to side.

A list box must be wide enough to display the longest item in the
list. The height of a list box should be appropriate to the size of
the dialog box and the length of the list. A list box should be tall
enough to display at least four items in the list.

In a single-select list box, the user highlights an item by:

Pressing an arrow key until the desired item is highlighted
or

Scrolling through the list with the mouse (by pressing the
arrow icons in the title line) until the desired item is
highlighted

To select the highlighted item, the user presses Enter or chooses
the 0K button. The user can also double click on the item to select
it and invoke an action once an item is selected.

Deskmate provides a "select and go" feature that allows the user
to quickly invoke an action after it is selected. The user has two
options to select and go:

* press Enter after an item is highlighted

double-click on an item

In a multi-select list box, the user can:

Use an arrow key or the mouse to highlight a single item, as
described for the single-select list box

55

Application Style Guide

Press Ctrl+arrow to move the cursor to an item without
selecting it. Pressing the space bar highlights the item.

* Use Shift+arrow (or Shift click with the mouse) to highlight
more items.

Edit Fields

An edit field is a small text processing window through which the
application prompts the user for text input. DeskMate includes
edit field definitions for the following types of data: ’

* Static text

* Right-justified text

Numbers, with optional decimal places

An edit field can be one line or more than one line. Single-line
edit fields can be alphanumeric, numeric, decimal numeric, or
expanding alphanumeric. Multi-line edit fields are always
alphanumeric. Single-line alphanumeric fields should support
side-to-side scrolling. Multi-line alphanumeric fields should
support side-to-side and up-and-down scrolling and can provide
automatic word-wrapping as well.

When to Use Edit Fields

Use an edit field when you want the user to enter a specific kind
of data, such as a date or a time, or a specific amount of data.

Numeric edit fields can be used to verify data format during data
entry. Only numeric keys (0 through 9) are accepted during data
entry. This can simplify the process for the user and the
application.

You can insert static format characters in single-line edit fields to
simplify data entry. For instance, if the field will contain a date,

56

The Interface Components

the application can display dashes or slashes between month, day
and year values.

Rules and Guidelines for Edit Fields

The size of an edit field should always be appropriate to the area
in which it is used. Normally, this means that edit fields used in
dialog boxes and accessories are smaller than edit fields used in
the work area.

An edit field should not accept values that do not conform to the
format of the field. For example, if the user enters an invalid
date, the application should reject the entry and prompt the user
for a new entry.

When the user enters an edit field, all the data in the field should
be selected. To edit data in the field, the user should be able to
simply type over existing data; new data should replace the
contents of the edit field. When the user moves the cursor within
the field, the data is deselected. The user can select a character or
a group of characters with the mouse or arrow keys.

The following rules apply specifically to edit fields used in dialog
boxes:

* Use only single-line edit fields.
* Use araised box border around the edit field.

* Label each edit field with a static text string that identifies
the text to enter.

* Capitalize the first letter of each word in the label.

Place a colon (:) at the end of the label. Do not insert a space
between the colon and the last character in the label.

57

Application Style Guide ‘

When edit fields appear in a column in a dialog box:

* Insert a space one-half the height of a character between
fields.

* Place each edit field to the right of its label. Align the left end
of all edit fields in a column.

° Align edit fields one character beyond the longest label.

Multi-line edit fields can be used in accessories or in the work
area. They should not be used in dialog boxes. Refer to "Using
Components in the Work Area," in this chapter, for details on
using edit fields in the work area.

Edit Field/List Box Combinations

An edit field/list box combination includes an edit field and a list
box that work together. As the user scrolls through the contents of
the list box items, the currently highlighted item is displayed in
the edit field.

When to Use Edit Field/List Box Combinations ‘
Use an edit field/list box combination when the user either can

choose an item from a long list or can enter a value not currently

in the list.

Rules and Guidelines for Edit Field/List Box Combinations

The list box title should be the based on the plural of the edit field

label. For example, if the edit field is called File name, use Files
as the list box title.

58

s

The Interface Components

Push Buttons

A push button is a graphic, interactive component that can be
placed in one of two states, selected or unselected. It is labeled
with text.

When to Use Push Buttons -

A push button can be used to:

Close a dialog box and proceed with a task
Close a dialog box and cancel a pending task
Clear the contents of a dialog box

Invoke a commonly used action, for example, PREV and
NEXT buttons while paging through a file.

Push buttons can be used in the work area. Refer to "Using
Components in the Work Area," in this chapter, for details.

Rules and Guidelines for Push Buttons

Push buttons can be drawn in a raised or lowered position.

Draw push buttons in the raised state any time they are
unselected.

Draw a push button in the lowered (selected) position while
the application performs the action described by the button.
Re-draw the push button in its raised position when the action
is complete.

When a push button is disabled, draw it in the raised position.

59

Application Style Guide

®

The standard accelerator for a push button is Alt+the first letter
of the push button label. For example, in Calendar, the
accelerator for Previous is Alt+P.

* Use standard push button accelerators unless two push button
labels begin with the same letter.

If you use standard accelerators, do not display the
accelerator. If the accelerator is non-standard, display it as
part of the push button label.

* If Ctrl is part of a push button accelerator, use the notation
* < letter> instead of Ctrl+ letter. The second notation is used
for menu option accelerators only.

Use only upper case letters in push button accelerators.

Make all push buttons in a dialog box (or a screen in the work
area) the same size. Push buttons should be two characters longer
than the longest push button label. For example, if CANCEL is the
longest label, make all the push buttons in the dialog box large
enough to hold an eight-character string.

Use action words or phrases to label push buttons. ‘
* Capitalize all letters of action words, such as RESET.

* Capitalize the first letter of action phrases, such as "Add to
sort."

* Inthe DeskMate Environment, the functions that display
push buttons will automatically center the label in the button.
It is not necessary to pad the label with spaces.

To push a push button, the user can:

° Use the arrow keys or the TAB key on the keyboard to
highlight the button, then press the Enter key

60

The Interface Components

Move the mouse pointer to that button on the screen, and then
click the mouse button

Use the push button accelerator

Special Push Buttons - OK and CANCEL

0Kk and CANCEL are usually used together in dialog boxes. 0K closes a
dialog box and proceeds with the task that called the dialog box.
CANCEL closes the dialog box and returns to the application without
taking any action.

0K and CANCEL can also be used individually in message boxes, to
allow acknowledgment of a message or to halt an operation that

would cause an error.

* When 0K and CANCEL are used side by side, put the 0k button to
the left of the CANCEL button, as viewed by the user.

When 0K and CANCEL are used in a column, put the 0K button
above the CANCEL button.

* Use ENTER as the accelerator for the 0K button.

* Use ESCAPE as the accelerator for the CANCEL button.

Radio Buttons

A radio button is a component that selects one option from a
mutually exclusive group. The group of options is called a radio
button group.

A radio button works like the select buttons on a car radio. You
cannot tune the radio to more than one station at a time; you
cannot select more than one option in a radio button group.

61

Application Style Guide

When to Use Radio Buttons
Use a radio button group when only one of a small group of
options can be active at a time. Do not use radio buttons for large
groups of options. Use a single-select list box for a large list.
Rules and Guidelines for Radio Buttons
Do not use accelerators with radio buttons.
To enter a radio button groﬁp:

press the Tab key
To navigate within a radio button group:

use the arrow keys

or

use the mouse

To push a radio button:

press the Enter key when the desired radio button is
highlighted

or

click the button with the mouse

62

The Interface Components

Use radio buttons to select options that are represented by icons,
such as the Patterns or Colors selections in Draw. The following
illustration shows the Colors radio box.

Iten:
Dline
Dtext
(D Dpattern

foreground
. Cpattern
background

Do not use radio buttons if the options in the group might change.
For example, if you want the user to select a file name, do not use
radio buttons unless the file names will always be the same. If the
file names can change, use a list box instead. Radio buttons are
appropriate for selecting a device, such as a communications port.
A computer will always have the same ports, but the user might
not always want to use the same one.

63

Application Style Guide .

The group and each radio button in it should have a label.

* Use static text to label the group. A static box around the
label is optional.

* Use static text or static icons to label individual radio buttons.

* If static text is used to label individual buttons, capitalize
each word in the label.

* Do not use a colon (:) as the last character in the label.

* Commonly recognized acronyms or abbreviations (such as
asap, AM/FM, or a.m./p.m.) can be spelled in either upper- or
lowercase letters.

* Use static icons whenever text labels are awkward or long.
For example, the Patterns and Brush Shapes dialog boxes in
Draw use pictures of line styles and brush sizes rather than
descriptions of them. In the Text application’s Print Menu,
the Page Setup dialog box uses pictures to denote portrait and
landscape print modes.

Enclose radio button groups in a static box. Do not include any . ‘
component that is not a member of the group inside the box.

Arrange radio buttons in rows and columns instead of a long list.
This way, the user can navigate the group with all four arrow
keys, instead of two. :

icon Buttons

An icon button functions the same as a push button with a static
icon label. A picture drawn on the top of an icon button identifies
the purpose of the button.

An icon button is different from a static icon. A static icon only
identifies a component, while an icon button is an interactive
component. For example, the Draw tools are icon buttons.

64

The Interface Components

When to Use Icon Buttons

An icon button is used to select a state or mode for an application.
Icon buttons can be used wherever push buttons are appropriate.
Use icon buttons whenever a picture describes the button’s action
more easily or more clearly than words.

Icon buttons can be used in the work area. Refer to "Using
Components in the Work Area" in this chapter for details.

Rules and Guidelines for lcon Buttons

Icon buttons can be drawn in raised or lowered position. When an
icon button is disabled or unselected, draw it in the raised
position. When an icon button is selected, draw it in the lowered
position.

Scroll Bars

A scroll bar allows quick movement through a list that will not fit
on one screen or in one window. Scroll bars are controlled by the
mouse, as described in this section. Scrolling can also be
performed from the keyboard; see Chapter 2 for details.

A scroll bar consists of:

Two arrow buttons

The scrolling region

The scroll elevator

When to Use Scroll Bars

Use a scroll bar when the information you want to display does
not fit on a single screen or window.

65

Application Style Guide

Rules and Guidelines for Scroll Bars

Scroll bars can be drawn horizontally or vertically. Horizontal and
vertical scroll bars can be used together for very large lists. Place
horizontal scroll bars at the bottom of the screen; place vertical
scroll bars at the right.

The arrows on a horizontal scroll bar point to the left and right.
The arrows on a vertical scroll bar point up and down.

The distance of the elevator from the end of the scrolling region
indicates the relative distance of the cursor from the beginning of
the list. The beginning of the list is the upper left position in the
list. For example, if three-fourths of the scrolling region is above
the elevator, it means that three-fourths of the list is above the
cursor.

A scroll bar responds to the mouse as follows:
Clicking on an arrow button

Moves the cursor through the list one item at a time in the
direction indicated by the arrow. This is equivalent to
pressing one of the arrow keys on the keyboard.

Clicking in the scrolling region

Moves the cursor through the list one page at a time in the
direction indicated by the arrow. This is equivalent to
pressing Page Up (up one page), Page Down (down one page),
Ctrl+Page up (left one page), or Ctrl+Page down (right one
page) on the keyboard.

66

The Interface Components

Dragging the elevator

Moves the cursor quickly through large sections of a list. This
is equivalent to pressing the Page Up or Page Down key.
Dragging the elevator to the top of the scrolling region has
the same effect as pressing Ctrl+Home. Dragging the
elevator to the bottom of the scrolling region has the same
effect as pressing Ctrl+End.

Static Components

Static components, unlike interactive components, simply send
information to the user. They do not return information to the
application. The application will not take any action when static
components are selected. Use static components to make the user
aware of special circumstances, such as an error or an invalid file

type.

Text

Static text is a word, or a group of words, that labels an
interactive component or sends a message to the user. Printer is
out of paper is an example of a message. Although such a message
calls for action by the user, the user is not required to furnish
information to the application before the task can be completed.
When to Use Text

Use text to:

* Create labels for radio button groups, check boxes, and edit
fields

Give instructions for using an application, an accessory, or a
dialog box

Alert the user to error conditions

67

Application Style Guide

Rules and Guidelines for Text

Text can be drawn in two states, normal and grayed. When text is
used as a component label, draw the text in grayed state if the
component is disabled. Draw the text in normal state if the
component is enabled.

Leave one space between a text label and the component.

lcons

A static icon is a picture that describes an option or setting. Icons
can be created by including graphics lists in the application code,
by creating a bitmap, or by creating any other graphic output
form that can be included in the program.

A static icon is different from an icon button. A static icon is
simply a label; selecting an icon button will invoke an action.
When to Use Icons

Use icons whenever a text label would be awkward or
unreasonably long. Icons are also useful when space is limited.

Rules and Guidelines for Icons

Use icons with radio buttons and check boxes.

Boxes

A static box is used to surround a group of related components.
Static boxes help the user quickly identify component groups on
the screen.

68

The Interface Components

When to Use Boxes

Use boxes to surround radio button groups, check box groups, or
edit fields.

Rules and Guidelines for Boxes

Boxes can be drawn in flat or raised style.

Using Components in the Work Area

Most interface components are recommended only for use in
dialog boxes and accessories. List boxes, edit fields, push buttons
and icon buttons are the only components that are recommended
for use in the work area. This section describes the rules and
guidelines for using these components in the work area.

When interface components are used directly in the work area,
the application menu bar is not disabled. This means the user can
access menu options while components are active on the screen.
This is different from dialog boxes. While dialog boxes are open,
the menu bar and the rest of the screen are disabled. The user
must close the dialog box before using any menu option.

Static components can be freely used in the work area.

List Boxes

Use list boxes for long lists and lists that change frequently.

69

Application Style Guide

Edit Fields
Use edit fields in the work area for text entry and editing.

The only real requirement in the work area is that the screen
must be well organized and easy to use. Edit fields used in the
work area should be labeled.

In accessories, edit fields must be clearly identified, but not
necessarily with a static text label. For instance, the edit fields
used in Address Book look like an address book entry. The user
can easily identify the expected entry from the graphic context of
the screen. A text label is not necessary.

Push Buttons

Push buttons follow the same appearance and operations rules in
the work area as in dialog boxes.

Icon Buttons

Use icon buttons in the work area to change the state of the

application or accessory. For example, Draw uses icon buttons to
change the drawing mode or the drawing style.

70

Chapter 6
Pop-Ups

This chapter defines A DeskMate pop-up, or pop-up window. It
describes the types of pop-ups supported, and describes the rules
and guidelines that apply to pop-ups.

A pop-up, or pop-up window, is a group of standard DeskMate user
interface components. A pop-up can be used to get information to
the user, send a message to the user, or enable the user to perform
a specialized task. A pop-up appears under specific circumstances,
accomplishes a specific goal, and then returns control to the
application. Any interface component described in Chapter 5 can
be used in a pop-up.

As long as a pop-up is active (displayed on the screen), the
application menu bar and the application work area are disabled.
The user must close the pop-up before the application will be
enabled again.

When_ to Use a Pop-Up

Pop-ups are useful in a wide variety of circumstances, provided
your task meets a few basic criteria. If the task does not meet
these criteria, try another type of interface. It might be possible to
break your task into smaller subtasks, each of which can be
processed in a single pop-up window.

71

Application Style Guide

Use a pop-up if:
* A specific task needs to be performed during execution of an
application.

* The task does not require use of the application menu bar or
any of the work area outside the pop-up window. Both the
application menu bar and the rest of the work area are
disabled as long as the window is open.

All the information necessary to complete the task is
available inside the pop-up window.

* Closing the pop-up window returns the user to the application.
If the pop-up is interactive, the state of the application might
be different after the pop-up is closed.

Closing the pop-up window does not terminate the
application. When a pop-up is closed, the application resumes
normal processing. A pop-up that returns to the application
but does not terminate the application is said to have closure.
Closure is a required property of all pop-ups.

Types of Pop-Ups

Pop-ups fall into three broad categories: message boxes, dialog
boxes, and accessories.

A message box is a non-interactive pop-up. It is used simply to
convey information to the user. The user acknowledges receiving
the information, but can take no further action before closing the
window. Message boxes are appropriate for cautions and error
messages (such as File not found) and status reports during lengthy
operations (such as Printing in progress).

A dialog box is an interactive pop-up. It enables the user to make
decisions and converse with the application before closing the
window. (Dialogue, or conversation, occurs between a user and an
application in a dialog box.) Depending on the decisions made by

72

Pop-Ups

the user, a dialog box might alter the state of the application
when it closes.

An accessory is an interactive pop-up that enables the user to
perform a specialized task. Accessories are the most elaborate
type of pop-up. Calculator and Phone LIst are examples of pop-up
accessories.

Message Boxes

Message boxes are the simplest pop-ups. Their only interface
components are static text and push buttons. Usually, they
contain only one button, the 0K button, which is used to
acknowledge the message.

The following illustration shows a message box. Notice the 0K
button centered at the bottom of the box.

Free space on drive C:
4552784 bytes

Uolune name:

73

Application Style Guide

DeskMate applications must save screen background information
before displaying a pop-up and restore screen information after a
pop-up is closed.

Dialog Boxes

Dialog boxes focus the user’s attention on a specific task and
enable communication between the user and the application. All
information necessary to complete the task is presented in the
dialog box.

The following illustration shows one of the dialog boxes in the
Text application. This box is from the Spell Checker accessory
used in Text.

HOptionsFyp

Unknown Hord:

per{‘ecionist J

R4 Replacements _J§

perfectionist
perfect
perfected
perfecter
perfection

74

Pop-Ups

Dialog boxes are appropriate for a variety of tasks, such as
proofreading a document for spelling errors. A dialog box can
focus the user on spell-checking the document. While spell-
checking, the user cannot do anything but correct spelling errors.
When the user completes the task, all words are spelled correctly,
and the application returns to normal operation.

Accessories

Accessories often look like dialog boxes, but they are more like
miniature applications. They are not bound by the same
appearance and operation rules as dialog boxes. Use accessories to
complete concise, self-contained tasks. For example, a spell
checker in a word processing program is suitable for an accessory.
A spell checker can also be implemented as an application dialog
box. The advantage of an accessory spell checker is that you can
use it in any application that has access to the Accessories Menu.
If the spell checker is a dialog box within an application, it is not
accessible while that application is not running.

Rules and Guidelines for Pop-Ups

Any DeskMate interface component can be included in a dialog
box or an accessory. The components that can be included in
message boxes are more limited. This section describes the rules
that apply to size, position, and usage of components within the
various types of pop-ups.

Size and Position

Always try to position pop-up windows in the same location on the
screen, They also must fit within the application work area. The
preferred location is the middle of the work area, centered
horizontally and vertically. A pop-up should not occupy the entire
work area unless absolutely necessary.

75

Application Style Guide

Because they are focused tasks, all pop-ups should be visually
bounded by frames. The frame of a pop-up overlays the screen of
the application. Information beneath the pop-up should remain
visible to the greatest extent possible.

Size and Position of Dialog Boxes

Always try to display dialog boxes in the center of the screen.
Using a single location for dialog boxes gives your application a
consistent, predictable appearance. Display a dialog boxin a
different location only if you have no alternative, for example, if
centering it will obstruct the user’s view of information needed to
complete the box.

Keep pop-ups (dialog boxes in particular) as small and simple as
possible. Since pop-ups are intended for very specific tasks, small,
simple presentation helps to focus the user’s attention on the task
at hand. Large, complicated boxes are difficult to understand. Try
to group information from very large boxes into two or more small
boxes. For example, do not group printer information and page
layout information together in a single dialog box. Make two
boxes, one for printer information and one for page layout
information.

Size and Position of Message Boxes

Message boxes must be centered, horizontally and vertically, on
the screen. If you use DeskMate functions, the size and position of
a message box is controlled by the system.

Titles

* Use the title to describe the function of the pop-up as precisely
as possible.

* Capitalize the first letter of each word in the title.

76

Pop-Ups

* Do not punctuate the title.

* Do not provide instructions in the title.

Dialog Box Titles

Every dialog box must have a title, which appears in the dialog
box frame, that identifies the action or procedure the dialog box
performs. For example, the Open option in the File Menu displays
a dialog box titled Open File, and the Page setup option displays
the Page Setup dialog box.

If a dialog box requests additional information for an extended
command, repeat the menu option name in the dialog box title.
Extended commands are described in Chapter 4.

Message Box Titles

Every message box should also have an appropriate title.

If the message box was invoked by a menu option, use the option
name in the title of the message box.

Message Text

The message should describe the problem or the action taken as
clearly as possible.

* The text must be no longer than three 30-character lines.
Messages are word-wrapped automatically.

Use complete sentences, including appropriate punctuation.

If a message notifies the user that a task, such as printing, is
taking place, the message should end with an ellipsis (...).

For example, Printing in progress..., with a CANCEL button tells

77

Application Style Guide '
the user that printing is being done and the user can cancel
the task at any time while the message is displayed.

* Do not use contractions. For example, use do not and cannot
instead of don’t and can’t.

* Avoid punctuation such as colons and exclamation points.

* Do not include the application name in the message.

* Use all capital letters on file names in the message.

* Capitalize the first letter of any key names in the message.

* Use accelerators sparingly to avoid complicating the dialog
box interface. Refer to Chapter 5 for more information about
using and defining accelerators.

Pop-Up Operation

This section describes the general behavior that is expected from

pop-ups. It includes error handling procedures, and some

information about displaying and removing pop-ups during an 4

application.

Default States

Always provide a default state or value for each check box, list
box, radio button, and edit field in a dialog box.

* Dialog boxes should "remember" previous settings whenever
possible,
Disabled Components

If a component is disabled, draw the component and its label in
the unselected state. Disable components when selecting the

78

Pop-Ups

component is an invalid operation for the application. The
unselected state is:

* Off, for a check box
* Empty, for an edit field

Raised, for a push button or radio button

Exception: If all buttons in a group are disabled, the default
button must be pressed.

Component Behavior

A list box is the only component in a dialog box that enables the
user to select an item and immediately terminate the dialog box.

When the user presses the Enter key or double clicks on a list box
item, the application should choose the highlighted item and
select the 0K button.

Draw a push button in its raised position initially. When the user
selects the button, draw the button in its lowered position. Once
the application completes the process invoked by the button,
redraw the button in its raised position.

When an edit field/list box combination is used, display the
currently highlighted list item in the edit field.
Push Buttons in Message Boxes

The following push button combinations are supported in message
boxes:

0K
Enables the user to acknowledge a message.

79

Application Style Guide

CANCEL
Enables the user to stop an operation.

0K, CANCEL
Enables the user to continue or cancel the operation.

YES, NO
Enables the user to answer a prompt with yes or no. The
prompt must be phrased as a question and end with a
question mark.

YES, NO, CANCEL
Enables the user to cancel the operation, or answer yes or no
and continue. The prompt must be phrased as a question and
must end with a question mark.

RETRY, CANCEL
Enables the user to cancel the operation or try it again.

Assigning Default States

Valid default settings should always be given to the components
within a dialog box, enabling the user to accept the information
(0K button) without causing errors to occur.

When the user selects (pushes) the 0K button, the application
should verify the accuracy and format of data accepted from the
user. When the user enters invalid data, such as an invalid file
name in an edit field, the application should:

1. Display a message box informing the user of the error and
giving the user the option to retry or cancel.

2. Highlight the invalid data or the component that contains the
invalid data.

3. Raise the pushed button.

4. Rerun the dialog box, enabling the user to try again.

80

Pop-Ups

Removing Dialog Boxes

When memory permits, the application should save the screen
background and restore it later to remove the dialog box. If there
is insufficient memory, the application should redraw the screen
to remove a dialog box.

Pop-ups can be stacked, or layered, as long as they are unstacked
in reverse order. If the closure of one pop-up returns to a previous
pop-up, the second pop-up should completely cover the first pop-
up. This way, users will not be confused into thinking that some
components in the first pop-up are available while the second pop-
up is active.

User Interfaces to Pop-Up Windows

The user must be able to access pop-ups with the keyboard as well
as with the mouse. This section describes the required elements of
each interface.

Keyboard Interface

Esc (Escape)
Selects the Cancel button to terminate the pop-up with no
action taken.

Enter
If the highlighted component is not a push button, pressing
Enter presses the 0K button to terminate the pop-up with
affirmative action. If the highlighted component is a push
button, pressing Enter pushes the button.

If the highlighted component is a list box, pressing Enter
selects the component and immediately executes the task.

Space bar
If the highlighted component is a check box, pressing the
space bar toggles the state of the check box.

81

Application Style Guide

If the highlighted component is a push button, icon button, or
radio button, pressing the space bar selects the button.

Tab
Moves the highlight forward to the next component or
component group.

Shift+Tab
Moves the highlight backward to the next component or
component group.

Up Arrow
Highlights the nearest component above the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the up arrow highlights
the previous element of the component. The state of a
component does not change when the user arrows out.

Down Arrow
Highlights the nearest component below the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the down arrow
highlights the previous element of the component. The state
of a component does not change when the user arrows out.

Right Arrow
Highlights the nearest component to the right of the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the right arrow
highlights the previous element of the component. The state
of a component does not change when the user arrows out.

Left Arrow .
Highlights the nearest component to the left of the current
component (if one exists). After the user presses the arrow
keys to leave the component, pressing the left arrow
highlights the previous element of the component. The state
of a component does not change when the user arrows out.

82

Pop-Ups

Mouse Interface

The effect of clicking the mouse button on a component depends
on the type of component:

Click
Clicking on a check box toggles the state of the box.

Clicking on a radio button, an icon button, or a push button
selects the button.

Clicking on an edit field activates the edit field as if the user
pressed the Tab key or an arrow key to enter the field.

Double Click
Selects and immediately executes a list box item.

Drag
Dragging the mouse selects a group of characters in an edit
field.

83

Chapter 7

Special Menus

This chapter describes some particular functions you can include
in your application and the DeskMate menus that you must
include to support those functions.

Message

DeskMate uses the Message to relay messages from the system to
the user. Include the Message Menu as part of the application
menu bar of all 80-column applications. Do not include the
Message Menu in 40-column application menu bars. The Message
Menu is optional in menu bar components used in dialog boxes,
and in accessory menu bars.

Accessories

The Accessories Menu is a list of all DeskMate accessories
currently loaded on the system. Include the Accessories Menu in
80-column application menu bars. Do not include it in accessory
menu bars, 40-column application menu bars, or menu bar
components.

85

Application Style Guide

File

The F2 menu, usually called File, provides access to file
management functions. All 80-column applications must include
Exit and Run options on the F2 menu. If your application includes
an About option, you should also include it on the F2 menu. Some
examples of other options you may want to include are:

* New, Save, Save as, and Open, if the application involves
creating and using new files

° Print, if the user can print files from the application
* Page setup, if printing will require special formatting

* Merge, if the user might combine multiple files for a single
operation

Other special file functions in your application might suggest
other options that can be included in the File Menu.

A typical File Menu follows:

File F2

New

Open...

Save

Save as...
Merge...

Page setup...
Print...

Exit Esc
Run...

About ...

The rest of this section describes the operation of each option
included in the preceding example.

86

Special Menus

New

The New option must be enabled whenever the user can create a
new file. If a data file is already in use, it prompts the user (with
a YES/NO/CANCEL message) to save any unsaved, modified data.

* If the user selects Yes, the data is saved to the current file. If
the file is untitled, the Save as dialog box will appear. See
"Save as" option description which follows for more
information. After the file is saved, the application clears
working memory and gets ready for a new file.

If the user selects No, the current data is not saved, the
application clears memory and gets ready for new data.

If the user selects Cancel, the New option is terminated and
the application retains the current data file.

The New option sets the application to its default state, or the
Untitled state, and "Untitled" is displayed as the file name.

If the application does not allow the Untitled state (such as in
some database applications), the application should prompt the
user for a valid file name. In this case, the New option appears
with an ellipsis (...) because the user must supply additional
information (the file name).

Open...

The Open option must be enabled whenever a file can be loaded.
If a file is already in use, the application prompts the user (with a
YES/NO/CANCEL message) to save any unsaved, modified data.

The option’s responses to YES, NO, and CANCEL are similar to the
responses of the New option. The option will proceed if the user
selects YES or NO, and will terminate if the user selects CANCEL.

After the message is answered, the application displays an Open
File dialog box and prompts the user for a file name. The user

87

Application Style Guide

must select 0K or CANCEL in the Open dialog box. If the user selects
0K, the file is opened and loaded into memory. If the user selects
CANCEL, the application returns to its prior state.

Applications that automatically update files as data is entered do
not need to prompt the user to save changes before displaying the
Open File dialog box.

Save

Save must be enabled whenever the current file can be saved
without first prompting the user for more information. It is
disabled when the application is in an Untitled state.

Do not include this option if data updates will occur automatically
without a specific user request. Include it if the user will be
allowed to make periodic updates to data on the disk.

Save as...

The Save as option must be enabled whenever the user can
change the data in an existing file and then save the changed
data in a different file. The application displays a Save File dialog
box and prompts the user for a file name.

If the user selects 0K in the Save File dialog box, the application
should verify the file name. If the specified file already exists, the
application should display a yes/no/cancel message box, to ask
whether the user wants to overwrite the existing file.

If the user selects CANCEL in the Save File dialog box, the
application should return to its prior state.

88

Special Menus

Merge...

The Merge option enables the user to combine the information in
one file with the information in another file. It displays a Merge
File dialog box and prompts the user for the file to merge in.

If the application enables the user to merge data from another
source into the current file, the application should display a
dialog box that prompts the user for information about the source.

Merge operations should move specified data into the current file.
Do not move thecurrent file into some other file.

Page setup...

The Page setup option enables the user to define the printed page
layout for the current file. The application displays the Page
Setup dialog box, prompting the user for information such as
margins, total lines per page, printed lines per page, and printed
line width.

Print...

The Print option enables the user to print the current screen or
file to the printer, the screen, or a file. The application uses the
Print File dialog box to get print information from the user.

If you want to customize printing options, you can use a phrase to
identify this option, such as Print Page, or Print Drawing. In this
case, the phrase identifies clearly what will be printed. It is not
required that a printing option support screen, printer and file as
output destinations. You can choose to support some of them and
omit others, as appropriate to your application. If you want to use
a name other than Print, always begin the name with "Print."

The accelerator for this option is the Print key. It is not noted in
the menu since it is a machine-specific accelerator.

89

Application Style Guide

Exit

The Exit option is required for all applications. This option closes

the current application and returns to the desktop. If the
application was started from a Runtime rather than from the
desktop, Exit returns to DOS. The Esc key is the accelerator for
Exit.

Before closing the application, Exit checks to see whether the

data in memory has been modified since the last save operation. If
it has been modified, Exit prompts the user to save the changes. If

the user cancels the operation, the application returns to its
previous state.

Run...

The Run option enables the user to run a different application
without first returning to the desktop or DOS. This option
displays the Run dialog box. After the user fills in the box and
selects OK, Run exits the current application and starts the
application specified in the Run dialog. If the user selects
CANCEL, Run returns to the current application.

If a data file is open under the current application and that file
contains unsaved changes, the Run option prompts the user to
save the file before proceeding.

About...

The About option displays a dialog box that contains the
application’s name, version number, and copyright information.
Capitalize the first letter of each word in the application name.
This option is recommended for all applications and accessories.

The About option should be placed in a separate menu option
group.

90

.
'

Special Menus

Edit

Applications that use the DeskMate clipboard must have an Edit
Menu. The Edit Menu enables the application to transfer data to

and from the DeskMate clipboard.
Edit F3
Cut Shi ft+Del
Copy Ctri+ins
Paste Shift+Ins
Clear Del

Your application should include an Edit Menu if the user can
move or copy data to another area of the same file or to a different
file. For instance, figures from a spreadsheet could be transferred
to a word processor for a business forecast report.

Applications that enable the user to move and copy selected data
between files or to other applications must use the DeskMate
clipboard instead of a data buffer. Information in a data buffer
cannot be transferred to other files or other applications.

When the user starts an application or performs a task switch, the
application should check the clipboard contents. If the clipboard
contains data that is valid in the application, the application
should enable the Paste option.

DeskMate applications that interface with the clipboard should
provide a way for the user to "select” the information. Highlight
selected text in reverse video. Outline graphics with a handle box.

The Edit Menu should contain the following options, in the
following order:

91

Application Style Guide ‘

Cut

The Cut option is enabled only when data is highlighted. It
removes the selected data from the file and places it on the
clipboard. Shift+Del is the accelerator for Cut.

Selecting the Cut option disables Cut, Copy, and Clear, and
enables Paste.

Copy

The Copy option must be enabled only when data is highlighted.
It copies the selected text to the clipboard without removing it
from the current location, and deselects the data. The user must
select the text again if the text is required for another operation.
Ctrl+Ins is the accelerator for Copy.

Selecting the Copy option disables Cut, Copy, and Clear and
enables Paste and Select all.

Paste

The Paste option must be enabled whenever the clipboard ’
contains data that is valid in the current application. Paste copies

the clipboard contents to the current cursor position or to a

position specified by the current application, and deselects the

data in its new location. Shift+1Ins is the accelerator for Paste.

For example:

The CLIP_DRAW data type is not supported by the
Worksheet application, so the Paste option in Worksheet is
grayed when CLIP_DRAW data is on the clipboard.

The CLIP_DRAW type is supported by the Form Setup and
Text applications, so the Paste option in either application is
enabled when CLIP_DRAW data is on the clipboard.

92

Special Menus

If the data can appear more than once in the file, the option
remains enabled after the Paste operation is complete. If the data
can appear only once in the file, the option is grayed and the
contents of the clipboard are cleared by the application.

Clear

The Clear option must be enabled when data is selected. It
removes the selected data from the screen and the file without
affecting the contents of the clipboard. Clear is accelerated with
Del.

Selecting Clear disables Cut, Copy, and Clear and enables Paste
(if the data is valid in the current application) and Select all.

93

DeskMate Development System
Development Guide
03.05.00

,,,,,,

About the Guide

This guide covers all aspects of DeskMate development, from choosing a development system
and memory model, through the implementation of the application by using the examples and
tools, and finally the distribution of your application and providing help, tutorials, and demos for
your product.

Getting Started contains the preliminary information needed before development begins.
Important decisions made early on can effect your development schedule and the success of
your product when it is complete. This section introduces several concepts important to
DeskMate development and covers compatibility and programming issues which you should be
aware of. You should read this section before development begins and refer to it during the
development process.

Programming Examples, describes each of the samples provided in the kit and covers some
special programming topics of interest. We recommend using one of the samples as a template
or starting point when developing a DeskMate application.

Tools and Utilities provides user documentation on how to actually use the tools provided with the
development system. These tools help reduce the time it takes to create a working application.
You can create menus, dialog boxes, bitmaps, custom fonts, and pictures with these utilities. You
can also analyze the memory requirements of your application.

Distributing Your Application covers the DeskMate Checklist and how to write your installation
programs. It also provides guidelines you should use when determining what your runtime
diskette file distributions should be.

DeskMate Help Systems describes the help available in a DeskMate environment and how your
application provides help to the user. The new Intelligent Help Manager which provides context-
sensitive help is described in great detail. Writing Tutorials and Demos describes how to use the
DeskMate Tutorial Technology to author tutorial scripts and demos for distribution with your
product. The documentation for the tools and utilities provided for each of these systems is
included in the discussion.

(¢

Contents
About the Guide
Part 1 - Getting Started
5 o} oo o 6 Lo i X o R 1-1
Memory Models and Development TOOlSviiiivvininneneenens 1-5
DeskMate Coordinate SyStemsScceeeiieerreeeceennnnennnas 1-13
Compatibility and Programming ISSUESeseveernneceencenns 1-23

Overview of the Tools, Utilities, and ExampleS.............. 1-29

Part 2 - Programming Examples

A DeskMate Shell ... iiiiiiiinneinnnnnnennassnnnnennenennsss 2-1

Using the DeskMate Coordinate Systemscvevvnnn. 2=17

DeskMate File Handlilg .o.uueireiineerennnneeroannnnnneensns 2-13
1) o 1 L 2-47
Using the Graphics FOrm Managereeeeeeeninnnrnnnns 2-57
Special TOPICS tvvii ittt ittt it e e i e 2-65
Writing a 40 Column Applicationiiiiiiiiiiiiiinn 2=-71
Writing a DeskMate RESOUICE ...ttt nnsnnnonnennas 2-79
Writing a DeskMate ACCESSOLY «vvevrrrrnnnnnorrnanenncneenses 2-89

Part 3 - Tools and Utilities

Menu bar Builderiiiiiiiiiiniiititinannanetersnnnnnnans 3-1
Dialog Box Builderieviivniinnvnnnns et et 3-3
Bitmap Editpr .. 3-7
Graphics Form Generatori.cveietiiii i nnnanennns 3~-9
Clipart File Builderiiiiiiiininiiiinernnnnnnnnanns 3-11
Stroke Font EQitor v iiiiniiiiiiiniiiiiiiiiiinnneessonnnas 3-13
Memory Map GeNneraloriiieieieriiineeriennnoocnsnnnnanans 3-15
DESK HEAUBT vttt iininneenssnnnoroosnsnnnseennn 3-17
Disk Label GeNerator ...iieeeineenneeennernnernnnneannnennns 3-21
Customized Runtime Utilityciiiiiiiiiiiiiiiiannnnnss 3-25
Customized INSTALL.EXE Utility ..coiveieiiiineiininiinnnnn, 3-26

Part 4 - Distributing Your Application

The DeskMate Checklist-....... ettt ettt e 4-1
Installation and Upgrade Proceduresceeeeueenennn. 4-3
Determining DeskMate Product VerSionseeiveieeeeeeeenn. 4-5

Runtime Distribution Guidelinescviiiinnirrncerennnnns 4-7

Part 5 - DeskMate Help Systems

OVerviewoviiiiiiiinnnnnnnnnnnns ettt 5-1

Writing the Application Help Fileviiiiieinnnnnnnnnnn. 5-5

Creating the Sample Help File VIDEQ.HLP ...uvenrenrrnnnnnnn. 5-13
Help Rule Base ULility vuviiiiiiiniiiiiiiiieei et iennannns 5-25
DeskMate Help EQitOr ...vitiiiiiinnni it iiniiinnnnnennnns 5-29
Help File Compression Utility «uveivniiinneinnnnennnnnnn. 5-31
Help File FOrmatiutiitiniiiiii ittt iiinnnennennnenns 5-33

Part 6 - Writing Tutorials and Demos

The DeskMate Tutorial TeChnologyvviiiiiirreennnnnnnnnns 6-1
Authoring a Tutorial Scriptouiiiiiiiiinnennnn. e...0-3
The DeskMate Introductory Tutorialc.iiiinn.... 6-5
Script Command Reference B 6-41
Tutorial Player et ecet et B 6-105
DemO LaunCher . uutiiiiii ittt it i ittty 6-106
Event ReCOrder ...t i ettt i et ittt etaennnnnn. 6-107
Script File Interpreter and Compiler U 6-108
‘Tutorial Compression TOOlS ...viiiintinienennnneennnnnnnnn 6-109

Appendix A - DeskMate 3 Application File Formats

5108 of oo 16 L) o o) + R PR A-1
Address Book/Phone Listoiviiiiiiiiinennieeeeenss. . A3
Calendar v iiiiit ittt e e e A-5
5 o= O A-9
Filer/FOrm SEtUD tvvtereireneenennaeeeeesseeenannenessssass A-11
D < o A-15
o 093 1= = A-21

Part 1
Getting Started

”@e,ae;‘j Starded”

Contents

56 Yol ofoYo b o3 i o o NP 1-1
Memory Models and Development Tcolsccvivnunennn 1-5
Memory Models ...t iiiiiiiii it iinetartannonsonnaas 1-5
Development TOOLIS ..viiiiiiiiineeeaerennanoceesosonnnens 1-5
COMPILANG vvvte vt ine st iia e ennrenennenneansansans 1-5

T 1.5 oL 1-6
Debugging under DeskMatecoiiiiiiiiiiianen. 1-6
Using Turbo Debuggerceveetinneennnssennconns 1-6

USing SYMDEB . .vettivireinnnennensaanacesseennnnnns 1-8

Using CodeView ...veiiiirinernrenrnneenennnnnnsnnss 1-9

USINgG PeriSCOPE . vivvtinrennnenneeenansnaneacannnns 1-11
DeskMate Coordinate SYStemSvviiiriririiiirireneeennnsns 1-13
About World Coordinatesivetiinireerernnonanensasnsns 1-13
Using World Coordinatescvveiienneneernnennncnns 1-14
Using World Extentsccevieiiiieiiiiiniiiinnnnnnns 1-14
World Coordinates = Generalcoiieueiinnnnannareess 1-15
Normalized World Coordinatescevvvvineenneeeecennnn 1-15
Point to Point vs. Origin Extentccevvviveennaann 1-16
Origin Independent Extentscciiiiiiiiiininnnn 1-16
Finding Adjacent Pixelsciiiiiuinrneiiiininnnnnns 1-17
Finding the Nth Pixelccuiieiiirinnnrntninnanenns 1-17
World, Viewport, Clip ...iviriiiiiiiiiiiiiannrnnnennns 1-19
World and Viewport Relationshipccivnnnann 1-21

Clip REGIONS tiiivteenenenenenennsosocnnnucacansnnns 1-21
Window MANAGeT ...vivivrueernnnaensssossntsessanannses 1-21
Compatibility and Programming ISSUEScoveeeennnnenn. 1-23
Runtime EXeCULive ...iveiiiiiienrneennroaanasssrteseenns 1-23
The Help SYSLEM .ttt tninennreerentintnaenneansanssons 1-24
DeskMate 3.0 Operationciveevinrinneeenancinnens 1-24
DeskMate 3.3 Operationcieeieineinnniiennnns 1-24

Compatibility ISSUES wvuurvnnnereeecennneereeennnnnans 1-24°

The F10 Tandy MENU ...vuiuvrerenenrenseroneennaasancssonns 1-24

Code Shedding when Running Accessories 1-25

DeskMate 3.0 Code Shed Operationccevieeunnnn 1-25
DeskMate 3.3 Code Shed Opefation 1-25
Programming and Compatibility Issues 1-25
"Sticky Menus" and Selectable Grayed Menu Items 1-26
Animated BUSY ICOM it i iitnnneeeenanneeennnsonnnnnn 1-26
Form Manager and GUF RESOUICEitveitiernnrnnennennns 1-27
Loading of the Resources for 3.0 Applications 1-27
Loading of the Resources for 3.3 Applications 1-27
Video Drivers . uiii ittt it aat st reannns 1-27
Driver NaMES v vvtirrrrereeennneeeeeeeannanaannsssssses 1-27
Video DeteCtion ..ttt ittt ittt iininnnneeaeeens 1-27
Paletfes v iiitii it i i e i e e i e e 1-27
Printer DrivVerS v iues ittt inanneeeoeinonnnnnneeesonnnnns 1-28
Line Styles tuniiiii ittt ettt i 1-28
Print regions i iinenr ittt iet it 1-28
Landscape printing ...ttt i 1-28
Overview of the Tools, Utilities, and Examples.............. 1-29

/‘

Introduction

After reading About This Kit, reviewing the DeskMate Style Guide, and installing your DeskMate
3 product and development system you are ready to develop a DeskMate application. Before you
begin development, we should review the key information discussed so far and introduce some
new topics which you should find beneficial in the development of your application.

The Kit contains the 1) development files, 2) samples, and 3) tools and utilities need to
develop a DeskMate applications. The DeskMate Technical Reference defines every
function call available in the DeskMate libraries.

DeskMate applications are primarily written in C but may also be written in assembly
language. Programs may be written in any of the memory models but only the small and
medium memory models have DeskMate libraries. Refer to Memory Models and
Development Tools, in this section, for a detailed discussion of memory models, and
compiling, linking, and debugging of DeskMate applications.

The DeskMate Style Guide defines the DeskMate User Interface. DeskMate applications
use menus, dialog boxes, message boxes, and interface components to communicate
with the user. DeskMate applications support both a keyboard and mouse interface. Your
application should meet the DeskMate standards defined in this guide.

From the System Overview in About This Kit, you learned about DESK, the DeskMate
Executive, and the key DeskMate resource - Core Services Resource (Core or CSR),
and the other resources available in the DeskMate environment. Applications
communicate with these resources through the DeskMate libraries.

There are now two versions of DeskMate 3 in distribution, DeskMate 3.0 (includes 3.2)
and DeskMate 3.3. Your application should check the system version number, when it is
initially loaded, by calling dm_inquire_product to determine which version of the
environment the application is running on.

Now, let's introduce some new DeskMate programming topics.

DeskMate uses a world coordinate system to access the video. In the programming
examples and the function call descriptions in the DeskMate Technical Reference you
will often see the defines, CHAR XEXT and CHAR_YEXT used. These defines allow the
programmer to reference points on the screen as character locations. DeskMate also
allows the video to be accessed at a pixel or device level. See DeskMate Coordinate
Systems for a detailed discussion about world and device coordinates.

DeskMate applications are event-driven, they wait for the user to perform an action and
then act upon the action. The CSR provides an Event Interpreter or Manager which
translates the user's actions into events the application can process. Applications can
write their own event interpreters to capture events before and after the CSR's Event
Manager has handled them. For more information, see the Event Manager section of the
DeskMate Technical Reference.

Page 1-1

DeskMate allows mini-applications, called accessories, to pop-up over the current
application. When there is not enough available memory to load the accessory, Desk will
try to make room for the accessory by getting rid of parn of the application's code and
moving the rest. This process is referred to as code shedding. The following criteria is
used to determine if your application can be code shed to run an accessory. If your
application cannot be code shed then it MUST call dm_exec_dont_shed when initially
loaded to insure that it is not code shed to run an accessory. Your application should
also set the code shed size using the DeskMate utility DESKHDR . EXE.

1) An overlaid application cannot be code shed since it cannot be guaranteed
that it will be restored from the disk in the same configuration it was in before
the accessory was run.

2) An Application which uses event interpreters or interrupt handlers cannot be
code shed because the interpreters and handlers are address dependent.
When the application is moved during the code shed, the handlers are moved
and may no longer function correctly.

Note: On a DeskMate 3.3 system the application may be able to code
shed if the handlers are placed in the IMPURE segment which is
not altered during a code shed. Refer to the detailed information
for DESKHDR.EXE in the Tools and Utilities section of this guide for
more information about splitting applications.

3) A medium or large model application which has too many fix-ups (more than
200), cannot code shed in a DeskMate 3.0 system but can on a 3.3 systems
which supports unlimited fix-ups.

Note: This deficiency in the 3.0 system can be overcome by naming the
code segments and limiting the number of code segments used to
a smaller number. Refer to your compiler documentation for more
information about overriding the default code segment name.

The executive and the resources often use the application's stack. The CSR and its
drivers require the application stack for busy icon and mouse processing. A packed
executable has a very small temporary stack while it is being loaded before the stack is
expanded. This stack can be overflowed during the loading of the application if the busy
icon or mouse processing consume more of the stack than is available. You should not
pack your DeskMate executable and should allow at least 2048 bytes of stack space for
the executive and DeskMate resources, and 4096 bytes if the Form Manager Resource
is used.

After reviewing the Memory Models and Development Tools section, review the DeskMate
Coordinate Systems if your application will be accessing the video to do graphics or if you
want to access the video at the pixel level. You will want to review these sections again once
you actually start development and are more familiar with the system.

If you have developed or are developing an application using the DeskMate 3.2 Development
System, you should read the section on Compatibility and Programming Issues for important
information which could affect your application. New developers should also review this section
since it introduces many topics which might affect your application.

‘

Page 1-2

The next step is to review the Overview of the Tools, Utilities, and Examples to get a good
picture of the overall development system. Start with one of the examples, the one that matches
your application the best, and expand on it using the tools and utilities supplied with the kit. You
are now ready to begin your DeskMate development.

Page 1-3

Memory Models and Development Tools

Memory Models

Small and medium memory models are supported through the DeskMate libraries,
DM.LIB and DMMED.LIB. Applications are limited to 64K of data space. The data
segment and the stack segment must be the same (DS == SS).

Large model DeskMate applications are not directly supported through a library and
require additional coding by the programmer. A large model application uses the medium
model library, DMMED.LIB, to communicate with the executive and resources. The
application's DeskMate data and stack must be in the default data segment, DGROUP,
when the application makes a DeskMate function call.

Certain calls store the address of the application's data for use by other function calls.
For instance, the mb_draw call saves the menu bar address for use with by the event_*
function calls. For this reason, the menu bar should not be moved to a different memory
location between calls to mb_draw and event_*. If the menu bar is moved, it must be
restored at exactly the same location for the program to function correctly.

Whenever possible, all DeskMate data, the menu bar, dialog boxes, messages, etc.,
should be defined in the default data segment and the other application's data should be
defined in alternate data segments to insure the data used by a DeskMate functions is in
the correct data segment.

Development Tools

The Kit does not contain the development tools necessary to write software, an editor,
compiler, assembler, linker, or debugger. It only contains those required to write a
DeskMate application. We recommend you use one of the following development
systems for DeskMate development.

Compilers/Assemblers/Linkers
Microsoft C 4.0, 5.0, or 5.1 with Microsoft MASM 5.0
Microsoft Quick C
Turbo C and Assembler 2.0

Debuggers
Microsoft's SYMDEB from MASM 4.0
Microsoft's CodeView
Periscope
Turbo Debugger

Compiling

The system resources assume data structures used by their functions are
packed or byte aligned. Make sure that you use the pack structures option, /Zp,
for Microsoft C when compiling your DeskMate source modules. The detault data
alignment is byte for Turbo C code generation.

The Turbo C 2.00 startup code must be changed because Turbo sets video to

80x25 text mode when that video mode is available. Turbo C makes direct calls
to BIOS to set the mode, so DeskMate is unaware of the change. DeskMate 3.3

Page 1-5

assumes that a DeskMate application will not change the graphics mode without
using a DeskMate video call.

To use the Turbo tools in creating a DeskMate application, the Turbo C startup
code (in C0.0BJ) must be reassembled with the symbol OLDCONIO defined

before using the compiler with DeskMate. The routines that are defined with this
symbol leave the video mode intact.

For small-model startup code, at the command line type: »
tasm C0,C0S.0BJ /D_ SMALL /D OLDCONIO /MX

The startup code object file C0S.0BJ to be linked with your application is

created. If you wish to use a unique name for the object file for DeskMate,
change C0S.0OBJ to the name you want in the command line.

For medium-model startup code, the command entry is:
tasm C0,COM.OBJ /D MEDIUM /D OLDCONIO /MX

The medium-model startup object file COM. OBJ is created.
Linking

When linking your application code with the Turbo startup code and the
DeskMate libraries, DM.LIB or DMMED.LIB, you must use the /N option with
TLINK.EXE. DM.LIB and DMMED.LIB were created using Microsoft tools, the
/N option will tell TLINK not to search for symbols defined in the libraries in the
default Turbo libraries.

Debugging under DeskMate
Using Turbo Debugger
If you are compiling using the Microsoft C Compiler:

1. Compile the program using the compile switches:
/Zi - create an object file for use with CodeView debugger
/0d - do not optimize

2. Link the program using the link switches:
/CO - prepare for debugging with CodeView debugger

Note: It is not necessary to compile or link with switches associated
with creating line numbers or generating map tables since this
is accomplished by running TDCONVRT .EXE.

3. To convert you application linked with Microsoft Link into a format suitable
for use with Turbo Debugger, run TDCONVRT.EXE as outlined in your
Turbo debugger documentation. The application is now ready for
debugging.

Page 1-6

If you are compiling using the Turbo C Compiler:

1. Make sure that the startup code for Turbo C 2.0 is set for DeskMate
development (see prior Compiling discussion).

2. Compile the program using the compile switch:
-v - create an object file for use with Turbo debugger

3. Link the program using the link switch:
Iv - prepare for debugging with Turbo debugger

To run a DeskMate application under Turbo Debugger you must use a setup with
a remote machine for the program's output and a local machine to display source
code. To debug the application:

1. Rename TDREMOTE . EXE to TDREMOTE . PDM
2. On the remote machine from the DeskTop, run TDREMOTE . PDM.

3. On the local machine (in the same directory as your source code), run
TD.EXE with the "-r" (for remote) option.

The Turbo Debugger documentation will describe in detail the sort of messages
the remote debugging environment should generate. It is important to note that
since screen swapping cannot be used to debug DeskMate applications under
Turbo Debugger, the remote method is the only one recommended.

Page 1-7

Using SYMDEB

Compile the program using the compile switches:
/Zd - include line-numbers for source-level debugging
Od - do not optimize

Link the program using the link switches:
/LI - uses the line numbers generated by the Zd compile option.
/M - creates a map table with line numbers.

A symbol! file must then be created by using the MAPSYM utility:
mapsym yourapp.map

Note: It is important that you not run the DESKHDR . EXE extended header utility
before debugging the application. Refer to the DeskMate Development
Guide, Tools and Utilities section for more information about the header
utility.

Now you are ready to enter a debugging session. At the command line, type:
symdeb /s <db.in desk.sym yourapp.sym desk.exe

The /s option tells symdeb to swap screens. f you are debugging using a
remote terminal, do not use this option.

DB.IN is an input file which contains all of the commands and symbol-
loading which are needed to get to the break-points in the application. A
typical DB. IN file has the following:

bp bp new task
g

go yourapp! TEXT

z TEXT es+I0

z DGROUP DGROUP+ TEXT
<con -

The break-point bp_new_task will be encountered twice to load the default
application. The DeskTop will appear after the second go, select your
application from the DeskTop. The break-point will be encountered when
your application is loaded. Load your application's symbol table. Set the
code and data segments. Return control to the console.

Now you should be able to examine your code and set any break points you
wish, including _main.

Screen swapping does not properly restore color information. If this
information is important, you must use a remote terminal for debugging.
You may also set your DeskMate screen mode to CGA by using DMVID . EXE
with CGA as the mode. This minimizes screen problems using Symdeb.

Page 1-8

Using CodeView

Copy cv.EXE to cv.PDM for DeskMate debugging.
Run SETHEAP on cv.pPDM with the following switches:
SETHELP CV.PDM /MIN 0 /MAX O

Compile the program using the compile switches:
Zd - include line-numbers for source-level debugging
Od - do not optimize
/Zi - instructs the compiler to include line-number and symbol information
in the .OBJ file. You only need to use this option on the modules
you wish to debug. Using the /Zd option will include less symbolic
information, thus reducing disk space and memory required.

Link the program using the link switches:
/LI - uses the line numbers generated by the Zd compile option.
/M - creates a map table with line numbers.
/CO - for codeview instead of line numbers.

in order to enter a debugging session, it is important that all of the resources
needed by the application be pre-loaded in memory. To do this, you must run an
application that simply loads and initializes all the necessary resources and exits,
leaving the resources in memory. This example loads the GUF resource and the

database resource, then exits:

main()

{
MSGBOX message;

if (guf_bind init() == CSR_ERROR)
exit(1);

if (db_bind _init() == CSR_ERROR)

{
/* data base couldn't initialize */
guf_bind end():

exit(1);
}
message.pString = "Resource Loader":
message.btn_combo = MSG_COMBO_OK;
message.pMessage = "Resources loaded successfully.";
msg_run{ &message)./
exit(0);

} /* end of resource loader */

Page 1-9

To enter a debugging session in Codeview:
Rename YOURAPP.PDM to YOURAPP.EXE
Run the DeskMate DeskTop
Run the application above that loads resources and exits (if necessary).

Use the "Run" option from the File menu (F2) to run CV.PDM with the
data file name as /s /w YOURAPP.EXE:

/s - use screen swapping
/w - windowing

You may also want to disable the mouse driver during debugging by
using the /m option.

Page 1-10

Using Periscope

Compile the program using the compile switches:
/Zd - include line-numbers for source-level debugging
Od - do not optimize
/Zi - instructs the compiler to include line-number and symbol information
in the .OBJ file. You only need to use this option on the modules
you wish to debug. Using the /Zd option will include less symbolic
information, thus reducing disk space and memory required.

Link the program using the link switches:
/LI - uses the line numbers generated by the Zd compile option.
/M - creates a map table with line numbers.
/CO - for codeview instead of line numbers.

A symbol file must then be created by using the Periscope TS utility:
ts yourapp.map /s /e

/s - Create a symbol file from those in .MAP tile

/e - Read CodeView-able info from executable file for source code
display while debugging. Only use this option if the application was
compiled with /Zi and linked with /CO.

Now you are ready to enter a debugging session. At the command line,
type:

run desk.exe

RUN instructs Periscope to execute. You must now set your first break-point in
Periscope with:

>bc bp new _task

>g

>

/* select the application from the main menu, or utilize
the "Run" option from the F2 Menu. */

>1s es+10 yourapp

You are now ready to examine code and set further break-points.
Tandy has a set of Periscope macros, developed internally by our programmers,

which make DeskMate debugging easier. |f you use Periscope for debugging,
contact DeskMate Support Services for more information.

Page 1-11

DeskMate Coordinate Systems

All video coordinates within the core services are in coordinate points and extents (length). Each
is represented in world, device, normalized world, or character coordinates or units. Although
most references are in terms of world coordinates and extents, there are a few references to
device coordinates and extents and to character extents as parameters for a particular service or
a structure element. No core service requires the use of normalized coordinates, however a
normalized world coordinate may always be substituted for a world coordinate.

About World Coordinates

A world coordinate maps onto an arbitrary grid of pixels that is usually a much higher resolution
than any device which it is intended to represent. Under the DeskMate core, this high resolution
grid is defined as 64K x 64K with an origin of (32678, -32768). World coordinate 0,0 is the center
of the CSR grid and defaults to the upper-left corner of the currently active window (base
window).

With default core definition, the video display surface x extent is 8000 world units and its y extent
is 5500 world units. Although the application may change this, it is recommended that the default
extents be used when using any of the core user interface services, such as the Dialog Box
Manager, the Component Manager, or the Event Manager. Changing the default will scale all
origins for core images and text and scale most video images. However, the size of characters
and certain images (radio buttons, menu buttons, etc) will not be scaled.

A device coordinate represents the physical device display surface in pixels. Device coordinates
range from 0 to the device extent minus 1 (ie., 0-639 x 0-199). All device coordinates outside this
range will be clipped. The mapping to a particular device may be redefined through the
vid_set_viewport call. This viewport call may be used for special scaling, or remapping
functions. However, the size of characters and certain images (radio buttons, menu buttons,
etc.) will not be scaled.

Under normal usage, several world coordinates refer to the same device coordinate. This is
because the number of world coordinates is considerably higher than the number of device
coordinates. A normalized world coordinate is defined as the world coordinate reference
which maps to the upper-left corner of the device pixel. Normalized world coordinates or extents
should be used when device pixel accuracy is critical. [t is important to note that a world
rdinate is not normaliz nl it i i \ rmali 1 rdi
run time. In other words, on a particular video device a world coordinate which is specified as a
constant may be equal to the normalized world coordinate for that pixel. However, that very
same coordinate may not be a normalized world coordinate on another device of different
resolution. A coordinate can only be considered to be normalized if, at the time of it's usage, it is
converted to a normalized world coordinate for that particular video device.

The DeskMate core occasionally requires character extents as a unit reference. Character
extents are character units described in world units.

Using the world screen defaults, the DeskMate screen is defined as 80 characters in the x
direction by 25 characters in the y direction. The x extent of a character is CHAR_XEXT world
units and the y extent is CHAR_YEXT world units. CHAR XEXT and CHAR_YEXT are defined in

the CSRBASE INC and CSRBASE H include flle angm]g_ggwd_d_dgj_aunmumhangg

Page 1-13

The origin of the currently active window begins with a default world coordinate 0,0 at the time it
is opened. All output which falls outside the clip region (normally the window) will be clipped.
Characters which fall only partially within the active window will not appear at all.

Using World Coordinates

The simplest application of world coordinates is positioning on character boundaries. To specify
a coordinate which is to represent a character position, multiply the desired character position by
CHAR XEXT or CHAR YEXT. For example, to move the cursor to character position 40, 12

(approxnmately the center of the wdeo dis I_Play surface) use the foIIowung method (example in C):
vid move_cursor CHAR XEXT, * CHAR _YE)

HAR_XEXT and CHAR YEXT
l 1 be invalid

To specify a coordinate other than on character boundaries, the accuracy of the desired
coordinate must be evaluated. Basically, if the desired position is not intended to represent a
point immediately adjacent to another point, then constants in world coordinates may be used to
specify the coordinate. As an aid to determining these constants, use the character extents to
determine the general area and add an offset to that value to specify the position within that
character. Keep in mind that the coordinate derived may not give the exact same results from
one video device to another.

To specify a coordinate which must be immediately adjacent to or must have a fixed number of
device scans between it and another point, a normalized world coordinate must be used. There
are four video services provided to perform these calculations for normalized world coordinates.

vid_get_next_nwex - returns the normalized world coordinate of the next device pixel to the
right of a specified world coordinate x.

vid_get_next_nwcy - returns the normalized world coordinate of the next device pixel below a
specified world coordinate y.

vid_get_prev_nwcx - returns the normalized world coordinate of the next device pixel to the left
of a specified world coordinate x.

vid_get_prev_nwcy - returns the normalized world coordinate of the next device pixel above a
specified world coordinate y.

Using World Extents

The number of device pixels that a world coordinate/extent combination encompasses will vary
from device to device. If the origin of the extent is normalized than the number of device pixels
encompassed by a given extent will always be the same within any single device. However, if
the origin and the extent are not normalized, the number of device pixels will vary by one pixel
based on whether the origin happens to refer to the normalized world origin for that device or not.
Remember, a world coordinate is not normalized unless it has actually been converted to a
normalized world coordinate at run time.

This is where the difference between character and graphic output must be considered. All
character output is automatically normalized by the core video services. All graphic output is
based on the specified world coordinates given as parameters and is NOT automatically
normalized. The result of this difference is a difference in the number of device pixels which may

Page 1-14

®

be encompassed by a character output and a graphic output with the same extent. A character
will always encompass the same number of device pixels, regardless of the normalization or non-
normalization of the origin of the character. A rectangle which has the same extent as a
character will encompass a number of device pixels which is dependent on the normalization or
non-normalization of the origin of the rectangle. Consider the following example: The string "AB"
is output on two different lines of the video display surface, one with a normalized world origin in
both x and y, and the other with a non-normalized world origin in both x and y. Also, two
rectangles are drawn with the same origins and their x2 and y2 coordinates are calculated from
the world extent of a single character. The expected result may be that the rectangle would
encompass the same portion of the string on both line. However, because of the above
differences in character and graphic output, the string and rectangle output using normalized
world origins would result in the rectangle being drawn completely within the character cell of the
character "A" in the string. Any portion of the "A" which was at any edge of it's character cell
would be overwritten by the rectangle. However, the string and rectangle output using non-
normalized world origins would result in the rectangles top and left edges being drawn within the
character cell of the "A", the right edge in the character cell of the "B", and the bottom edge on
the first device pixel below the character cell of the "A".

World Coordinates - General

World coordinates are a method by which all video screens can be given the same dimensions
regardless of the actual pixel resolution of a particular monitor.

First, be sure that you understand the following definitions. The width or height of an item is
known as an extent. The reference point from which all measurements start is known as an
origin. The coordinates used as parameters in the routines that draw to the screen are world
coordinates. The pixel coordinate of an item on your particular monitor is known as a device
coordinate.

Upon Initialization of the Personal DeskMate core the screen is defined to have a world
coordinate origin of (0,0) located in the upper left of the screen. The extent of the screen in the x
direction is 8000 world coordinates, while in the y direction the extent is 5500. This can be
expressed as follows:

wexOrg=0

wcyOrg=0

wexExt = 8000

wcyExt = 5500

A diagonal line can be drawn from the upper left to the lower right with the following:
vid_draw_line(0, 0, 8000, 5500)

Note that regardless of the resolution of your device, world coordinates instruct the routine to
draw a line on the screen that connects the upper left to the lower right. The ability to have the
same parameters draw to the same points on any device is known as device independence.
Normalized World Coordinates

The world coordinate which lies closest to the upper left corner of a particular device pixel is
known as the normalized world coordinate of that pixel. nwc is used to stand for "normalized

world coordinate”.

When mapping world coordinates to device coordinates it is convenient to visualize a very fine
world coordinate grid which overlays a coarse device coordinate screen grid. Each world

Page 1-15

coordinate maps to only one device coordinate. But each device coordinate may map to many
world coordinates. As an example let us consider a screen that is 640 pixels wide. The world
coordinate width is 8000. We can derive the following:

wexExt = 8000 dcxExt =640 1 dex = 8000/640 = 12.5 wex

dcx nwex WCX range exact nwex if we had fractions
0 0 0 thru 12 0.0
1 13 13 thru 24 12.5
2 25 25 thru 37 25.0
3 38 38 thru 50 37.5
639 7988 7988 thru 7999 7987.5

Point to Point vs. Origin Extent

vid_draw_line is an example of point to point format. Two points are specified and the line is
drawn between the two points.

vid_clear_block is an example of origin extent format. The point of origin is given first, then the
extents are relative to that point.

Consider the case where a rectangular block has been cleared to a desired color with the
following call:
vid_clear_block(100, 200, 300, 400)

The following will always draw a diagonal line whose endpoints fall exactly on the upper left and
lower right corner of the rectangle.
vid_draw_line(100, 200, 399, 599)

The upper left point of the line is the same as the origin of the block. The lower right point is the
sum of the origin and extent minus 1. This can be expressed as follows:

vid_clear_block(wecxOrg, weyOrg, wexExt, weyExt)
vid_draw_line(wexOrg, wcyOrg, (wexOrg+wcexExt-1), (wcyOrg+wceyExt-1))

IMPORTANT: Do not forget the -1 in the line above!l!

Also note that the following 2 lines are equivalent.
vid_draw_line(100, 200, 399, 599)

vid_draw_line(399, 599, 100, 200)

However the following 2 lines are NOT equivalent.
vid_clear_block(100, 200, 300, 400)

vid_clear_block(300, 400, 100, 200)

Routines that use point to point format start with vid_draw.

Origin Independent Extents

The number of pixels that a particular world coordinate extent will span can change depending
upon the location of the origin.

To illustrate this consider the following table. A screen width of 640 pixels is assumed. dcxExt
refers to the number of device pixels spanned by wexExt.

Page 1-16

wcxgrg wcxExt dcxExt

100 8

1 100 9
12 100 9
13 100 8
24 100 9
25 100 8

With wexExt = 100 the only cases where dcxExt is 8 is when wexOrg is a normalized origin, 100
is the x ext of a character. It turns out that for x extents which are multiples of 100, the dexExt
will be constant for any normalized origin. However for x extents which are not multiples of 100
even normalized origins do not assure that the dcxExt will be constant.

For example assume a dcxExt of 13:

wcx0rg WCXEXxt dcxExt
0 13 1
1 13 2
12 13 2
13 13 2
24 13 2
25 13 1

with wexExt = 13 the only cases where dcxExt is 1 is when wexOrg maps exactly to a device
coordinate with no fraction. In the example above this will occur at even multiples of 25. Thus
for the general case, to assure origin independent extents, both the origin and extent need to be
normalized. The following is an example.

nwcxOrg = vid_wex_to_nwex(wexOrg)

nwcxExt = vid_wcex_to_nwex(wexExt-1) + 1

It turns out that if the origin is on a character boundary then neither the origin or extent need to
be normalized to assure origin independent extents.

Finding Adjacent Pixels

If you desire a line to fall on the line adjacent to a given rectangle the world coordinate value of
that adjacent pixel must be calculated at run time.

If wexOrg is known to be the origin, the next adjacent pixel to the right of wexOrg is found as
follows:
nextPixel = vid_next_nwcx(wexOrg)

The following will clear a rectangular block and then draw a rectangle around that block. The
rectangle will not cover up any of the block nor will it leave any gaps.

vid_clear_block(wexOrg, weyOrg, wexExt, weyExt)

wex1 = vid_prev_nwex(wexOrg)

wex1 = vid_prev_nwcy(wcyOrg)

wcex2 = vid_next_nwex(wexOrg+wexExt-1)

wcy?2 = vid_next_nwcy(weyOrg+wcexExt-1)

vid_draw_rectangle(wex1, wey1, wex2, wey2)

Finding the Nth Pixel
A given world coordinate maps to one pixel on the screen. To find the nth pixel relative to that

pixel the following method can be used:

Page 1-17

dcxOrg = vid_wex_to_dex(wexOrg)
newDcxOrg = dexOrg +
newWcxOrg = vid_dcx_to_wex(newDcexOrg)

n can be a positive or negative integer.
newWcxOrg will map to the nth pixel before or after wexOrg.

Note that when n = 1 the above method yields the same results as vid_next_nwex, and when n
= -1 it yields the same results as vid_prev_nwcx.

Page 1-18

World, Viewport, Clip -

The routines that get or set the world, viewport or clip region are not commonly used by the
average application. Before attempting to use these routines please refer to the Window
Manager documentation. The Window Manager manages the world, viewport, clip region, and
other video states for you. It is strongly suggested that you use the following routines only if you
really need the extra versatility they can give you.

The world, viewport, and clip region all work within a 64K x 64K universe. The largest world that
can be viewed on the device at one time is a 32K x 32K rectangle within that universe. The
universe does wrap around and thus has no edges that the world could bump into.

A world coordinate is a coordinate relative to the origin of the universe. All values used for device
or world coordinates are signed integers. Extents are defined to be greater than zero. Origins
and point coordinates can be positive or negative. In summary:

Extents = 1 thru 32676 (-32678 thru 0 perform no action)

Origins = -32768 thru 32767

point coordinates = -32768 thru 32767

World and Viewport Relationship

Conceptually the world can normally be thought of as the region of the universe which is mapped
to fit onto the screen viewport. The world uses world coordinate units, and is a logical screen.
The viewport is measured in pixels or what is called device coordinate units. The viewport is a
physical screen.

If the viewport origin is zero then the world origin will map to the upper left corner of the device. if
the viewport extent equals the width of the device in pixels, then the world extent will exactly span
the width of the device.

However, the viewport origin could be non-zero and the extent could be smaller or bigger than
the pixel extent of the screen. The result however is normally undesirable.

Mathematically the mapping equations are:

dc = (we - worldOrg) * (viewExt / worldExt) + viewOrg
wce = (dc - viewOrg) * (worldExt / viewExt) + worldOrg
where dc = device coordinate wc = world coordinate

Looking at the first equation it is seen that the scaling of the world to the screen is determined by
the ratio of viewExt:worldExt. This ratio controls the squashing necessary to fit the world into the
viewport. The worldOrg and viewOrg determine what point of the universe falls onto the upper
left point of the screen.

The following examples assume a device that is 640 pixels wide. Only the x direction is dealt
with. The y direction would be dealt with in the same manner.

Page 1-19

Let: worldOrgX =0 viewOrgX=0 worldExtX =8000 viewExtX =640
dcx _ 0 640
screen =m=————-

viewport eeme—————
world meeemeee

UNLIVETrSe =———m—m— e e

l |
wCX -32768 0 +8000

Let: worldOrgX =0 viewOrgX=0 worldExtX =16000 viewExtX =640
dex 0 640
screen emmmmee———————

viewport emeeeemmeee—eee-
world emecccccmacec——a-

universe =——=—-— s s e

I I
WCX -32768 0 +16000

Let: worldOrgX =0 viewOrgX =0 worldExtX = 8000 viewExtX =1280
dcx 0 1280
screen —_—

viewport ==mm———
world ~ emee—ee-

universe ———~————eme e

I I
WCX -32768 0 +8000

Let: worldOrgX =-4000 viewOrgX =0 worldExtX = 8000 viewExtX = 640
dcx 0 640
screen. =====—--

viewport ~ =mm————-
world S e

UNiverse ==s=—==mm o e e

I : |
WCX -32768 0

Let: worldOrgX =0 viewOrgX =320 worldExtX = 8000 viewExtX = 640

dcx ? 6?0 ?60
screen mme—e————
viewport =mm==—es
world m=s====s

UN1VErSe =——m=mm o o e e e e e e e e e s

|
WCX -32768 0

Page 1-20

|
+32767

!
+32767

I
+32767

Let: worldOrgX =-8000 viewOrgX =320 worldExtX = 8000 viewExtX =320
dcx 0 320 640

screen
viewport —em————-

world eeem————

universe -----------o--—o———-——ooseaaoo —-——= sty

| | |
wCxX -32768 -16000 0 +32767

As the previous examples illustrate, changing the extent of the world and/or viewport changes the
scaling of items mapped to the screen. It is suggested that if changing the scaling is desired,
only the world extent should be changed. It normally works out best to leave the extent of the
viewport to be equal to the extent of the screen.

NOTE: Changing the extent of the world to a value other than the defaults of 8000x5500 will
change the scaling of routines such as vid_draw_point, vid_draw_line, vid_draw_ellipse,
vid_draw_rectangle, and stroke fonts, character out routines, and vid_put_image. Routines
which do not support changes in the scaling are: menu bars, push buttons, radio buttons, check
boxes, vid_clear_to_bot, vid_clear_to_eol, and vid_put_tty.

Clip Regions

Clip regions are expressed in world coordinates and are relative to the universe. A clip region
with the same origin and extents as the current world will encompass the same region as the
current world.

In the example below the screen covers a larger area than the world. A clip region with the same
origin and extent as the world would thus allow video routines to write only to pixels 320 to 640.
A clip region with an origin of -16000 and extent of 16000 would allow video writes to the entire
screen. Note that it is not useful to set the clip region to be larger than the screen, and indeed
the vid_set_clip routine does not allow you to do so.

Let: worldOrgX =-8000 viewOrgX =320 worldExtX = 8000 viewExtX = 320
clipOrgX = -16000 clipExtX = 16000

decx 0 320 640

screen @ eeeeeee—ecem————
viewport —m—=s-—-
world ememe————
clip region = —=m=m——m—eee———-
UNLVEISE ===rm—mm e e e e e e e e e e e e e

| | I
WCX -32768 -16000 0 +32767
Window Manager
The window manager uses world coordinate origins and extents as input parameters. The origins
are positive offsets from the upper left corner of the screen. The extents set a clip region so as
to limit video output to the region starting at the window origin and extending thru the window
extent. To do this the window manager sets a world and clip region. The viewport is never
changed by the window manager. The following is an example:

given: winOrgX, winOrgY, winExtX, winExtY

Page 1-21

The window is created by making the following calls: ‘/
vid_set_world(-winOrgX, -winOrgY, 8000, 5500)
vid_set_clip(0, 0, winExtX, winExtY)

Consider the following graphic example:

Given: winOrgX = 2000 winExtX = 4000 viewOrgX =0 viewExtX = 640
Results in: worldOrgX = -2000 worldExtX = 8000
clipOrgX = 0 clipExtX = 4000

dex 0 640

screen =ee—e——-

viewport ~ mee————-

world =mmee————

window or clip region -

UN Ve S = s o e o e e e e

I | |
WwCX -32768 0 +8000 +32767

NOTE: the above example merely illustrates how the window manager uses the vid_set_world
and vid_set_clip routines. To use the window manager you do NOT make calls to
vid_set_world or vid_set_clip.

Page 1-22

Q Compatibility and Programming Issues
Runtime Executive

The 3.3 runtime executive allows an application to be launched from a 3.0 DeskTop as a
runtime. This enhancement was added for applications which require the 3.3
environment to operate in but still want to be launched from 3.0 DeskMate products. An
application making use of the new 40 column video drivers would be an example of an
application requiring the 3.3 system.

To run from a 3.0 DeskTop your application can provide a small "compatibility"
application which checks the current system and then runs the application. The
compatibility check should also be performed within your application in case the user
executes the application from the DeskTop. If your application is large, you should
consider providing the compatibility application since it will take less time to foad and
unload it rather than your application.

The function dm_compat, a DeskMate Library function, checks the version of desk
currently running and decides if the application

can run on the system.
cannot run because the user is task-switched.
needs to run from the new runtime.

The compatibility application calls dm_compat, sending it the name of your customized
‘ runtime module, and checks the return code and handles it as follows:

main ()
int product info;
char RuntimeName[] = "VENDOR.EXE";

product _info = dm compat (&RuntimeName[0]);

if ((product info & DM VERSION) == 0)
%f ((product_info & DM _COMPAT FLAG) == 0)
csr init();
display "Cannot run while task-switched."
csr end{);
| _
} /* running on a 3.0 system */
else
/* running on a 3.3 system */
dm_SetNextApp(to VENDOR.PDM);
exit ();

} /* end of compatibility application */

If the application is running on a DeskMate 3.0 system and is not in a task-switched context, then
dm_compat will call dm_SetNextApp to your application’s 3.3 runtime. The compatibility
application will either cause the application to run on the current system or as a runtime or inform
. the user that the application cannot run in the current context.

Page 1-23

The Help System
DeskMate 3.0 Operation

Help is provided through an accessory. Application help is therefore only available when
an accessory can be executed. The application always knows when the user requests
help. Applications can write their own event interpreters to capture the F1 key and
provide the user with the level of context-sensitive help they deem appropriate.

DeskMate 3.3 Operation

Context-sensitive help is now provided through an Intelligent Help Manager which
captures the context of the application and gives specific and general help, specific to the
application state. Help is now available in pop-ups, including accessories, and while the
menu bar is being accessed. Help may be given at any time, for instance while the user
is in a dialog box, and the application is not always aware of when the user requests
help. The application can register call-back functions which will be called prior to and
after help is given. Refer to the Help Manager section of the Technical Reference for
more information.

Compatibility Issues
For applications written for the DeskMate 3.0 system, running on a 3.3 system:

In applications which are not providing any context-sensitive help (by trapping the F1
key), or are not providing help for all the new context possibilities, the user will get a
message stating that help is not available. The developer can decide if this is acceptable
or do one of following to ensure the user is always presented with help in any DeskMate
3 system.

1) Distribute a Help Compatible System consisting of:

a) An application help data file.

The existng DMHELD ACC b) The help compatibility accessory, DMHELP88 . ACC.
} , ¢) The DeskMate 3.3 Intelligent Help Manager, DMHELP.ACC and
should a0 Be overwrilea. DMHELPENG . RES.

kaHWf; /’Msé'uq /n asu‘)chl&}?’fy
wJ o new DMBEL P Upgrade DeskMate 3.0 user's DMHELP . ACC file with the new Intelligent Help
) Manager, see the Distributing Your Application section in this manual for
fhere | See P -3, more information. The new help accessory will chain to the compatibility
accessory and provide general application help from the help data file on the
upgraded 3.0 system and context-sensitive help on a DeskMate 3.3 system.

2) Handle the new areas of context-sensitive help by using an event interpreter
and trapping the F1 key. Refer to the Event Manager section of the Technical
Reference for details about writing an event interpreter.

The F10 Tandy Menu
The user can how run new accessories from the More option on the F10 menu or from
an upgraded Setup accessory. To run accessories on all DeskMate 3 systems, your

application should not perform any range checking on the accessory value before running
the accessory. The F10 menu distribution, number of items and their names, varies from

Page 1-24

‘ system to system depending on the capabilities of the DeskMate system. Your
application should not make any exceptions or assumptions when running accessories, it
should simply run the accessory the user requested.

Code Shedding when Running Accessories
DeskMate 3.0 Code Shed Operation

In this environment when an accessory does not fit, the executive code sheds 32K of the
application. Applications which can not have their code shed and replaced from disk
called dm_exec_dont_shed. See the discussion of code shedding in the Introduction of
this section for a discussion of code shed criteria.

DeskMate 3.3 Code Shed Operation

In this environment the amount of code shed space for an application is stored in the
application's header built by DESKHDR . EXE, the DeskMate utility. The executive looks at
this information to determine how much, if any, of the application to shed in order to load
the accessory. If the code shed size is less that 32K, applications should call
dm_exec_dont_shed to register that information with the DeskMate 3.0 executive.

Programming and Compatibility Issues

Your application may not function properly if the application cannot be code shed
and it does not inform the executive by either setting the code shed size using
DESKHDR.EXE and/or by calling dm_exec_dont_shed.

‘ Your application will not function properly if does its own code shedding to make
room for an accessory for the following reasons.

1) The DeskMate 3.0 accessories were generally less than 32K, so most
accessories would run if that amount of memory was available. In the
3.3 system, most of the accessories use more than 32K. Freeing a
specific amount of memory will probably not cover all cases.

2) Accessories can load one or more resources when they run.
Depending on the function of the accessory, the resource may stay
loaded after the accessory exits. For instance, the Spell Checker
allows the user to turn on auto-proofing and exit the accessory. The
spell resource stays resident to handle the auto-proof function. Your
application will not be able to recover the memory it freed for the
accessory.

3) New accessories may be executed through the new More option, your
application cannot predict how these new accessories will operate or
how much memory they will require.

If there isn't enough room to load an accessory, the executive will wam the user.
It is better not to run an accessory, than to run an accessory and not recover

properly.

Page 1-25

To run accessories on all DeskMate 3 systems, your application should do the .
following: -

1) Set the code shed size (0 up to code size) for your application using
DESKHDR.EXE.

2) If the code shed size is less than 32K, call dm_exec_dont_shed on a
DeskMate 3.0 system.

3) For applications which use all available memory and cannot be code
shed, consider doing one or more of the following:

a) shed data which can be regenerated after returning from the
accessory.

b) shrink the unused data size to free memory for the accessory.
Your application must handle not being able to expand out
the data if the memory is no longer available.

c) free resources which can be reloaded after returning from the
accessory. Your application must handle not being able to
reload the resources if the memory is no longer available.

"Sticky Menus" and Selectable Grayed Menu ltems

Since the menu bar processing is done within the DeskMate environment, this
enhancement is transparent to the application. Applications which use their own event
interpreters and are predicting the state of the menu bar based on the mouse or arrow
events are affected by this change.

In the DeskMate 3.0 system, a single mouse click did not affect the state of a menu bar.
In the 3.3 system, a single mouse click can cause a menu to drop or will change the
selection of a menu item.

In the 3.0 system, the up and down arrows skipped over grayed menu items. in the 3.3
system, the up and down arrows do not skip grayed menu items.

To be compatible on all DeskMate 3 systems, applications which predict user events
must handle the differences in the menu bar user interface in each system. To aid the
developer, the new mb_get_status call was added to get menu bar status information.

Animated Busy lcon

The Tandy busy icon is now animated. The icon processing can cause problems for
applications which are accessing video memory directly and are making timing
assumptions about the busy icon. If your application meets this criteria, make sure your
application disables the busy icon while it is accessing video memory.

Page 1-26

Form Manager and GUF Resource

Loading of the Resources for 3.0 Applications

The DMFORM.RES is automatically loaded on the first form_open call. Both GUF
resources, DMGUF . R89 and PRGUF . RES are loaded with the guf_bind_init call.

If the resource does not fit in available memory or the resource file could not be
found, the form_open and guf_bind_init calls will return an error. You should
ensure your application is checking the return code from both call and handles
the conditions properly.

If your application uses all available memory, the form_open call should be
made BEFORE all of memory is allocated.

Loading of the Resources for 3.3 Applications

The new binding call for the Form Manager resource, csr_form_bind_init will return
an informative error DM_EXISTS if the application is running on a 3.0 system.

Both GUF resources, DMGUF . R89 and PRGUF . RES are loaded with the guf_bind_init
call. To load only the PRGUF . RES resource, call prguf_bind_init.

Video Drivers

Driver Names

The DeskMate 3.0 video drivers used the DMVD prefix, the 3.3 drivers use the DMVS
prefix. The video drivers must match the version of the CSR being used, mixing of
systems is not allowed. Applications using the cfg_get_vid_driver call to determine what
video driver is loaded are affected by this change and should handle the differences in
the systems.

Video Detection

The VGA video driver, DMVDVGA.RES, incorrectly returned VID EGA in the
VID DEVICE.card element when the vid_inquire_device call was made. In order to
determine if the video was in fact VGA, the calling program compared the
VID DEVICE.dc yext element to 480. The VGA video driver, DMVSVGA.RES,
correctly returns VID VGA from the vid_inquire_device call. If your application makes
use of the vid_inquire_device call, you should ensure you handle the differences
appropriately.

Palettes
The DMVSVGA driver uses different palettes than those used by the DMVDVGA driver. If

your application accesses the palette information directly, then your application will
exhibit different default color settings in the 3.0 and 3.3 environments.

Page 1-27

Printer Drivers

Line Styles

The line widths, LINE_WIDTH1 and LINE_WIDTH2 are now supported for the dotted,
dashed, and dot-dash line styles. These widths were only supported for LINE_WIDTH1
which exhibited printing problems when a line crossed a print band.

The line style DENSE_DASHED is now supported by the printer drivers.

The thickness of the wider line widths was changed to match the world coordinate width
used by the video drivers.

LINE_WIDTH1 1 pixel wide

LINE_WIDTH2 "best look", normally 2 pixels wide

LINE_WIDTH3 50 world coordinates wide

LINE_WIDTH4 75 world coordinates wide

LINE_WIDTH5 100 world coordinates wide

Print regions

The 132 character maximum line has been removed and now as many characters as will
fit into the width of the print band will be printed. The width of the print band for printers
with a wide carriage is 13200 world coordinates. This translates to the following number
of characters depending on the current character per inch setting:

10 CPI 132 characters

12 CPI 158 characters

condensed 220 characters

The dimensions of the printable region for the 3.0 printer drivers was sometimes less
than 8 x 11 1/2 inches. The 3.3 printer drivers now print exactly to 8 x 11 1/2 inches. This
apply to IBM-compatible graphics printers. The Tandy 2100P with micro line-feed control
prints a page 11 3/8 inches instead of 11 1/2. Other non-Tandy printers exhibit the same
incompatibility.

The quarter-inch on the left and right side of the paper is the default "unprintable region”
for printers. The laser printer has its own specific unprintable region.

Landscape printing

The DeskMate 3.0 drivers did not do a form feed at the end of a landscape printed page,
the new drivers do.

Page 1-28

Overview of the Tools, Utilities, and Examples

The tools and utilities included in the kit are provided as an aid to the programmer. Most of the
tools have not had the software quality assurance testing the DeskMate products and system
files have had. Tandy uses these tools internally for the development of the DeskMate product
and system files. We do not warrant these tools and utilities and recommend that you take the
precaution of backing up your work files when using the tools. User documentation on using the
tools is provided in the Tools and Utilities section of this manual.

The Menu Bar Builder and Dialog Box Builder are used to build the major portion of your
application's user interface are provided as time saving tools. You do not have to use these tools
to build either your menu bar or dialog box data structure definitions. Both of these tools have
been improved and we encourage that you use these tools.

We provide several graphics utilities - the Bitmap Editor, the Graphics Form Generator, the
Clipart File Builder, and the Stroke Font Editor. These tools are used to either import graphics
into your application or customize graphics files used by your application. The tools have varying
degrees of functionality.

The Memory Map Generator is used to determine how memory is being allocated (size and
distribution) under DeskMate. With all of the different environment possibilities, this tool is very
useful for determining how much memory your application has to work with and how it is
distributed. This tool allows you to determine the worst and best possible cases under which your
application will run.

The Desk Header Builder is used by all of our DeskMate product and system files. We strongly
recommend every developer use it to build the DeskMate application's file header.

The Disk Label Generator is used to build the diskette label files for all of the DeskMate 3
products. We strongly recommend using it to create diskette label files for your product also.
These labels are used by dm_file_search when prompting for a diskette and may be used by
your installation program.

The Customized Runtime Utility MUST be used to build your application's customized executive.

The Customized Install Utility is used to build your application's customized version of
INSTALL.EXE which must accompany your product diskette. This program launches your
INSTALL.PDM program as a stand-alone program using your customized runtime executive.

The Help Utilities must be used to create your application's help file if you make use of the
DeskMate Intelligent Help Manager. Tandy used these tools to create the help files distributed
with the DeskMate 3.3 products.

The Tutorial Technology Tools are used to build application tutorials and demos. The
DMEI.EXE, RECORD.PDM, and DMRECORD.RES tools are only needed if you choose to "record"
your initial tutorial or demo script. The other tutorial tools are needed to build tutorial files for
execution by the Play technology.

The sample programs include a Welcome program which is an example of a minimal DeskMate

application. The Video sample shows how to use world and device coordinates when displaying
graphics on the screen. This example also includes a sample help file, VIDEO . HLP.

Page 1-29

The File I/O and Printing examples are quite extensive. The low-level examples of both the file
/o and printing actually reflect much of the processing done by GUF and the Print Manager in the
high-level examples. The High-Level File I/0 example is a good start for an application user
interface prototype which uses canned data files. Once your data requirements are established
you can rewrite the file i/o portion of your application.

The Forms example shows the basic functions performed by the Form Manager for managing
graphics in an application. The full power of the Form Manager is not demonstrated by this
example. It is a good starting point and can be used as a template for graphics handling
applications.

The Special Topics section discusses some programming techniques which are part of the other
examples but were not discussed in the sample chapters, for instance Interfacing With the
Clipboard discusses the edit field functions used by the COMPS sample and the form manager
functions used by the FORMS sample that interface with the clipboard. Programming excerpts
are used to discuss Managing Multiple Windows and Events. The COMPS example shows how
to manage components in the work area instead of in dialog boxes as a means of interfacing with
the user.

The last three sections discuss the special programming requirements of 40 column applications,
DeskMate resources, and DeskMate accessories.

Page 1-30

..l./
-

Part 2
Programming Examples

”ﬁfo j ra/nmln5 EKW(C% ‘“

‘ Contents

A DeskMate Shell — WELCOME.PDMcovumuruerrcenennnnnnnn 2-1
Using the DeskMate Coordinate Systems - VIDEO.PDM 2=17
DeskMate File HANAling ...ovvvvveniiinieeeeceennonnnnnonnnns 2-13
High-Level File I/0 = FILEIOHL.PDMcvuievervnunuans 2-13
Low-Level File I/0 - FILEIOLL.PDMciuiiiiinnannnnnns 2-19
Database File I/O = DBCARS.PDMvvvvmrennreennennnnes 2-31

2 o o 1 Lo (O 2-47
Page Printing — DEVICE.PDMiiiiiiiniinninnnnnnaans 2-47
Direct Printing = DIRECT.PDMiciuriiiiiinnnnnnnnnnnnns 2-53
Using the Graphics Form Manager - FORMS.PDM 2-57
SPECIAL TOPICS v iveii i itireen e ianneeeenaasaennenssssannnans 2-65
Running Components in the Work Area - COMPS.PDM 2-65
Managing Windows and Eventsciiiiiiineinnnnnnns 2-69
Interfacing with the Clipboard vt 2-71
From an Editfield Componentc.oeviiiiiiuiinnnnnnn. 2-71
‘ When Using the Form Managereeeuiiinneennnnnaessas 2-71
Direct Interfacing with the Clipboard 2-175

To read the clipboardciiiiiiiiiiiiiiiiiinnn, 2-175

To write to the clipboard i, 2-175
Writing text with attributes to the clipboard 2-76
Writing a 40 Column Applicationciviiiiineieernnnnnns 2=-71
Writing a DeskMate RESOUICEvvitrtrririrerorennneeeanns 2-79
Writing a DeskMate ACCESSOLY +vtiirrrerrranecennarsresesnnnn 2-89
General Guidelinesiiiiiiirrreennnnnnennnnneenanenaas 2-89
Accessory Chainingoeeieiii ittt 2-90

WELCOME.PDM

WELCOME . PDM is an example of a minimal DeskMate application. It has an application menu bar,
places text in the work area, uses the About function, runs other applications through the File
Run option, and Exits. It is ideal for use as a template for beginning new DeskMate applications.
The source to the Welcome application is included in the SAMPLES\WELCOME directory.

#include "dmexec.h" /* Desk Executive header file */

#include "csrbase.h" /* Core Services Resource base header file */
#include "csrcmps.h" /* Core Services Resource components header file */
#include "csrvid.h" /* Core Services Resource video header file */
#include "dmdecl.h" /* DeskMate function declarations */

#include "dmguf.h" /* General User Functions */

#tinclude "dmgufdec.h" /* GUF's function declarations */

#include "codestnd.h"™ /* DeskMate Coding standards file */

#include "welcome.h" /* Application header file */

#include "welcodec.h" /* Application declarations */

The Welcome application first includes the DeskMate header files it requires to compile. These
files reside on the Development Diskette. The following is a brief description of each file and why
it is included in this example application.

The DMEXEC.H file is the include file for the Desk Executive. All applications should
include this header file.

The CSRBASE . H file should also be included by all applications. This file is the standard

include file for the Core Services Resource. It defines many of the general structures
used by applications.

The CSRCMPS.H file contains the component data structures, including the menu bar

definitions. Source files accessing component, menubar, dialog box, and message box
data structures require this file.

The CSRVID.H file includes many of the structures and defines needed when accessing
the video functions of the CSR.

The DMDECL.H, and WELCODEC.H are funclion prototype files. These files are used by
the compiler to check the parameter(s) being passed to functions defined in the files.
Using these files often catches programming problems related to errors in calling the
function at the compile stage.

The DMGUF . H file is the standard include file for the DMGUF and PRGUF resources.
Applications using these resources to perform File I/O, use the Environment Manager, or
support the Run command need to include this file in their applications.

The CODESTND.H file describes the DeskMate coding standards used in these sample
applications. This file is for information purposes only.

The WELCOME . § file contains the data structures and defines used by this application.

Page 2-1

}nt main ()

EVENT Event;
int TSReturnCode;
int Done;

/* Bind to the Core Services Resource */

if (csr init () == CSR ERROR)
/* f?i}ure to bind to the CSR, could not find/load resource */
exit ;

if (gquf bind init() == CSR ERRCR)

/* failure to bind to the power & run General User Functions resource */
csr_end();
exit(l);

Before any processing is done by your application, your application must bind to the resources it
will use during its execution. Notice that both binding calls check the return code. Although the
CSR is almost always guaranteed to be loaded when your application is loaded, it is good
programming practice to check the csr_init's, as well as all bind routine, return codes.

Your application should never make assumptions about the state of environment when your
application is loaded. For more information about resource binding routines, see the Desk
Executive section of the DeskMate Technical Reference.

/* Draw the main screen */
Welcome Draw _Screen(});

The next step in an application’s processing is usually to draw the application menu bar and
default work area. This sample calls a subroutine Welcome Draw_Screen to perform the task.

void Welcome Draw_Screen()

{ e
/* Clear the base window (defaults to the entire screen) */
vid clear screen(); A

/* Draw the application menubar in the base window */
WelcomeMENUBAR.bRedraw = MB REDRAW;
mb_draw(&WelcomeMENUBAR };™

/* Display the application's name on the title line */
ttl put app name{ "Welcome");

/* Display the application's data file name on the title line */
ttl put data name{ "");

Welcome Draw Message();

}

Welcome's draw screen processing, clears the entire screen, draws the application menu bar,
display's the application name, displays " (Untitled)” for the datafile name, and displays a

welcome message in the work area.

void Welcome Draw Message()

/* Position the video cursor in the center of the base window */
vid move cursor(30 * CHAR XEXT, 12 * CHAR YEXT);

/* Display "Welcome to DeskMate!" in the center of the window */
vid put string("Welcome To DeskMate!");

/* Set the line color attributes to make sure when the */
/* rectangle below is drawn, it shows up on all videos */
vid set line attr(LINE_SOLID, LINE WIDTH1, COLOR3 };

/* draw a rectangle in the center of the base window */
vid draw rect(9 * CHAR XEXT, 11 * CHAR YEXT,
- - 51 * CHAR XEXT, 14 * CHARTYEXT,
VID_NO FILL); -

Page 2-2

The welcome message displayed in the work area uses video calls to reposition the cursor
(default location 0,0), display a text string at the current cursor location, and draw a box around
the text.

For more information about the function calls used here, see the Video Manager (vid_*), Menu
Bar Manager (mb_*), and Titleline Manager (ttl*) sections of the DeskMate Technical
Reference.

Now the application is ready to accept user input. DeskMate applications are usually written as
transaction centers (all of our samples are). The application executes in a loop until the user
chooses to exit the application (or an error condition requriing termination is encountered). In the
loop processing the application waits for a user event and then acts upon that event, usually
passing it on to a module which will process the event.

/* initialze the do while control flag */
Done = FALSE;

/* Process the user inputs and actions */
do

/* read an event from an input device */
event read(&Event);

The event_read call will not return until the user performs an action which is translated into an
event. For example, simply moving the mouse around the screen will not return an event. When
the user presses the mouse button, the function will return with the appropriate event in the
EVENT structure.

Command Events, EVENT COMMAND, are returned whenever the user selects a menu option or a
component in the work area. The EVENT.param element contains_the_value assigned to _the

return code element of the MENUITEM structure_for each menu option or in the CMP_HEADER

structure for a_.component.

switch(Event.msg)

case EVENT_COMMAND: .
/* check t% see if an option was selected from the menu bar */
/* process menu option that was selected */

?witch(Event.param)

case FILE EXIT ID: €

/* the@ useT wants to exit */
Done = TRUE;
break;

DeskMate applications should include the Run menu option and should use either the
fil_Lmenu_run or dlgbox_Run calls to display the Run File dialog box. For more information
about the fil_menu_run function, see the File I/O Examples in this section.

case FILE RUN ID:
/* thé usér wants to exit, then run another program */
if(dlgbox Run() == TRUE)
Done ="TRUE;

/* clear the dlgbox Run dialeg box from the screen */
vid move cursor(O * CHAR XEXT, 7 * CHAR YEXT);
vid—cleaT to bot(); - -

/* display the welcome message back on the screen */

Welcome Draw Message();
break; ~ -

Page 2-3

Evert parss)5 reburn cole ot mﬂgooﬂcml.

Every DeskMate application should include the About menu option and should use the
about_versions call to display the information about the application. This function provides
information about all appliactions currently in memory along with the application. This information
is useful when customers call with a problem.
case FILE ABOUT ID:
/* maKe the DeskMate library call to */

/* display an ABOUT... dialog box */
about _versions(&WelcomeAPPL VERSION);

/* clear the dialog box from the screen */
vid move cursor(0 * CHAR XEXT, 3 * CHAR YEXT);
vid~cleaF to bot(); - -

/* display the welcome message back up on the screen */
Welcome Draw Message();
break; ~ -

default:
break;

} /* end of switch on type of application event */
break;

Application Events, EVENT APPL, cause the application to turn over control to another process.
Applications which access the data file during operations should ensure that the file is on the disk
when running on a floppy system. The task switch or accessory may have caused the user to
swap disks. Make sure your data disk is in the driver before writing to the file.

The APPL ACCESS event is returned when the user chooses an accessory option from the F10
Accessories Menu. The dm_acc_run call is used to actually run the accessory. Applications
should always redraw their entire screen (and check the clipboard if they have an Edit Menu)
when returning from running an accessory.

case EVENT APPL :
switchT Event.param)

/* check for an accessory event */
case APPL ACCESS:
/* rufl the requested accessory */
dm_acc_run {(Event.x);

/* redraw the screen when the accessory is finished */
Welcome Draw Screen{);
break; — -

The APPL TASK SWITCH event is returned when the user chooses the Task Switch option from
the F10 Menu or uses the ALT+= accelerator. The dm_yield call is used to do the actual task
switch. Task switching is not allowed in all environments, the application must check the return
code and handle the return code appropriately as specified here.

Applications which use the Clipboard should check the Clipboard contents and enable Paste if
necessary. Applications using Page Setup should set the Page Setup information after a task
switch since the other application may have changed it.

/* check for a task switch event */

case APPL TASK SWITCH: .
/* atTemptTto execute a task switch */
TSReturnCode = dm yield();

if (TSReturnCode == DM NOT ALLOWED)
/* task switching not bEing allowed */
break;

if (TSReturnCode == DM OK)
/* The task switch Tas occurred so */
/* redraw the menubar and the screen */
Welcome Draw Screen();

Page 2-4

else

/* the yield {(task switch) failed */
/* there is bad trouble so exit program */

Done = TRUE;
break;
default:
break;
} /* end of switch on type of Command */
break;
default:
break;

} /* end of switch on type of event */

}
/* check to see if "EXIT" or "RUN" menu option has been selected */
while(Done != TRUE);

As you can see, even a simple application requires the processing of several types of user
events or actions during its execution.

/* inform the loaded resources that the application is exiting */

guf bind end{();

csrend (7
} exi€(0);

The last step before the application terminates is the freeing of the resources the application
used during its execution. The resources should be freed in the reverse order of the way they
were requested. The application then exits. Applications launched from the DeskTop will return
the user to the DeskTop when they exit. Applications launched from a runtime executive will
return the user to the DOS prompt when they exit.

Page 2-5

VIDEO.PDM

VIDEO.PDM is a slightly more advanced example of a DeskMate application. It introduces the
concept of device and world coordinates systems which DeskMate uses. The source to the
Video application is included in the SAMPLES\VIDEO directory.

#include "csrkeys.h" /* Core Services Resource keyboard header file */
#include "video.h" /* Application header file */
#include "videcdec.h" /* Application's function declarations */

The Video application includes the DeskMate header files it requires to compile, these files are
described in the preceding example, Welcome. The following is a brief description of the
additional files this application uses and why they are included in this example application.

The CSRKEYS . H file contains the key defines used in DeskMate.
The VIDEQ.H file contains the data structures and defines used by this application.
The VIDEODEC. H file contains the function prototypes for functions in this application.

Like the Welcome application, this application first binds to the resources it will use. Before
drawing the menu bar, Video sets the menus to their default configuration. It sets all of the
options in the Shapes Menu to an unchecked state and then checks the rectangle option.

/* check the first shapes menu item */

Video Uncheck Shapes Menu();

VideoShapesMENUITEM[RECT_INDEX].bChecked = MB_CHECKED;
Yoid Video Uncheck Shapes Menu{)

int i;

for{ i = 0; i < NUM SHAPES MENU ITEMS; i++

)
} VideoShapesMENUITEM[i]) bCheCked = MB UNCHECKED;

The Video Draw_Screen subroutine performs the same functions as Welcome's draw screen
routine.

/* Draw the main screen */
Video Draw_Screen();

This example uses a routine to draw objects in the work area. Notice that the routine is called to
draw a "default” object on the screen before the user does anything.

/* Draw the first "default" object */

Video Draw Object();
Several shapes are drawn by the routine, a rectangle, ellipse, line, and point. Each of these
graphics shapes as well as others are supported by the Video Manager in the CSR. All of the
functions use the world coordinate system to specify the location and size of the graphics object.
void Video_Draw_Object ()

int ExtX
int ExtY

CurrentX;
CurrentyY;

/* Set the line color attributes to make sure when the */
/* object below is drawn, it shows up on all videos */
vid_sét line attr(LINE SOLID, LINE_WIDTHI, COLOR3);

Page 2-7

switch(ShapeSwitch)

case SHAPE RECT ID:
ExtX += 5 *7CHAR XEXT;
ExtY += 1 * CHAR‘YEXT,
gld graw rect { CurrentX, CurrentY, ExtX, ExtY, VID NO FILL);
rea

case SHAPE ELLIPSE ID:
vid draw_ellipSe(CurrentX, CurrentY, 2 * CHAR XEXT, 1 * CHAR YEXT,
VID NO_| FILL):
break;

case SHAPE LINE ID:
ExtX += 5 *"CHAR XEXT;
ExtY += 1 * CHAR YEXT;
gld graw line(CurrentX, CurrentY, ExtX, ExtY);
red

case SHAPE POINT 1ID:
vid draw_point (CurrentX, CurrentY);
bredk;
}

Video Draw Coordinates();

}

The status area at the bottom of the work area shows the values of the Current X and Y location
of the cursor on the screen in World Coordinates. Notice that sprintf is used to build the
display string and that the actual displaying of the text is done with vid_put_string. Some video
modes, Hercules for instance, do not support text operations when in graphics mode. Because
DeskMate applications operate in a graphics mode, text out operations need to be done through
the video manager to guarantee the text will appear in all video modes.

void Video Draw_Coordinates ()

char TempBuf [60];

/* Display the value for CurrentX & CurrentY */
vid move cursor(O * CHAR XEXT, 24 * CHAR YEXT);
sprintf ("TempBuf, "World Coordlnate X = %d", CurrentX);
vid put strlng(TempBuf);
vidTputTstring(" "y; /* clear out old number */
vid move cursor(30 * CHAR XEXT, 24 * CHAR YEXT };
sprlntf(TempBuf "World COordinate Y = %d™, CurrentY);
vid put strlng(TempBuf)i
vid_put”string(" "); /* clear out old number */

}

Like Welcome, this application also uses an event loop to do its processing. Only the events
specific to this example are discussed here. Notice, this example was built by using the
Welcome template.

switch({ Event.param)

case FILE UPDATE ID:
/* redraw th@ screen at the users request */
Video Draw Screen();
Video Draw_Object();
break7

These are commands received from the user. Adding to and subtracting from the current X any
Y world coordinate.

/* 13 world coordinates = 1 pixel */
case WORLD NEXTX ID:

CurrentX += I;

Video Draw Ob]ect(),

breaky

Page 2-8

case WORLD NEXTY ID:
CurrentyY += T;
Video Draw Object(),
break?

case WORLD PREVX ID
CurrentX -=

Video Draw Object(),
breaky

case WORLD PREVY ID:
CurrentY -= I;
Video Draw Object();
break7

This modifies header information in the edit field so that 4 characters are allowed to be entered.
After the dialog box is run the number entered in the edit field is added to or subtracted from the
Current X or Y and the current object is drawn at the newly specified location.

case WORLD NEXTNX ID:
VideoFRAME [0]TpString = VideoWorldNextNXStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect xext = (4 * CHAR XEXT);
VideoEDITFIELD. pBuffer VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if{ DLGReturnCode == VideoOKtag)

CurrentX += atoi(VideoWorldEDITFIELDBuff);
Video Draw Object();

}
break;

case WORLD NEXTNY ID:
VideoFRAME (0] TpString = VideoWorldNextNYStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
%f(DLGReturnCode == VideoOKtag)

CurrentY += atoi(VideoWorldEDITFIELDBuff };
Video Draw_Object();

}
break;

case WORLD PREVNX ID:
VideoFRAME [0]) TpString = VideoWorldPrevNXStr;
VideoEDITFIELD.header.maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtag)

{

CurrentX -= atoi{ VideoWorldEDITFIELDBuff);
Video Draw_Object();

}
break;

case WORLD PREVNY ID:

VideoFRAME[0]TpString = VideoWorldPrevNYStr;
VideoEDITFIELD. header maprect.xext = (4 * CHAR XEXT);
VideoEDITFIELD.edit maprect xext = (4 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoWorldEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();

if(DLGReturnCode == VideoOKtag)

CurrentY -= atoi(VideoWorldEDITFIELDBuff);
Video Draw_Object();

}
break;
The device commands use the video routines to get the next and previous world coordinates,
then displays the object.
case DEVICE NEXTX ID:
CurrentX = vid next nwcx{ CurrentX);

Video Draw Object(),
break7

Page 2-9

case DEVICE NEXTY ID:
CurrentY = vid next nwcy(CurrentY);
Video Draw Object ()7
break7 -

case DEVICE PREVX ID:
CurrentX = vid prev nwcx{ CurrentX);
Video Draw Object ()7
break7 -

case DEVICE PREVY ID:
CurrentY = vid prev nwcy(CurrentY);
Video Draw Object ()7
break? -

These modify the header info in the edit field of the dialog box so that only 3 characters are
allowed to be entered. After the dialog box is run successfully the number the user entered is
again sent to the get prev and next world coordinate video routines then the object is displayed.

case DEVICE NEXTNX ID:
VideoFRAME [0] .PString = VideoDeviceNextNXStr;
VideoEDITFIELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoDeviceEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtag)

CurrentX = vid nextn nwex(CurrentX

atoiTvideoDeviceEDITFIELDBuff));
Video Draw_Object();

}
break;

case DEVICE NEXTNY ID:
VideoFRAME [0].pString = VideoDeviceNextNYStr;
VideoEDITFIELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoDeviceEDITFIELDBuff;
DLGReturnCede = Video Process Dialog{();
if{ DLGReturnCode == VideoOKtag)

CurrentY = vid nextn nwcy(CurrentY

atoiTvideoDeviceEDITFIELDBuLE));
Video Draw_Object();

}
break;

case DEVICE PREVNX ID: . _
VideoFRAME[0] .pString = VideoDevicePrevNXStr;
VideoEDITFIELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoDeviceEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtag)

CurrentX = vid prevn nwcx(Curren

X
atoiTvideoDeviceEDITFIELDBUfE));
Video Draw Object();

break;

case DEVICE PREVNY ID:
VideoFREME[0] .pString = VideoDevicePrevNYStr;
VideoEDITFIELD.header.maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.edit maprect.xext = (3 * CHAR XEXT);
VideoEDITFIELD.pBuffer = VideoDeviceEDITFIELDBuff;
DLGReturnCode = Video Process Dialog();
if(DLGReturnCode == VideoOKtag)

CurrentY = vid prevn nwcy(CurrentY,
~ atoi{videoDeviceEDITFIELDBuff) };
Video Draw_Object ()

}
break;

Page 2-10

These commands uncheck all items in the shapes menu, then check the appropriate one.

case SHAPE RECT ID:
Video UnchecCk Shapes Menu();
VldeoShapesMENUITEM[RECT INDEX] bChecked

ShapeSwitch = SHAPE RECT ID;
Video Draw Object ()7
break7;

case SHAPE ELLIPSE ID:
Video Uncheck Shapes Menu();
VldeoShapesMENUITEM[ELLIPSE INDEX] . bChecked
= MB_CHECKED;

= MB_CHECKED;

ShapeSwitch = SHAPE ELLIPSE_ID;
Video Draw Object ()7
break7

case SHAPE LINE ID:
Video UncheCk Shapes Menu{);
VideoShapesMENUITEM{TINE INDEX] bChecked

ShapeSwitch = SHAPE LINE ID;
Video Draw Object(),
break;

= MB CHECKED;

case SHAPE POINT ID:
Video Uncheck Shapes Menu();
VideoShapesMERUITEM[POINT INDEX] bChecked

= MB CHECKED;
ShapeSwitch = SHAPE POINT ID; -
Video Draw Object (}7
break?

default:
break;

} /* end of switch on type of application event */
break;

This routine, Video Process Dialog processes a dialog box. The first thing it does is pull up
the push buttons (for subsequent run) and initialize the focus index (defines which component
should should have the focus when the dialog box is run). The cursor offset is set so that any
data in the edit field will be selected. (Safeguard requirement). It then attempts to save the part
of screen that will be covered by the dialog box. Draws and runs the dialog box, until OK or
CANCEL is returned. Then redisplays the given portion that was saved, or redraws the entire
screen, then returns the OK or CANCEL return to the calling routine.

%nt Video Process Dialog()

unsigned int DLGReturnCode;
unsigned int BufferSize;
char *pBufferSize;

int RedrawFlag;

VideoPUSHBUTTON([0] .bState = PB UP;
VideoPUSHBUTTON([1].bState = PBTUP;
VideoDIALOG BOX.focus index = U
VideoEDITFIELD.cursor offset EF SELECT ALL;
BufferSize = vid get Buffer 51ze(—

VideoFRAME[0] .maprect.xorg - (2 * CHAR XEXT),
VldeoFRAME[O].maprect.yorg - (2 * CHARTYEXT),
VideoFRAME (0] .maprect.xext + (3 * CHARTXEXT),
VideoFRAME [0] .maprect.yext + (3 * CHARTYEXT));

if(BufferSize == CSR ERROR }
RedrawFlag = TRUET

RedrawFlag FALSE;
Buffer51ze = (char *)malloc(BufferSize);
f(pBufferSize == (char *)0
RedrawFlag = TRUE;
else
RedrawFlag = FALSE;

else

Page 2-11

vid get screen(VideoFRAME([0].maprect.xorg - (2 * CHAR XEXT),
-~ VideoFRAME (0] .maprect.yorg - (2 * CHARYEXT),
VideoFRAME{0] .maprect.xext + (3 * CHAR XEXT),
VideoFRAME [0] .maprect.yext + (3 * CHAR YEXT),
) pBufferSize); -
glg_draw(&VideoDIALOG BOX);
)
} DLGReturnCode = dlg run{ &VideoDIALOG BOX);
while((DLGReturnCode != VideoCANCELtag)
&& (DLGReturnCode != VideoOKtag) };
vid put screen{ VideoFRAME[0].maprect.xorg - (2 * CHAR XEXT),
- - VideoFRAME [0] .maprect.yorg - (2 * CHAR YEXT),
VideoFRAME[0] .maprect.xext + (3 * CHAR XEXT),
VideoFRAME[0] .maprect.yext + (3 * CHARYEXT),

pBufferSize);
free(pBufferSize);
if(RedrawFlag == TRUE)
Video Draw Screen{();
else - -
Video Draw Coordinates{();
return(DLGReturnCode);

Page 2-12

High-Level File 1/0 - FILEIOHL.PDM

FILEIOHL.PDM is an example of a DeskMate application which uses the GUF resource to

perform its high-level file input and output functions. The source to the FilelOHL application is
included in the SAMPLES\FILEIO\HIGH directory.

#include "fileiohl.h" /* Application header file */
#include "filehdec.h" /* BApplication function declarations */

extern int dmerrno;

int main(argc, argv)
int argc;
?har *argv(];

Allocates memory for the file so that it may be loaded.

/* ask the system for at most 60K of memory */
for(pFileioBufferPointer = 0, FileioBufferSize = 0xF000;
pFileioBufferPointer == 0; FileioBufferSize -=0x100)
pFileioBufferPointer = (unsigned char *)malloc(FileioBufferSize);

/* add in the extra 100 hex bytes that was taken out the last time around */
FileioBufferSize += 0x100;

Initialize Datafile Pointers so we can use the High Level fil_menu_* calls. These calls require a
pointer to a datafile structure.

FileioDATAFILE.pStart = pFileioBufferPointer;
FileioDATAFILE.pTop = pFileioBufferPointer + FileioBufferSize;

/* Check to see if a filename was passed */
[* to this grogram on the command line */
%f(argce >)

This next section checks the command line for a filename to load, copies the command line
filename into the Datafile structure, and validates the syntax of the filename, then attempts to
open the file passed on the command line.

/* put the command line ar? into the programs datafile struct */
/* so that the filename will be displayed on the title line */
/* and the data file can be opened and loaded */

strcpy(FileioDATAFILE.pFilename, argv[l]);

/* verify the file name passed (Run command may have been used) */
if (valid filename{ FileioDATAFILE.pFilename,
- FileioDATAFILE.pExtension } == FALSE)

/* A message appears when the filename is invalid */
/* the filename was invalid so clear the file name */
/* in the structure so it will disPlay "(Untitled)" */
strcpy (FileioDATAFILE.pFilename, "" };

else
{

/* open and load the validated file name file */
FileloDATAFILE.FileSize = fil menu open{ &FileioDATAFILE,
- - OPEN NO DIALOG),
) NV
}
else
{

If the file did not load successfully then the application should disable the save menu option of
the file menu. For example:
/* disable save menu item because there */

/* is no file currently in memory *
FileMenuItems[SAVE INDEX].bEnabled = DISABLED;

Page 2-13

The FileioHL Draw_Screen routine draws the main application screen and enters the main
event loop, this is the same functionality as the Video and Welcome applications.

/* Draw the main screen */
FileioHL Draw_Screen();

/* initialze the do while control flag */
Done = FALSE;

é* Process the user inputs and actions */
0

{
/* read an event from an input device */
event_read(&Event);

switch(Event.msg)
case EVENT COMMAND :

/* check to see if an item was selected from the menu bar */
/* process menu item that was selected */

?witch(Event.param)

Processing the "New" command takes the application to a no file loaded state. The application
should clear memory, and have no file loaded. Once again DISABLE the save menu option on
the FILE menu. fil_menu_new initializes the structure filename to a null string so that when
ttl_put_data_name is called "(Untitled)" will be displayed. The screen is then redrawn.

case FILE NEW ID:
/* the usér wants to clear out all previously */
/* entered data, and go to a default new state */
FileReturnCode = fil menu new(&FileioDATAFILE);
%f(FileReturnCode == TRUE)
/* everything went well and we need to */
/* go to a default/no file loaded state */

/* disable save menu item because there */
/* is no file currently in memory */
FileMenuItems[SAVE_INDEX].bEnabled = DISABLED;

/* Display file name on the title line */

/* Sending a pointer to a null string */

/* will display "Untitled" */ .

ttl put data name(FileioDATAFILE.pFilename);

%f(FileReturnCode == DM ERROR && dmerrno ==
UMERRﬁNONDESTRUCTIVE_ABORT)

/* the file could not be saved but the current */
/* data is not destroyed so just redisplay the */
/* current file status information */

}
FileioHL Draw Status Info{);
break; - -

The open section prompts the user with the standard open dialog box for them to select a file.
(The filename is syntatically correct since valid_filename has been called). If the return from
fil_Lmenu_open is DM ERROR then the application should check dmermo for
DMERR INVALID FILE TYPE to make sure the file being loaded belongs with that application.
Some applications may accept more than one file type (like this one). If the FileType element

Page 2-14

is NULL then the FileType will not be checked (no verify). Then the application should attempt
to reopen the file (with no dialog box, since the filename is already correct). On a successful
load, the save menu option in the file menu is enabled. The filename is displayed via the
ttl_put_data_name call.

case FILE OPEN ID:
/* th& useTf wants to open a new file */
/* and load it into memory *
TempFileSize = fil menu open{ &FileioDATAFILE,
, - - OPEN WITH DIALOG);
if(TempFileSize == DM ERROR)} - -

}f(dmerrno == DMERR INVALID FILE_TYPE)

/* the file type is not an ASCII Text file */
strcpy(FileioDATAFILE.pFilename,
FileioDATAFILE.pTmpfil);

/* do not do any checking on the file type */
FileioDATAFILE.FileType = CSR _NULL;

/* Force the open with no dialog and load it */
TempFileSize = fil menu open(&FileioDATAFILE,
- il OPEN NO DIALOG };
FileioDATAFILE.pEnd = pFileioBufferFointer
+ TempFileSize;

/* set the FileSize in the datafile structure */
FileloDATAFILE.FileSize = TempFileSize;

/* save the current FileSize for later use */
/* see DMERR NONDESTRUCTIVE ABORT in open */
OldFileSize = TempFileSize;™

/* a filename exists so enable save & saveas */
FileMenultems[SAVE INDEX].bEnabled = ENABLED;

/* Display the apglication's new data */
/* file name on the title line */

} ttl put data_name(FileioDATAFILE.pFilename);

The new file could not be loaded. So save the old filesize.
}f(dmerrno == DMERR _NONDESTRUCTIVE_ ABORT)
/* the previous file is intact but the */
/* new file could not be opened/loaded */

/* reset the file size to the old file */
FileioDATAFILE.FileSize = OldFileSize;

} /* redraw the current file info*/

When the error DMERR DESTRUCTIVE_ABORT is returned it means that when the new file was
trying to be loaded, it corrupted the one that was currently in memory so the application has
nothing to go back to. Therefore the appliction should go to a a default or no file loaded state.
Display file name on the title line. Sending a pointer to a null string will display "Untitled".
'%f(dmerrno == DMERR DESTRUCTIVE_ ABORT)
ttl put data name(FileioDATAFILE.pFilename };
/* set the FileSize in the datafile structure */

/* it should be equal to DM ERROR */
FileioDATAFILE.FileSize = T@mpFileSize;

Page 2-15

Redraw the screen.

/* erase the open dialog box */

vid_move cursor(0, op_row - (2*CHAR YEXT));
vid_clea¥ to bot(); -

/* redraw the current file status informtion */
FileioBL Draw Status Info();

?reak;

Successful file open.

/* Display the apglication‘s new data */
/* file name on the title line */
ttl put_data name(FileioDATAFILE.pFilename);

/* there is now a filename so enable save & saveas*/
FileMenultems[SAVE INDEX].bEnabled = ENABLED;

/* erase the open dialog box */
vid move cursor(0, op row - (2*CHAR_YEXT));
vidTcleaY to_bot(); -

The application must update the Datafile structures with the size of the file (returned from open)
to the pointer pEnd to the end of the data

/* set the end to equal the file size */
FileioDATAFILE.pEnd = pFileioBufferPointer
+ TempFileSize;

/* set the FileSize in the datafile structure */
FileioDATAFILE.FileSize = TempFileSize;

/* save the current FileSize for later use */
/* see DMERR DESTRUCTIVE ABORT in cpen above */
OldFileSize = TempFileSiZe;

/* redraw the current file status information */
gileioHL_Draw_Status_Info();
reak;

Saves the applications data. It is not critical to this application that the save function be
successful, your specific application would probably go though more error checking than does
this simple example. Once the file was saved, the application should redraw the main screen.
case FILE SAVE ID:
/* the useT wants to save the current file */

if(fil menu save(&FileioDATAFILE) == TRUE)
/* The data was successfully saved */

/* redraw the current file status informtion */
FileioHL Draw_Status Info();
break; ~ - -

The Save As function should perform the same functionality as the save function as described
above. The only difference is that Save As should prompt the user to enter a new filename for
the data to be save into. After prompting the user the application saves the data in the new
filename, displayes the new filename on the title line portion of the screen, and redraws the main
or default screen.

case FILE SAVE AS ID:
/* theé useYr wants to save the current */
/* file with a different name */
if(fil menu saveas(&FileioDATAFILE) == TRUE)
/* The data was successfully saved */

/* clear the save as dialog box from the screen */
vid move cursor{ 0, sa row - (2*CHAR YEXT) };
vidTclear to_bot(); - -

Page 2-16

/* Display the application's new data */
/* file name on the title line */
ttl put data name(FileioDATAFILE.pFilename);

/* redraw the current file status informtion */
FileioHL Draw Status Info();
break; ~ - -

The user requested to exit the application. This application does not have any cleanup work to
do. If your application does it would to it here. The fil_menu_quit routine prompts the user to
save any data changed sinces the last change. If the user answers CANCEL then
fil_menu_quit returns FALSE to the application so that it will not exit.

case FILE EXIT ID:
/* setup for exit */
if(fil menu quit(&FileioDATAFILE) == TRUE)
Dong = TRUE;
else
FileioHL Draw Status Info{);
break; - - -

The fil_menu_run routines functions in the same way as fil_menu_quit, with the exception that
the user may press CANCEL at the Run File dialog box, which would cancel the run/quit function.
It the user does not canel either option then the application must setup to exit, as described
above. fil_menu_run will then run another application instead of returning to the DeskTop or to
DOS.

case FILE RUN ID:

/* sefup Tor exit then call fil menu_run */

if({ fil menu run{ &FileioDATAFILE) == TRUE)
Done = TRUE;

?lse
/* the user cancelled the run action or there */
/* was an error when trying to save the file */
/* Reguardless the run dialog box needs to be */
/* cléared from the screen *
vid move cursor{ 0, FIO RUN YORG - (2*CHAR YEXT));
vidTcleaT to bot(); -~ -
FileioHL DraWw Status_Info();

}
break;

The about_versions call is the standard DeskMate way to display version information to the
user. This routine is also used in the Video and Welcome applications.
case FILE ABOUT ID:
/* maKe a D&skMate library call to */

/* display an ABOUT... dialog box */
about _versions{ &FileioHLAPPL VERSION);

/* clear the about dialog box from the screen */
vid move cursor{ 0, 3 * CHAR YEXT);
vidTcleaT _to_bot(); -

/* display the File Status info back on the screen */
FileioHL Draw Status Info();
break; ~ - -

The modified option is an application specific function that allows the user to change the status of
the Modified flag in the Datafile sturcture. This is not a normal application function, it is done
here so that the programmer can see the messages that are displayed to the user once a "real”
file is modified.
case OPTION MODIFIED ID:
/* this~option allows the user to change */

/* the status of the modified flag */
if(FileioDATAFILE.Modified == TRUE)}

/* mark the file as "un-modified" */
FileioDATAFILE.Modified = FALSE;

Page 2-17

/* un-check the menu item */
OptionMenultems[MODIFIED INDEX].bChecked
- = MB_UNCHECKED;

else
{

/* mark the file as "modified" */
FileioDATAFILE.Modified = TRUE;

/* check the menu item */
OptionMenultems{MODIFIED INDEX].bChecked
, - = MB CHECKED;

}

/* display the File Status info back on the screen */

FileioHL Draw Status Info();

break; ~ - -
The redraw screen option the programmer the ability to redraw the entire screen. This option is
not usually available to the users, but it's functionality is all but required for most DeskMate
applications.

case OPTION REDRAW ID:
/* this~option—allows the user to */
/* redraw the screen at any time */

/* display the File Status info back on the screen */
FileioHL Draw Screen{();
break; ~ -

} /* end of switch on type of application event */
break;

while(Done != TRUE);

}
/* check to see if VEXIT" or "RUN" menu item has been selected */
/* give back the memory previously malloc'd */ ‘

This application needs to release the memory previously allocated. This could have been done in
the exit and run functions above, but it was done in this application here to conserve code. After
the memory has been released, the bindings to the resources are released, and the application
exits. ‘

free(pFileioBufferPointer });

/* inform the loaded resources that the application is exiting */
quf bind end{();

csr end(7T;

exit (0);

} /* end of Fileio main module */

The FileloHL Draw Screen function displays the application name and the name of the
datafile, and draws the file status information. This is very similar to the other two sample
applications discussed earlier.
void FileioHL Draw_Screen()

/* Display the application's name on the title line */

ttl put app name("FileioHL");

/* Display the application's data file name on the title line */
/* Sending a pointer to a null string will display "Untitled" */
ttl put data name(FileioDATAFILE.pFilename);

FileioHL Draw Status Info({();
) _ _ _

FileioHL Draw_Status_Info displays the information in the Datafile structure.

Page 2-18

Low-Level File I/O - FILEIOLL.PDM

FILEIOLL.PDM is an example of a DeskMate application which uses the GUF resource to
perform its Low-level file input and output functions. The source to the FilelOLL application is
included in the SAMPLES\FILEIOQ\LOW directory.

#include "fileioll.h"™ /* Applicatjon header file */
#include "fileldec.h" /* Application function declarations */

To keep the code simpler and clearer this application uses the Datafile structure, even though the
low level routines do not require it.

int main{ argc, argv)
int argc;
?har *argv([];

The buffer pointers are initialized ,the command line is checked, the filename is copied into the
Datafile structure the same as they were in the high level example discussed earlier. Then the
file is opened via an application defined routine FileioLL Load DataFile which functions
similar to the DeskMate function fil_menu_open. The main screen is drawn and the application
enters the main event loop.

/* initialize pStart and pEnd in DATAFILE structure */
FileioDATAFILE.pStart = FileioDATAFILE.pEnd = pFileioBufferPointer;

/* initialize pTop to point to the last available byte of memory */
FileioDATAFILE.pTop = (pFileioBufferPointer + FileioBufferSize) - 1;

/* Check to see if a filename was ?assed */
/* to this grogram on the command line */
}f(argc >)

/* put the command line ag? into the programs datafile struct */
/* so that the filename will be displayed on the title line */
/* and the data file can be opened and loaded */

strcpy (FileioDATAFILE.pFilename, argv(l]);

LDReturnCode = FileioLL Load DataFile(OPEN NO DIALOG);
if{ LDReturnCode == FALSE) — -
/* the file could not be opened */
/* disable save menu item because there */
/* is no file currently in memory */
1 FileMenultems[SAVE INDEX].bEnabled = DISABLED;
else
/* the file open was successful so enable */
/* the save & save as menu items */
} FileMenultems[SAVE INDEX].bEnabled = ENABLED;
else
/* disable save menu item because there */
/* is no file currently in memory */
FileMenultems[SAVE_INDEX].bEnabled = DISABLED;

/* Draw the main screen */
FileioLL Draw_Screen();

/* initialze the do while control flag */
Done = FALSE;

/* Process the user inputs and actions */
do

/* read an event from an input device */
event read(&Event);

Page 2-19

switch(Event.msg)

case EVENT COMMAND :
/* check t0 see if an item was selected from the menu bar */
/* process menu item that was selected */

switch(Event.param)

The new operation checks the status of the moditied flag in the Datafile structure and prompts
the user to save changes (if necessary). Once the file is successfully saved, the application
Initializes all variables to go to a new untitled state. The filename is displayed and the File /O
main screen is redrawn.

case FILE NEW ID:

/* the usér wants to clear out all previously */
/* entered data, and go to a default new state */

/* assume the user will not cancel this operation */
CancelFlag = FALSE;

/* check the DataFile modlfled flag */
}f(FileioDATAFILE.Modified == TRUE)

SCReturnCode = msgbox SaveChanges();
%f(SCReturnCode == MSG_YES)

/* the user wants to save the current file */
FileioLL Save DataFile(

FileioDATAFILE.pFilename);
CancelFlag = FALSE;

if (SCReturnCode == MSG NO)
/* the user does not want to save the */
/* current file, but wants to continue */
/* the new operation */
CancelFlag = FALSE;

if(SCReturnCode == MSG CANCEL)
/* the user wants tG cancel the new operation */
CancelFlag = TRUE;

1f(CancelFlag == TRUE)

FlleloLL Draw_Status_Info();
break;

/* reinitialize variables to a "new" state */
FileioLL New State();

/* Display file name on the title line */

/* Sending a pointer to a null string */

/* will display "Untitled" */

ttl put data name(FileioDATAFILE.pFilename);

FileioLL Draw_Status_Info();

break;
FileioLL Load DataFile is an application written subroutine which provides the same
functlonallty to the application as the DeskMate function fil_menu_open.
FileioLL Load Datafile returns FALSE if the open was unsuccessful, so that the
application may handle any errors which may occur, for this example the save option is

Page 2-20

DISABLED on load datafile failure. If everything is successful the new filename should be
displayed on the title line, the open dialog box should be removed from the from screen and the
main default screen should be drawn.

case FILE OPEN ID:
/* th& useT wants to open a new file */
/* and load it into memory */
LDReturnCode = FileioLL Load DataFile(
) - - OPEN WITH DIALOG });
}f(LDReturnCode == FALSE) - -

/* the load was unsuccessful */
/* there is still no filename so disable save */
FileMenultems[SAVE INDEX].bEnabled = DISABLED;

else

/* the load was successful */
/* there is now a filename sc enable save */
FileMenultems[SAVE INDEX].bEnabled = ENABLED;

/* Display the apglication's new data */
/* file name on the title line */
ttl put data name{ FileioDATAFILE.pFilename };

/* erase the open dialog box */
vid move cursor{ 0, op row - (2*CHAR YEXT));
vid_cleaT to bot(); - -

/* redraw the current file status informtion */
FileioLL Draw Status_Info(};
break; ~ - -

FileioLL Save DataFile is an application written subroutine which provides the same
functionality to the application as the DeskMate fil_menu_save call. Once the file is successfully
save the main default screen should be redrawn.
case FILE SAVE ID:

/* the useT wants to save the current file */

/* a filename should already exist, since this */

/* option is grayed unless there is a valid file name */

SReturnCode ="FileioLL Save DataFile(

“FileioDATAFILE.pFilename);
if(SReturnCode == FALSE)

/* the save was unsuccessful */
}

else

/* The data was successfully saved */

/* redraw the current file status information */
EileioLL_Draw_Status_Info();
reak;

digbox_SaveAs is a DeskMate function which displays a dialog box for the user to enter the new
filename, so the data in memory can be saved to that new file. Once again the application
defined routine FileioLL_Save_Datafile is called and functions the same as it did for the save
function described above. After the save is successful, the application must remove the Save As
dialog box from the screen, display filename on title line and redraw the main default screen.

Page 2-21

case FILE SAVE AS ID:
/* th& useT wants to save the current */
/* file with a different name */
SAReturnCode = dlgbox SaveAs({ &FileioDATAFILE,

SaveAsFilename);
%f(SAReturnCode == TRUE)

/* it is ok to try and save the file */
SReturnCode = FileioLL Save DataFile(

) SaveAsFilename);
if{ SReturnCode == FALSE)
/* the save was unsuccessful */
else
} /* The data was successfully saved */
}
else
{

/* the user decided not to save the file */
/* or there was an error from dlgbox SaveAs */

/* clear the save as dialog box from the screen */
vid move cursor(0, sa_row - (2*CHAR_YEXT));
vid_clear to bot(); -

/* Display the application's new data */
/* file name on the title line */
ttl put data name(FileioDATAFILE.pFilename);

/* redraw the current file status informtion */
gileioLL_Draw_Status_Info();
reak;

The exit function provides the same function in this application as it did in the FileioHL application
described earlier. The difference being that this application must prompt the user to save
changes if the data has been modified since the last save, where this was automatic in the
FileioHL application. The low level application must provide much more functionality and error
checking as you can see. If the user wants to save the data there must be a filename, so the
application must prompt the user and process all possible combinations of error and return

codes.
case FILE EXIT ID:
/* sefup for exit */
1f(FileioDATAFILE.Modified == TRUE)

SCReturnCode = msgbox_ SaveChanges();

?witch { SCReturnCode)

case MSG YES: :
/* tHe user wants to save current file */
if(FileioDATAFILE.pFilename == '\0'
{ /* there is not a current filename */
/* prompt the user for a filename */
SAReturnCode = dlgbox Saveas(
&FileToDATAFILE,
SaveAsFilename };
}f(SAReturnCode ==

/* try and save the file */
SDReturnCode =FileioLL Save DataFile
(SaveAsFil&name);
if(SDReturnCode == FALSE)
/* the save failed */
break;

' Page 2-22

else

/* the user did not specify a */
/* name to save the file into */
break;

}
else
{ /* there is a current filename */

SDReturnCode = FileioLL Save Datafile({
SaveAsFilename)7
if(SDReturnCode == FALSE)
/* the save failed */
break;

}

/* close the currently open file */
FileioLL Close File();

Done = TRUE;

break;

/* The user does not want to save the file */
/* but wants to continue the exit operation.*/
case MSG NO:
/* tHe user does not want to save file */
/* close the currently open file */
FileioLL Close File({);

Done = TRUE;
break;

case MSG CANCEL:
/* tHe user wants to cancel the new */

default:
break;

} /* end of switch on SReturnCode */
} /* the modified flag is FALSE */

/* close the currently open file */
FileioLL Close File(};

/* set flag so the application will exit. */
Done = TRUE;

break;

} /* end of main module */

Page 2-23

FileioLL Load DataFile is an application written subroutine that provides the save
functlonallty to the application as fil_menu_open. It checks to see if the user needs to be
prompted to get a filename if so digbox_Generic (a DeskMate generic open dialog box function)
is called. The filename is validated for syntax errors, if bad this routines goes to a new state and
exits FALSE to the calling routine. Then the the file is opened. If the application specified a
FileType the specific bytes in the file must be checked. The first four are critical. The first byte
contains the FileType, the next three are the extension of the file. A compairson is done on the
all of these bytes, if they do not match, the application goes to a "new" state and return FALSE to
the calling function. The next eighteen bytes are assumed to be the page setup information, they
are read in and DeskMate's internal structures are initialized. After the remainder of the file is
read in the top of memory pointer pEnd is updated, this is the same as the high level example.

int FileioLL Load DataFile(bVerbose)
?nt bVerbose?
int Successful;
char TempBuf(4];
long LSReturnCode,
int ReturnCode;
int DGReturnCode;
unsigned int NumBytesRead;
un51gned int VFReturnCode,
unsigned int FAEReturnCode;
unsigned int FilReturnCode;

/* have a p051tve outlook, assume we will be successful */
Successful = TRUE;

/* determine if the dialog box needs to be displayed */
}f(bVerbose == OPEN WITH DIALOG)

/* run the open dialog box to get the data file name */
DGReturnCode = dlgbox Generic(FileioDATAFILE.pExtension,

FileioDATAFILE. pFllename, FIO OPEN);
}f(DGReturnCode == FALSE)}

/* the data file name was not received */
FileioLL New State();

Successful ="FALSE;

return(FALSE);

else

/* the following valid filename & file already exists */
/* calls are made by tHe dlgbox GeneriT call so we do */
/* not have to execute them for the case above */

/* validate the file name passed (Run command may have been used) */
VFReturnCode = valld filename(FileioDATAFILE.pFllename,

FileioDATAFILE.pExtension);
if(VFReturnCode == FALSE)
{

/* A message appears when the filename is invalid */
/* The filé name was invalid so clear the file name */
/* go to a "new" state */

FileioLL New State({();

Successftil ="FALSE;

return{ FALSE);

Page 2-24

/* check to make sure the file already exists on disk */
FAEReturnCode = file already exists({ FileioDATAFILE.pFilename);
%f(FAEReturnCode =="FALSE ¥‘

/* The file does not already exist, so */

/* display a message box to tell the user */
Msg.pMessage = "The file does not already exist";
Msg. gStrlng "File error";

Msg.btn_combo = MSG_COMBO OK,

msg run{ &Msg);

/*"8o to a "new" state */

FileioLL New State();

Successful ="FALSE;

return({ FALSE);

}

/* Open and load the validated file name file */
FilReturnCode = fil open(FileioDATAFILE.pFilename,

OPEN_FOR_UPDATE | EXCLUSIVE);
%f(FilReturnCode == DM_ERRCR)}

/* The open failed */

fil open_error msg{);

/* o to~a "new" state */
FlleloLL New State();
Successfil ="FALSE;
return(FALSE);

}
else

/* The open was successful so before the FileHandle is set */
/* to the new FileHandle (via FilReturnCode) the old file */
/* needs to be closed to avoid having too many files open */
/* at a single time. In this manner the most files open at */
/* one time will be two. */
FileioLL Close File{();

} FileioDATAFILE FileHandle = FilReturnCode;

/* Get the file size of the o?en file so we can check to see */
/* if we have enough room to load the file.*/
/* get the size of the file by seeking to the end */
LSReturnCode fil lseek(FileioDATAFILE.FileHandle, 0L, 2);
?f(LSReturnCode == -1L)

/* Tell user about any error via a DeskMate call.*/

fil lseek error msqg{();

/* go to @ "new" sfate */

FileioLL New State();

Successful ="FALSE;

return({ FALSE);

}
else
FileioDATAFILE.FileSize = LSReturnCode;

/* reposition the file E01nter to the beglnlnnlng of file before read */
LSReturnCode = fil 1see (FileioDATAFILE.FileHandle, 0L, 0);
%f(LSReturnCode == -

fil lseek error msg{);
SuccCessful = FALSE;

/* go to a "new" state */
FileioLL New State();
return{ FALSE);

/* the check for the file size will come after checking */
/* for, and/or reading in file header information */

/* Check for DeskMate file header information */
/* Assume ascii file *
if(FileioDATAFILE.FileType != 0)

/* Initialize temp buffer to -1's */
TempBuf [0} = TempBuf[l] = TempBuf{2] = TempBuf[3] = OxFF;

Page 2-25

/* Read the first byte of the file which */

/* is, in this case, the FileType */

FilReturnCode = fil read{ FileiloDATAFILE.FileHandle, TempBuf, 1);
}f(FilReturnCode == DM ERROR)

/* the file could not be read */
fil read error msqg();
/* go to~a "new" State */
FileioLL New State();
Successful ="FALSE;

| return{ FALSE);

/* Verify FileType */
%f(TempBuf[0] '= FileioDATAFILE.FileType)

/* FileType is not correct */
/* go to a "new" state */
FileioLL New State();
Successful ="FALSE;

} return{ FALSE);

/* Read in the applications extension, the next */

/* three bytes of the file header information */

FilReturnCode = fil read(FileioDATAFILE.FileHandle, TempBuf, 3);
if(FilReturnCode == DM ERROR)

{
/* file could not be read */
fil read error msqg();
/* o to~a "new" state */
FileioLL New State();
Successful ="FALSE;

} return(FALSE);

/* Compare what was returned from the read */

/* above to what is in the DATAFILE structure */

ReturnCode = strncmp{ FileioDATAFILE.pExtension, TempBuf, 3);
%f(ReturnCode !'= 0)

/* go to a "new" state */
FileioLL New State({();
Successful ="FALSE;

} return{ FALSE);

/* Get the page setup information from DeskMate */
ptd_get page(&PGSetup, &PGMode);

/* The next 18 bytes are printer setup information */
/* Read them in.” */
FilReturnCode = fil read(FileioDATAFILE.FileHandle,

(char *)&PGSetup, 18);
if(FilReturnCode '= 18)
{

/* file could not be read */
fil read error msg();

/* §o to~a "neW" state */
FileioLL New State();
Successful = FALSE;

return{ FALSE);

}

/* Initilize the page setup in DeskMate to be */
/* the same as the files page setup information */
ptd _set page(&PGSetup, &PGMode);

/* Adjust the size of the file for the file too large calculation */
FileioDATAFILE.FileSize -= FILE HEADER_LENGTH;

Page 2-26

/* Read in the rest of the file, */

/* or jump to here if the file tgpe was NULL. */

/* Check to see if the size of the file will fit into memory */
%f({unsigned)FileioDATAFILE.FileSize > FileioBufferSize)

/* The file will not fit into the allocated buffer */
/* so display a message box to the user *
Msg.pMessage = "The file is too large to fit into allocated memory";
Msg. gStrlng "File error";
Msg.btn combo = MSG_COMBO_| OK'
msg run{ &Msg);
/*go to a "new" state */
FileioLL New State();
Successful ="FALSE;
\ return(FALSE);

/* Read file into allocated buffer */
NumBytesRead = fil read(FileioDATAFILE.FileHandle, FileioDATAFILE.pStart,

. FileioBufferSize);
%f(NumBytesRead == DM_ERROR)

/* The file could not be read */
fil read error msg();

/* go to~a "new" State */
FileioLL New State();

Successflil ="FALSE;

return(FALSE };

se
/* Make pEnd point to the last byte of data */
FileioDATAFILE.pEnd = (FileioDATAFILE.pStart + NumBytesRead) - 1;

if{ Successful)
return(TRUE };
else
\ return{ FALSE);

FileioLL Save DataFile closes the file currently open, opens the new file, and saves the
data in memory to) the new file. pNewF1ilename is a pointer to the filename to be written. It may
be the same as the current file, as in the case of save, or it may be a completely new filename as
in the case of saveas. A check is made for DeskMate header information so that it may be
skipped on the writing of data from memory. DeskMate's page setup and page mode information
for this application is read in and written to the file. After the file is successfully written the
Datafile structure is updated.

int FileiolL Save DataFile(pNewFilename)
char *pNewF'ilename;
{

int Successful;

long LSReturnCode,

unsigned int FilReturnCode;
unsigned int NumBytesWritten;
unsigned int MemorySize;

/* assume this function will succeed */
Successful = TRUE;

/* close the current file */
FileioLL_Close File();

/* initialize the FileioDATAFILE structure with the new name */
FileicDATAFILE.pFilename = pNewFilename;

Open the new validated file name file with create, the file is opened with create in case the file
has gotten smaller, although it should never happen in this example, it is necessary to show what
procedure an application should actually have to do. Open with create to capture possible lost
disk space on a smaller file.

Page 2-27

FilReturnCode = fil create(FileioDATAFILE.pFilename);
}f(FilReturnCode == DM _ERRCR }

/* the create failed */
fil create error msg();
/* o to a "new" state */
FileioLL New Statel);
Successful ="FALSE;
return{ FALSE);

}
else

/* initialize the file handle so it may be */
/* closed before it is reopened below */
FileioDATAFILE.FileHandle = FilReturnCode;

| FileioLL Close File();

/* the filename validation was done by dlgbox SaveAs */
/* or in the case of save, in FileioLL Load DataFile */
FilReturnCode = fil open(FileioDATAFILE.pFIlename

. OPEN FOR UPDATﬁ | EXCLUSIVE);
}f(FilReturnCode == DM ERROR) - T

/* the open failed */
fil open error msg{);
Successful = FALSE;
return{ FALSE);

}

else

FileioDATAFILE.FileHandle = FilReturnCode;
/* Check for DeskMate file header information */

/* Assume ascii file */
%f(FileioDATAFILE.FileType != 0)

/* the header information must be written out */

/* write the FileTXpe */ o
FilReturnCode = fil write(FileioDATAFILE.FileHandle,

}f(FilReturnCode != 1)

/* the write failed */
fil write error msg{();
/* Go to 3 "new™ state */
FileioLL New State{();
Successfdl ="FALSE;

| - return({ FALSE);

/* write the Extension */
FilReturnCode = fil write(FileioDATAFILE.FileHandle,
‘ - FileioDATAFILE.pExtension, 3);
if(FilReturnCode != 3)
{

/* the write failed */
fil write error msg{);
/* Go to 3 "new™ state */
FileioLL New State({();
Successful ="FALSE;

| return(FALSE };

/* get the page setup information from DeskMate */
ptd_get_page(&PGSetup, &PGMode) ;

/* write the Page Setup information */
FilReturnCode = fil write(FileioDATAFILE.FileHandle,

(char *)&PGSetup, 18);
%f(FilReturnCode !'= 18)

/* the write failed */
fil write error msg();

/* §o to 3 "new™ state */
FileioLl New State();
Successfll ="FALSE;
return{ FALSE);

Page 2-28

& (FileioDATAFILE.FileType), 1);

/* calculate the size of the data in memory */
MemorySize = (unsigned)((FileioDATAFILE,pEnd -
FileioDATAFILE.pStart) + 1);

/* write the data in_memery to a disk file */

NumBytesWritten = fil wrlte(FlleloDATAFILE FileHandle,
FileioDATAFILE.pStart, MemorySize);

}f(NumBytesWritten == DM ERROR)

/* the write failed */
fil write error msg();
/* o to @ "new™ state */
FlleloLL New State(),
Successful ="FALSE;

\ return(FALSE);

else
} FileioDATAFILE.FileSize = NumBytesWritten;
FileioLL Close File closes the currently open file, if DM ERROR is in the FileHandle

element it indicates there is no file currently open.

YOid FileioLL Close File{)
int FilReturnCode; /* used for the fil close call */

/* check to see if the file handle is valid */
%f(FileioDATAFILE.FileHandle != DM_ERROR)

/* close the file */
FilReturnCode = fil close{ FileioDATAFILE.FileHandle);
if(FilReturnCode == DM ERROR)

/* T said close the"file! */

fil force close{ FileioDATAFILE.FileHandle);
FileioDATAFILE.FileHandle = DM ERROR;

}

FileioLL New State takes the application to a "New" state. It first closes the file, sets the
Datafile structure filename element to a NULL, initializes the modified flag in the Datafile structure
to FALSE, sets the Datafile structure end and start pointers to be equal, zeros the file size, and
disables the save menu option.

Yoid FileioLL New Statef()

/* close the existing file */
FileioLL Close File(J;

/* NULL the current file name */
*FileioDATAFILE.pFilename = '\0';

/* set the modified flag to FALSE */
FileioDATAFILE.Modified = FALSE;

/* reset end pointer to equal start pointer */
FileioDATAFILE.pEnd = FileioDATAFILE.pStart;

/* reset FileSize to equal Zero */
FileioDATAFILE.FileSize = CSR_NULL;

/* dlsable save menu item because there */

/* is no file currently in memory *
FileMenuItems[SAVE INDEX].bEnabled = DISABLED;

Page 2-29

Database File /0 - DBCARS.PDM

DBCARS.PDM is an example of a DeskMate application which uses the Database resource to

perform its file input and output functions. The DBCars application is included on the
SAMPLES\DATABASE directory.

#include "dmdb.h" /* Database Resource header file */

#include "dbcars.h" /* Application data header file */

#include "dbdecs.h" /* BApplication function prototypes header file */
main{argc, argv)

int argc;

char *argv(];

This application uses a database file structure which is used to store the file, table, and record
information for the current file.

DB DATAFILE DB Datafile; /* Database Datafile structure */
DBDATAFILE *pDB Datafile; /* Pointer to the Databse Datafile structure */

This application binds to the entire database, since it creates files and reads and updates data in
the files. For more information about binding to specific databse resources, see the Desk and
Database Manager sections of the DeskMate Technical Reference.

if (db bind init() == CSR_ERROR)

/* failure to bind to the Database resource */
quf bind end();
csr_end(T;

/* Assume untitled state */
DBCars_SetUntitled(pDB Datafile);

First we check the arguments to determine if a file name was passed to the application. If an
argument was passed, then the file name is validated and its full path name is generated. The
database expects full path names for its data file names. The file is then opened.

/* Check for a file argument */
if (argc > 1

/* First check for a valid file name, call issues error message */
if (valid filename(argv[l], "DBF") == TRUE)

/* Expand the name, database requires full path name */
Path Expand{ argv(l], pDB Datafile->Filename);

/* Open the file passed without displaying the dialog box */
DBCars OpenFile(pDB_Datafile, NO PROMPT);

} /* had arguments passed on the parameter line */

/* Draw the main screen */
DBCars_DrawScreen(pDB Datafile);

When we have a file opened, the first record in the file is displayed. When in the "Untitled" state,
a blank screen is displayed.

if (pDB Datafile->hFile >= 0)
0 _

/* We have file, display the first record in the file */
ModelMENUITEM([O] .bEnabled = ENABLED; /* Add */
CarsMENUBAR.bRedraw = MB NO REDRAW;

mb draw(&CarsMENUBAR); ~—

DBCars ShowModel (pDB Datafile, FIRST RECORD);

Page 2-31

/* initialze the do while control flag */
Done = FALSE;

This application also has a standard event processing loop. The fil_menu_* callss used in the
File 110 examples are not used here, database calls, db_mgr, are instead used to do the File /0
functions.

é* Process the user inputs and actions */
o
{

/* read an event from an input device */
event_read (&Event);

switch(Event.msg)

case EVENT COMMAND :
/* cheTk to see if an item was selected from the menu bar */

/* process menu item that was selected */
switch{ Event.param)

case FILE NEW ID:
/* th€ usér wants to clear out all previously */
/* entered data, and go to a default new state */
DBCars_NewFile(pDB Datafile);

if (pDB Datafile->hFile >= DB OK)
/* Created file, there are no records */
/* Enable Add Mcdel only, disable others */
DBCars_SetNoRecords ();

/* Display the new file name, set menu */
DBCars DrawScreen(pDB Datafile);
break;™ -

case FILE OPEN ID:
/* theé useT wants to open a new file */
/* and load it into the edit field */
DBCars_OpenFile(pDB Datafile, PROMPT);

/* Display the new file name,display the first record */
DBCars DrawScreen(pDB Datafile ?;
if (pDB Datafile->hFiTe >= 0)

ModelMENUITEM([0] .bEnabled = ENABLED; /* Add */
CarsMENUBAR.bRedraw = MB_NO_REDRAW;

mb draw (&CarsMENUBAR); —

DBCars_ShowModel (pDB Datafile, FIRST_RECORD);

}
break;

case FILE EXIT ID:
/* setup for exit */
Done = TRUE;
break;

Database applications use the digbox_Run function to prompt the user for the application
information for the File Run option. :

case FILE RUN ID:
/* seftup Tor exit theg Ea}l dlgbox Run */
U _

if(dlgbox Run() ==
Done ="TRUE;

/* disglay the screen which will clear the */
/* dlgbox Run dialog box from the screen */
DBCars DrawScreen(pDB Datafile);

break;™ -

case MODEL ADD ID: .
/* the useT wants to add a new model to the file */

DBCars AddModel (pDB Datafile);
break;™ -

case MODEL MODIFY ID:))
/* theTuser wants to change a models information */

DBCars ChangeModel { pDB Datafile);
break;™ -

Page 2-32

case MODEL DEL ID:
/* the useT wants to change a models information */
gBCais_DeleteModel(pDB Datafile);
reak;

case VIEW FIRST ID:
/* the user wants to display the first record */
gBCaiS_ShowModel(pDB_Datafile, FIRST RECORD);
reak;

case VIEW PREV_ID: .
/* th@ useT wants to display the prev record */
gBCaﬁs_ShowModel(pDB Datafile, PREV_RECORD);
reak;

case VIEW NEXT ID:
/* the useTr wants to display the next record */
gBCais_ShowModel(pDB_Datafile, NEXT RECORD });
reak;

case VIEW LAST ID:
/* the useT wants to display the last record */
gBCais_ShowModel(pDB Datafile, LAST RECORD);
reak;

case VIEW ALL ID:
/* th€ user wants to display all records */
DBCars Report (pDB Datafile };
break;™ -

} /* end of switch on type of application event */
break;

case EVENT APPL :
switchT Event.param)

/* check for an accessory event */
case APPL ACCESS:
* rull the requested accessory */
dm_acc_run (Event.x };

Database applications should always verify that the correct data file disk is in the drive after
running an accessory or when returning from a task switch when the user is accessing a data file
on a floppy drive. The GUF functions is_floppy and file_already_ exists can be used to
determine if the data file is on a floppy and if the file is on the disk. If the file is not on the disk,
use dm_file_search to prompt the user for the file. ’

/* redraw the screen when the accessory is finished */
gBCais_DrawScreen(pDB_Datafile };
reak;

/* check for a task switch event */

case APPL TASK SWITCH:
/* dmyield is the call to allow task switch to occur */
TSRetuUrnCode = dm yield();

if { TSReturnCode == DM NOT ALLOWED)
/* tisk switching not b€ing allowed by DESK.EXE */
break;

if (TSReturnCode == DM OK)
/* The task switch has occurred so */
/* redraw the menubar and the screen */
1 DBCars _DrawScreen{ pDB Datafile);
else
/* the yield (task switch) failed */
/* there is bad trouble so exit program */

Done = TRUE;
break;
default:
break;
} /* end of switch on type of Command */
break;
default:
break;

} /* end of switch on type of event */

Page 2-33

}
/* check to see if "EXIT" or "RUN" menu item has been selected */
while(Done != TRUE);

/* Close the file */
}f { pDB_Datafile->hFile >= 0)

db mgr({ CLOSE TABLE, pDB Datafile->hTable);
db™ mgr(CLOSE_FILE, pDB Datafile->hFile);

/* inform the loaded resources that the application is exiting */
db bind end{);

gut bind end(),

csrend(7;

exit(0);

} /* end of Cars main module */

Database applications must provide their own version of the new file dialog box which is very
similiar to the Save as dialog box used by the fil_menu_save_as function. The CREATE_FILE
database function is used to create the data file. The application must then build its file format by
creating data tables in the file. Once the file structure is created, data can be added.

void DBCars NewFile(pDatafile)
?B DATAFILE *pDatafile;

db table table

db~columns columns[NUM COLS);
db~index index;

int erc;

register int i;

register db_columns *pcol = &columns(0];

/* Save off the current files name in case of problems */
strcpy(pDatafile->TmpFilename, pDatafile->Filename);

/* Prompt user for name for the New file */

erc = DBCars NewFileDlg(pDatafile->Filename);

if (erc == FALSE)
/* User cancelled the box, current file is okay */
return;

/* Create the new file for the user */
erc = db_mgr(CREATE FILE, pbPatafile->Filename);

%f (erc >= DB OK)

/* Created the new file, close the current file if we have one */
if (pDatafile->hFile >= DB OK)
i -

db mgr(CLOSE TABLE, pDatafile->hTable);
db™ mgr(CLOSE"FILE, pbatafile->hFile);

}

/* save off the file handle, clear the table handle */
pDataflle >hFile = erc;

pDatafile->hTable = -1;

}
else

/* we received an error condition on the create */
DBCars_DisplayError(erc);

/* Reset application to previous state */
strcpy (pDatafile->Filename, pDatafile->TmpFilename);
return;

Page 2-34

' Now that the file is created, the data tables which make up the file are created. Each row in table
will correspond to a data record, each golumn is a field in the record. All records within a table
have the same format.

/* the table is a

tandard, non-user-definable table */
table.handle

pDatafile->hFile;

S
table.tbl name = sModel;
table.update type = ADD COLUMN;
table.n columns = NUM COLS;
table.n"items = NUM COLS;
table.cols = pcol;

/* £ill in the column information */
for (1i=0; i < NUM | COLS; i++, pcol++)

pcol->col name = colnames[i];
pcol->col”length = collengthfi];
pcol->col”type = coltypeé[i];
pcol->new name = colnames[1];
pcol->col pattr = 0;
pcol->unigue flag = 0;

}

/* Add the data table to the file, returning its handle */
erc = db mgr{ CREATE TABLE, &table);
if (erc™>= DB OK) —
pDatafile-ShTable = erc;
?lse

/* we received an error condition on the create */
DBCars DisplayError(erc);

/* Close and delete the partially created file */
db mgr(CLOSE FILE, YDataflle >hiile);
deTete file(pDatafl e->Filename);

/* Set application for the Untitled state */
DBCars SetUntitled(pDatafile);

‘ returny
}

Once a table is created, its sont information is defined. The default sort order is the order the
records are added or modified.

/* Build the table index - sort by model and color */
index.table handle = pDatafile->hTable;

index.index name sModelIndex;

index.pSortUrder sortorder;

nm

erc = db mgr{ DEFINE INDEX, &index);
%f (erc™!= DB CK }

/* we received an error condition on the index create */
DBCars DisplayError (erc);

/* Close and delete the partially created file */
db_mgr(CLOSE TABLE, pDatafile->hTable);
db”mgr(CLOSE"FILE, pbatafile->hFile);
deTete file(pDatafile->Filename);
/* Set application for the Untitled state */
DBCars SetUntltled(pDataflle),
return
} /% we weren't able to create the table index */

/* Close the table which is locked from data access */
db mgr (CLOSE_TABLE, pDatafile->hTable);

Now that the data file format is established, the application is ready to add data to the file.

/* Reopen the table for data access, go to Untitled state on an error */
DBCars_OpenTable(pDatafile);

} /* end of Cars New File module */

Page 2-35

Database applications use the dialog box function digbox.Generic used by til_menu_open to ‘
prompt the user for the file to open. This function returns the full path name of the file to be
opened. Now the file and its data table are opened for data retrieval and updating.

void DBCars OpenFile(pDatafile, bPrompt)
DB _DATAFILE *pDatafile; /* Pointer to database file structure */
int bPrompt; /* PROMPT or NO_PROMPT for file name */

{
int erc = TRUE;

/* Save off the current files name in case of problems */
strcpy(pDatafile->TmpFilename, pDatafile->Filename);

if (bPrompt == PROMPT)
/* Let user choose another file */
erc = dlgbox_Generic("DBF", pDatafile->Filename, FIO OPEN);

if (erc == FALSE)
/* Cancelled the Open File dialog box, previous file is okay */
return;

/* open the named datafile */
erc = db_mgr(OPEN_FILE, pDatafile->Filename);

%f { erc >= DB OK)

/* Opened the new file, close the current file if we have one */
if (pDatafile->hFile >= DB OK)

/* close the table first, then the file */
db mgr (CLOSE TABLE, pDatafile->hTable);
db"mgr{ CLOSE_FILE, pbatafile->hFile);

}

/* save off the new file's handle, clear the table handle */
pDatafile->hFile = erc;

pbDatafile->hTable = -1;

/* Open the data table, go to Untitled state on an error */
DBCars_OpenTable(pDatafile);

se
/* Could not ggen the new file, reset to previous state */
strcpy (pDatafile->Filename, pDatafile->TmpFilename);

} /* end of Cars Open File module */

This function opens the fields data table for reading and updating.
void DBCars OpenTable{ pDatafile)

DB DATAFILE™ *pDatafile;

{ ~
table access open table;
int ~ erc;”

/* set table information required to ogen the table and open it */
open table.file handle pDatafile->hFile;

open”table.tbl name sModel;

open_table.acc€ss level = DATA ACCESS;

erc = db_mgr(OPEN_TABLE, &opefl_table });

if (erc < DB OK)
i |

/* we received an error condition on the open */
DBCars_DisplayError(erc);

/* Close the file since we can't access data */
db mgr{ CLOSE FILE, pDatafile->hFile);

/* Set application for the Untitled state */
DBCars_SetUntitled(pDatafile);

} /* we weren't able to open the table for data access */
else
phatafile->hTable = erc;

} /* end of Cars Open Table Function */

Page 2-36

This dialog box function resembles the Save as dialog box. It prompts the user for a file name
and validates and expands the file name for the application.

int DBCars NewFileDlg(filename)
%har *fiTename;

int retval;

/* Raise all buttons, reset the edit field, reset focus */
NewFilePBs{0).bState P;
NewFilePBs[1].bState PB_UP;

/* Clear the data in the buffer, reset editing origin since this field */
/* scrolls (left/right), reset the cursor and select offsets. */
filename buff{0] = '\0%;

NewFileEF.edit maprect.xorg = 0;

NewFileEF.cursor offset ;

NewFileEF.select offset = 0;

n

/* Make the edit field the current component */
NewFileDlg.focus index = 0;

dlg draw(&NewFileDlg);

do
retval = dlg run{ &NewFileDlg);
if (retval == OK tag)

if (valid filename(filename_buff, "DBF") == TRUE)
/* Expand the file name oUt */
) Path Expand{ filename buff, filename);
else

{
/* Message is displayed informing user of error *;

/* Select the name and allow user to retry *
NewFileEF.edit maprect.xorg = 0;

NewFileEF.cursor offset = EF SELECT _ALL;
NewFileEF.select offset = 0;7

NewFileDlg.focus index = 0;

/* Raise the OK pushbutton and redraw the components */
NewFilePBs[0].bState = PB UP;

NewFlleRedraw[O] DLG REDRAW

NewFileRedraw[l] = DLG:REDRAW;

/* Re-run the dialog box so user can try again */
retval = EF_tag;

}
} /* validate the file name entered */
} while (retval != OK tag && retval != CANCEL tag);

if (retval == OK tag)
return{ TRUE 7;
else
return(FALSE);

} /* end of Cars New File Dialog Box function */

This sample does its record data entry through a dialog box for simplicity. Most applications
allow the user to enter the information directly on the screen. See the COMPS example

application for more information.

void DBCars AddModel (pDatafile)
?B DATAFILE *pDatafile;

int , ret;
register int i, 3;

/* Reset the dialog box components for the next executlon of the box */
OptionsOK.bState = OptionsCancel.bState = PB_RAISED

CarModelEdit.cursor offset = 0;

CarModelEdit.select offset = 0;

*CarModelEdit.pBuffgr = '\0';

OptionsDialog.focus index = 0;

Page 2-37

ExteriorColorGroup.selected
ExteriorColorGroup.cursor =
for (1 = 0; 1 < 6; i++)
OptionsCheckBox[i]}.bState = CB_UNCHECKED;
for (1 = 0; 1 < OptionsDialog.nCmps; i++)
OptionsRedrawFlag[i] = DLG_REDRAW;

:0-
CSR' DEFAULT;

dlg draw(&OptionsDialog);
do
ret = dlg run(&OptionsDialog);
} while (ret !'= ID OK && ret != ID CANCEL);

Once the user OK's the data entered, the information is transferred to the record column values
buffers defined for the recd data structure.

}f (ret == ID OK)
/* Add the new record to the database file */

/* fill in the record's info in the record structure */
recd.table _handle = pDatafile->hTable;

/* Name is ready in the record values, set the color/options states */
/* Save selected state of exterior color radio button group */
itoa(Exterlongierroup.selected, recd vals[l].col value, 10);

/* Save a 1/0 for each check box option */
for (1 =0, j=2; 1< 6; i++, j++§

if (OptionsCheckBox[i].bState == CB CHECKED)
1 strcpy (recd vals[]].col value, ™1");
else
strcgy(recd vals[j].col_value, "0" };
} /* for each check Box option, Save the state */

Once all the data is transferred to the recd structure, the actual ADD_ROW or add record call is
made. This record's record number is returned or an error if the record could not be added.
/* add the record, saving the record number for the new record */
pbatafile->rec_num = db_mgr(ADD ROW, &recd);
if (pDatafile=>rec num < DB OK T

/* didn't add r@cord, diSplay error message */
DBCars_DisplayError(pDatafile->rec_num);

} /* User okayed the box, add the new record */

The new record is displayed. Notice that the currently displayed record number is stored in the
database file structure for use by the other record routines.
if (pDatafile->rec num > 0)
/* Display the Current records information */

DBCars ShowModel(pDatafile, FETCH RECORD);
else - -

/* clear dialog box off the screen */
vid move cursor(0, 4 * CHAR YEXT);
vidTclear to_bot(); -

}
} /* end of Cars Add Model function */

The same dialog box used by Add is used to change a records data. Again, the information is
transferred to the data base structure and the UPDATE_ROW functions call is made to actually
change the record information.

void DBCars_ChangeModel { pDatafile)
?B_DATAFILE“*pDataflle;

int, . ret, erc;
register int i, I

/* Reset the dialog box components for execution of the box */
CarModelEdit.cursor offset = 0;

CarModelEdit.select offset = EF SELECT ALL;

OptionsOK.bState = UptionsCanceI.bStat® = PB RAISED;

Page 2-38

OptionsDialog,focus index = 0;
for { i = 0; i < OptionsDialog.nCmps; i++)
OptionsRedrawFlag[i] = DLG_REDRAW;

dlg draw(&OptionsDialog };
do
ret = dlg run(&OptionsDialog);
} while (ret != ID OK && ret !'= ID CANCEL);
%f (ret == ID OK)

/* Name is ready in the record values, set the color/options states */
/* Save selected state of exterior color radio button group */
itoa(ExteriorColorGroup.selected, recd vals(l].col value, 10);

/* Save a 1/0 for each check box option */
for (1 =0, J =2; 1< 6; 1++, J++)

if ({ OptionsCheckBox[i].bState == CB CHECKED)
1 strcpy(recd vals([j].col value, ™1");
else
strcgy(recd vals[j].col value, "0");
} /* for each check Box option, Save the state */
/* Fill in the record's info in the update record structure */
update recd.table handle = pDatafile->hTable;
update recd.rec num = pDatafile->rec num;
/* update the r&cord, we are not using data validation in this example*/
erc = db mgr(UPDATE ROW, &update recd);
if (exrcc<’DB OK) ~ -
DBCars_DiSplayError(pDatafile->rec num);

} /* update the record changes */

if (pbatafile->rec num > 0) ,)

/* Display the CTurrent records information */
) DBCars_ShowModel (pDatafile, FETCH RECORD);
else

/* Remove the dialog box */
vid move cursor(0, 5*CHAR YEXT);
} vidTclear_to bot(); -

} /* end of Cars Change Model function */

This function deletes the current rocord and displays the information for the next record or
informs the user that all records have been deleted.

void DBCars DeleteModel (pDatafile)
?B_DATAFILE‘*pDataflle;

db delete delete recd;
int erc; ~

/* fill in information abou the record to delete */
delete recd.table handle pDatafile->hTable;
delete recd.rec_nium , Datafile->rec num;
delete recd.num _query lines ;

delete recd.queTy line array = NULL;

erc = db mgr(DELETE ROW, &delete recd);
if (erc™== DB OK || erc == DB NO ROWS SELECTED)
{ _ Y _

nmounnn

/* Remove previous records information from the screen */
vid move cursor(0, 4 * CHAR YEXT);
vid_cleaT_to bot();

/* Inform user and set menus for empty file state */

DBCars DisplayMsg{"All records have been deleted.");
DBCars”SetNoRecords () ;

Page 2-39

else
if (erc < DB OK)
DBCars DiSplayError{ erc);
else -

/* we have a new current record */
pDatafile->rec num = erc;
DBCars ShowModel(pDat?flle, FETCH _RECORD);

} /* have 3 next record *
} /* end of Cars Delete Model function */
This function does single record fetching to get the data to display for a record. When a record
number is not provided then a directional {first, next, etc.) fetch is made.

void DBCars ShowModel(pDatafile, type fetch)
DB DATAFILE *pDatafile;

int type_fetch;

{
int erc;
register int i, 3;
char *pData;

/* Setup the View Menu - make some assumptions on the result */
%f (type fetch == FIRST RECORD)

ViewMENUITEM[0] .bEnabled = DISABLED; /* First */

ViewMENUITEM(1].bEnabled = DISABLED; /* Prev */

ViewMENUITEM({2] .bEnabled = ENABLED; /* Next */

ViewMENUITEM[3] .bEnabled = ENABLED; /* Last */
} /* we know we are going to the start */

else
%f { type fetch == LAST RECCRD)

ViewMENUITEM(0] .bEnabled

ViewMENUITEM[1] .bEnabled

ViewMENUITEM[2] .bEnabled DISABLED; /* Next */

ViewMENUITEM(3]. bEnabled DISABLED; /* Last */
} /* we know we are going to the end */

ENABLED; /* First */
ENABLED; /* Prev */

wotoun

/* Will almost always have more than one record */
ViewMENUITEM[4] .bEnabled = ENABLED; /* All */

/* Fetch the current records data */

get recd.table handle = pDatafile->hTable;
get”recd.rec_num pDatafile->rec num;
erc = db mgr{ type fetch, &get_recd); ™
pDatafil@->rec num = get recd.Tec_num;

All the possible error condmons are handled and the View Menu is changed to reflect the position
of this record in the file.
?witch(erc)
case DB OK:
/* Tetrieved a record, not the first or */
/* last so enable all aglng options */
if (type fetch != FIRST RECORD && type fetch != LAST_RECORD)
{ _ _

for (i = 0; i < NUM VIEW MENU ITEMS; i++)
ViewMENUITEM{i] “bEnabled = ENABLED;

}
break;

case DB FIRST RECORD:
/* This i the first record */

ViewMENUITEM[0] .bEnabled = DISABLED; /* Pirst */
ViewMENUITEM[l].bEnabled = DISABLED; /* Prev */
ViewMENUITEM[2] .bEnabled = ENABLED; /* Next */
ViewMENUITEM{3] .bEnabled = ENABLED; /* Last */

break;

case DB LAST RECORD:
/* This is the last record */

ViewMENUITEM(0] .bEnabled = ENABLED; /* First */
ViewMENUITEM([1].bEnabled = ENABLED; /* Prev */
ViewMENUITEM{2] .bEnabled = DISABLED; /* Next */
ViewMENUITEM[3] .bEnabled = DISABLED; /* Last */

break;

Page 2-40

case DB NO RECORDS:
/* TheFe are not any records in the file */
ViewMENUITEM{4].bEnabled = DISABLED; /* A1l */

case DB ONLY RECORD:
/* This TIs the only record */

ViewMENUITEM{0] .bEnabled = DISABLED; /* First */
ViewMENUITEM[1].bEnabled = DISABLED; /* Prev */
ViewMENUITEM[Z].bEnabled = DISABLED, /* Next */
ViewMENUITEM[3] .bEnabled = DISABLED; /* Last */
break;

default:

DBCars DlsplayError(erc),
pDatafile->rec_num = -1;
return;

}

ModelMENUITEM[1] .bEnabled

ENABLED; /* Change */
ModelMENUITEM[2] .bEnabled

ENABLED; /* Delete */

/* redraw the application menubar to change valid options */
CarsMENUBAR.bRedraw = MB_NO REDRAW;
mb_draw (4CarsMENUBAR); ~

%f (erc == DB_NO_RECORDS)

/* Clear the screen, there isn't any information to display */
vid move cursor{ 0, 3 * CHAR YEXT);
vid cleaT to bot(),

| retirn;

The data is transferred to the dialog box data buffers for a possible modification of this record.

/* Set the current records options in the dialog box for a change */
pData = get_recd.buffer;

/* First copy over the model name, then the color selection */
strcpy (CarModelBuffer, pData };

pData += strlen(pData) + 1;

ExteriorColorGroup.selected = atoi(pData);

pData += strlen(pData) + 1;

/* Now set each of the Option check boxes */
for (1 0; 1 < 6; i++ ?

/* If a 1 was saved, box is checked, otherwise 1t is unchecked */
OptionsCheckBox[i].bState = (atoi(pData) == 1)

CB CHECKED : CB UNCHECKED;
pData += strlen(pData) + 1; -

/* Now display the information on the screen:*/
vid move cursor{ 0, 3 * CHAR YEXT);
vidTcleaT to bot(),

vid move cursor{ 5 * CHAR XEXT, 5 * CHAR YEXT);
vid put_String("Model: ")7
vid put”string(CarModelBuffer):

vid move cursor{ 40 * CHAR XEXT, 5 * CHAR YEXT);
vidTput String("Color: ")7
vid put”string(OptionsStrings(2 + ExteriorColorGroup.selected] .pString);

vid move cursor(25 * CHAR XEXT, 7 * CHAR_YEXT);
vid put String("Options");
vidTset"line attr{ LINE SOLID LINE WIDTH1, COLOR3, COLOR4);
Vld draw_rect{ 10 * CHAR XEXT, 8 *~CHAR YEXT
46 * CHAR_XEXT, 15 * CHARTYEXT, VID NO FILL);

Page 2-41

for (1i=20, J=29;1<6; i++)

}f (OptionsCheckBox[i].bState == CB_CHECKED) ‘
vid move cursor{ 12 * CHAR XEXT, j++ * CHAR YEXT);
vid“put String(OptionsStrings[9 + i].pString);

} /* th& option 15 set, display its string */

} /* check the next option */

} /* end of Cars Show Model function */

This function demonstrates the use of a multiple record query to read in the file data to display in
a report format. The Fetch Records function handles the possible error conditions returned by
the SETUP_QUERY and MORE_RECORDS database functions. The data is returned in a
buffer which contains the record index for the records. See the Database Manager section of the
DeskMate Technical Reference for detailed information about the buffer format.

void DBCars Report (pDatafile)
?B_DATAFILE'*pDatafl e;

char *pData;
DB INDEX NODE *pIndex;
register—int i, 3;

int blast, k;
EVENT event;

/* query database for all records in the table */
query.table handle = pDatafile->hTable;
bLast = DBCars FetchRecords(SETUP QUERY, &query };
if (bLast == DM ERRCR) -
/* Don't display the report, had a problem */
return;

/¥ Display the regort - write title line */
vid move cursor(0, 3 * CHAR YEXT);
vid—clear to bot({(); -

vid move cursor(0, 3 * CHAR YEXT); -
vidTset Char attr(BOLD | UNDERLINE };
vid put~strifig(ReportStr);
vid_ set”char attr(NORMAL);

/* Display all records in the data file, one 20 record page at a time *
/* Data starts at the beginning of the buffer, record index starts at *
/* the end of the buffer (reset if more records are read).
/* Start the record index at the top, will be reset if more records *
/* need to be read from the file (bLast is DM ERROR). *
pIndex = (DB INDEX NODE *} (query.pBuffer + quéry.amt memory

. 0 - - - sizeof (DB_INDEX NODET);

i=0;

do

{
/* Clear the screen for a new page of records */
vid move cursor(0, 4 * CHAR YEXT);
vid_clear to bot(); -

for (j=4; 1 < query.rec_cnt && J < 24; i++, j++, pIndex--)

/* Point to this record's data */
pData = query.pBuffer + pIndex->offset;

vid move cursor(0, j * CHAR YEXT);

vid put String(pData }; - /* Model Name */

pData += strlen(pData) + 1;

vid move cursor(21 * CHAR XEXT, j * CHAR YEXT);

vid put §tring(0ptions$triﬁ%s[2+atoi(pDatE)].pString); /* Color */
phata += strlen(pData) + 1;

vid move cursor(29 * CHAR_XEXT, j * CHAR_YEXT);

Page 2-42

for (k = 0; k < 6; kt+)

if | at01(pData) == 1)

d put_string("X "y;
else
vid put string(" ");

pData += stTflen(pData) + 1;

} /* check the next option */
} /* display the next record in the buffer */

[* Either filled up a page or displayed all records */

if (i == query.rec_cnt)
}f (bLast)
vid move cursor(10 * CHAR XEXT, 24 * CHAR YEXT);

vidTput String("Last record is displayed.™);

else

/* Get a new batch of records in, reset index to start */

query.direction = DIRN NEXT;
bLast = DBCars FetchRecords(MORE_RECORDS, &query);

0;
pIndex = (DB _INDEX_NODE *) (query.pBuffer + query.amt_memory
~ - sizeof (DB_INDEX NODE) };

} /* read in more records */
} /* last record was displayed on this page */

?lse
vid move cursor(10 * CHAR XEXT, 24 * CHAR YEXT),
© vidTput String("Page Downto see more recdrds...");
do

/* wait for the page down key to be pressed */

event read(&event)
} while (T{(event.msg = =" EVENT _CHAR && event.param == EC_PAGE DOWN));

}./* there w1ll be another page of records to display */
} while (bLast == DM _ERROR);

} /* end of Cars Report function */

int DBCars FetchRecords(type fetch, pQuery)

int ge fetch;
?b_query *pQuéry;
int erc, ret = DM ERROR;

erc = db_mgr(type fetch, pQuery);

switch(erc)

case DB NO ROWS SELECTED:

case DB NORECORDS:
TheTYe are no records to display in the report */

/*
DBCars DlsplayMsg("Report is empty, no records to display");
ret = DM ERROR
break; ~
case DB FIRST RECORD:
/* First Theck for only on$ record in the buffer */

if (pQuery->rec cnt ==
ret = TRUE; —

else

/* only returned when the direction is DIRN PREV/DIRN_LAST *;

/* this p ?ram should never get this retur?l code
DBCars Dlsp ayMsg{"Database returned FIRST RECORD");

} ret = DM_ERROR;
break;
case DB LAST RECORD:
* Returfled when the direction is DIRN_NEXT/DIRN FIRST */

ret = TRUE;
break;

Page 2-43

case DB OK:
/* Unly one record fit in the buffer */
if (pQuery->rec cnt ==
ret = TRUE; —
break;

default:
/* A real error occurred during the record fetching */
DBCars DisglayError(erc);
ret = DM ERROR;

break;
} /* end of switch on error code returned by fetch */
return{ ret);

} /* end of Cars Fetch Record module */

This example simply displays the actual database return code. Your application should display
an informative message based on the error code. During development, displaying the error code
is beneficial to the programmer.

void DBCars DisplayError} err no)

%nt errno; * Database Error Number */
MSGBOX message;
char msg[90]);
char nbr buff([5};

/* Build a message informing user of the Database error number returned */
strcpy (msg, "Error number returned was: ");

itoa(err no, nbr buff, 10);

strcat (msg, nbr buff);

MSG COMBO OK;
"Database Error"™;
msgq;

message.btn combo
message.pSt¥ing
message.pMessage

hn

msg_run{ &message);
} /* end of Cars display database error message function */

void DBCars DisplayMsg(msg string)
char *msg_string; /* General Message String */

{
MSGBOX message;
message.btn combo

message.pStTing
message.pMessage

MSG COMBO OK;
"Informative Message or Error";
msg_string;

msg_run{ &message);

} /* end of Cars display message function */

It is very impontant to initialize file and table handles to negative values since 0 (zero) is a valid
handle. Likewise the record number should also be initialized to a negative number.

void DBCars SetUntitled(pDatafile)
?B_DATAFILE_*pDataflle;

register int i;

/* Reset variables in the agab?se File structure */

D
pDatafile->Filename[0] = "\0';
pDatafile->TmpFilename[0] = "\0';
pDatafile->hFile = DM ERROR;
pDatafile->hTable = DM ERROR;
pbatafile->rec_num = DM_ERROR;
/* Disable the Model and View menus completely, */

/* only the File options are available in this state */
for (1 =0; 1 < NUM MODEL MENU ITEMS; i++)
ModelMENUITEM[i] bEnabTed ="DISABLED;

= 0; i < NUM VIEW MENU ITEMS; i++)

for (1 ; \ »
ViewMENUITEM[i] .BPEnabTed ="DISABLED;

Page 2-44

/* Draw the application menubar in the base window */
CarsMENUBAR.bRedraw = MB NO REDRAW;
mb_draw(4CarsMENUBAR); ~—

} /* end of set untitled application state function */
YOid DBCars_SetNoRecords ()
register int i;
/* Disable the Model (except for add) and View menus completely */
ModelMENUITEM([0] .bEnabled = ENA
ModelMENUITEM[1] .bEnabled DISABLED
ModelMENUITEM[Z].bEnabled DISABLED;

for (1 = 0; i < NUM VIEW MENU_ITEMS; i++)
ViewMENUITEM{i].bEnabTed ="DISABLED;

woun

/* Draw the application menubar in the base window */
CarsMENUBAR.bRedraw = MB_NO REDRAW;
mb_draw (&CarsMENUBAR);

} /* end of set no records application state function */

/* end of dbcars.c */

Page 2-45

Page Printing - DEVICE.PDM

DEVICE.PDM is a template Deskmate application designed to demonstrate how the application
programmer utilizes the DeskMate high level print routines. These routines are identified by
beginning with "ptd_". See the DeskMate Technical Reference Print Manager for a complete list
of these high level Device calls. The source for the Device Print application is included in the
SAMPLES\PRINT\DEVICE directory.

*/
This application was written from the file /O examples.
#include "csrprt.h" /* Core Services Resource printer header file */
#include “"csrcfg.h" /* Core Services Resource configuration header file */
#include "device.h" /* Bpplication header file */
#include "devicdec.h" /* Applications function declarations */

extern int dmerrno;

One of the first things this application does is initialize DeskMate's internal structures for page
setup and page mode. These are defined in the .H file. Then a check is performed via an
application subroutine that determines if the print menu option on the file menu should be grayed.
Just as in the File I/O examples the command line is checked for a filename to be opened. This
application uses the high level fil_menu_* calls. The main event loop is then entered.

int main{ argc, argv)

int argc;
?har *argv(]};

int Done;

int TSReturnCode;

int FMReturnCode;

int DPReturnCode;

unsigned int TempFileSize;
unsigned int OldFileSize;

/* set DeskMate's current page setup information from my structures */
ptd set page(&DevicePGSETUP, &DevicePGMODE);

/* check to see if the Print menu item needs to be grayed */
Device Check For Print_Graying({();

/* Check to see if a filename was passed */
/* to this grogram on the command line */
}f(argc >)

/* open and load the validated file name file */
DeviceDATAFILE.FileSize = fil menu open{ &DeviceDATAFILE,
- - OPEN NO DIALOG);
) _NO_
}
else

/* disable save menu item because there */
/* is no file currently in memory *
FileMenultems[SAVE INDEX].bEnabled = DISABLED;

/* Draw the main screen and */
/* clear the it first */
Device Draw _Screen(CLEAR);

/* initialze the do while control flag */
Done = FALSE;

/* Process the user inputs and actions */
do

/* read an event from an input device */
event read(&Event);

Page 2-47

switch(Event.msg)

case EVENT COMMAND :
/* check to see if an item was selected from the menu bar */
/* process menu item that was selected *

switch(Event.param) .

The Page setup request runs DeskMate's page setup accessory. After the accessory is run the
page setup and page mode structures must be internally initialized, and the screen is redrawn.
case/FILE_PAGE SETUP ID:

* th€ useT want¥ to run page setup */
fil menu_page();

/* get the current page setup information from */
/* DeskMate into my page setup structures */
ptd get page(&DevicePGSETUP, &DevicePGMODE);

/* redraw the current file status information */
/* clear from the menu bar down first */

Device Draw Status Info(CLEAR);

break;™ - -)

Device Print DataFile is an application defined subroutine which prints the data currently

loaded in memory.
case FILE PRINT ID:
/* thé user wants to print the current file */
DPReturnCode = Device Print DataFile();
if{ DPReturnCode == TRUE) ~

} /* The data printed successfully */
else
/* The data could not be printed */

case EVENT APPL :
switchT Event.param)

/* check for an accessory event */
case APPL ACCESS:
/* run the requested accessory */
dm_acc_run (Event.x);

After an accessory is run it is necessary to check the printer information because if the setup
accessory is run the printer may be disabled or changed, so a check is made to determine if the
print option on the file menu should be grayed

/* setup could have been the accessory that was */

/* run so we need to check the printer setup info */
Device_Check~For_Print_Graying(?;

/* redraw the screen when the accessory is finished */
/* but do not clear the screen first *7/
Device Draw_Screen(CLEAR);

break;

/* check for a task switch event */
case APPL TASK SWITCH:

Before execution of a Task Switch the application must save the current page setup information
for this application. The reason for this is so that the information can be reset when returning
from the Task Switch operation.

/* get the current page setup information from */

/* DeskMate into my page setup structures so that */

/* I can reset the information upon returning */
ptd get page(&DevicePGSETUP, &DevicePGMODE);

Page 2-48

/* dm yield is the call to allow task switch to occur */
TSReturnCode = dm yield();

if (TSReturnCode == DM NOT ALLOWED)
é* t§5k switching n6t béing allowed by DESK.EXE */
reak;

The task switch was successful so redraw the screen, set the page setup information with the
information that was received on the ptd_get_page, before the Task Switch occurred. The Task
Switch'ed application may have altered the page setup information. It is the responability of each
application to set the page setup before trying to use it.

%f { TSReturnCode == DM OK)

/* The task switch has occurred so */

/* redraw the menubar and the screen */
Device Draw Screen{ NO CLEAR);

/* ress@t DeSkMate's cufFrent page setup */

/* information from my structures */

ptd_set page(&DevicePGSETUP, &DevicePGMODE);

Device Draw_Screen functions similar to all of the other example applications. The only

difference here is a flag to determine whether to clear the screen before redrawing the
applications main default screen.

void Device Draw Screen(bClear)
int bClear;™ -

{
if({ bClear == TRUE)
/* Clear the base window (defaults to the entire screen) */
vid clear_screen();

/* Draw the application menubar in the base window */
DeviceMENUBAR, Redraw = MB REDRAW;
mb_draw(&DeviceMENUBAR);™

/* Display the application's name on the title line */
ttl put_app name ("Device Print");

/* Display the application's data file name on the title line */
/* Sending a pointer to a null string will display "Untitled" */
ttl put_data name(DeviceDATAFILE.pFilename });

Device Draw_Status Info(NO_CLEAR);

Page 2-49

Device Print DataFile is an application subroutine which prints the data in memory. The
first thmg is to prompt the user for the device to be printed to. The device is then opened unless
cancel is returned from the device to print to dialog box. The menu bar is erased if the user
selected "print to screen”. The working variables are initialized so that the page to be printed will
be built with the correct line width and printed lines per page. Landscape and portrait are the only
modes supported. Each page is then built in memory and sent to the printer. The page is then
printed, if TRUE is sent then the last page is printed. The prompt between pages is automatically
handied by DeskMate in these high level page printing functions. When the flle has finished
printing the menu bar is redrawn if necessary and the device is closed.

%nt Device Print Datalile()

int PTDReturnCode;
int Done;
int ErasedMenuBar;
int LineCount;
int CharCounter;
char *CurrentChar;
int LineWidth;

-~ int PrlntedLlnesPage,
int ClosePTD;
int BufferOffset;
int CharsRemaining;

/* prompt the user for a device to print to */
/* allow all devices to be printed to */
PTDReturnCode = ptd open(PTD DEVICES);
if(PTDReturnCode == PTD CANCEL)

return(FALSE),

/* the device is now open */

/* don't forget to close it */

/* when exiting, unless CANCEL */
ClosePTD = TRUE;

/* check to see if "print to screen" has been */
/* selected, if so we need to erase the menu bar */
%f(PTDReturnCode == PTD_TO_ SCREEN)

mb erase();
ErasedMenuBar

TRUE;

}
else
ErasedMenuBar

FALSE;
if (DevicePGSETUP.mode == LANDSCAPE)

/* initialize w/landscape values */
PrlntedLlnesPage = DevicePGSETUP.mLandscp.plinepp;
} LineWidth = DevicePGSETUP.mLandscp.lnwidth;

else

/* ASSUME PORTRAIT */
/* initialize LineWidth, PrintedLinesPage */
PrlntedLlnesPage = DevicCePGSETUP.mPortrait. pllnepp,
LineWidth = DevicePGSETUP.mPortrait.lnwidth

}

/* if the file is a DeskMate file, do not print the header info */
/* set the offset before entering the main print loop */
if(DeviceDATAFILE.FileType != CSR NULL)

BufferOffset = FILE_HEADER_LENGTH,

se
BufferOffset = 0;

/* initialize CurrentChar */
CurrentChar = DeviceDATAFILE.pStart + BufferOffset;

/* no lines, characters or pages have been printed yet */

LineCount = 0;
Done = FALSE;

Page 2-50

/* print a page */
th e (Done == FALSE) /* while not done */

/* initialize a new E
ptd_start page(CSR _ERROR)

* Erlnt all lines on a page */
eep printing a page until the number of lines printed */
/* is equal to the number of printed lines per page */
thle(LineCount < PrintedLinesPage)

[* check to see if we are at the end of memory */
%f(CurrentChar + LineWidth > DeviceDATAFILE. pEnd -1)

/* there is less than 1 line left */
CharsRemaining = DeviceDATAFILE.pEnd - CurrentChar;
Btd put nchars(CurrentChar, CharsRemaining);
one TRUE;
| break;

PTDReturnCode = ptd put nchars(CurrentChar, LineWidth);
if(PTDReturnCode == CSR_ERROR)

/* the page list is full */
break;

CurrentChar += LineWidth;
LineCount++;
} /* finished building a page */

/* print the gage we just built */

/* 1f it is the last page send TRUE */
if(Done == TRUE)

1 PTDReturnCode ptd print page(TRUE);
else

. PTDReturnCode = ptd print page(FALSE);
?f(PTDReturnCode == CSR ERRCR)

Done = TRUE;
ClosePTD = FALSE,

LineCount = 0;
%f(ErasedMenuBar == TRUE)

/* Draw the apgllcation menubar in the base window */
DeviceMENUBAR.bRedraw = MB REDRAW;
mb_draw(&DeviceMENUBAR);~

}
else
if(ClosePTD == TRUE)
\ ptd _close();

Device Check For Print Graying checks to see if a printer driver is loaded. Then checks
to make sure the pnnter is text and that it will print in portrait mode. Finally a check is done to
see if there Is a datafile to print. If there is no datafile, print must be disabled.

Yoid Device Check For Print Graying({)

/* get the printer configuration information */
cfg get prt data(&DevicePRINTER ¢ CFG),
1f{™ ev1cePRINTER CFG.driver[0) ==

1 FileMenuIltemsTPRINT INDEX).bEnabled = DISABLED;
else

/* there is a driver loaded */

prt_get printer(&Dev1cePRINTER);

if (TDevicePRINTER.bTextOnly == TRUE && DevicePGSETUP.mode != PORTRAIT }
FileMenultems {PRINT INDEX] bEnabled = DISABLED;

else -
FileMenuItems[PRINT_INDEX].bEnabled = ENABLED;

Page 2-51

/* gray the print menu item if there is no file to print */
if{ DeviceDATAFILE.pStart == DeviceDATAFILE.pEnd)
FileMenuItems[PRINT_INDEX] .bEnabled = DISABLED;

Page 2-52

Direct Printing - DIRECT.PDM

DIRECT.PDM is a-template Deskmate application designed to demonstrate how the application
programmer utilizes the DeskMate low level print routines. This application utilizes the various
low level or Direct print routines which DeskMate provides to an application. These routines are
identified by starting with "prt_". See the DeskMate Technical Reference Print Manager for a
complete list of these low level Direct calls. This application only prints in portrait mode. The
source for this Device Print application is included in the SAMPLES\PRINT\DIRECT directory.
#include "csrcfg.h" /* Core Services Resource co?figuration header file */

#include "direct.h" /* Application header file *
#include "direcdec.h™ /* Application function declarations */

extern int dmerrno;
int main(argc, argv)

int argc;
%har *argv(];

int Done;

int TSReturnCode;

int FMReturnCode;

int DPReturnCode;

unsigned int TempFileSize;
unsigned int OldFileSize;

The page setup getting and setting are the same as the high level Device printing as explained in
the previous section.

case FILE PAGE SETUP ID:
/* the useT want¥ to run page setup */
fil menu page();

/* get the current page setup information from */
/* DeskMate into my page setup structures */
ptd_get page(&DirectPGSETUP, &DirectPGMODE };

/* redraw the current file status information */
/* clear from the menu bar down first */

Direct Draw Status Info{ CLEAR);

break;™ - -

Direct Print DataFile is an application subroutine which prints the data from memory to

the printer.
case FILE PRINT ID: .
* the user’wants to print the current file */
DPReturnCode = Direct Print DataFile();
}f(DPReturnCode == TRUE) —

}

else

/* The data printed successfully */

/* The data could not be printed */

/* redraw the current file status informtion */
Direct Draw Status Info(NO CLEAR);
break;™ - -

Page 2-53

Direct Print DataFile is the application routine that prints the data in memory to the
printer. The first thing it does is open the print device (no dialog box is displayed). Then a dialog
box is displayed giving the user the option to cancel the print operation. This was automatic in
Device printing. Then a check is made to the event queue to see if the user wants to cancel
printing (any event is assumed to be a cancel request). Then all of the lines are printed on a
page until the lines printed are equal to the Portrait lines per page.

%nt Direct Print DataFile()

int PRTReturnCode;

int Done;

int LineCount;

int CEReturnCode;

int CharCounter;

char *CurrentChar;
register int BufferOffset;
register int CharOffset;

/* open the direct print device LPT1, LPT2 or LPT3 */
PRTReturnCode = prt open{);
if(PRTReturnCode == CSR ERROR)

return{ FALSE }; -

/* the device is now open */

/* inform the user that we are about to print */

/* this also gives the user the chance to cancel printing */
Msg.pMessage = "Prlntln% in progress...";

Msg.pString = "Printing";

Msg.btn combo = MSG COMBO CANCEL;

msg draw{ &Msg); -

{
/* check to see if the user wants to stop printing */
CEReturnCode = Direct Check Event();
%f(CEReturnCode != CSR NULL)

/* clear the message box */
vid move cursor({ 0, 5 * CHAR YEXT);
vidTcleaTr to bot{(); -
/* Temove~the event from the event que */
event purge(); \
Direct Print Form Feed(LineCount);
prt close(); -
| retUrn(FALSE);

/* Erint all lines on a page */ .)

/* keep printing a page until the number of lines printed */
/* is equal to the number of printed lines per page */
while(LineCount < DirectPGSETUP.mPortrait.plinepp)

{

/* print the left margin on each line */)

for(CharCounter = 0; CharCounter <= DirectPGSETUP.mPortrait.left;
CharCounter++)

{

/* put out a space */
PRTReturnCode = prt put char(' ');
if (PRTReturnCode == CSR_ERROR)

prt closel();
return{ FALSE);

Page 2-54

/* print a single line on a page */

BufferOffset += CharOffset;

CharOffset = 0;

CharCounter = 0-

for(; CharCounter < DirectPGSETUP.mPortrait.lnwidth; CharOffset++)

CurrentChar = DirectDATAFILE.pStart + (BufferOffset+CharOffset);

/* check to see if the user wants to stop printing */
CEReturnCode = Direct Check Event();
%f(CEReturnCode != CSR NULL)
/* clear the message box */
vid move cursor(0, 5 * CHAR YEXT);
vidTclear to bot()
/* Temove the event from the event que */
event purge();
Direct Print _Form Feed(LineCount);
prt close();™
| return (FALSE '

[* check to see if we are at the end of memory */
}f(CurrentChar > DirectDATAFILE.pEnd - 1)

Direct Print _Form Feed(LineCount);
prt close();
Donge = TRUE;

\ return(TRUE)i

prt_put_char prints a character to the device. prt_put_char filters out certain control codes,
any non-ascii characters with the exception of 10h, 11h, 12h, and 13h will not be printed.
Applications may want to enter special checking for carriage returns and line feeds here, but this
SIMPLE demo does NOT respect those particular control characters.

/* *(Current Char) -- Print a single character on the device.*/
PRTReturnCode = prt put char(*(Current Char));
if(PRTReturnCode == CSK _ERROR)

prt close();
return(-FALSE);

}
/* since CR's and LF's are not printable, they should not */
/* be included as part of the character count *
if(*(CurrentChar) == 0x0d ||
*(CurrentChar) == 0x0a)
/* --CharCounter; */

/* the character was successfully printed */
/* increment the character counter */
++CharCounter;

} /* finished printing a line */

/* At end of line, put a CR. */

/* This was automatic in High Level Device. */
/* put out a carrage line */
ut tty('\r'
1f(irectPRINTER CFG bAutoLF == CR ONLY |
- DlrectPRINTER.bTextOnly == PRT TEXT ONLY)
/* put out a line feed */ - -
rt put tty('\n');
LineCount++7

} /* finished printing a page */

Direct Print Form Feed(LineCount);
LineCount = U;

Page 2-55

Direct Check Event scans for any event in the event queue. This routine was done ‘
automatlcally in the high level Device printing. X

%nt Direct Check Event ()

event scan{ &Event);
if(Event.msg !'= CSR NULL)
return{ Event.msg);
else
} return(CSR_NULL);

Direct Print Form Feed prints the appropriate number of blank lines on the page so that
the paper will be at the top of the form. This function was automatic in the high level Device
printing.

void Direct Print Form Feed(LineCount)
int LineCount;

{
while(LineCount < DirectPGSETUP.mPortrait.linepp)
{

prt_put_tty('\x0d');
1f("DirectPRINTER CFG.bAutolF == CR ONLY ||
DirectPRINTER.bTextOnly == PRT TEXT ONLY)
rt put tty('"\x0a'); - -
LineCount++7

Page 2-56

FORMS.PDM

FORMS.PDM is a DeskMate program which uses the Form Manager to manage, display, and
print graphic shapes. This example uses a “working window" to display the graphics. Refer to
the Special Topics section for more information about Managing Windows and Events.

#include "csrform.h" /* CSR form manager header file */
#include "dmfont.h" /* form font definitions */
#include "dmfntfrm.h"™ /* font structure definitions */
#include "forms.h" /* Application header file */
#include "formdecs.h” /* App Prototype header file */
#include "fontbox.h" /* App structure definitions */
main ()

register FORM *pForm; /* Pointer to allocated graphics form*/

register FORM_HDR *pFormHdr:; /* Pointer to graphics form header */

EVENT Event;

int Done, bMode;

int oldx,oldy,xdif,ydif;

int mem_available;

MAPRECT map, region;

The enhanced form manager with font support is a separate resource which must be requested
by the application.

if (eform bind init(l) == CSR_ERROR)

{
/* failure to bind to the Enhanced Form Manager */
Forms_DisplayMsg("Enhanced Form Resource could not be loaded");
guf_bind_end{():;
csr_end();
exit (1),

}

Get the largest block of memory available, but leave 50k of memory free for printing purposes.

/* setup buffers in font engine (get all memory available) */
mem_available =font_set_buffer (-1); /* get largest block of memory */

/* leave 50k of memory free to print */

/* if largest block is less than 4k then exit */

if ({mem_available = mem _available - (50*1024)/16) < 256)
{

Forms_DisplayMsg("Not able to get enough memory"®):
guf bind end():
eform_bind_end();
csr_end();
exit (1);
}
else
font_set_buffer (mem_available);

The application allocates the data space for the graphics form. The data space MUST be
contiguous.

/* Allocate the graphics form */

pForm = (FORM *) malloc(sizeof (FORM)):
if (pForm == NULL)

{

/* always free resources before exiting program */

Forms DisplayMsg("Insufficient memory to allocate graphics form."):;
eform_bind_end():

guf_bind_end();

csr_end();

exit (1);

Page 2-57

/* supplied by the Form Manager when the form is opened */

/* Setup the graphics form, remainder of information is */ .
pFormHdr = & (pForm->header}; \'

pFormHdr->bNewList = NEW_FORM;
pFormHdr->bVideo = TRUE;
pFormHdr->list_size = SIZE_OF_LIST;
pFormHdr-~>stroke_size = SIZE OF_STROKE;
eform open((FORM_HDR far *) pFormHdr);

/* Set the Mode to Draw, no element is currently selected */
bMode = DRAW;

pForm->pElement = NULL;
pForm->tag = CSR_NULL;

All applications which use the Page Setup function should register their default page setup
information with the CSR before any printing is done.

/* Register the default page setup information for printing */
ptd_set page(&FormsPGSETUP, &FormsPGMODE);

/* Draw the main screen, switch to the child window */
Forms_DrawScreen(pFormHdr, pForm->pElement);

/* initialze the do while control flag */
Done = FALSE;

The Event processing here is very similar to that seen in the other programming examples except
in this example the event is passed on to another function which processes the event. Mouse and
keyboard events are processed within the event processing loop.

/* Process the user inputs and actions */
do

/* read an event from an input device */
event_read(&Event);
switch(Event.msg) '
{ -
The CHAR processing determines what element has been selected when the keyboard is used.

case EVENT_CHAR :

The MOUSE processing determines what element has been selected when the mouse is used.

case EVENT_MOUSE :

The OUTSIDE processing determines if an event outside the current active window has taken
place.

case EVENT_OUTSIDE :

The APPL determines if a special CSR defined event has taken place.

case EVENT_APPL :

} /* end of switch on type of event */

/* check to see if "EXIT" or "RUN®” menu item has been selected */
while(Done != TRUE);

Page 2-58

~ When EXIT or RUN has been selected we leave the event loop and exit the application after
. releasing the Ioadfd resources.

/* release the loaded resources before exiting */
eform bind end();

guf_bind_end();

csr_end();

exit (0);

} /* end of Forms main module */

Page 2-59

This function sets the Edit Menu appropriately, draws the application menu bar and displays the

graphics form in the working window.

void Forms_DrawScreen(pFormHdr, pElement)
FORM_HDR *pFormHdr;
ELEMENT *pElement;

{

register inti;
int type, length;
char far *1lpBuffer;

/* Check for graphics on the clipboard, set the Edit menu */

dm_get_clipboard_info((int far *) &type, (int far *) &length,
(char far **) &lpBuffer);

if (type == CLIP_DRAW)

{

/* Enable Paste, Disabled Cut, Copy, and Clear */

EditMENUITEM[EDIT PASTE INDEX].bEnabled = ENABLED:

EditMENUITEM(EDIT CUT_INDEX] .bEnabled = DISABLED;
EditMENUITEM([EDIT_COPY INDEX].bEnabled = DISABLED:
EditMENUITEM([EDIT CLEAR_INDEX] .bEnabled = DISABLED;

} /* clipboard contains Draw graphics */
else

/* Disable Cut, Copy, Paste, and Clear */
for (i = 0; i < EDIT_COUNT - 1; i++)
EditMENUITEM(i] .bEnabled = DISABLED;
} /* this application doesn't handle the clipboard type */

/* Draw the application menubar in the base window */
if (win_get_active() != hBase)
win activate{ hBase);
FormsMENUBAR.bRedraw = MB_REDRAW;
mb_draw (sFormsMENUBAR) ;
FormsMENUBAR.bRedraw = MB_NO_REDRAW;

/* Display the application's name on the title line */
ttl_put_app_name("Forms Manager"):

/* Display the application's data ‘ile name on the title line */
/* Sending a pointer to a null str. will display "Untitled™ */
ttl_put_data_name ("Graphics Example :;

/* Draw the graphics, clearing the screen first */
win_activate(hChild);

/* Draw the current form on the screen */
Forms_UpdateScreen(pFormidr, pElement);

} /* end of form draw screen module */

void Forms_UpdateScreen(pFormHdr, pElement)
FORM_HDR *pFormHdr;
ELEMENT *pElement;

{

/* erase the cursor during the updating of the screen */
vid_erase_cursor():
eform update((FORM_HDR far *) pFormHdr, ENABLED);

/* Highlight the currently selected item (if there is one) */
if (pElement != NULL)
Forms_DrawBox (pElement);

vid_move_cursor(0, 0);

/* turn the cursor back on */
vid_draw_cursor();

Page 2-60

’_, /

@

q
’

L

The Forms_AddsShape call is made to add the appropriate type element to the graphics form.
The data structure for the element is filled in and the function call made.

void Forms_AddShape(pFormHdr, command)
FORM_HDR *pFormHdr;

int command;
{
ELEMENT *pElement;
EVENT event;
register int index, 1i;
int X, y, %1, yl;
int val;
char ch;
char string buffer(80];

vid_read_cursor(&x, &y);
switch(command)

case SHAPES LINE_ID:
/* add a line element to the form */
pElement = (ELEMENT *) &FormsFORM_LINE;
pElement->x0 X;
pElement->y0 = y;
pElement->x1 = x + 10 * CHAR XEXT;
pElement->yl = y + S5 * CHAR YEXT;
index = SHAPES_LINE_INDEX;
break;

case SHAPES RECT_ID:
/* add a rectangle element to the form */
pElement = (ELEMENT *) &FormsFORM_RECT;
index = SHAPES_RECT_INDEX;
pElement->x0 X2
pElement->y0 y¥:
pElement->x1l = x + 15 * CHAR_XEXT;
pElement->yl y + S5 ® CHAR_YEXT:
break;

case SHAPES ELLIPSE ID:
/* add a"ellipse element to the form */
pElement = (ELEMENT *) &FormsFORM ELLIPSE;
index = SHAPES_ELLIPSE_INDEX;

pElement->x0 = x;
pElement->y0 = y;
pElement->x1l = x + 12 ® CHAR_XEXT;
pElement->yl = y + 6 * CHAR_YEXT;

break:

case SHAPES_TEXT_ID:
/* add a text element to the form */
pElement = (ELEMENT *) &FormsFORM_TEXT:
index = SHAPES_TEXT_ INDEX:;
FormsFORM_TEXT. pstring = "This is a text element."”;
FormsFORM TEXT.nChars = strlen({FormsFORM_TEXT.pString):
pElement->x0 = X2
pElement->y0 y:
pElement->x1 x + FormsFORM TEXT.nChars * CHAR_XEXT;
pElement->yl y + CHAR_YEXT;
break;

case SHAPES_FONT_ID:
/* add a font element to the form */
pElement = (ELEMENT *) g&FormsFORM_FONT:

eform_update((FORM_HDR far *) pFormHdr, ENABLED):;
ms draw _pointer();
/* £ill7in the element structure for a font */
FormsFORM_FONT.info.fpFacelnfo =
fpFontFaceInfo+font_base+font_selected;
FormsFORM_FONT.info. fpFaceInfo->bStyleAttrs = bStyle;
FormsFORM FONT.info. string_xorg = x;
FormsFORM FONT.info.string yorg = y;
FormsFORM_FONT.info. fgnd_color =COLOR2;
FormsFORM_FONT.u_header.element.type = FORM_OTHER;
/* fonts are assigned OTHER */
FormsFORM_FONT.u_header.element.mod = FORM_U_FONT_TYPE;

Page 2-61

vid_busy disable();

vid_move_cursor(0,0);

vid_put_string("String:");

vid_clear_to_eol();

val=0;

event_read (&event);

/* get a string */

while (event.msg == EVENT_ CHAR && event.param != 0x0d &&
event.param != 0x16)

ch = (char) event.param;
if (ch == 0x08)
{

vid_read_cursor(&xl, &yl);
x1 = x1 - CHAR_XEXT;
vid_move_cursor (x1,yl);
vid_put_char(' ');
vid_move_cursor(xl,yl);
val--;

}

else

{
vid_put_char (ch);
string_buffer{val]=ch;
val++;

event_read (&event);

}

vid_busy_enable():

if (event.param != 0x16)

{
/* £ill in the FORM_FONT structure (element structure) */
FormsFORM_FONT.info.fpString = (char far *) string_buffer;
FormsFORM_FONT.info.fpEscapement = 0;
FormsFORM_FONT.info.nChars = val; /* string size */
/* get a bounding box for the font string. Fills in the */
/* maprect. This is VERY IMPORTANT */
evid _get_bounding_box ((FORM_FONT far *) &FormsFORM_FONT) :
break;

}

return;

default:
break;

} /* end of switch on shape being added */

for (i = 0; i < SHAPES_COUNT; i++)

/* Check the shape selected, uncheck all the others */

ShapesMENUITEM(i] .bChecked = (i == index) ? MB_CHECKED :
MB_UNCHECKED;

/* add the element to the form */

if (eform_add element ((FORM HDR far *) pFormHdr, (ELEMENT far *)
pElement) == CSR_ERROR)
Forms_DisplayMsg("Error adding graphics element to list.”):

else
/* Enable printing - we know we have graphics in the form */
FileMENUITEM[FILE_PRINT_INDEX].bEnabled = ENABLED:;

/* Update menu bar information without actually redrawing it */
mb_draw (&FormsMENUBAR) ;

/* Move the cursor to the origin of the new shape */
vid _move_cursor(x, y):

} /* end of add shape function */

Page 2-62

®

’g

The Forms_Select demonstrates a typical method for determining if the user “clicked” on a
graphics shape on the screen or positioned the text cursor and pressed the space bar or ENTER
to "select” the graphics shape. The graphics select "handle box" is drawn around the shape when
it is selected to show selection.

int Forms_Select{ pForm, pEvent)
FORM *pFPorm;
EVENT *pEvent;
{
FORM_HDR *pFormHdr;

/* determine if there is an element at the current */
/* cursor locatlon or where the user clicked. */
if (pEvent->msg == EVENT_CHAR)

vid_read cursor(&pEvent->x, &pEvent->y);

pFormHdr = & (pForm->header);
pForm~>tag = eform_find_element ((FORM_HDR far *)pFormHdr, pEvent->x,
pEvent->y, 1);

if (pForm=->tag > CSR_NULL)
{
/* First unselect a previously selected element */
if (pForm->pElement != NULL)
Forms_ClearBox{ pFormHdr, pForm->pElement):

/* Now point to the element's information in the form */
pForm->pElement = (ELEMENT *) eform get_pointer((FORM_HDR far x)
pFormHdr, pForm~>tag):;

/* Draw the handle box surrounding the element bounding.box */
Forms_DrawBox (pForm->pElement);

/* Set the Edit menu for clipboard manipulation */
EditMENUITEM{EDIT _CUT_INDEX].bEnabled = ENABLED;
EditMENUITEM[EDIT ¢ ~CoPY __INDEX] .bEnabled = ENABLED;
EditMENUITEM[EDIT_CLEAR_INDEX] bEnabled = ENABLED;
EditMENUITEM(EDIT_PASTE_INDEX].bEnabled = DISABLED;
mb_draw(&FormsMENUBAR):

return(l):

} /* found a graphics element at the cursor/mouse location */
else
{
/* First unselect a previously selected element */
if (pForm->pElement != NULL)
Forms_ClearBox{ pFormHdr, pForm->pElement };

/* Clear pointer to currently selected element */
pForm->pElement = NULL;

/* Now position cursor at the stored mouse coordinates */
vid_move_cursor(pEvent->x, pEvent->y):
return (07 ;

} /* there isn't anything at the cursor location */

} /* end of forms select graphics module */

This routine draws the "handle box" to show selection. Refer to the Video programming example
for more information about the video functions used to draw the actual box.

void Forms_DrawBox(pElement)
ELEMENT *pElement;
{

/* First draw the rectangle surrounding the element's bounding box */
vid_set_line_attr(LINE_SOLID, LINE_WIDTH2, COLOR_XOR):
vid draw rect { pElement=>x0, pElement->yo0,

pElement->x1, pElement->yl, VID NO_FILL);

vid_draw_rect (vid_prevn_nwcx (pElement- ->x1, 3), /* bottom/right corner */
vid_prevn_| nwey (pElement-~->yl, 3),
vid_nextn nwcx(pElement ->x1, 3},
vid_nextn “nwey (pElement->yl, 3), VID_NO_FILL):
pElement-5x1;

Cur_x
pElement->yl;

Cur_y

Page 2-63

/* Now move the cursor to the origin of the select box */
vid_move cursor(pElement->x0, pElement->y0 };

} /* end of forms draw select box function */

Page 2-64

®

C

L

O

The Forms_Print functions demonstrates how easy it is to do printing when using the graphics
Form Manager. The Device Print Manager is used to select the printing device, initialized printing,
and then print the graphics form.

void Forms_Print (pFormHdr, pElement)
FORM HDR *pFormHdr;

ELEMENT *pElement;

{
int device, ret;
PRINTER_CFG PrtConfig;

device = ptd_open (PTD_DEVICES);
if (device == PTD_TO_SCREEN)
mb _erase();
else 1f (device == PTD_CANCEL)
{
Forms_DrawScreen(pFormHdr, pElement);
return;

cfg_get_prt_data(&PrtConfig):
if (FormsPGSETUP.mode == LANDSCAPE)
PrtConfig.cpi = PRT_10_CPI;

/* Start a new page, clear the attribute flag */
ptd_start_page(CSR_ERROR);

/* Pointer to form, starting column, cpi at which to print form */
ret = ptd draw_list(pFormHdr, 0, PrtConfig.cpi);

if (ret == CSR_ERROR)
Forms_DisplayMsg("Draw List call resulted in an error.");

/* Print the form, this is the last page printed */
ret = ptd_print_page(TRUE);

if (device != PTD_TO SCREEN && ret == CSR_ERRCR)
Forms DlsplayMsg("Prlnt Page call resulfed in an error.");

ptd_close();
/* Redraw the application screen */
if (device == PTD TO_ SCREEN)
Forms DrawScreen(pFormHdr, pElement):
else
Forms_UpdateScreen(pFormHdr, pElement);

} /* end of forms print graphics module */

Page 2-64.1

The font_selection function locates the fonts files in the system and enumerates all of the
font faces.

font_selection()
{

int i;
int more_fonts ; /* return boolean code */
int nFaces ; /* number of faces found */

char far *tmp_f£p;

face.bType = FF_RESIDENT + FF_RASTERIZE ;
face.request = DMF_READ ;
nFaces = font_face_support ((FACE far *) &face):

if ((fpFontFaceInfo = (FONT FACE far *) malloc(sizeof (FONT_FACE) ¢
(nFaces -1))) == (char *)0)

font_end{() ;

font_bind _end() :

csr_end() ;

return (DMF_ERROR) ;
}

more_fonts = DMF_OK ;
face.request = 0 ;
for (i=0; ((i < nFaces) && (more_fonts >= DMF_OK)); i++)

{
more_fonts = font_get_face(&face, fpFontFacelnfo+i) ;
tmp_ Tp = (char far *)((fpFontFaceInfo+i)->face _name) ;
FNTLBl text_pitems(i] = (char *) (FP_OFF (tmp_ fp)):

}

font_selected = 0 ;
FNTRBs_text{0].selected = 1 ; /*--outline, rasterize list */

/*=-=-=-~present the user with the option of selecting a font face */
if (font_select ((FONT_FACE far *)fpFontFaceInfo) == (int)DMF_ERROR)
{
font_selected = 0 ; :
fpFontFaceInfo->PtSize = 12 ;
fpFontFaceInfo->rotation = 0 ;
bStyle = DFS_NORMAL ;
}

return (DMF_OK) ;

} /* end font_selection{) */

int font_select (fpFontFaces)
struct font_face_defn *fpFontFaces ;
{
int dlg_code ;
FONT_FACE *fpFontFace ;
FONT_FACE *f face ;
char ptbuf[47 :
char pitbuf[5]}
char rotbuf(4]

AT

if (FNTRBs_text[0).selected == 0)
{
fpFontFace = fpFontFaces ;
FNTLBs_text[0].pltems = FNTLBl_text_pitems ;
FNTLBs text[O] nItems =(unsigned char) face.nResident ;
font_base = 0 ;
}
else

{
fpFontFace = fpFontFaces + face.nResident ;
FNTLBs_text{0]).pitems = FNTLBl_text_pitems + face. nResident;
FNTLBs_ _text [0] .nItems =(unsigned char)face.nRasterize ;
font_base = face.nResident ;

Page 2-64.2

@

®

)
)

«

@

/*----set the cursor focus on first component *x/
FNTDlg_text.focus_index = 1 ;

FNTLBs text[O]

selected = (char) font_selected + 1;

f face=(struct font face_defn *)prontFace+(FNTLBs text {0} .selected-1)

FNTEFs_text (0].
FNTEFs text[l]
FNTEFs_text[Z]

FNTCBs_text [0) .header.bEnabled =(char) ((f_face->bStyle & DFS_BOLD)

ENABLED: DISABLED)

pBuffer = 1toa(f face->PtSize, ptbuf, 10) ;
pBuffer = itoa(f_ _face->pitch, pitbuf, 10) ;
pBuffer = itoalf_face—>rotation, rotbuf, 10)

’

.

?

FNTCBs_text (1] .header.bEnabled =(char) ((f_face->bStyle & DFS_GRAYED)

ENABLED:DISABLED)

.

FNTCBs_text{2].header.bEnabled =(char) ((f_face->bStyle & DFS_ITALIC)

ENABLED:DISABLED)
FNTCBs_text(3].
ENABLED:DISABLED)
FNTCBs_text (4].

’

header.bEnabled =(char) ({f_face->bStyle & DFS_HOLLOW)

’

header.bEnabled =(char) ((f_face->bStyle &

DFS_UNDERLINE) ? ENABLED:DISABLED) ;

FNTCBs text(0].

bState =(char) (bStyle & DFS_BOLD ?

CB_CHECKED:CB_UNCHECKED) :

FNTCBs _text({1].

bstate =(char) (bStyle & DFS_GRAYED ?

CB_CHECKED:CB_UNCHECKED) ;

FNTCBs _text[2].

bstate =(char) (bStyle & DFS_ITALIC 2

CB_CHECKED:CB_UNCHECKED) ;

FNTCBs text([3].

bsState =(char) (bStyle & DFS_HOLLOW ?

CB CﬁECKED:CB UNCHECKED) ;

FNTCBs text [4)

.bstate =(char) (bStyle & DFS_UNDERLINE 2

CB_CHECKED:CB_UNCHECKED)

if (f_face->bType == FF_RESIDENT)

{

FNTEFs text[0].header.bEnabled

DISABLED

FNTEFs:text(l].header.bEnabled = DISABLED ;
FNTEFs_text (2] .header.bEnabled = DISABLED ;

}

else

{
FNTEFs_text [0] .header.bEnabled = ENABLED ;
FNTEFs_text[l].header.bEnabled = ENABLED ;
FNTEFs_text (2]} .header.bEnabled = ENABLED :

}

/*-~-=-set the push buttons to an up position */

FNTDlg_text.return_value = CMP_NO_ACTION ;

FNTPBs text[O]
FNTPBs text(l]
FNTEFs_text[0].
FNTEFs_text[1].
FNTEFs text{Z]

bstate = PB_UP 7
bState = PB UP ;
cursor_ offset = EF_SELECT _ALL
cursor offset = EF_ ~SELECT ALL
cursor_ “offset = EF SELECT_, TALL

e e v

dlg_draw (§FNTD1g_text) ;

/*--=--run the dialog box until user has finished */
ms_draw_peointer ();

while ((FNTPBs _text [0] .bState != PB_DOWN) && (FNTPBs_text(l].bstate

t= PB_DOWN))
{

dlg_code = dlg_run(&FNTDlg_text) ;
if (dlg code == (int)FNTRBl text_tag)

if (FNTRBs_text[0].selected == 0)
{

fpFontFace = fpFontFaces ;

f

FNTLBs_text[0].pItems = FNTLBl text_pitems ;
FNTLBs text[O] nItems =(unsigned char)face.nResident
font base =0 ;

FNTRedraw text[l] =DLG_REDRAW ;

}

else

{

fpFontFace = fpFontFaces + face.nResident ;

FNTLBs_text (0] .pItems =

FNTLBs text[O] nltems =(un51gned char) face.nRasterize
font_base = face.nResident ;
FNTRedraw_text [1]=DLG_REDRAW ;

}

if (((dlg_code == (int)FNTLBl_text_tag) &&
(FNTDlg text.return value == (int)CMP_SELECT_CHANGE))
{dlg_code == (int}ENTRBl_text_tag))

Page 2-64.3

’

FNTLBl_text_pitems + face.nResident

’

.

"~

"~

~

{
f_face=(struct font_face_defn *)fpFontFace + '
(FNTLBs_text (0] .selected-1) : -

FNTCBs_text [0) .header.bEnabled =(char) ((f_face->bStyle &
DF'S BOLD)’ ENABLED:DISABLED) ;

FNTCBS _text[l].header.bEnabled =(char) ({(f_face->bStyle &
DFS_GRAYED) ? ENABLED:DISABLED) ;

FNTCBS _text{2].header.bEnabled =(char) ((f_face->bStyle &
DFS_TITALIC) ? ENABLED:DISABLED) ;

FNTCBS _text [3).header.bEnabled =(char) ((f_face->bStyle &
DFS HOLLOW) ? ENABLED:DISABLED) ;

FNTCBS _text (4] .header.bEnabled ={(char) ({f_face->bStyle &
DFS UNDERLINE) ? ENABLED:DISABLED) ;

if (f_face->bType == FF_RESIDENT}
{

FNTEFs_text [0] .header.bEnabled = DISABLED ;
FNTEFs_text[l].header.bEnabled = DISABLED ;
FNTEFs_text [2] .header.bEnabled = DISABLED ;
}
else
{
FNTEFs text([0).header.bEnabled ENABLED

FNTEFs:text[I].header.bEnabled = ENABLED
FNTEFs_text{2].header.bEnabled = ENABLED
}

FNTEFs_text (0] .pBuffer = itoa((int)f_ face~>PtSize, ptbuf, 10);
FNTEFs text[l] pBuffer = itoa(f face=>pitch, pitbuf,10) ;
FNTEFs text[Z] pBuffer = 1toa((1nt)f face~>rotation,

rotbuf, 10) ;
FNTEFs_text (0] .cursor_offset = EF_SELECT_ALL
FNTEFs text[l] cursor “offset = EF_SELECT_ALL
FNTEFs_text [2].cursor_offset = EF_SELECT_ ALL

~e v

LTS

FNTRedraw_text (3)=DLG_REDRAW
FNTRedraw_text (4] =DLG_. “REDRAW
FNTRedraw_text [S5]=DLG REDRAW
FNTRedraw_text [6]=DLG_REDRAW ;
FNTRedraw_text (7] =DLG_REDRAW
FNTRedraw_text (8] =DLG_REDRAW
FNTRedraw_text [9]=DLG_REDRAW
FNTRedraw_text [10}=DLG_REDRAW :

LTI IR IR TR PRR AR Y
v

bbb

}

ms_erase_pointer ();
event_purge () ;

vid move_cursor(0,MB_BOTTOM_YORG-CHAR_YEXT) ;

vid_clear to_bot({);

if (FNTPBs_text[0] .bState == PB_DOWN)

{
font_selected = FNTLBs_text[0].selected-1 ;
f face= (struct font _ face _defn *) fpFontFace+font_selected ;
bStyle= DFS NORMAL ;

bStyle = FNTCBs_text[0].bState ? (bStyle|DFS_BOLD) :bStyle :
bStyle = FNTCBs text[l].bState ? (bStyle|DFS_ “GRAYED) :bStyle ;
bStyle = FNTcssftext[ZJ.bState ? (bStyle]DFS_ITALIC) :bStyle :
bStyle = FNTCBs text[3].bState ? (bStyle|DFS_] “HOLLOW) :bStyle ;
bStyle = FNTCBs text([4].bState ? (bStyle|DFS_! “UNDERLINE) :bStyle;

f_face~>PtSize = atol (FNTEFs_text [0]. pBuffer) :
£ _face->pitch = atoi (FNTEFs_text[1l].pBuffer);
f face->rotation = atoi (FNTEFs text[Z] pBuffer) ;
return(DMF_OK) ;

}

else

return (DMF_ERROR) ;

}

/* end of forms.c */

Page 2-64.4

Special Topics

This section discusses the special programming required to run components directly in the work
area instead of in a dialog box, how to create and manage events from multiple windows in the
work area and how to interface with the DeskMate clipboard if your application has an Edit Menu.

Running Components in the Work Area - COMPS.PDM

COMPS.PDM shows how to handle the running components in the work area of a DeskMate
application. The Comps application is included in the SAMPLES\COMPS directory.

#include "comps.h" /* Bpplication header file */
#include "compsdec.h™ /* Application function declarations */

The application starts with the standard calls to initialize and bind to resources (Guf and the
CSR). Then a call is made to draw the screen. In this case the screen is redrawn with the
appropriate component drawn along with the menubar. The first time the call is made, there is no
component, the handle is DM_ERROR, so no component is drawn.

}nt main{()

EVENT Event;

int TSReturnCode;

int Done;

int component = DM ERROR;
int DbActive; -

int j;

int handle = DM _ERROR;

/* initialize the Component Run control flag */
bActive = FALSE; -

/* Process the user inputs and actions */
do

if (bActive)
Component Run{ component);

/* read an event from an input device */
event_read(&Event });

switch(Event.msg)
case EVENT_ COMMAND:

case CMP_EDITFIELD ID: o _
/* the user wants to see editfield operation */

/* set component for call */
component = EDITFIELD COMPONENT;

/* ogen and draw the component */

handle = Component Init (component,handle);
bActive = TRUE; -

break;

case CMP LISTBOX ID:)
* tHe user wants to see lisbox operation */

/* set component for call */
component = LISTBOX COMPONENT;

/* ogen and draw the component */

handle = Component Init(component,handle);
Component Disable Edit Menuitems();
bActive ="TRUE; ~

break;

Page 2-65

case CMP PUSHBUTTON ID:
/* the user wants to see radiobutton operation */

/* set component for call */
component = PUSHBUTTON_COMPONENT;

/* ogen and draw the component */

hand Component Init (component,handle);
Component Disable Edit Menuitems({);
bActive ="TRUE;

break,

case CMP ICONBUTTON ID:
/* the user wants to see iconbutton operation */

/* set component for call */
component = ICONBUTTON_ COMPONENT;

/* OYen and draw the component */

hand Component Init (component,handle);
Component Disable Edit Menultems(),
bActive ="TRUE;

break;

} /* end of switch on type of application event */
break,

} /* end of Component main ‘module */

When a user selects one of the four component types from the F4 Menu, a call is made to
Component_Init with the type of component passed as the parameter. Component Init
closes any component that may have been previously opened and sets the initial state of the
component (the edit field cursor offset, the selected item in the list box, the state of icon and push
buttons, etc.).

Any previous component which may have been on the screen is erased, the selected component
is disabled from the F4 menu, and finally the selected component is drawn with a call to
cmp_draw and the handle for the new component is returned.

If any component besides the edit field is selected, the F3 Edit menu options are all disabled.
Cut, copy, paste, and clear only apply to the edit field component.

int Compeonent Init(component, handle)
int component7
?nt handle;

int g,
int hNewComponent;

if (handle != DM ERROR)
cmp_close(hComponent [component], pComponent [component] };

switch (component)

case EDITFIELD COMPONENT:
* (ComponentEDITFIELD. pBuffer)='\0"
ComponentEDITFIELD.cursor cffset = 0;
break;

case LISTBOX COMPONENT:
ComponentLISTBOX.selected = 1;
break;

case PUSHBUTTON COMPONENT:

ComponentPUSHBUTTON.bState = PB_UP;
break;

case ICONBUTTON COMPONENT:
Component ICONBUTTON.bState = PB_UP;

break;

} /* end of switch statement */

Page 2-66

/* remove previous component (if any) from screen */
vid move cursor(0 * CHAR XEXT, 3 * CHAR YEXT);
vid—clear to bot();

/* enable all F4 Menu items */
for (j=0; j<4; j++)
ComponentMENUITEM[j] bEnabled = ENABLED;

/* disable the selected F4 Menu item */
ComponentMENUITEM{component] .bEnabled = DISABLED;

/* ogen the selected component */
hNewComponent = cmp_open{ pComponent [component]);

/* draw the selected component */
cmp_draw (hNewComponent, pComponent [component]) ;

return(hNewComponent);

} /* end of init component */

After the component is initialized, control returns to the beginning of the main loop, where the
component is actually run with a call to Component Run. If the component is an edit field, a
check is made to see if any text data is residing in the clipboard with a call to
dm_get_clipboard_info. If text data is in the clipboard, then the "Paste" option of the F3 menu
is enabled, while the other F3 options are all disabled.

While the component is running the application displays messages that show that the component
is running while in cmp_run and the return code definition produced by the cmp_run.

In the case of a CMP_SELECT_CHANGE on an edit field component, the "Cut", "Copy", and
"Clear" options of the F3 Edit menu are enabled.

void Component Run {component)
%nt component; ™

int ReturnCode;

int j;

int Done;

char *pString;

int Type, Length;
char far *1pBuffer;

/* Check if editfield is component selected. If it is and there is */
/* something in the clipboard, then enable paste, grey cut,copy,clear... */
/* else enable those and grey paste..... */
if (component == EDITFIELD_ COMPONENT)
/* check for text in the clipboard */
dm get clipboard info((int far *) &Type, (int far *) &Length,
(char far **) &lpBuffer);
}f {Type == CLIP_TEXT)
Component Disable Edit Menuitems();
EditMENUITEM([EDIT PASTE_INDEX]. bEnabled = ENABLED;
) }
Done = FALSE;
?o
vid move cursor(26 * CHAR XEXT, 4 * CHAR YEXT);
vidTput string("Component‘Runnlng")i
ReturnCode = cmp run(hComponent [component], pComponent [component]);

vid move cursor(26 * CHAR XEXT, 4 * CHAR YEXT);
vid_clear_to eol{);

vid move cursor(26 * CHAR XEXT, 5 * CHAR YEXT);
vid put String("Return code = ")

Page 2-67

pString = ComponentReturnStrings[ReturnCodel];

vid move cursor(40 * CHAR XEXT, 5 * CHAR YEXT);
vid“put_String(pString);

/* On pushbutton, delay, then raise the button */
%f(component == PUSHBUTTON_COMPONENT)

waitloop (0x20);
ComponentPUSHBUTTON bState = PB UP;

cmp_draw(hComponent [component], pComponent [component]);

/* On iconbutton, delay, then raise the button */
}f(component == JCONBUTTON_COMPONENT)

waitloop (0x20);
ComponentTCONBUTTON bState = PB UP;

cmp_draw (hComponent [component]; pComponent [component]);

switch (ReturnCode)
case CMP NO ACTION:
Done™= TRUE;
break;

case CMP CANCEL:
break;

case CMP SELECT CHANGE:
if (Component == EDITFIELD COMPONENT)

if (ComponentEDITFIELD.select length > 0)

/* only if selected text in the editfield */

EditMENUITEM({EDIT CUT INDEX].bEnabled =

EditMENUITEM[EDIT COPY INDEX] bEnabled =
EditMENUITEM[EDIT PASTE INDEX].bEnabled
EditMENUITEM[EDIT CLEAR”INDEX].bEnabled

}
else .
Component Disable Edit Menuitems();

break;

case CMP GO:
break;

case CMP ACTION:
Done™= TRUE;
break;

case CMP ACTION IN EVENT:
break; -7

default:
) break;

}
while (!Done);

void Component Draw_Screen(component, handle)
int component;™
%nt handle;

/* draw the selected component */

if (handle != DM ERROR
cmp_draw{ hafidle, pComponent [component]);

Page 2-68

‘ Managing Windows and Events

The following example shows how to create a window in the work area which starts immediately
below the application menu bar and goes to the bottom of the screen. By creating this window,
the application can now access the first line and column under the menu bar as cursor position
(0,0).

ChildWnd.xorg
ChildWnd.yorg

0;

v1d next nwcy({vid wcy to_nwcy (MB _YORG) + MB _YEXT - 1);
ChildWnd.xext 80 ¥ CHAR XEXT; ~—

ChildWnd.yext = 25 * CHAR YEXT - ChildWnd.yorg;

hChild = win open(&ChildWnd);

win_activateThChild);

nwwnn

All keyboard events, EVENT_CHAR,belong to the currently active window. When the child
window is active all keyboard events can be directly processed in that window.

Mouse events are translated into the coordinates for the active window. The mouse cursor is
automatically fenced to the current windows during a drag sequence (button down, holds, button
up). When the user clicks in an area outside of the current window, the window will get an outside

event.
case EVENT OUTSIDE :

/* Go Back to the base window to get the real event */

win activate(hBase);

evenit_read(&Event);

/* Now go back to child window to process the event */

win activate(thlld)i

if T Event msg EVENT MOUSE)

* Get ri of all mouse events in the base window */
event _purge();
/* Check the mouse coordinates to determine what */
/* window the event belongs to. Activate that */
1 /* child window and let it read the event.
else

/* Write back event for the child window to process */
event_write(&Event);
break;

On an outside event, the Base window should be activated and the event should be read. Mouse
events will always be seen by the base window. This example purges events in the base window.
This step is important since it get rids of mouse events in the dead spots in the base window,
such as over the menu bar in the title-line area.

Applications with multiple windows on the screen should determine which window the mouse
event occurred in and activate the appropriate window and let that window read the mouse event.
Remember to write back the event if you wish the window to reflect the event. For example, an
application has two windows on the screen, A and B, with the active window as A.

A B
The user "clicks" on B to activate it. To simply activate the window, follow the coding example
‘ about to determine if the mouse coordiantes correspond to window B and activate the window.

Page 2-69

To reposition the cursor where the user clicked, write the event back after activating window B ‘
and have window B read it and position the cursor.

Events from the menu bar will appear as outside events to the child windows since the menu bar
belongs to the base window. Remember to activate the base window BEFORE drawing the
application menu bar.

/* Draw the application menubar in the base window */
if (win get active() != hBase)
win activate(hBase);
FormsMENUBAR.bRedraw = MB REDRAW;
mb draw (&FormsMENUBAR);
FormsMENUBAR.bRedraw = MB_NO_REDRAW;

/* Display the application's name on the title line */
ttl put app name("Forms Manager");

/* Display the application's data file name on the title line */
/* Sending a pointer to a null string will display "Untitled" */
ttl put_data name("Graphics Example");

/* Draw the graphics, clearing the screen first */
win_activate{ hChild);

/* Draw the current form on the screen */
Forms UpdateScreen(pFormHdr, pElement);

Page 2-70

‘ Interfacing with the Clipboard

From an Editfield Component

Use the edt_* component utilities discussed at the end of the Component Manager section of
the DeskMate Technical Reference when interfacing with the clipboard through editfields
which are running directly in the editfield. In the DeskMate 3.3 system, the clipboard
functions are handled automatically by the component itself if the Edit Menu accelerators are
not defined and active.

case CUT TEXT ID:
edt cTut(TComponentEDITFIELD),
cmp draw(handle, &ComponentEDITFIELD);
bAcTive = TRUE
break;

case COPY TEXT ID:
edt copy (KComponentEDITFIELD);
bActive = TRUE
break;

case PASTE TEXT ID:
edt paSte(&ComponentEDITFIELD);
cmp_draw (handle, &ComponentEDITFIELD);
bActive = TRUE;
break;

case CLEAR TEXT ID:
edt cléar(&ComponentEDITFIELD);
bActive = TRUE;
break;

. When Using the Form Manager

Use the form_* calls discussed in the Form Manager section of the DeskMate Technical
Reference when copying to and retrieving form graphics from the clipboard. Graphics on the
clipboard are complete graphics forms with header information. The entire form is one object
which must be broken apart using the form_break_object call in order to access the
individual elements in the form.

case EDIT CUT ID:

case EDIT CLEAR ID:

case EDITCOPY ID:

case EDIT PASTE ID:

case EDIT CLR SCRN ID:
Forms EditOption(pForm, &Event);
break7

void Forms EditOption{ pForm, pEvent)
FORM *pForm;
EVENT *pEvent;

switch(pEvent->param)

case EDIT CUT ID:

case EDIT CLEAR ID:
/* Copies t0 clipboard & deletes it from list */
Forms_CutElement (& (pForm->header), pForm->pElement,

pForm->tag, pEvent->param);

break;

case EDIT COPY ID:
/* CoPies Element to the clipboard */
Forms_CopyElement (& (pForm->header), pForm->tag);

/* We don't want to leave the element selected */
Forms ClearBox{ & (pForm->header), pForm->pElement };

. break?

Page 2-71

case EDIT PASTE ID:
/* BAdds the“element on the clipboard to the list */ »

Forms PasteElement (& (pForm->header));
break?

case EDIT CLR SCRN ID:
/* FiTfst CTlear the graphics form, then the screen area */
form clear(&(pForm->header));
vid move cursor({ 0, 0);
v1d cleaf to bot(L

/* Disable printing since we don't have any raphics */
FileMENUITEM([FILE PRINT INDEX).bEnabled = DISABLED;
gb_diaw(&FormsMENUBAR T;

reak;

default:
break;

} /* end of switch on Edit option */

/* Will no longer have a selected element on the screen */
pForm->pElement = NULL;
pForm->tag = 0;

} /* end of form edit option module */

void Forms ClearBox{ pFormHdr, pElement)
FORM HDR ~ *pFormHdr;
ELEMENT *pElement;

{
MAPRECT region;

/* Redlsplay the region surrounded by the select box */
region.xorg = vid prevn nwcx (pElement->x0,

region.yorg = vid prevn nwcy (pElement->y0, 3),

reglon xext vid nextn nwcx (pElement- >x1, 3);
region.yext = vid_nextn nwcy (pElement->yl, 3);

vid _clear block(region.xorg, region.yorg,
region.xext - reglon Xorg

region.yext - region.yorg

o

+ +
i

form display region{ pFormHdr, ®ion };
vid Move curSor{ pElement->x0, pElement->y0);

} /* end of forms clear select box function */

Forms CutElement (pFormHdr, pElement, tag, command)
FORM HDR *pFormHdr;

ELEMENT *pElement;
int tag;
%nt command;
MAPRECT region;
int ret, type, length;

char far *1pBuffer;

/* Save region to remove the element from the screen */
region.xorg = pElement- >x0;
region.yorg = pElement->y0;
region.xext pElement->x1;
region.yext = pElement->yl;

if (command == EDIT CUT ID) .)
/* Remove elemenf from the graphics list & copy it to the clipboard */
1 ret = form cut_element (pFormHdr, tag);
else
/* Remove element form the graphics list only */
ret = form delete element (pFormHdr, tag };

if (ret == CSR ERROR)
Forms DisplayMsg("Cut or Clear operation was unsuccessful.");

munuwon

/* Clear the screen where the element was displayed */
vid clear_block{ region.xorg, region.yorg,
region.xext - région.xorg + 1,

region.yext - region.yorg + 1); P

Page 2-72

/* Redisplay the region where the element was displayed */
form display reglon? pFormHdr, ®ion);
vid move curSor{ region.xorg, region.yorg);

/* Check for graphics in the form, if empty then disable printing */

region.xorg ="0;

region.yorg = 0;

region.xext ChildWnd.xext;

region.yext = ChildWnd. yext,

if (form re?lon empty (pFormHdr, ®ion
FileMENU

t

o

) == CSR NULL)
TEMTFILE PRINT INDEX].bEnabled = DISABLED;

/* Disable Cut, Cog and Clear */
UT

EditMENUITEM[EDIT INDEX] .bEnabled = DISABLED;
EditMENUITEM{EDIT_COPY INDEX].bEnabled = DISABLED;
EditMENUITEM{EDIT_CLEAR INDEX].bEnabled = DISABLED;

if (command == EDIT CUT ID)
/* We know there”is Something on the clipboard, enable paste */
) EditMENUITEM[EDIT_PASTE INDEX).bEnabled = ENABLED;
else
{
/* Check for graphics on the clipboard, set the Edit menu */
dm_get clipboard info((int far *) &type, (int far *) &length,
{char far **) &lpBuffer };
EditMENUITEM([EDIT PASTE INDEX].bEnabled = (type == CLIP DRAW) ?
ENABLED : DISABLED;
} /* check clipboard before enabling paste */

/* Update the menu information */
mb_draw (§FormsMENUBAR) ;

} /* end of forms cut element function */

Forms CopyElement(pFormHdr, tag)
FORM_HDR *pFormHdr;
%nt tag;
/* Copies element to the clipboard, leaves raphics list intact */
if (form copy element(pFormHdr, tag SR ERROR)
Forms DispTayMsg("Copy operation was unsuccessful ");

/* Enable Paste, Disabled Cut, Copy, and Clear */

EditMENUITEM(EDIT PASTE INDEX} bEnabled = ENABLED;

EditMENUITEM[EDIT CUT INDEX].bEnabled = DISABLED;
EditMENUITEM[EDIT_COPY INDEX].bEnabled = DISABLED;
EditMENUITEM[EDIT CLEAR_INDEX].bEnabled = DISABLED;

mb_draw (§FormsMENUBAR) ;
} /* end of forms copy element function */

Forms PasteElement (pFormHdr)
?ORM_HDR *pFormHdr;
int tag, x, y;
ELEMENT *pElement;
FORM_DST Destination;

/* past in the element from the clipboard */
tag = form paste(pFormHdr);

%f { tag < 0)

Forms DisplayMsg("Paste operation was unsuccessful.");
return;

}

/* Move the new element to the cursor location */
/* since it was pasted at the upper-left corner */
vid read _cursor(&x, &y);

Page 2-73

pElement = (ELEMENT *) form get pointer(pFormHdr, tag);

Destination.x0
Destination.y0
Destination.xl
Destination.yl
Destination.x0f
Destination.x1f ;
Destination.y0f ;
Destination.ylf = 0;

X;

Vi

(ﬁElement->xl - pElement->x0) + x;

(gElement—>yl - pElement->y0) + y;
i

nwwnu

form move_element (pFormHdr, tag, &Destination);

/* Enable printing since we now know we have some graphics */
FileMENUITEM[FILE PRINT INDEX].bEnabled = ENABLED;

mb_draw (4FormsMENUBAR) ; ™~

} /* end of forms paste element function */

Page 2-74

Direct Interfacing with the Clipboard

To read the clipboard:

Source is the pointer to the clipboard area returned by dm_get_clipboard_info.

Dest is the pointer to the buffer area in the application data segment where the
information will be copied to.

NumBytes i the size of the clipboard returned by dm_get_clipboard_info.

copy_from clipboard (Source, Dest, NumBytes)
unsigned char far *Source;

unsigned char *Dest;

}nt NumBytes;

register unsigned char *d;
register int n;

d = Dest;
n = NumBytes;
for (; n !'=0; n--)

*d++ = *Sourcett;

}

To write to the clipboard:

1) Call dm_set_clipboard_info, to set the type and length of your data.

2) If an error is returned, then the data is too large to fit on the clipboard. The previous
contents of the clipboard buffer is still intact (the type and length were not changed).
The application should inform the user that the selected data was too large.

3) If no error is returned, call dm_get_clipboard_info to get the clipboard buffer pointer.

4) If no error is returned, the data may be transferred to the clipboard buffer.

Source is the pointer to the buffer area in the application data segment where the
information will be copied from.

Dest is the pointer to the clipboard area returned by dm_get_clipboard_info.

NumBytes is the size of the clipboard returned by dm_get_clipboard_info.

copy_to clipboard (Source, Dest, NumBytes)
unsigned char *Source;

unsigned char far *Dest;

%nt NumBytes;

register unsigned char *s;
register int n;

s = Source;
n = NumBytes;
for (; n !'= 0, n=--)

*Dest++ = *s++;

Page 2-75

Writing text with attributes to the clipboard:

The text application utilizes attribute description flags in order to display text with the
underline or bold attributes. These flags must always be used in pairs, with the "ON"
flag appearing at the start of the attributed text and the "OFF" flag appearing at the end
of the attributed text. Each "ON" flag MUST be accompanied by an "OFF" flag. The
following attribute pairs are recognized:

UNDERLINE ON(0x11) UNDERLINE OFF (0x10)
BOLD ON(0%13) BOLD OFF (Ux12)

The defines for these attribute pairs are in the include file, CSRVID . H.

See form_copy_element when copying form data to the clipboard.

Page 2-76

‘ Writing a 40 Column Application

Tain()
int video_info, nbr drivers, driver index;
int i, bFound;
char tmp_buff[20];

Forty column applications must bind to the CSR using the dmcsr_bind_init call which does not
load the video driver.

/* Bind to the Core Services Resource */
f } dmecsr bind_init() == CSR ERROR }
* E?ilure t0 bind to the TSR, could not find/load resource */
exi

/* Determine number and names of possible drivers */
video info = vid loadable drivers(&VidSwapBuffer[0]);
nbr drivers = video_info ¥ NBR DRIVERS MASK;

driver index = vided info >> 87

/* Find the forty column video driver to use on this machine */
for (i =0, bFound = FALSE; (i < nbr drivers) && (!bFound); i++)

if } strcmp (VidSwapBuffer(i]. driver name, "DMVST256Y) == 0)
* Forty column video driver for EGA/VGA matches */
bFound = TRUE;
if (!bFound)
for (1 =0; (i < nbr_drivers) && (!bFound); i++)

if } strcemp (VidSwapBuffer([i].driver name, "DMVSTC40") == 0)
b; Fogty column video driver for Tandy 1000 matches */
oun RUE;

}
. %f { 'bFound)
for (1 = 0; (i < nbr drivers) && (!bFound); i++)
if } strcmp(VidSwapBuffer(i].driver name, "DMVSLRES") == 0)
* Forty-column video driver for TGA matches */
} bFound = TRUE;
} /* did not find a match for Tandy 1000 either, try CGA */
} /* did not find a match for EGA/VGA try Tandy 1000 or CGA */

if (bFound)
driver index = i - 1;
else

/* did not find a forty column driver - exit application */

- dmcsr_bind end();
exit (U);

The csr_load_video_driver actually loads the video driver.
ReturnCode = csr load video driver(VidSwapBuffer([driver_ index].driver_name);
if (ReturnCode == CSR ERROR)
{

/* could not load the forty column driver - exit application */
dmcsr _bind end();
exit (0);

}

/* Bind with the rest of the core */
csr_access_init{();

/* Draw the main screen */
FortyCol Draw Screen(VldSwapBuffer[drlver index].driver name);

Page 2-77

Note + This ep(amplc assomes e
:‘>W1<1u Mwory w\odd R
‘ Writing a DeskMate Resource

A DeskMate resource must provide application and resource side bindings. The: application side
bindings are linked with the application. The bindings in the DeskMate libraries are application
side bindings. These bindings setup the far call into the resource from the application. The
resource side bindings are part of the resource. They supply the entry point into the resource and
handle returning to the application.

The sample source provided here is included in the SAMPLES\RESOURCE directory.

4
include ressegs.inc

include dmexec.inc ; include defines for desk

- public Resource Load ;load the resource
public “Resource End ;will remove resource from memory
public Tsc_srq vector ;application binding

_DATA segment

The rsc_srqv or resource service request vector is the far address of the resource assigned by
the executive (desk) once the executive has loaded the resource. This variable is the bridge
between the application and the resource.

public rsc_srqv

rsc_srqv dw Qabcdh ;vector to resource binding
- dw 0dcbah ;received from desk .
myname db 'MESSAGE',0 ;name of resource file, without extension
‘ _DATA ends

_TEXT segment

Page 2-79

At this point, the application side of the bindings must create a series of jump routines to the .
rsc_srqv address, each routine having a unique function within the resource itself. A macro is 4
used to generate the function jump table. Each time a function call is added or deleted, the jump

table must be regenerated.

Create a_jump routines to rec_srq vector routine with the appropriate value
in AX. For example: - -

name_of resource_app called label near
mov~ax,name Of r€source app called
jmp near pt¥ [Fsc_srq véctor]

RESOURCE_APP=0

The file msgbind.inc contains the macros needed to build application side and resource side
bindings for all functions in the resource. Here it is building the application side bindings.

ifdef RESOURCE APP
asm proc macro SvC name
“public &svc name
&svc name label near
fiov aX, svc id
jmp near pt¥ [rsc srq vector]
svc id=svc id+l — ~
endm -
endif

public functbl
functbl label word ;label for begining of jump table
sve id=0
;asWh_proc goes here

asm_proc Resource Message
asm_proc Resource”Draw_Box

This is the actual entry point into the resource.

; rsc_srq _vector will call the resource binding supervisor.

’

! !
’ r
’ . 1
; Entry: ax resource service function. ;
i ;
; Exit: None. :
H '

rsc srq vector proc near

“push bp
mov bp, sp
add bp,4 ;get past return address
;ss:bp will point to parameters
; and ax contains function code
;make a service request to resource binding
;on return AX will be set to 0->error, l->ckay
call dword ptr DGROUP:{rsc_srqv] ;make service request
Peb P

rsc_srq vector endp

Page 2-80

The resource side of the bindings for this example are in RESSIDE.ASM. The resource side
bindings set up the resource information structure defined in RESINFO.INC.

& e e

include ressegs.inc
public resource

public Resource Binding
public resource”end

_DATA segment

extrn _ParameterString:byte

.xlist

include dmexec.inc ;defines for desk executive calls
include resinfo.inc ;Resinfo structure and macros
.list

RESOURCE_RES=0 ;build jump table of resources

Set_End TEXT:resource end ;use macro to set up EndAddr in struct

’

; Set_ResInfo fills in name and binding entry point.
; name must be upper case, no extensions.
’

Set_ResInfo RI,"MESSAGE", TEXT:Resource Binding
_DATA ends

The resource side of the bindings MUST contain a two byte stack for the return address.
STAC}ébSEGMgNgup) ﬂt esource! s %nok I (m,/ USCC{ wA‘,’ﬂ 141& fesource.

STACK ENDS s bt foaded!. Alker ﬂm} HM/ Icafzow Sﬁlr& A

Assume c¢s: TEXT, DS:DGROUP

_TEXT seg;ent dsc[l A 50, Z 6}11[&5 I ﬂo{' fea j
include msgbind.inc Mé{’fﬂ//yr ﬁ fejlgf?,r’ l%[, /‘650()/‘1‘,6 qut /}\)S/l ‘f é}n/-cg

The file msgbind. inc contains the macros which will bind the resource side bindings.

ifdef RESOURCE RES
asm_proc macro sv¢_name
svc name=svc id
extrn &svc TName:near
dw offset TEXT: &svc name
svc id=svc id¥l - -
.endm -
endif

public functbl
functbl label word ;label for begining of jump table
svc id=0
;asfl_proc goes here

asm proc Resource Message
asm_proc Resource Draw_Box

Page 2-81

Besides setting up function numbers for resource calls and providing a near jump into the .
resource code, the resource side of the bindings saves the current PSP, sets up DS to equal .
DGROUP, moves the _TEXT segment into CX (for debugging purposes), and asks the executive

to execute the resource, and terminate and stay resident for subsequent calls to the resource.

1 ’
! ’
; _resource saves the current PSP. :
; moves DGROUP to the current data segment. ;
H register the resource with DESK.EXE. ;
; terminate and stay resident. ;
1 ’
; Entry ;
’ . ’
; Exit ;
! ’

1
_resource proc near

mov cx,es ;save for PSP
mov ax, DGROUP ;only do this is resource is not in C
mov ds, ax N

;register resource with DESK.EXE

mov bx,offset DGROUP:RI ;es:bx =resource info structure
mov [bx] .ResPSP, cx

mov ax,ds

mov es,ax

mov cx, TEXT ;when debugging, use cx to resolve

i _TEXT segment (other segments will
be offset from there)
mov ax,DM EXEC RES START ,1nterru t service number
int DM_EXEC INT ;desk will return ROM/LIM page or ff

;get memory size in paragraphs for TSR

mov dx, LAST
sub dx, "TEXT

add dx,I0h ;allow for PSP
mog 3?531°°h ;stay resident with DX paragraphs
in

_resource endp

Page 2-82

The Resource_Binding address is used by the macro Set ResInfo as a resource binding entry
point for all calls into the resource. Since all calls in the resource enter the resource binding code,
this is where the copying of parameters used by the resource functions is done. The function
number in AX is doubled and the near call to CS: [BX] results in the actual function being called.

;i Resource Binding save all current registers.

contains function code

DS points to applications data area

; Exit: None.

’

’

1

; Entry: SS:BP points to first parameter on applications stack.
; X

1

1

L4
Resource Binding proc far

assume ds:nothing, ss:nothing, es:nothing

push
push
push
push
push
push

pop
ret

ax
bx
cX
dx
si
di
bp

es

ds ;save segment registers

copy_params

bx, DGROUP
ds, bx

gi:(l)ooo &— ermror Shoulol be MoV 5)(

bx, ax

cs: [bx]

Resource Binding endp

Page 2-83

, el

Aok fhat all resource Lonckibes
reburn voldl i A1 maﬁ«f)lc
(AKX and DK are restored o fhe

mme;)j \/(\QUQSX .

This routine copies any parameters needed by the functions. It checks to see which function is .
being called and copies the amount of data needed by the call. It assumes that DS has been set 4
to the application's data segment.

assume ds:DGROUP, ss:nothing, es:nothing

!
; copy_params copies parameters to local data area. ;
; Entry: SS:BP points to parameters. ;
; DS appllcatlons data segment. ;
H AX function number. H
; Exit: None. ;
; H

Copy params proc near
S0 e paramece-pran Box /\]0,1«5: This resoorce ts nok
params: reendrasdt GE&QMC{'BG corlw’

;need to copy parameters,structures to a local data area >

push ax +0 S{ahc

mov ax, DGROUP

nmov es,ax

mov si, [bp+0]

mov di,offset DGROUP: ParameterString

mov cx,0028

rep movsb

pop ax

ret "II'
no params: A

~ ret

copy_params endp

The "resource_end" address in the resource side of the bindings is a far address to set the end of
the resource’s memory in the macro Set End so that the executive knows which procedure to
call before it unloads the resource. This routine should clean up all files, buffers, and close all
resources before returning. All latched interrupts should also be unlatched in this procedure.

The sample resource has no open files, resources, or buffer management to take care of, so it
simply returns. It is important for the routine to exist for the sake of Desk's code that releases a
resource.

resource_end this routine should clean up all files, buffers and close all
resources before returning. This is called by desk before
it is about to remove the resource from memory. All latched
interrupts should be unlatched at this time.

Entry: SS BP points to parameters.
applications data segment.
Ax function number.

Exit: None.

1

resource end proc far
Tet

resource_end endp

_TEXT ends o
end _resource ‘/,

Page 2-84

In the example resource MESSAGE.RES, the procedure Resource_lLoad is the function that
requests that the executive load a resource. This call is comparable to the initialization routines
esr_init and guf_bind_init.

! L
; _Resource_Load loads a resource into memory. . ;
; Entry: es:dx points to name of the resource module to load. ;
; es:bx points to long address. ;
; Exit: desk will put the resource binding entry point into return AX with: ;
; AX=1, Success. ;
; AX=0 ,Failure. H
i i
'Resource Load proc near !
- push es ; save es

push bx ; save bx

push ds ;make es = ds

pop es

mov dx, offset dgroup:myname ;get resource binding name

mov bx, offset dgroup:rsc srqv ;resource entry point will be

- ; saved at rsc sqrv

mov ax, DM EXEC LOAD RES ;interrupt service number

int DM _EXEC_INT™ - ;call desk

pop bx ;jrestore registers

pop es

or ax,ax ; test for succes or failure

jz error

mov ax, 01

error:
ret

_Resource_Load endp

The sample resource MESSAGE.RES also includes an example of freeing a resource,
Resource_End. This call is eqiivalent to csr_end or guf_bind_end.

; _Resource_End calls DESK.EXE to free a resource.
i

; Entry: es:dx name of binding resource.

; Exit: none.

i

_Resource End proc near

mov ~ ax,ds

mov es, ax ;make es = ds

mov dx,offset DGROUP:myname ;ascii name of resource

mov ax,DM EXEC FREE RE ;free the resource

int DM_EXEC_INT -
jo—————- load a dummy routine in the event someone tries to access the resource
; that we just freed

mov ax,offset TEXT:resource not loaded

mov rsc srqv,ax -

mov rsc”srqv+2,cs

ret -

_Resource _End endp

Page 2-85

resource not loaded dummy routine t
- -~ already gone.

Entry: None.

Exit: None.

’

resource not loaded proc far
mov — aX,DM ERROR
ret -

resource not_loaded endp

_TEXT ends

end

o return an error if the resource is

Page 2-86

This code resides in the resource and provides the resource’s functionality.

! 1
; MESSAGE.ASM - contains two routines, one to disglay the passed message on ;
; the screen, the second to draw a box around the displayed ;
; message. ;
! ’

include ressegs.inc
.xlist

include csrbase.inc
include csrvid.inc

.list

_DATA SEGMENT

public ParameterString
_ParameterString db 28 dup (?) ; Local buffer for passed string
_DATA ENDS

_TEXT SEGMENT

extrn csr access_init:near
extrn ~csr init:n€ar

extrn ~csr_end:near

extrn "vid clear screen:near
extrn “vid move_Cursor:near
extrn “vidTset Tine attr:near
extrn “vid_draw rect:near
extrn “vid_put_string:near

; Resource Message - moves the cursor to X = 26; Y = 12,
H displays the message passed at that location.

r

’

[

’

1

; Entry: None.
H

; Exit: None.
;

[
[4

; Calls DeskMate's vid move cursor, and vid put string routines.

’

public _Resource Message

_Resource Message proc near
call _csr_init

mov ax,12 * CHAR YEXT

push ax

mov ax,26 * CHAR XEXT
push ax

call vid move cursor
add sp, 07

mov ax,offset DGROUP: ParameterString ;resource_msg
push ax -
call vid put_string
add sp, 02

call _csr_end

ret

_Resource Message endp

Page 2-87

Entry: None.

Exit: None.

public _Resource Draw_Box

_Resource Draw_Box proc near

call csr init
mov ax, COLOR3
push ax
mov ax, LINE WIDTH1
push ax -
mov ax, LINE SOLID
push ax -
call vid set line attr
add Sp,06 -
mov ax,VIiD NO FILL
push ax -7
mov ax,14 * CHAR YEXT
push ax -
mov ax,55 * CHAR XEXT
push ax -
mov ax,11 * CHAR YEXT
push ax -
mov ax,25 * CHAR XEXT
push ax -
call vid draw rect
add Sp, 10 -
call _csr_end
ret

_Resource_Draw_Box endp

TEXT ENDS
“END

TEXT segment byte public 'CODE'
“TEXT ends
“PDATA segment byte public 'PDATA'
“PDATA ends
TITEXT segment byte public 'ICODE’'
TITEXT ends
“DATA segment byte public 'DATA’
“DATA ends
BSS segment byte public "BSS'
“BSS ends
STACK segment word stack 'STACK'
STACK ends

LAST segment byte public 'LAST'
TLAST ends

DGROUP group DATA, BSS, STACK
assume

S: TEXT, DS:DGROUP, SS:STACK

Resource Draw Box - sets DeskMate's line attribute to LINE SOLID.
- sets DeskMate's line width to LINE WIDTHI.
sets DeskMate's color attribute to COLOR3.

draws a box around the message passed earlier.

Calls DeskMate's vid set_line attr, and vid put_string routines.

;ireqgular code segment

;static data

;impure code segment (for ROM/LIM)

jregular data segment

;uninitialized data segment
;resource stack segment

; start of data heap

Page 2-88

N

Writing a DeskMate Accessory

DeskMate accessories are mini-applications which perform a specific task for the user. These
programs pop-up over the current application and require an application launch them with the
dm_acc_ run function call. There are two types of-accessories, the first are application specific
and are launched from an application menu option. The second are system accessories which
are general purpose and are launched from the F10 menu.

Application specific accessories are called by name. Use accessories to implement functions
which are not often used and to reduce the load size of your application. For example, the
DeskMate Calendar application uses an accessory to perform its Calendar Merge function. The
Calendar application is smaller in size since part of its functionality resides in another program.

System accessories are available in all applications. Developers may write accessories which
can be accessed through the More menu option. For more information about "installing” the
accessories with the More option, see the dmmore_add_accessory function in the Library
Functions section of the DeskMate Technical Reterence.

Accessories may call csr_access_init and csr_access_end instead of csr_init and esr_end if
they are NOT going to have a menu bar. Accessories which call esr_access_init should call
win_group_init (and win_group_end) to create a new base window. A child window which
encompasses the pop-up area should also be created to simplify the accessory's event handling.
See the Managing Multiple Windows and Events section for more information.

General Guidelines

1) Accessories should be kept small in load size to improve their chances of being launched
by any application.

2) Accessories should follow the style guidelines for pop-ups discussed in the DeskMate
Style Guide.

3) Accessories which use resources should:

a) check the product version number and on a 3.0 system they should "grow” to 32K to
ensure that they are using all available code shed space. Resources cannot be loaded
into the code shed space on a 3.0 system. This only applies to resources other than
the CSR and GUF which are already loaded on a 3.0 system.

b) load the resources as temporary resources using dm_temp_resource so that the
resources are loaded in the code shed space along with the accessory. This only
applies to resources which are not required after the accessory terminates.
Accessories which provide functions which require that the resource stay loaded after
the accessory terminates should not use this call to load the resource.

¢) use the resource information in the DESKHDR.EXE utility to inform the executive of

what resources are required for execution. The executive will preload the resources
and if there is not enough memory for the accessory and the resources it will inform
the user.

d) use the version number functionality in the DESKHDR.EXE utility to set the file's
version number.

Page 2-89

Accessory Chaining

Chaining is the method by which two accessories invoke each other, having only one
accessory resident in memory at a time. The following code is an example of howan
accessory chains to DMHELP . ACC.

Check_ACC_Info is used to save and restore MY ACC to the state it was in when it chained
to DMHELP . ACC. This function writes out the necessary information into the environment
manager’s environment area before it chains to the help accessory. When the help accessory
chains back to MY ACC, check_acc_info is immediately called to restore variables,
structures and any needed data to restore MY ACC. This is done so the user is not aware that
they left the accessory.

main()
** bind to neccesary resources **

/* Restore to previous state before help, if necessary */
Check ACC_Info(RESTORE);

é* get input and process until CANCEL */
0
{

event read(&Event);
switch (Event.msq)

{ o

case EVENT APPL: ‘
/* run help */ 4
if (Event.param == APPL ACCESS && Event.x == ACC HELP)

Run Help(): '
Event.param = ID CANCEL;

break;

case EVENT OUTSIDE:
*** Process outside events **
break;

case EVENT CHAR:
***x process character events **
break;
} /* switch */
} while (Event.param != ID CANCEL);

** unbind to resources **
return();

Page 2-90

‘ int Run help()
{ _
ENVDATA EnvData; /* environment data structure */

int Data[40]; /* data buffer */
register int ReturnCode; /* return code*/

/* setup the environment structure */
EnvData.pEnvFileName = "ACCCHAIN";
EnvData.EDosEnvString = "ACCCHAIN";
EnvData.bSwap = ENV NO CREATE;
EnvData.pDmEnvString = "ACCNAME";

/* see if the environment file exists */
ReturnCode = env_get (&EnvData);

/* if the data was not there, create it */
if (ReturnCode == DM ERROR)
env_open (&EnvData) ;

Data[0] = ACC BY NAME;

strcpy (&Data[T], "MY ACC");
EnvData.pDataInfo = T{char far *)Data;
EnvData.Datalen = strlen{(Data);

/* write the environment data to memory */
env_replace (&EnvData) ;

/* Save the necesary information to restore MY ACC to its */
/* current state when dmhelp.acc chains back *7
Check ACC Info (SAVE);

/* run the help accessory */
dm acc run(ACC BY NAME, "DMHELP");
returni0) ; -

Page 2-91

Part 3
Tools and Utilities

“Tools and Uklies”

Contents

Menu bar Builder = MENUBLD.PDMi'iiiiiiinirennennnnsnnes 3-1
Dialog Box Builder - DLGBUILD.PDMcivuvviinnnnnnnnnnsn 3-3
Bitmap Editor = HYPERBIT.PDMvtiinuirnnevnnnennnnennnnnn 3-7
Graphics Form Generator = DRAWLIST.PDMcivuiuvnvnnnnnnn 3-9
Clipart File Builder = CLIPART.PDMiivvunuuneeennnnnns 3-11
Stroke Font Editor = STROKE.PDMiiiiiiiiinnnnnnnnnn. 3-13
Memory Map Generator — MEMMAP.PDM, 3-15
Desk Header = DESKHDR.EXEcttturiirriiiieeennnnnnnns 3-17
Disk Label Generator = DMLABEL.PDMiviteininnennnnennns 3-21
Customized Runtime Utility - RUNTMBLD.PDMc.c.... 3-25

Customized INSTALL.EXE Utility - INSTLBLD.PDM 3-26

Most Find /rcf)]o,eﬂ o oecurrences of _ MENU_TAG
with OAPP:[AG n b Al c-r?me{ /))/ fhi's
UH/NL)/ O“fhgrwt'st/ ﬂﬁ, (‘0(1{’, :,Uf” MG{' COMIJ(’A

Menu bar Builder - MENUBLD.PDM

The Menu Bar Builder allows the programmer to interactively build an application’s menu bar.
The lines of source code declarations and definitions necessary to describe the application's
menus are generated automatically for the programmer. A 'C' language header or include file
(.H), ready for use in the programmer’s application, is produced.

The Menu Bar Builder is a DeskMate application which follows the DeskMate Style Guide,
providing both a mouse and a keyboard interface. The information needed to decribe the
application menus is entered in two dialog boxes.

The information which describes the menu bar - menus, buttons, help, message menu, and
accessories menu - is entered in the "Menubar” dialog box. The menu titles for the F2 through
F8 menus are entered in the designated edit fields. The Alarm Menu, Tandy Accessories Menu,
Help, and Up, Down, Left, and Right arrow buttons are selected through their respective check
boxes.

The information which describes the individual menus is entered in the "ltems Definitions" dialog
box. The ltem edit field is used to enter each item's string. The Accelerators list box is used to
assign an accelerator to an item. Check boxes are used to enable or check a menu item. Radio
buttons are used to set the menu item's group. The list box to the right displays the current
menu's name and any items already defined. The ADD push button is used to add another item
to the menu. The DELETE push button is used to remove an item from the menu.

This utility makes the creation of a DeskMate application's menu bar quick and easy. A complete
menu bar definition can be created in a matter of minutes. The programmer need not worry about
the contents of the data structures, the constant definitions necessary, or the dimensions of the
menus while creating the menu bar.

Source code definitions and declarations generated include initialized string declarations, return
code definitions, individual MENUITEM and MENU data structure declarations, and the MENUBAR
data structure declarations. The code generated by the utility is of a generic nature. You may
choose to change the naming conventions used before incorporating the code into your
application. The utility is meant to create the initial menu bar definition, simple changes to the
menu bar definition can be made manually by editing the header file.

Summary of Commands:

File Menu :

New Creates a new menu bar definition. Prompts the user to
save any changes first.

Open... Opens an existing menu bar definition header file.

Save Saves the menu bar definition to the header file.

Save as... Prompts the user for the name of the header file,
generates and saves the menu bar definition to named
file.

Exit Exits the utility.

Page 3-1

Run... Standard File Run function, prompts the user for the ‘
name of the application to be executed when the utility 4

exits.
Options Menu :
Define menubar... Displays the "Menubar" dialog box.
Define items... Displays the “ltems Definitions" dialog box.

/‘

Page 3-2

oo e builler will 4l iF yoo 4y 4o pot
Nmr)ra fhan Y0 Componen sy;'r\ Fhe éof . There are
ajso /{'MﬁLS on 1%1 num})fl’ o@ ead\ @Pc op c@M)\eAcmt.

Dialog Box Builder - DLGBUILD.PDM The s wre. comulative * oach fine He box /s ediked,

oU O@Hmarccom gnc»r/t,{zmw‘o(‘{f(MMHL/ but COMpponeats
The Dialog Box Builder provides the programmer with a’way to interactivgly design and execute p [efed oy aot- cound-
dialog boxes. The true power of the program becomes evident when the lines of source code {o ward 1t v
declarations and definitions necessary to describe the dialog box are generated automatically. ArCreas! “]
The 'C' language header or include file created is ready for use in an application. The routine to {fe /ﬁw{ T Af MaK
actually invoke and interface with the dialog box is the piece of code written by the programmer. bhe . Stadic.
By saving the binary image of the dialog box, the programmer can come back and make /"2
changes, regenerating the header file as needed. strings s 14,

The Dialog Box Builder is a DeskMate application which follows the DeskMate Style Guide,
providing both a mouse and a keyboard interface. Components are added by by positioning the
text cursor (block) first, then choosing the component to add. The Components Menu contains
the commands to add the individual components. Dialog boxes are used to enter the component
information such as size or dimension, data type, and label.

The standard user interface components are supported - push buttons, radio button groups, list
boxes, check boxes, edit fields, and a menu bar. Static strings are provided for labels and
prompts. Static boxes are also provided to show component groupings.

This utility makes the development of DeskMate applications quick and easy. A complete dialog
box, including the title, frame, and components can be created in a matter of minutes. The
programmer need not worry about the contents of the data structures while designing the dialog
box. The utility automatically calculates the coordinates necessary to center the box on the
screen. Changing the tabbing sequence and selecting components for modification, repositioning,
or removal are also supported.

The source code generated includes initialized string declarations, edit field buffer declarations,
edit field format string declarations, return code definitions, individual component data structure
declarations, the redraw and component array data structure declarations, and the frame and
dialog box data structure declarations. :

Summary of Commands:

File Menu :

New ~ Creates a new dialog box, prompts the user to save
changes first.

Open... Opens an existing dialog box file (.dlg), prompts the user
to save changes first. Clears screen, displays the dialog
box.

Save Saves the dialog box image to file.

Save as... Saves the dialog box image to a new file for editing
purposes later.

Exit Exits the utility.

Run... Standard File Run function, prompts the user for the
name of the application to be executed when the utility
exits.

Page 3-3

Source Menu :

Generate...

Modify variables...

Extension length...

Components Menu :

Pushbutton

Radiobutton

Listbox

Checkbox

Editfield

Menubar

L

Creates the source header file for the dialog box.
Prompts user for a label prefix to be used when
generating variable declarations.

Displays dialog box used to cycle through the
components, allowing the user to change the default
names of the source variables.

Prompts the user to enter the number of characters of
the dialog box name to be used in generating the names
for the source variables. This feature is useful when
several dialog boxes are being created.

Adds a push button component at the current cursor
location. Brings up the Push Button Definition dialog
box, allowing the user to enter the component specific
information. Displays the push button when the user
OKs the box.

Adds a radio button group component at the current

cursor location. Brings up the Radio Button Group

Definition dialog box, allowing the user to enter the .
component specific information. Displays the radio 3
button group when the user OKs the box.

Adds a list box component at the current cursor location.
Brings up the List Box Definition dialog box, allowing the
user to enter the component specific information.
Displays the list box when the user OKs the box.

Adds a check box component at the current cursor
location. Brings up the Check Box Definition dialog box,
allowing the user to enter the component specitic
information. Displays the check box when the user OKs
the box.

Adds an edit field component at the current cursor
location. Brings up the Edit Field Definition dialog box,
allowing the user to enter the component specific
information. Displays the edit field when the user OKs
the box.

Adds a menu bar component at the current cursor
location. Brings up the Menu Bar Definition dialog
boxes, allowing the user to enter the component specific
information.

/.

Page 3-4

Static string

Static box

Modify

Delete

Options Menu :
Title...

Width+Height

Tab Order

Location Box...

Run dialog

Redraw screen

Adds a static string at the current cursor location. Brings
up the Static String Definition dialog box, allowing the
user to enter the text string. Displays the string when
the user OKs the box.

Adds a static box at the current cursor location.
Displays a default size box at the cursor location, with a
size handle in the lower right-hand side of the box. The
user drags the handle to resize the box.

Modifies the currently selected component or static
string. Brings up the Definition dialog box, allowing the
user to change the component / string specific
information. Displays the component / string when the
user OKs the box. When the currently selected item is a
static box, the sizing handle appears, allowing the user
to resize the box.

Removes the currently selected item from the dialog
box.

Allows the user to enter or change the dialog box title.

Repositions the lower, right-hand side of the dialog box
to the current cursor location - sets the new width and
height of the dialog box.

Allows the user to change the component tab order for
the dialog box.

Brings up a dialog box that allows the user to select the
corner of the screen where the X and Y location box
appears. The location box contains the origin of the
selected component. This box is used to align
components in a dialog box.

Allows the user to "try out” the dialog box.

Redraws the screen.

Page 3-5

Bitmap Editor - HYPERBIT.PDM

The Bitmap Editor provides the programmer with a way to interactively modify device-
independent bitmaps. The bitmaps may be created from Draw data files (flg) These bitmpas
may used in information boxes or simply displayed on the screen.

The Bitmap Editor is a DeskMate application which follows the DeskMate Style Guide, providing
both a mouse and a limited keyboard interface. The information needed to decribe the device-
independent bitmap is generated in several formats - as a graphics form in a Draw file format
(.fig), as a graphics form 'C' data structure defintion header or include file (.h), and as a graphics
form assembly language data structure definition header or include file (.inc).

Hyperbit supports all DeskMate video modes, including the Tandy 4 and 16 color modes.

This utility makes the modification of device-independent bitmaps simple by allowing full scrolling
while in the zoomed editing mode. A select rectangle is used to the determine the area of the
bitmap to initially zoom in on. Double-clicking on the bitmap will toggle the zoom/normal modes.
Keyboard accelerators of Ctri+Z to zoom and Esc to toggle back are also supported.

The size of the bitmap in bytes is displayed on the main screen at all times, notice the size
change when the Bits per pixel is changed. Two, four, and sixteen color bitmaps are supported.
The more colors used, the larger the bitmap.

Summary of Commands:

File Menu :

New Creates a new bitmap file, prompting the user to save
changes first.

Open... Opens an existing bitmap file (.fig, .h, or .inc), prompts
the user to save changes first. Clears screen, displays
the new bitmap.

Save Saves the bitmap information to file (.fig, .h, or .inc).

Save as... Saves the bitmap information as a graphics form, which
may be read by Draw, or as a 'C' or assembly language
header file.

Exit Exits the utility.

Run Draw Runs the Draw application automatically after exiting.

Edit Menu :

Copy Places a copy of the bitmap on the clipboard as a
graphics form which may be pasted into the Draw
application for further manipulation.

Paste Pastes in a graphics form from the Draw application,

convents it to a device-independent bitmap for editing.

Page 3-7

Zoom

Options Menu :

Bits per pixel...

Change colors...

Clear background

Solid background

Zooms in on the bitmap, allowing editing of the actual '
pixels. -

Displays dialog box allowing the user to choose to make
the bitmap a two (1 bit), four (2 bits), or sixteen (4 bits)
color bitmap.

Displays a dialog box used to change one color of the
bitmap to another. For example, in a four color bitmap
all the "green" pixels can be changed to "red".

Toggled check mark menu item used to set the bitmap
background to transparent. When displayed, graphics
under the bitmap will show through the background.

Toggled check mark menu item used to sét the bitmap
background to solid. When displayed, graphics under
the bitmap will be covered by the bitmap background.

Page 3-8

Graphics Form Generator - DRAWLIST.PDM

The Graphics Form Generator converts a graphics form which was placed on the Clipboard by
Draw (or other application which uses CLIP DRAW data type) to its equivalent 'C’ source header
or include file. This utility allows a programmer to create a screen or picture using the Draw
application and then compile into an application, making it part of the program’s data.

A simple DeskMate application, Draw List, automatically pastes in a picture from the clipboard at
start-up and prompts the user to paste after a task switch.

Use the video call vid_draw_form((FORM_HDR *) Form, x, y) to display the bitmap at the
desired location on the screen.

Summary of Commands:

File Menu :
Save as... Saves the graphics form as a 'C' source header file.
Exit Exits the utility.
Run... Standard File Run function, prompts the user for the
gg“rr: of the application to be executed when the utility

Page 3-9

Clipart File Builder - CLIPART.PDM

The Clipart File Builder allows the software developer to create clipart files with the extension
CLP from Draw files with the extension FIG. Clipart files can also be created by copying objects
to the clipboard from Draw and pasting them into the Clipart application. Clipart files that are to
be released to the public should not contain blank pictures. The following are the three methods
of operation used to build clipart data files.

Method 1:

1.
2.

Create one or more pictures which will be included in a clipart file using DRAW.PDM.
Select each picture and make it a separate object (use the Make Object menu
option).

Save your pictures to a disk file. Only a draw file that contains all objects can be made

into a clipart file.

Run CLIPART.PDM.

Open the draw file from the clipart application. ‘
Select a display layout from the Display menu - 2 objects, 3 objects, to 12 objects,

depending on the number of pictures in your file.

Rearrange the individual pictures using the clipboard.

Save the pictures as a clipart file.

Method 2:

1.

2.

3.
4,

Create pictures using DRAW.PDM. Select the pictures you wish to be made into clipart
and make each one a separate object.

Copy each picture to the clipboard. Only clipboard pictures that are objects can be
made into clipart.

Run the clipart application, CLIPART .PDM.

Select a display layout from the Display menu - 2 objects, 3 objects, to 12 objects,
depending on the number of pictures in your file.

5. Paste the pictures into the clipart application.
6.
7. Save the pictures as a clipart file.

Rearrange the individual pictures using the clipboard.

Merging Files:

1.
2.
3.

Open a file and use "Copy all" from the "Edit" menu.
Open a second file and use "Paste" from the "Edit" menu.
Select a larger display layout to display the merged pictures.

Summary of Commands:

File Menu :
New Creates a new clipart file. The user is prompted to save
changes first.
Open draw file... Opens a .fig file created with Draw. The file contains
only one object.
Open clipart file... Open a .clp clipart file.

'Page 3-11

Save draw file as... Saves the data as a Draw file with a .fig extension. ‘

Save clipart file as... Saves the data as a Clipart file with a .clp extension.

Exit Exits the utility.

Run... Standard File Run function, prompts the user for the
name of the application to be executed when the utility
exits.

Edit Menu :

Cut Cuts the selected clipart to the clipboard.

Copy Copies the selected clipart to the clipboard.

Paste Pastes in the contents of the clipboard.

Clear Deletes the selected clipart.

Copy all Copies all displayed clipart to the clipboard.

Display Menu:

Allows the user to select the number of objects to be displayed from 2, 3, 6 (horizontally
and vertically), and 12.

Page 3-12

Stroke Font Editor - STROKE.PDM

Provides the programmer with a way to edit or create his own stroke font definitions to add
characters to an alphabet or modify an existing alphabet. Stroke defintions may be created for
icon-buttons, such as those used to display the tools in the Draw application.

Stroke is a DeskMate application which provides only a mouse interface. The screen is divided
into two windows, one for editing of the font definition and one for displaying the result at any
size.

A Draw figure may be used to "trace" over while creating a font defintion. An optional grid may
also be used to help position lines. The point value is displayed on the screen.

A "stroke" is defined as a pen down, draw line, draw line, ..., pen up. In the draw mode, a mouse
click or double-click designates a pen up/down. Press and drag is used to draw lines within a
stroke.

In select mode, a mouse click is used to select a line segment for resizing, moving, and deleting.

Summary of Commands:

File Menu :

New Creates a new stroke font definition file, prompts the
user to save changes first. Clears screen.

Open... Opens an existing stroke font definition file (.h), prompts
the user to save changes first. Clears screen, displays
the last character definition.

Save Saves the font information to file.

Exit Exits the utility.

Run... Standard File Run command, runs the specified program
when the utility exits.

Edit Menu :

Copy Places a copy of the character defintions as a text string
in a graphics form.

Paste stroke Pastes in a graphics form which contains a text element
which uses a Draw font - such as the Roman font
alphabet.

Paste overlay Pastes in a graphics form from Draw which is used to
"trace over" during the editing or creation of a new
definition. Most usefu! for the creation of icon pictures.

Delete line Deletes the selected line.

Page 3-13

Delete stroke

Character Menu :

Next

Previous

Delete
Rename

Select

Display all
Options Menu :

Select brush

Draw mode

Modify mode

Redraw screen

Overlay

Grid

Deletes the group of lines defining the stroke the current
line is a part of.

Displays the next character in the definition, always
enabled since there is always a next "blank or new"
character in the list.

Displays the previous character in the definition. This
item is disabled when viewing the first character.

Removes the current character definition.
Renames the character being defined.

Selects a character definition, versus using the next and
previous commands to cycle through all the characters.

Displays the full character set defined in the current file.

Displays the Brush Styles dialog box, uses the selected
brush when displaying the font.

This mode allows the user to add new lines to the
character definition. This is a checked menu item with
Select mode item which follows.

This mode allows the user to move, resize, and delete
lines in the character definition. This is a checked menu
item with the Draw mode item above.

Redisplays the screen.

This mode displays the overlay. This is a checked menu
item, which is toggled on/off.

This mode displays a grid the user may use for

alignment during drawing. This is a checked menu item,
which is toggled on/off.

Page 3-14

Memory Map Generator - MEMMAP.PDM

One of the most commonly asked questions is "How much system memory does DeskMate
use?". The Memory Map Generator answers that question, given any system configuration.

The Memory Map Generator is a small DeskMate application which scans the memory arenas
determining the allocated and free segments and their sizes (in bytes). The information is
displayed in a list box on the screen. The information is gathered once, upon execution of the
program. The utility does not appear as an arena entry, it takes itself out of the calculations.

To determine the amount of space available for an application, run MEMMAP . PDM.

To determine the amount of space available for another application to task switch with your
application, first run your application then task switch to MEMMAP . PDM.

To determine the amount of space lett for an accessory, rename MEMMAP .PDM to DMHELP . ACC
and execute the by using the F1 key. Remember to save a copy of the Help Accessory before
copying over the Memory Map utility.

Summary of Commands:

File Menu :
Save as Saves the memory map information as a Text ASCII
document, for editing or printing purposes.
Exit Exits the utility.

Page 3-15

The Desk Header Utility - DESKHDR.EXE

The Desk Header Utility reads an .EXE file and its associated MAP file and creates a DeskMate
executable file, .PDM, with the DeskMate extended header. The extended header contains
information about the file for the executive's use in loading and executing the program. You
should run your application through the utility each time it is relinked. See the make file
distributed with the Samples for more examples of the utility's use. DESKHDR.EXE can add the
following items to the header:

Shed size

Split address

extra memory

resources

min & max heap

This is the number of paragraphs that DeskMate may code shed in order
to run an accessory. This number currently is only used for .PDM files.

DeskMate may foad a program in two separate, non-contiguous pieces if
there is a split address in the header. This makes it more likely that a
program might fit if memory is fragmented and there is not a single
chunk of memory farge enough to contain the program. [f a program has
a split address in its header, the executive will load the first part of the
program (up to the split address) in one piece and load the second part
of the program (all the rest from split address up) in another piece. The
PSP will be immediately before the second part.

This is where the program may notify the loader that it intends to allocate
extra memory during execution. The current version of the executive
does not use this information.

If an accessory will require one or more (up to 5) resources to be loaded
in order for it to run it can declare these in the header so that the
executive may load these resources before loading the accessory. This
way the executive can find out that it needs to code shed the current
application in order for the accessory and all its resources to fit.

These are the numbers that were used by the SETHEAP . EXE program.
These values optimize the amount of memory required before the
executive can load the program. Each value is a number of paragraphs.

The values for MIN and MAX are added to the existing minalloc value,
which the linker placed in the file header, to get the new values for
minalloc and maxalloc.

When the program does not plan to allocate any memory on its heap, the
values for MIN and MAX should both be zero (0).

When a program wants the maximum amount of heap space a small- or
middle-model C program can use, the word "full” is used instead of a
numeric value. The utility will attempt to open the MAP file for the
program to determine where the data segment DGROUP starts and
calculates the heap to extend to 64k past the beginning of DGROUP. The
DESKHDR utility will not run without a map file.

Page 3-17

C programs use part of their heap space to store the arguments (argv)
and the environment when the program begins execution. The linker
does not account for this space in setting the initial value for minalloc. If
your C program needs to use heap space, you should add an amount to
the MIN and MAX values to allow for storing the arguments and
environment. Even if the program does not use any heap, you may want
to add some heap to allow for these values. If C does not have enough
heap for these strings during start up, it shrinks the stack by the amount
of memory required for them.

version A version number may be stored in the extended header. This number
can be used to quickly track versions of a program by always having one
place to look for the version of any DeskMate program file. The
executive does not currently use this information.

lim flag A flag in the header tells the Desk Executive that the first code
segment(s) or specified code segment(s) of the program may be loaded
into LIM expanded memory. Only supported in the Runtime and Retail
(stand-alone) products.

shadow ram flag _A flag in the header tells the Desk Executive that the program may be

loaded into shadow RAM. Only supported in the Runtime and Retail
(stand-alone) products.

To run DESKHDR . EXE you must create a control file which specifies the names of the output file
and the input files and the contents of the extended header fields. To run the utility type

deskhdr <control>
where <control> is the name of the control file.

Control file format

keyword argument defauit

Output <filename> : none

Input <filename> output filename with .exe ext

MAP <filenarne> input filename with .map ext

VERsion <symbol name> or <number> _VERSION_NUMBER

SHED <Segment name> or <number> _ITEXT, or DGROUP if no _ITEXT

SPLIT <Segment name> _ITEXT

MEMory <number> 0

Resource <resource name> none

MINheap <numbers> 0

MAXheap <numbers or "Full” full

LIM <Segment name> or <none> if not specified do NOT load into LIM

SHADow <none> if not specified do NOT load in shadow
RAM

‘Page 3-18

The keywords may be abbreviated using the letters shown in caps. The commands may appear
in any order.

If VERsion specifies a symbol name, the symbol is the address of a word in the program
containing the version number of the program.

<number>s are in paragraphs (16 bytes each) unless followed by "k”, in which case the number
is assumed to be in k-bytes (1024 bytes each). Numbers may be given in decimal, octal, or hex.
Hex numbers have "0x" before first digit. Octal numbers have 0 for first digit. Decimal numbers
should not start with 0.

MIN heap and MAX heap will be added to the minalloc value in the input file to compute the
minalloc and maxalloc values for the output file. If maxalloc of the input file is not 0XFFFF, the
heap caicutations will be skipped and minalloc and maxatloc will be left unchanged. MAX heap full
means DGROUP will be 64k total.

Resource is used for accessories to tell desk which resource(s) it will need. There may be up to
5 Resource lines per file. The <resource name> should not inciude the .RES extension.

Output is the only required command line in the controt file.

If the LIM keyword does not exist in the control file, then the DeskMate application or accessory
will not be put into LIM. The segment name parameter for the LIM keyword is the LIM boundary.
If a parameter is not specified then the Desk Header program will attempt to locate an _FTEXT
segment in your application or accessory .MAP file. if an _FTEXT segment is not found then the
Desk Header program will search for an _ITEXT segment. If either segment is found, the
specified application or accessory will be placed in LIM from the beginning of the specified
application or accessory to the found segment. Iif a segment name is specified on the LIM
command line, the Desk Header program will put the address of that segment in the header in
the place of the _FTEXT and _ITEXT segments. If the specified segment name is not found or if
the LIM keyword is used and _FTEXT or _ITEXT segments cannot be found, an error message

is displayed by the Desk Header program.

If the SHADow keyword does not exist in the control file, then the DeskMate application will not be
put into shadow RAM,

Examples

Exampie 1 - Minimum file requirement:

0 MYAPP.PDM

This control file will cause the DESKHDR program to use MYAPP.EXE and MYAPP.MAP
as input to create the file MYAPP.PDM.

The program’s code shed size will be the size of its _TEXT segment. (Assuming _ITEXT
or DGROUP follows _TEXT in map.)

If it has an _ITEXT segment it will be loadable in two separate pieces, _TEXT in one
piece, and its PSP, _ITEXT, DGROUP, STACK, and its heap in the other piece.

Page 3-19

Its minimum heap requirement will be 0 and its maximum heap will be everything from
the end of the program (above STACK) to 64k past the beginning of DGROUP. ‘.

If there is a symbol _VERSION_ NUMBER in MYAPP .MAP, the word at that address will be
copied into the version number field of the header.

MYAPP.PDM will not be loaded into LIM or shadow RAM.

Example 2 - Uses resources and sets the heap sizes:

O MYACC.ACC
R DMDB

MIN 0x100
MAX 15k

This control file will cause the DESKHDR program to use MYACC.EXE and MYACC.MAP
as input to create the file MYACC.ACC.

If it has an _ITEXT segment it will be loadable in two separate pieces, _TEXT in one
piece, and its PSP, _ITEXT, DGROUP, STACK, and its heap in the other piece.

The minimum memory required to run MYACC.ACC will be the size of the program
including all its initialized and uninitialized data plus its stack plus 256 paragraphs (1024
bytes). The maximum amount of memory that will be allocated to the program, and the
amount of memory desk.exe will attempt to free up for the program will be the size of the
program including all its initialized and uninitialized data plus its stack plus 15 times 1024

bytes. Q

MYACC.ACC will not be loaded into LIM or shadow RAM.

Example 3 - Uses LIM:

Output MYAPP.PDM
MIN 10

MAX FULL

LIM C_ETEXT

This control file will cause the DESKHDR program to use MYAPP .EXE and MYAPP .MAP
as input to create the file MYAPP . ACC.

Since the LIM keyword is used, the LIM flag will be set in the header for MYAPP.PDM.
The Desk executive will place the first part of the program into LIM. The size of the LIM
segment is determined by the LIM boundary, for this example C_ETEXT.

Page 3-20

/‘

Disk Label Generator - DMLABEL.PDM

The Disk Label Generator allows the software developer to create a reference file that DeskMate
will use to prompt a user for when disk swapping. The reference file, LABEL.LBL (required
name), contains a list of application and data filenames which are associated with the name of
the disk containing those files. When your application requires a particular file and DeskMate
cannot find that file on the current disk in the drive, DeskMate will access the file LABEL . LBL and
copy its contents into the DeskMate environment managed by the Environment Manager in the
GUF resource. It will retrieve the disk name from the DeskMate environment and ask the user to
insert by name, that disk you designate as the home of the file. On subsequent attempts to
access a particular file that cannot be found on the current disk, DeskMate will retrieve the disk
name from the copy of LABEL . LBL that resides in the DeskMate environment.

The utility also lets you store information in the reference file that can be used by the install
program, INSTALL.PDM , used to copy files from floppies to a hard disk system. Eight bits of
information is stored for each file. The following is a list of the current designation of each bit:

Bit 0 (LSB) Never copy

Bit 1 Copy on date compare

Bit 2 Copy if Deskmate 3.0 CSR
Bit 3 Copy to DMCONFIG directory
Bit 4 Copy if older version

Bit 5 not currently used

Bit 6 not currently used

Bit 7 (MSB) not currently used
Creating a label file:
1. Manually create a master set of disks for your product.

2. Run DMLABEL.PDM.

3. Put the first disk in drive A or B and select "Add new disk..." from the "Options" menu.
The disk will be read for all files in the root directory and a dialog box will be displayed
which lists all files in the "Files” list box.

4. At the "Disk label:" prompt, type the name of the disk with which you wish to prompt
the user when trying to access any file on this disk.

5. If there are any files on the disk for which you do not wish the user to be prompted by
disk name, select such files in the "Files" list box and push the "DELETE FILES" push
button. The LABEL. LBL file and application data and configuration files should not be
included.

6. If there are any files on the disk for which you wish to set any bits of the installation
flags, select such files in the "Files" list box and place an "X" in the appropriate check
box. The default selection is to always copy the file.

7. Push the "ADD NEW DISK" push button to accept all data in the dialog box and enter
it into memory.

Page 3-21

8. The contents of the added disk will appear on the screen. Standard DeskMate cursor
keys (Up arrow, Down arrow, Page Up, Page Down, Ctrl+Home, Ctrl+End) may be
used to view the entire contents of data in memory.

9. To add the next disk, go to step 3 and substitute "next" for "first". Continue until all
disks have been processed.

10. To save the data in memory to a file on disk, select "Save as..." from the File menu.
For the released product you should name the file LABEL. LBL (this is the only label
file name that will be accessed by DeskMate when looking for a file). However, it is
possible to save the file using different names if you will have different versions of the
LABEL. LBL file produced for different products (e.g. you may have one version for 3
1/2" disks and one for 5 1/4" disks). The file LABEL.LBL should reside on each disk
of the released set.

Changing a disk fabel:
1. Select "Change disk label..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label you wish to change and push the
CHANGE push button.

3. A second dialog box will appear. At the "Change to:" prompt, type the new disk label.
4. Push the "CHANGE" push button to change the disk label.
Deleting a disk of files:

1. Select "Delete disk..." from the "Options" menu.

2. At the "Disk Labels" list box, select the label of the disk you wish to delete.

3. Push the "DELETE" push button to remove the label and all files associated with this
disk label. The disk number of any disks following the deleted disk will be adjusted
accordingly.

Adding files to a disk:

1. Select "Add files..." from the "Options" menu.

2. Put the disk containing the files to be added in drive A or B. The disk will be read for
all files in the root directory and they will be displayed in a list box after choosing the

disk label.

3. At the "Disk Labels" list box, select the label of the disk to which you wish to add one
or more files and push the "OK" push button. '

4. If there are any files on the disk which already exist in the label file or for which you do

not wish the user to be prompted by disk name, select such files in the "Files" list box
and push the "DELETE FILES" push button.

Page 3-22

5.

6.

If there are any files on the disk for which you wish to set any bits of the installation

flags, select such files in the "Files" list box and place an "X" in the appropriate check
box.

Push the "ADD FILES;' push button to vadd;all files i'n the "Files" list box to the
previously selected disk. Duplicate filenames are not allowed, you will be informed of
any duplications.

Changing file(s) installation flag bits:

1.

2.

4,

Select "Change files..." from the "Options" menu.

At the "Disk Labels" list box, select the label of the disk which contains the file(s) for
which you wish to change installation flag bits.

Select any file(s) from the "Files" list box and place an "X" in the appropriate check
box.

Push the "OK" push button to accept all changes.

Deleting files from a disk:

1.

2.

3.

4.

Select "Delete files..." from the "Options" menu.

At the "Disk Labels" list box, select the label of the disk which contains the file(s) you
wish to delete.

At the “Files" list box, select the file(s) you wish to delete.

Push the "DELETE" push button to remove all selected files.

Moving files from one disk to another:

1.

2.

5.

Select "Move files..." from the "Options” menu.

At the "Disk Labels" list box, select the label of the disk which contains the file(s) you
wish to move.

. At the "Files" list box, select the file(s) you wish to move.

At the "Move To" list box, select the label of the disk to which you wish to move the
file(s).

Push the "Move" push button to move all selected files.

Label file format:

The label file is a DeskMate environment file.

Each filename has a key field for which there are two bytes of data :
byte one for disk number
byte two for installation flags.

Page 3-23

All files for disk #1 are listed in the label file before all the files for disk #2, which are listed before ‘
all files for disk #3, etc. >

Following all filenames is the LABELS key field for which there are several bytes of data which
includes each label string for each disk in order of disk number. The use of the word, LABELS,
as a key field prevents any files in your label file from being named LABELS.

Each key field is null terminated. The two bytes after the null terminator are length bytes which
determine how many bytes of data that follow are associated with the key field. For key fields that

are filenames, the length is always 2. For the LABELS key field the length is dependent on the
total length of all label names.

. T offer words, ol e varvidles in LABEL.LEL are blonames, eock wik 2 bytes £
agsgaﬂet/ a/mk 7ZC //)/"3'7" /./)//IZE 5 1%6 C/I‘S& IKUMACI'/ S'éaf#lﬁj mL //' %A(56’.&0“0/ 5/1[(/ /'S
He //ij fisted om /)uje 3-2. The last VM&H{, colled LABELS, has a varible amount

o/ ASSOC{ZD‘{QGI c/oulu , cans/s#m] mp 1%; ,//s[a{zc /a/é/;) /w////ermma}m// /N om/er Szzaf#nj prom
/, / very :/M/J//(' éﬂntkf

Page 3-24

Customized Runtime Utility - RUNTMBLD.PDM

The Customized Runtime Utility allows the programmer to create a customized 3.05 executive
which displays your company's copyright message and automatically executes the specified
application instead of the DeskMate DeskTop application. This utility replaces the DeskMate 3.2
BLDRUNTM. PDM utility which is still used to customized 3.2 executives. These utilities are NOT
interchangeable and you must match the utility to the executive being customized.

A dialog box is used to enter the following information to customize your runtime executable:

Applications name: APPLNAME (8 characters, extension will be .pDM)
Customized name: APPLNAME (8 characters, extension will be .EXE)
Copyright message: 40 characters.

Forty/Eighty column driver choice.

Lowest video resolution flag.

The executive file RUNTIME . EXE file is loaded, modified in memory, and the customized file,
APPLNAME . EXE is written out. To insure the correct version of RUNTIME . EXE is used, copy
the file into the current directory. The new file will be created in the current directory.

The Forty/Eighty column driver choice tells the CSR which set of drivers to auto-detect from.
The Lowest video resolution flag tells the CSR to choose the "worst-fit" video driver when it
auto-detects the video. For instance, most videos would auto-detect CGA except where the
video is Hercules. :

This utility MUST be used with and ONLY with a DeskMate 3.03 or later runtime file. To

customize a DeskMate 3.2 runtime, use the BLDRUNTM.PDM distributed with the DeskMate
Development System 03.02.00.

Page 3-25

Customized Installation Launcher Utility - INSTLBLD.PDM

This utlity allows the developer to create a small INSTALL . EXE program used to install a
DeskMate application in a stand-alone environment. This program uses the application’s
customized runtime executive to launch the INSTALL . PDM application at installation time. This
utility enables a developer to use the same customized runtime on the diskette to launch both the
application and the installation application.

The utility displays a dialog box which prompts the user for two pieces of information:

1) The name of the customized runtime without the .EXE extension, for example, MYAPP for
MYAPP .EXE.

2) The Disk Label used in DMLABEL . PDM for the diskette containing the customized runtime
file and the INSTALL.PDM program.

This utility needs the file INSTALL . TEM and your customized runtime, MYAPP .EXE , to reside in
the current directory with the utility. The utility will open both files, patch INSTALL.TEM in
memory and write out INSTALL . EXE.

Refer to Distributing Your Application for more information about the installation procedure.

Page 3-26

Part 4
Distributing Your Application

//AI‘S A’/ZI(.IA’A) lf/Ol!f’ A’)/?[t’cwll'd"m

Contents

The DeskMate Checklistc.iiiniiiiiiiiiiiiiiiiiinnnnn 4-1
Installation and Upgrade ProCeduresceuveeeeecananns 4-3
Determining DeskMate Product Versionsccoivvennn.. 4-5
Installation launched from the DeskTopcccveeveeennnn. 4-5
Installation launched from the INSTALL.EXE 4-5
How to get the file version 4-6

Runtime Distribution Guidelinesoiiiiiiniiiiieenernannns 4-17

,. The DeskMate Checklist

Programs that will be sold by Radio Shack as DeskMate applications must meet these
requirements:

1.

o |

. If the program changes the user-defined colors, the program must restore the colors to

The program must be implemented using the DeskMate Development System and use
the DeskMate environment.

The program must be installable using the DeskTop's F7 Menu, Install option. Refer to
the Installation and Upgrade Procedures section which follows this Checklist for more
information.

The program must support the DeskMate 3.2 and use the DeskMate version 3.3 or later
help system.

The program should run all accessories (including "More...") and have the F10 menu
button on its menu bar.

The program must permit task switching from the F10 menu.

if the program uses a cut/copy/paste function, the program should support the DeskMate
clipboard as its cut/copy/paste buffer. If the program has graphics capabilities, it should
use the DeskMate Forms Manager to permit the data to be transferred in the DeskMate
graphics format.

The program must have the F9 notification menu button enabled.

those specified by the user when the program terminates.

The program must not use DOS overlays. If new portions of code must be overlaid onto
an executing program, the program should use DeskMate Resources instead of overlays.

10. The program should use the DeskMate printer drivers.

11. The product must be submitted to Radio Shack Computer Merchandising for interface

and style guide approval before the application can bear the trademarked DeskMate
User Interface logo.

12. The product package should display the trademarked DeskMate User Interface logo.

Page 4-1

Installation and Upgrade Procedures

All DeskMate applications should have an installation program which is itself a DeskMate
application. The installation program should be easy to use and not alter the user's system
without the user being notified.

The installation program should not perform DOS commands which might aiter the user system
(other than creating directories and copying files), such as setting the date and time, deleting
AUTOEXEC.BAT Or CONFIG.SYSs files, or modifying AUTOEXEC.BAT or CONFIG.SYS files such
that the user cannot easily recover.

Whenever appropriate, the user should be given a choice to continue the process or cancel. For
instance, if the installation is about to delete all system files from a previous version of your
product, the program should inform the user giving the option to approve or cancel the process.

Every application must:

Have an INSTALL.EXE program which launches the application's INSTALL.PDM file
from a DeskMate 3.05 runtime. This program is used to install stand-alone versions of a
product. Use the INSTLBLD.PDM program to build your customized INSTALL.EXE
program. This file must be on the same diskette as the application's customized version
of RUNTIME.EXE.

Have an INSTALL.PDM application which copies files to the user's hard disk using the
following guidelines:

Create a directory for the user in which the files are installed. Present the user
with a default pathname which can be modified.

When installing on a DeskMate product, do not copy the DeskMate system files
unless an upgrade has been recommended or your product requires the version
of your runtime. The installation program should determine the DeskMate version
by the method outlined in the Determining the DeskMate Product Version section

which follows. N()TE, Do ndt ;',ls‘a“ the.

To install as a stand-alone system, copy the DeskMate system files along with
your application's files to the directory. 3.3 help manser M"’{‘

? —
If your product uses the DeskMate Help system, copy the application help file to 5'0’)/ 3.0C “JP QOMM‘
the directory along with the application. B;{,‘(,y ohil ,q] B in Hhe maun

Neither the INSTALL.PDM nor INSTALL.EXE files should be copied to the hard D@H N? inchcry under

disk. 3 00 or before . TP you

For 40 column applications, the INSTALL.PDM must also be a 40 column womjf' -fo Emv{d& .

application. . , ({P o b Prv
Do not install the DeskMate system files in a directory which contains a 3053 s shems, you MUS
DeskMate product or another vendor's runtime, unless Tandy has recommended ’ Y / }’

you upgrade a system due to an incompatibility or to fix a known problem. A ('Mhﬂ na 5vbc1:’rgcfory.
runtime installation should never downgrade/upgrade a user's DeskMate system L F , m‘aﬂ ;
as it might inadvertently cause the system to no longer function properly. Check Of"tcrwiﬁ; t)‘DU ! A
the version number of a file before upgrading the user to ensure the user's Hm R dl'remiury, you

CGMO{’ TOV'HC g
Page 4-3 s MP in DM 3.0

4(_ éefm'e' fec runfime

dowmucttwé\bﬂ :

product is not mistakenly downgraded.

Provide a DESKTOPD . CFG configuration file which is used by the Desktop install function.
This file should be copied along with the other application files during the installation.

Create this file using the DeskTop Menu (F7) Create Quick Load option.

DESKTOPD .CFG is used by the QUICK LOAD application box on the DeskTop.
When the user changes directories to your directory, the box will change to show
your application and list of data files.

Have a diskette label file, LABEL.LBL, created with DMLABEL.PDM which contains
diskette information used in file searching and for diskette prompts. The file also
contains instruction flags for each file which tell the installation program how to copy the
file. The diskettes must also have unique volume id's used by your customized
INSTALL.EXE and the file search function to prompt for diskettes. The diskette label file
should not be copied to the hard disk.

To provide help during the installation process, an INSTALL.HLP help file can be
supplied with the product. This file must reside with INSTALL.PDM and should not be
copied to the hard disk. If you choose not to provide help during the installation process
then this file is not needed.

The user documentation for installation on a DeskMate DeskTop should give the
following directions:

1) The user should be told to insert the diskette (use the name from the label
program) which contains INSTALL . PDM into any floppy drive.

2) Direct the user to use the Desktop Menu (F7) Install option to install your
application on the DeskTop.

3) The user should then follow the prompts given by your installation program.
To reinstall or upgrade on a DeskMate 3.2 or later system, the user should be instructed
to use the Desktop Menu (F7) Delete option to remove the application’s definition and
then follow the installation directions outlined above.

The user documentation for installation or upgrade of a stand-alone system should direct
the user to:

1) The user should be told to insert the diskette (use the name from the Iabel
program) which contains INSTALL .EXE into any floppy drive.

2) Direct the user to change to that drive.
3) The user should then run INSTALL . EXE to do the installation.
If your application allows the user to make backups of the product diskettes, then the

user should be directed to use the DIskcorY command to insure the volume id's are
copied when the diskettes are copied.

Page 4-4

@

),_
4 | 4
\.

&

Determining DeskMate Product Versions
Installation launched from the DeskTop

The installation program, INSTALL.PDM, can detect if it was invoked from the DeskTop through
the F7 Install option by calling env_open with the following ENVDATA structure.

ENVDATA your env =

{ | |
USER.CFG, Tfu‘s Joe;sgtj work .
DMCONFIG, %
ENV_NO_CREATE, env_open () rever ns
USER,

(char far *)O0, AM_E/WOK
0,

}:

i

If env_open does not return DM_ERROR, then install was invoked from the DeskTop. /

If invoked from the Desktop, do the following to determine the DeskMate version:
ret_code = dm_inquire_product():;
if ((ret_code & DM VERSION) != 0)
user has DeskMate 3.3 or greater
else
user has DeskMate 3.2 or less

Before copying the necessary files (based on the DeskMate version) to a directory you must
make sure the DeskMate product is not in that directory. If none of these files are found, then
DeskMate is not in the directory.

1) Ensure DESK . EXE is not present.

2) If it is not present, then check for a Tandy ROM machine in which the file is in ROM.
Check that at least three of the following files are not in the directory, since it is possible
that one of these applications may be in ROM:

ADDRESS.PDM
CALENDAR . PDM
FORMSET.PDM
FILER.PDM
DRAW.PDM
TEXT .PDM

If your runtime executive and application files are present, you can consider this installation to be
an upgrade and copy the files.

If your executive and application files are not present, see if any DeskMate 3.0 runtime resource,
.RRS extension, or your runtime files are present. If so, there is another runtime apphcatlon in that

directory and you should not install in this directory.
Installation launched from the INSTALL.EXE

If INSTALL.EXE invoked INSTALL.PDM, you have to search the system to determine if

Page 4-5

DeskMate is present.

’ ‘.l
N

ret_code = dm file_search("DESK.EXE", pPathbuffer, 0);
if (ret_code == 1)

The file was found and the path is in pPathbuffer
else

The file was not found, so call dm file search for the

DeskMate application files listed above.
If none of these files are found, the user does not have the DeskMate product.
How to get the file version
As long as your application, accessory, and resource files use the DESKHDR.EXE utility, you can
determine the version of your files in the manner described below. Do the following to determine
the version of the file:

1) Open the file, refer to this FileHeader structure for variable offsets.

struct FileHeader
{

int MagicBytes([12];
int RelocSeek;

int VersionNum;
char DM89Key (4]:

b2

®

2) The element RelocSeek must be greater than 25H.
3) The element DM8 9Key must contain the four bytes "DM89".

If items 2 and 3 are meet, then the DeskMate file is version 3.3 or greater. This method can
be used by your INSTALL.PDM for upgrading only files with prior versions. The element
VersionNum contains the DeskMate 3.3 (or greater) version number. The format of this
element is file dependent, for DeskMate resource files, *.RES, the version number is binary.
DeskMate application and accessory files use ASCII version numbers.

Page 4-6

o

Runtime Distribution Guidelines

Only distribute files listed in Exhibit A of the DeskMate Distribution License. Files marked for
non-distribution should not be distributed.

Do not distribute mixed versions of the DeskMate system files. For instance, do not distribute the
3.2 versions of any of the accessories with the 3.3 resources or vice versa.

Files which MUST be distributed with your product:

RUNTIME.EXE

INSTALL.TEM

INSTALL.PDM

DMSETUP.ACC
DMSETUP.HLP

DMCSR.R89
PRGUF.RES

DMMDJ.RES

DMMDP.RES
DMMDS.RES
DMSSM.RES
DMEMM.RES

DMVID.EXE
DMVID.DOC

Executive - Distribute your customized version

Runtime Installation Launcher - Distribute your customized
INSTALL.EXE version. You must write the INSTALL.PDM program
which is launched by this program.

Your DeskMate application which installs your application onto a hard

" disk.

Setup Accessory
Setup Accessory Help File

Core Services Resource
Power & Run General User Functions Resource

Tandy 1000 Joystick Driver ()AMHTOY.RES)
Micro-Channel Serial Mouse Driver

Serial Mouse Driver (pMMASERT RES)
Screen Saver Resource

Extended Memory Manager Resource

DeskMate video force utility.
Video force utility documentation.

Distribute the video driver resolution set which is required by your application. If your application
is a standard 80 column application, distribute ONLY these drivers:

DMVS1000.RES
DMVSCGA.RES
DMVSEGA.RES
DMVSHERC.RES
DMVSVGA.RES
DMVSTC16.RES
DMVST.RES
DMVSMCGA.RES

Tandy 1000 (TGA), 4 color video driver

CGA, 2 color video driver

EGA, 16 color video driver

Hercules, 2 color video driver

VGA, 16 color video driver

Tandy TL/SL (ETGA), 16 color video driver

EGA board, CGA monitor, 2 color, 640 X 200 resolution video driver
MCGA, 2 color video driver

If your application is a 40 column application, distribute ONLY these drivers:

DMVSLRES.RES
DMVST256.RES

DMVSTC40.RES
DMVSH.RES

40 column, low resolution video driver

40 column, vga video driver

40 column, Tandy 1000/TL/SL video driver
40 column, Hercules video driver

Page 4-7

DMVSE.RES
DMVSM.RES

40 column, EGA video driver
40 column, Monochrome EGA video driver \./

Files which must be distributed ONLY if your applications uses the specific function or resource:

DMPGSET.ACC
DMPGSET.HLP

DMHELP.ACC
DMHELP88.ACC
DMHLPENG.RES
DMGUF.R89
DMDB.R89
DMDBBLD.RES
DMDBRD.RES
DMDBUPD.RES
DMFORM.RES
DMEFORM.RES
DMFONT.RES
DMTHES.RES

DMPDASCIL.RES
DMPDIBMM.RES

DeskMate Page Setup Accessory
DeskMate Page Setup Accessory Help File

Help Accessory

DeskMate 3.0 Compatible Help Accessory

DeskMate Intelligent Help Resource

General User Functions Resource

Database Control Resource, is required by the DeskMate Help System

Database File Build Resource (DBBUILD.RES) <
Database File Read Resource, is required by DeskMate Help System (DBREAS. RES)
Database File Update Resource(ppphATE RES)

Form Manager Resource

Extended Form Manager Resource

Font Resource

Thesaurus resource (see local dealer).

Daisy-wheel, or other non-supported printer, printer driver Q
IBM-compatible graphics printer driver

DMPD1.RES Tandy DMP 105 printer driver (Tandy mode)

DMPD2.RES Tandy DMP 200, 420, or 430 printer driver (Tandy mode)

DMPDLASR.RES HP Laserjet Plus or Laserjet-compatible printer driver

DMPDS.RES 24-pin extended printer driver

DMPD.CFG Configuration file where printer information is saved

DMPRTSEL.ACC General printer selection accessory which makes use of:
DMPRTSEL.HLP Printer selection accessory help file
DMPDASCI.ACC Daisy-wheel, or other non-supported printer selection accessory
DMPDIBMM.ACC IBM-compatible graphics printer selection accessory
DMPD1.ACC Tandy DMP 105 (Tandy mode) printer selection accessory
DMPD2.ACC Tandy DMP 200, 420, or 430 (Tandy mode) printer selection accessory
DMPDLASR.ACC HP Laserjet Plus or Laserjet-compatible printer selection accessory
DMPDS.ACC 24-pin extended printer selection accessory

PLAY.PDM Play application, launches tutorial or demo

‘DMPLAY.RES Play resource

DMUNPACK.RES Tutorial Decompression Resource

DEMO.PDM Customized Runtime Demo Launcher

TUTKBD.RES Keyboard Layout Resource

If your application makes use of the font technology include these video and printer drivers in
addition to the regular video and printer drivers: O
~
DMVE1000.RES Tandy 1000 (TGA), 4 color video driver .=

Page 4-8

O .

DMVECGA.RES
DMVEEGA.RES
DMVEHERC.RES
DMVEVGA.RES
DMVETC16.RES
DMVET.RES
DMVEMCGA.RES

DMPEIBMM.RES
DMPE1.RES
DMPE2.RES
DMPELASR.RES
DMPES.RES

CGA, 2 color video driver

EGA, 16 color video driver

Hercules, 2 color video driver

VGA, 16 color video driver

Tandy TL/SL (ETGA), 16 color video driver

EGA board, CGA monitor, 2 color, 640 X 200 resolution video driver
MCGA, 2 color video driver

IBM-compatible graphics font printer driver

Tandy DMP 105 font printer driver (Tandy mode)

Tandy DMP 200, 420, or 430 font printer driver (Tandy mode)
HP Laserjet Plus or Laserjet-compatible font printer driver
24-pin extended font printer driver

and the associated resident font definition files needed for the video and printer drivers:

DMPDASCI.RFD
DMPDIBMM.RFD
DMPD1.RFD
DMPD2.RFD
DMPDLASR.RFD
DMPDS.RFD

Daisy-wheel, or other non-supported printer, printer driver
IBM-compatible graphics printer driver

Tandy DMP 105 printer driver (Tandy mode)

Tandy DMP 200, 420, or 430 printer driver (Tandy mode)
HP Laserjet Plus or Laserjet-compatible printer driver
24-pin extended printer driver

and the associated font files

COBB.FF1
DIXON.FF1
MARIN.FF1

Page 4-9

Part 5
DeskMate Help Systems

”/)esé [ote %&’([Syo ms m

Contents

OVEIVIEW tiiiiiii et i isnnesnesoansoorossassssnannacssssssanns 5-1
The Intelligent Help Managereeeeueennnesonssaonns 5-1
The Help QUEUE ..vviett ittt taninaneanenesaasoassasssnsss 5-1
The HElp ACCESSOILY +vvvvsvnssssennsaasnosanonanannsnensans 5-1
HElp DiSPlay v ivvvevenennennenoennnnsenenaannnssineancans 5-1
Writing the Application Help Fileciviiiinineiniinnen 5-5
Writing the Help Window TexXtvveiiiiiniinnennnnnenns 5-5
Formatiiiiineenenrenannn e ei et 5-5

5 (=3 o T o) o N 5-6

MENUS te i iteieenrcaeeesssssseeeasassssssnssssnsnns 5-6

Menu options feeeeens e teaeaa e 5-6

Grayed menu OPLioNSiieiiiiiernriienneeneananns 5-6

Dialog BOXES «vvivnennenrnnnnneenenennnenrassnnsnns 5-7

MEeSSAge BOXES .t viviurnneennnrnoseensenasssansannns 5-8

’ EQLt FLELAS +rvvvvvrnnennnnensnneennaeenaeenanens 5-8
LiSt BOXES +ivvevnareeeasesnsnnstneennnnasssnnnanns 5-8

Other COmMpPONENntSviriiieiunnnneeeaceocennnnns 5-8

Mouse vs. Keyboardciiiiiiiiiniiiiiinnnnnnnnnan 5-9
Writing the Help Screen Textc.cevnevniiennennnnn 5-10
e o (17 | o 5-10

HEelp TOPiC v iiiiiii ittt ieeaennnsseacanaasanannnnns 5-10
Numbered help buttonsceeiiiiiiiiiiieiennns 5-10
Screen TitlesS vuvueiiiiriniinnnereennnannoosnonssssanns 5-10

The first help SCLEeNnieviiuivneeenacrnneeannns 5-10
[010) 11111703 SR are) o =Y 1< J O PP 5-11
How to Fill Up SCKEEensceveiutneeeeanecnnacsnnns 5-11
Creating the Sample Help File VIDEO.HLPccoevvennnnn 5-13
General help c.viiiiiiinnennnereisinanersnsnanneesanaannns 5-13
Help when a menu option is highlighted 5-13
Help in dialog DOXES ..vvvnvernrinninernernnnnennnneeaenns 5-17
Rule-based help in a dialog boxcviivnninnnnn. 5-18

‘ HElD GIOUPS +tetuuvvnnnnnansnnesascaseacsssussassasnnsnses 5-21
Help Rule Base Utility = DMHELP.UTLccvvninnennnnnnnn 5-25

Adding menu bar teXtniriiiininiiiirii i 5-25
Adding Mew FUleSiiiiiniiiiiie ittt 5-25
GroUD NUMDEIS . .iitiiiiirinnenenoeronnsesessnonennnnnanans 5-25
QUEUE DalaA v i iitt ittt eernenneesouenntoeeannsssnsnennanes 5-26

N ¢ Tl i o3 o - PO 5-26
DeskMate Help Editor — DMEDITOR.PDMeoviivennnnnnneennss 5-29
Working with rulesiviiiiiiiiininrnnnnrnnenaneenns 5-29
BEAiting @ FUle ..ttt iennnenoeeesennnnnnnns ..5-29
Adding @ NEW FULeiitiiinennreeereennoosnnnnnnnnns 5-29

Rules that chainiiiiii ittt iisieenanns 5-29
Working with displayed textieiiiiiiiiniinnnnennnnns 5-29
Size restriCtions ..vvviiiiiinniririnitinnnernnanans +..5-29

Link €O TULES .t itiiiiiiiiiiiiiinrensrnaenananaannnnns 5-29
Working with solution extensionscciviiiiiiinne. 5-30
Working with button topicsccveiiiiiiiiiiiiiiiiin., 5-30
Help File Compression Utility = TOKEN.PDMcvecvvennnn 5-31
Help File FOIMAt t.viiuiiniin it innrneerneneoeannnonsanss 5-33

Overview
The Intelligent Help Manager

The Intelligent Help Manager, IHM, is a part of the Core Services Resource. It tracks the user as
he uses DeskMate. Each time the user starts up a new application or accessory, the IHM starts
gathering information on the context of the application. The IHM is called every time your
application runs the application menu bar, calls dig_run, msg_run, or cmp_run. The |HM
determines whether or not to keep any information about the component that is running.

The Help Queue

Because the information is so diversified, the IHM keeps a wrap-around queue of component
entries. The IHM is selective about the information it stores. For example, when the user runs a
dialog box, the manager adds a dialog box entry to the queue and stores the edit field, list box,
radio button, icon button and check box information about the dialog box with it.

The Help Accessory

The Help Accessory takes the queue information and the application help file to find the best help
solution for the current context of the application. If no solution is found, general application help
is displayed.

The accessory has a built-in inference engine that is rule-based. tt uses a backward chaining
algorithm to find a help solution. Since you write the rules for you application, you have the
flexibility of making the help as specific as the IHM's queue information will allow. You also
decide in what cases you want help to be displayed.

The inference engine takes the data out of the queue and translates it into facts. The rules you
define are made up of premises and a conclusion. The conclusion is TRUE it all the rule's
premises are TRUE. When checking if the premises are true, the inference engine compares
them to its facts. A match means the premise is true. The premises in a rule do not have to be
facts and they can be conclusions for other rules - the start of backward chaining.

Help Display

A conclusion can be a text solution, a group, or a SuperGroup. If the help you want displayed has
multiple step or multiple topics, your conclusion should be a group, $<groupnames. For the
most general help available, the conclusion should be a SuperGroup, $$<supergroup>. The
help accessory will display the SuperGroup help if no other solutions are found. There should
only be one SuperGroup solution in your help file. The SuperGroup is the first level of general
help the user will see when no solutions or conclusions could be made for the current context of
the application. :

Page 5-1

A text solution displays specific help on an item in a help window. .

Help =. Nov 17, 198Y UVideo - (Untitled)

[Fite orlabevice FlSmpes g =S S S

i [|Setect this menu option to add a
; speciﬁed number of Device

Coordinates to the current World
Coordinate X and draw the current
shape. [END |

Fi=more help
orid Cogrdinate X = 1109 Horld Coordinate ¥ = 2278

The group and SuperGroup solutions redraw the screen and display six (6) topic buttons. The
user can choose the help topic they want by selecting one of the buttons. We will allow five levels
of help, so that you can go into further detail as you go down a level.

Hhat is a ' How do I leave
Horld Coordinate?) Video?

Hhat happens when
[add a
Horld coordinate?

What happens when
I subtract a
Horld coordinate?

IAB = Move to next question Fi = Different questions

INTER = More details on question ESC = Exit help

‘

Page 5-2

When the help displayed in a help window is not sufficient, you can attach another text solution
(another help window) or a group solution (a button screen) to your conclusion. When the user
presses F1 in the help window, the attached text or group will appear. Using the help editor, you
can specify the "Next solution” for the current text or group solution.

Definitions:
A Topic is a single solution with text to display with it.
A Group has one or more groups or topics in it. A maximum of 18 groups + topics.
A Title is a descriptive string to help the user identify with the contents of a group or topic.

You can define the starting level for General Help to be any group, not just the SuperGroup. You
can add rules that will cause a group to be displayed. This means you can have different starting
levels depending on your application's current state.

You can use a rule to display a group depending on your state. For example, the DeskTop has a
completely grayed Sort By Menu on the menu screen, but these items are available when the
tree screen is viewed. In a case like this, you can define 2 groups, $Sort by and $Sort2, where
$Sort by defines all the gray options and $Sort2 defines the enabled options. Normally, an
internal rule would return $Sort by, but an external rule could be defined for $Sort2 :
if
CALL MenuTltemChecked (Tree)
menu.item.selected (Sort by)

then
$Sort2

There will probably be topics that you want to include with your application that no rule will lead
to. These topics will be available whenever running full screen help, help invoked by the
application by running the Help Accessory. This basic help should be provided for all menus,
menu options, dialog boxes, message boxes. In addition, help can be provided for individual
components in the work area.

Specific help is help you define with the rules you write yourself. These rules can utilize the
queue information, like checking the contents of a dialog box edit field.

You can make rules that take past user activity into account. This will help you solve problems
like having dialog boxes with the same name. These dialog boxes will come up in different
situations, perhaps one after another. You can take advantage of the fact that multiple events will
get you to a unique state when you write your rules.

Page 5-3

Writing the Application Help File

Now that you know how the Help system works we should discuss how to actually write your
application's help file. First we will cover the style guidelines you should follow when writing the
help, then we will demonstrate how the help tools were used to actually create a help file for one
of the sampie applications, then the details of the help tools will be covered.

Writing the Help Window Text
Format

You should use the same structure for each of your help windows. Use the following guidelines:

First introduce the help topic.

Now describe what the user has to do, or
point out errors.

Put any extra information related to this
topic at the end.
[END]

Introduce the topic

Make sure the first sentence the user sees will make it clear what the help will be
about.

Do not indent.

If you are going to make paragraph transitions, do not indent the first line of the
new paragraph.

Do not use blank lines.
Use a line containing ------ to provide a transition between paragraphs. Blank
lines do not encourage the user to continue reading the help, especially if the
blank line appears at the bottom of the window.

Extra information appears at the end.
Any extra information you think the user might like to know should appear last.

Mark the end of the text.
Every help window should end with [END] to make it clear that there is no more
help in this window. The Help Editor does this for you automatically.

Page 5-5

Help on...

Menus

Give a general explanation of the functionality of the options on the menu. Refer to the
menu by name. Do not link a menu directly to a screen of help, let that transition occur
after the first window of help. That is, go ahead and link the general explanation to a
help screen. This screen should contain topics that relate to the help window. For
example, the help for the DeskTop File Menu is:

DeskTop lets you manage the files
that reside on your disk. You can
make copies of files, remove old
files from the disk, or change the
name of files. [END]

Menu options

The help for these options should always refer to the option by name, and should explain
what the option will allow the user to do. The option name should be capitalized. For
example, the DeskTop File Copy option provides the following help:

The TYPE option lets you sort the
files by the filename extension. The
extension is the three letters
following the period. [END]

You may also use the phrase: "Choosing the <menu option name> option lets ..." . You
may also make reference to the Menu on which the option resides. For example, the
COPY option on the File Menu

Grayed menu options

The help for these options should always refer to the option by name, and should explain
what the option will allow the user to do. The option name should be capitalized. Next, tell
the user that the option is grayed and why. The "why" part of your help should state
directly, or imply, what the user needs to do to enable the option. Never use the word
disabled; always refer to the option as grayed. For example, the DeskTop Type option
gives the following help when it is grayed:

The TYPE option lets you sort the
files by the filename extension. The
extension 1s the three letters
following the period.

The TYPE option is grayed because
this function is only available at
the Tree screen. [END]

Page 5-6

Dialog Boxes

Start dialog box help with an explanation of what task the box will perform. Then outline
what the user should do at each prompt, ending with how to complete or abort the
operation. If there are a large number of prompts to describe, use more than one window
of help by attaching another window (fill in the Next Solution field). This way, the user
will not be overwhelmed by a single window full of details. If your dialog box is fairly
simple, you may want to skip the explanation of the task and procede to the steps
involved in completing the operation. For example, the DeskTop help for the Format Disk
Dialog Box is:

Enter the name of the drive in which
you wish to format disks.

If you have a high—capacitg drive,
at Options: tyge /n:9 /t:80 to
format a 720K 3 1/2 inch disk, or
type /4 to format a 360K 5 1/4 inch
disk.

Check the install operating system
box if the diskette will be for
startup. [END]

An example of more complex dialog box help is the help on the Change Directory Dialog
Box:

The Change Directory box is used to
change the current drive or
directory (displayed on the title
line of the DeskTop).
Type in the letter of the drive
followed by a colon, then the name
of the directory.

For example : A:\NEW
There must be a disk in the new
drive specified, and the directory
you type must be an existin
directory. Use the TREE option on the
View Menu to see all directories on
a drive. [END]

This screen links to another screen that talks about directories. If the user presses F1 he
will see:

A directory is a collection of files
on a disk much like a folder inside
a file cabinet. In addition to
files, a directory can also contain
other directories.

The Directory menu lets you look at
the contents of a directory, make
new directories or remove empty
directories. [END]

Page 5-7

Message Boxes '

The help you provide for a message box should be a more detailed explanation of the
problem that has occurred, and how to solve it. Try to be as specific as possible. For
example, in DeskTop, if you type an invalid directory name you will get a message box
stating "Path was not found." The help displayed for this box is:

A part of the directory name typed
either contains invalid characters
or could not be found on the disk.

All directories on the disk can be
viewed from the Tree View.

Check the directory you specified
for accuracy, and then press ENTER.
[END] .

Edit Fields

Explain what you can type into the editfield, and for what purpose. For example the Address
Book gives the following help for the Title field in an address record:

You can type a courtesy title using
ten characters or fewer. This title
will be printed on your labels.
[END]

List Boxes '

Indicate what is in the list box, and why the user might want to select an item. Also
indicate how one (or more) items can be selected. For example, in Address Book, the
help for the Index List Box is:

When you select a name from the
Index List Box, the accompanying
address record is displayed.

Press PG UP or PG DOWN to display a
page of names, or press the up or
down arrow keys to move the
highlight one name at a time.

You can also click the mouse button
on a name to select it as the current
address record.

If you are looking for a particular
name, type the first letter of that
name to display the address records
beginning with that letter. [END]

Other Components
If you have help for the other components (check boxes, icon buttons, and radio buttons.

Use the same philosophy as help on edit fields. Give help on what the component .
symbolizes, not what it is. There is no need to tell the user that he is looking at an icon ‘

Page 5-8

. button. For example, The Draw application uses icon buttons to represent tools. The help
always refers to them as such.

Mouse vs. Keyboard

When you start giving the user instructions, you will be faced with the dilemma of
explaining how to perform a task with either the keyboard or the mouse. We recommend
the following:

1. When instructing the user to push a button, tell them the key that they should press,
rather than where to click with the mouse. Never give mouse-only instructions.

2. If you feel the help can easily be explained for both the mouse and the keyboard,
explain both methods.

3. If the message you are trying to get across will be lost by the explanation of the
keyboard and mouse sequence then use a keyboard explanation only.

4. Do not mix keyboard and mouse instructions. Do not tell the user to do one step with
the mouse and the next with the keyboard. You may, however, tell them they can do
one step by keyboard or mouse, and then just explain the keyboard method for the
next step.

5. Use the phrases "double click the mouse button" and "single click the mouse button”
when referring to those actions.

Page 5-9

Writing the Help Screen Text

Format

Help Topic

Use a question format to identify a help topic. For example, some of the buttons seen in
DeskTop help are:

How do I change the DeskTop display?
How do I move around on the DeskTop?
What is a directory?

You should, therefore, use {how, what, when, where} as often as possible. If you cannot
describe a topic using a question, then you may use a phrase or a complete sentence.
The more specific you are, the better. The user should have a strong idea of what he will
see if he selects a button.

Numbered help buttons

Whenever you present the user with a screen of buttons that represent the steps in
completing a task, use the numbering capability. The button labels on these screens are
not in a question format, they are in an action format. If you do put some general
information on this screen (that is not one of the steps), that button should not be
numbered. To number buttons in the help editor, choose the "Number this field" check
box in the Edit Topic dialog box or, insert an extra star (*) delimiter in FRONT of the first
solution you want numbered. The numbering will stop when an extra star (*) delimiter
appears AFTER a topic.

Screen Titles

Always use titles on numbered screens. The title should be the same that appeared as
the topic of the button the user selected to get the numbered help screen. Since you
have more space available, you may use a more descriptive title if you feel it is
necessary. To encourage the user to read all the buttons on a help screen, do not use
titles on any other screens.

The first help screen

The SuperGroup help screen is the first fuil help screen the user sees unless you create
rules that go to other help screens. The SuperGroup screen is a general overview of the
help topics that direct the user to more specific help topics. If you create a rule for
another screen, that screen should have topics specific to the application's current state.
if six topics are not enough to describe either or these cases, then link this screen to
other screens. When the user presses F1, the next set of topics will be displayed.

Page 5-10

Common Problems

If there are common problems people experience when using your application, then the
user should be able to see these topics by selecting a button labeled:

Common
Problems

Place a screen(s) of help underneath the button.
How to Fill Up Screens
Do not feel obligated to fill up all six buttons on a help screen. Instead, concentrate on
grouping topics that relate to one another. (Exception: SuperGroup screen. Since it will
contain an overview of your application, is not likely to follow this convention).

One of the help screens you should include in your file is a help screen. It is the last screen the

user will see if he continually pressed F1 to view all your screens. This screen is included in the
STARTER . HLP file, its solution string is $Help.

Page 5-11

Creating the Sample Help File VIDEO.HLP

To explain the actual process necessary to build an application help file we will show how the
help tools were used to create the help file for the sample application VIDEO.PDM. The types of
help we will create and edit are:

General help

Help when a menu option is highlighted
Help in dialog boxes

Rule-based help in a dialog box

Help groups

The following tools and utilities are provided to aid in the creation and editing of an application
help file. These files and tools were used to build the VIDEO.HLP help file for the VIDEO.PDM
application.

DMHELP.UTL Help rule based utility
DMEDITOR.PDM Help text editor
TOKEN.PDM Help file compression utility
STARTER.HLP Basic help file template
STARTER.TKN Starter help file token file

General help

The file STARTER.HLP contains the help text used in most applications, such as how to use

menus, dialog boxes, edit fields and other components. Other help text includes use of the
mouse, common file /o and database error messages, how to use accessories, and other
subjects common to many DeskMate applications.

To begin, STARTER.HLP is copied to create the file VIDEO.HLP to provide general DeskMate
application help.

Help when a menu option is highlighted

Once the file VIDEO.HLP has been created, it is used as the basis for the application-specific
help to be added.

The accessory DMHELP . UTL is renamed DMHELP .ACC. Now, whenever the F1 key is pressed,

this utility will run in the place of the Help accessory. Let us look at how help for all of the menu
options in VIDEO . PDM was created.

Page 5-13

First we will add help for Next (n) X... in the World F3 Menu. The Video application is run and the ‘
option in the menu is highlighted. 4

Help F; Nov 14, 1989 Video - (Untitled

Previous X
Previous ¥
Next (n) X...

Next (n) ¥...
Previous (m) X...
Previous (m) Y...

‘orldeoordinate X = 1188 Horld Coordinate Y = 2220

The F1 key is pressed to invoke the help utility.

Video - (Untitled)

Event Queue Display .11 Entries

Menu item selected. Return: £518
fipplication started: VIDEQ
Listbox running: PROGRAMS
Listhox runming: PC-LINK

Listbox rumning: CALENDAR

Horld Coordinate X = 1168 Horld Coordinate ¥ = 2228

The event queue display contains a list of the events that led to the selection of the Next (n) X...
menu option. The return code, £518, is the code for the menu option. While in the Help Utility,
Add menubar text is selected from the File F2 Menu. Now every return code for every menu
option in the Video application will be added to VIDEO . HLP.

‘

Page 5-14

To examine how each menu option return code has been added to the help file for the Video
application, the Help Editor, DMEDITOR.PDM is used. The data file VIDEO . HLP is selected as the
file to edit.

In the Help Editor File F2 Menu, Switch to text is selected to examine the help solutions and text.
For the solution string £518, our Next (n) X... menu option, the editor displays

Help F; Nov 14, 1989 HelpEdit - A:\WIDEQ. HLP

Solution string: [WE

Help text to present: [[Horld, Next (w) X... [END]

Next solution: ||

Notice how the Help Utility inserted the return code for the menu option as the Solution string and
the actual menu option string as the Help text to present.. Every menu option in your menu bar
will appear this way. It is now a simple manner to enter the desired help text to replace the string
for the menu option.

Help F| Nov 14, 1989 HelpEdit - A:\VIDEOC. HLP
Fi

Help text to present: [[Select this menwu option to add a
specified number of Horld
Coordinates to the current Horld
Coordinate X and draw the current
shape, [ENDI

Page 5-15

Now after exiting the Help text editor and returning to VIDEO.PDM, when the Next (n) X... option ‘
is highlighted in the World Menu and F1 is pressed, the help text entered in the Help text editor \

will appear.

Help F " Nov 18, 1989 Video - (Untitled 4:17 pm

Shapesfy [

IBelect this menu option to add a
|specified number of Horld

|Coordinates to the current Horld
Coordinate X and draw the current
|shape. [END]

Fi=more help
Horld Coordinate X = 1188 Horld Coordinate ¥ = 2278

Page 5-16

Help in dialog boxes

Setting up a help screen that explains the components in a dialog box or how to enter information
in a specific dialog box is simple. Run the help text editor, get into Text mode (CTRL+T) and
select New from the Text F3 Menu. Now enter the name of the dialog box,, as it appears in the
dialog box frame along with the .db identifier in the Solution string edit field. Then enter whatever
text you wish to appear as help for the dialog box.

Help F; Nov 16, 1989 HelpEdit - A:\VIDEO. HLP 12:34 pm

T — (1)

Help text to present: [|Enter the number of world
coordinates to add to the current
Horld Coordinate X into the edit
field. Then press OK. The number
specified will he added to the
current Horld Coordinate X and the

Next selutiowm:

Add rules or premises with the Help Utility for dialog box help when you want to check the state
of a specific component within the dialog box. When F1 is pressed in the dialog box, the help
text entered will appear.

Help Fi Nov 18, 1989 Video - (Untitled) 4:21 pn

trile onid HlloviceFShares il

iH{Enter the number of world
coordinates to add to the current
Horld Coordinate X into the edit
field. Then press OK. The number
specified will be added to the
current World Coordinate X and the

{ﬁrrous=scroll Esc=exit
orid Coordinate X = 1188 Horld Coordinate Y = 2228

Page 5-17

Rule-based help in a dialog box ‘

As an example, we will show how to add help for the World Next (n) X dialog box. First the
desired dialog box is brought up on the screen.

Nov 16, 1989 Video - (Untitled)

Horld Next (m) X &

Horld Coordinate X = 1108 Horld Coordinate ¥ = 2278

When F1 is pressed, the help utility appears with a list of events in the help queue. Arrowing
down to the last event (running.dig.box World Next (n) X (1)), will display the event as the first
premise. Pressing enter at this point adds the event as a premise to this rule.

Help F; Nov 16, 1989 Video - (Untitled)
Fi

J Premive 2

_J

Event Queue Display 19 Entries

Command accelerator detected: 518
Meru item selected. Reiurn: £518
Application started: VIDEO
Listbox running: PROGRAMS

Horld Coordinate X = 1188 Horld Coordinate ¥ = 2228

Page 5-18

With this premise included, any subsequent checks we wish to make about the state of
components in the dialog box can be made. We wish to bring up a certain help screen if the edit
field in the dialog box is already displaying a number.

At this point, arrowing down into the first item in the Event Queue Display Listbox will once again
place the premise running.dig.box World Next (n) X (1) in the second premise editfield. Selecting
the Call option from the Functions F4 Menu will allow setting the check for the edit field contents.

Help F; MNov 16, 1989 Video - (Untitled) 12:14 pn

Shapes .| 1 FalIR
HELP UTILITY - A'\VIDEO.HL Il

Rules F3fiFunctions Fyf
IF1 Irunning. dlg. box Horld Next (n) X (1)| Current
2 [running. dlg. box Horld Next (m X (D] Mulet 141

Call Function STl

3 |E
4 [l yes ror "Is this editficld enpty?,
THEN No for "Is this editfield not

empty?”

Co

Meru item selected. Return: £518
Application started: VIDEO
|| Listbox running: PROGRAMS

World Coordivate X = 1168 Horld Coordinate Y = 2228

Pressing the NO button here will mean that the solution will be invoked if the user has pressed F1
while the World Next (n) X dialog box is running AND the edit field has some number displayed.
Once NO has been pressed, the solution string (an arbitrary string for use by the Help Editor) is
entered. This string will correspond to the actual help text to be displayed.

Help Fy Nov 16, 1989 Video - (Untitled)

HELP UTILITY - A:\VIDEO.HLP

Rules Fyl[Functions Fy|

IF 1 Imrming. dlg. box Horld Next (n) X (1)] Current
2 [NOT CALL EditFieldEmpty (D] Rule: 141

3 | i

4 [}] Premise 3
THEN [Jwld nxt (wef s]

]
1
|

¥ Event Queue Display 19 Entries 4

Dialog box running: Horld Next (n) X
Command accelerator detected: £518
Menu item selected. Return: £518
fipplication started: VIDEO

]| Listbox running: PROGRAMS

Horld Coordinate X = 1108 Horld Coordinate ¥ = 2220

Page 5-19

Now we leave the Help Utility and the application to edit the help text for the rule we just set up.
Running the Help Editor in the Rule mode will show the rule and solution string.

Help F; Nov 16, 1989 HelpEdit - A: \VIDEQ, HLP 12:28 pm

FilefRulosleeonisesid A

Rule: of 141 Current Premise: 1 of 2

L Preniss [}
runing. dlg. hox Horld Next () X (1)

2 NOT CALL EditFieldEmpty (1)

Switching to Text mode and finding the needed solution string "wid nxt(n)ef num" allows us to
enter the actual help text that corresponds to the rule we defined.

Help F; Nov 16, 1989 HelpEdit -~ A:\VIDEQ. HLP 12:32 pn

Filohlledt ileaite) _______[tf

Solution string: wld nxt (w ef nun

Help text to present: [{This is the number of Horid
coordinates which will he added to
the current Device X coordinate
before the object is redrawn. [ENDla

Next solutiom:

Since this dialog box already has help text defined which is displayed if the edit field is empty (the
case which has no premises), the rule for the more specific case of an edit field with characters
displayed should appear first in the help file - it should have a lower rule number.

Page 5-20

‘ Help groups

Address help for specific questions with a group of help topics. A help group appears as a group
of up to 6 beveled rectangles, each with a unique subject and solution.

How do I leave

I add a
Horld coordinate?

Khat happens when
I subtract a
Horld coordinate?

TAB = Move to next question Fi = Different questions

ENTER = More details on question ESC = Exit help

. To enter a help group, we will once again use the "Next (n) X" menu option. When this option is
selected by the user and F1 is pressed, we wish to offer a group of 4 more items. In order to get

to this group when F1 is pressed, the "Next solution" for the original help screen must be defined
as this new group. Groups are notated by a leading "$" in the solution string. Every help file
must have one and only one "Super Group" which is notated by two leading dollar signs ("$$").
Help will automatically go to the SuperGroup if a "Next solution” is not provided.

Page 5-21

In the help editor open the Video help file and get into the "Text" editing mode. Find the solution
string for the menu item in question (£518). Once this record has been found, we must now
enter a string in the "Next solution" editfield. We will arbitrarily call this string "world(n)X1",
making sure that it is preceeded by "$", denoting the solution as a group.

Help F; Nov 17, 1989 HelpEdit - A:\VIDEO. HLP 2:99 pn

EileRlextRlEAiLE . [t"llf]

Solution string: I

Help text to present: [|Select this menu option to add a
specified vwunher of Horld
{Coordinates to the current Horld
Coordinate X and draw the current
shape. [END]

Next solution: |$uorld(n)X1

Once the solution string is entered and saved, choose the F2 "Switch to groups” option to define
the group and enter the solutions for each of the items in the group.

Page 5-22

The solutions can be more groups or other text solutions. The group editor also gives you the
option of numbering the items in a group for procedural instructions.

Help ry Nov 17, 1989 HelpEdit ~ A:\UIDEO, HLP 3:08 pn

[Fite forour lTopicr] S

Topic Title: [{Hhat is a
[[Horld Coordinate?
Solution: ([SHorld Info |
[Mumber this field?

Horld coordinate?

Current Selution: S$Sworld(wxi Next Selutiow: £518

To inspect the group strings, you may also "Switch to text" and then select "Show groups" to see
how the group is actually defined and how each field in the group is arrangned with its delimiter
and text solution. The "/ delimiter is used to start a new line in the topic.

Help Fy Nov 28, 1989 HelpEdit - A:\VIDEQ.HLP

Help text to present: *SHorld InfoxHhat is a /Horld
Coordinate?/ =5add Info*khat happens
when/l add a‘World coordinate?xSSub
InfoxHhat happens when’l subtract
aMorld coordinate?/*SExit*How do I
leave/Video7xx0

Next solutiow: |

Page 5-23

The "Next solution” string for a group can reference another group, a specific help text, or any
other solution. In this example, the “Next solution” refers to the original menu option help. Now
when F1 is pressed on the "Next (n) X" option, the origianal help text will appear with a "F1=more
help” prompt. When F1 is pressed now, the defined group will appear on the screen.

Help-F; Nov 17, 1989 Video - (Untitled) 2:48 pn

il llorld ltevice lSharosr 'R

Select this menu option to add a
specified number of Device
Coordinates to the current Horld
Coordinate X and draw the current
shape. [END] |

Horld Coordinate X = 11088 Horld Coordinate ¥ = 2228

Page 5-24

Help Rule Base Utility - DMHELP.UTL

When you use this utility, you should rename it DMHELP .ACC and run it as the help accessory
from your application. You can then press F1 in different context within the application and
examine what is in the information queue. The utility will open the application help file, if there is
no help file one will be created in the current directory.

Adding menu bar text

To enter in help topics, use the Add menubar text option from the File F2 Menu. This option will
add entries for the application menu options only. It will enter the solution string and the menu
option return code for each menu option. You then update these records by assigning a topic
string and the help text for each option using the help editor, DMEDITOR.PDM.

Adding new rules

The premises (IF entries) are displayed on the main screen. A rule can have up to 8 premise
lines each ANDed together. The conclusion (THEN entry) is the only field you enter. Add a
premise by selecting one of the queue items in the list box and pressing ENTER. The F4 menu
options become available when a queue item is selected. Remember that you must first get the
information registered in the queue by getting your application into the state you want to give help
on.

Group numbers

Group numbers are used to categorize rules. Depending on the state of the help queue, rules
with specific group numbers will be searched first. The following group numbers and their
functions are available.

Group Number Function
0 This rule group will always be scanned if a conclusion was not found in
groups 3 through 11.

1 This rule group is scanned if a group 0 rule's premise contains a solution.
2 This rule group is scanned last.

3 This rule group contains dialog box rules.

4 This rule group contains edit field, push button, check box, radio button,

icon button, and application-defined component rules.

5 This rule group contains message box rules.

6 This rule group contains menu rules.

7 This rule group contains menu option rules.

8 This rule group contains command event or accelerator rules.
9 This rule group contains list box rules.

10 This rule group contains "what application is running” rules.

Page 5-25

11 This rule group contains state and queue rules added by the application,
see the ihm_new_entry and ihm_add_state functions in the Help
Manager section of the DeskMate Technical Reference.
Internal This rule group contains the IHM interal rules.
One of the groups 3 through 11 is always searched first, followed by group 0 and possibly gorup
1. If a conclusion is not found, the internal rules are searched and then finally group 2. If none of
the rules result in a conclusion, the help manager will "fire” the $$<SuperGroup> text solution and
provide general help.

This utility, DMHELP .UTL, creates only group 0 rules. Use the help editor, DMEDITOR.PDM, to
change the group numbers.

Queue Data

You can use any queue entry displayed in the list box as a premise to a rule. Each premise built
from a queue entry has the associated queue entry number stored with it. This means a rule built
from the queue is time-related, it depends on the order in which events occur.

Functions

The Functions F4 Menu allows you to make numeric comparisons to the data in a numeric edit
field, to negate the results of a premise, or to call a function.

TEST Use this function to make numeric comparisons on data in a numeric edit
field. Format characters for an edit field or the number of decimal points are
NOT stored in the queue.
TEST puts 4 in the keyword field
NOT TEST puts 5 in the keyword field

Put the corresponding function number in the Variable # field

Put the call's parameters into the Value string field. If there is more than
one parameter, single space between them.

This function is available in two places, the first is when the queue entry
is a dialog box and the second is when the queue entry is a single edit
field which is currently running. In a dialog box, the edit field's tab
number in the box is required to identify the edit field. For the single edit
field, the tab number is zero. The parameters should be placed in the
value field of the premise.
The TEST functions available are:

1 EditFieldGT(Tab#, "<number string>")

Test if greater than.

Page 5-26

\‘

‘

/.

2 EditFieldLT(Tab#, "<number string>")
Test if less than.

3 EditFieldEQ(Tab#, "<number string>")
Test if equal to.

NOT Use the NOT clause to negate the results of the entire premise line. For
example, "NOT running.dlg.box Copy File" means: running any dialog box
except the Copy File box.

CALL Some queue entries have data associated with them. Function calls are
available that allow a rule to access that data. These calls are designed to
make data and state comparisons. ,
CALL puts 2 in the keyword field
NOT CALL puts 3 in the keyword field

Put the corresponding function number 1 through 11, defined below, in the
Variable # field .

Put the call's parameters into the Value string field. If there is more than one
parameter, single space between them.

The instructions below also indicate how to enter a call premise if you use
the help editor DMEDITOR . PDM to enter the rule yourself. The function calls
available are:

1 EditFieldEmpty(tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the edit field's tab number is
required. The second is when the queue entry is an edit field,
leave the value string field EMPTY. The function will check to
see if the string is null.

2 EditFieldCmp(tab #, tab#)

This function can be chosen when the queue entry is a dialog
box with more than one edit field. The function will compare the
edit field strings to see if they are the same.

3 ListBoxEmpty(tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the list box's tab number is required.
The second case is when the queue entry is a single list box,
leave the value string field EMPTY. The function will check to
see if the list box is empty.

Page 5-27

4 ScanMessage("<string>")

This function can be chosen when the queue entry is a message
box. The function will scan up to a 20 character message saved
for the <string>.

5 CheckBoxChecked(Tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the check box's tab number is
required. The second is when the queue entry is a check box,
leave the value string field EMPTY. The call will check to see if
the check box is selected.

6 IconButtonSelected(Tab #)

This function can be chosen in two places. The first is when the
queue entry is a dialog box, the icon button's tab number is
required. The second is when the queue entry is an icon button,
leave the value string field EMPTY. The call will check to see if
the icon button is selected.

7 RadioButtonSelected(Tab#, Ordinal#)
This function is available when the queue entry is a dialog box

only. The call will check to see if the specified radio button
(Ordinal #) within the specified group (Tab #) is selected.

8 MenultemGreyed()

This function is available when a menu is pulled down, the user
selects an item, and presses F1. The last entry made in the
queue will indicate if the item is enabled or disabled.

9 ClipBoardEmpty()

This function is available at all times. The function checks the
clipboard contents. The function is also available through the
Functions Menu, Check clipboard option.

10 PreviousKeyStrokes()

This function is available at all times. The function will check if
any keystrokes or mouse events occurred before the current
queue entry. The function is also available through the Functions
Menu, Previous keystrokes option.

11 KeyStrokesDuring()

This function is available at all times. The function will check if
any keystrokes or mouse events occurred during the current
queue entry. The function is also available through the Functions _

Menu, Keystrokes during option. ‘

Page 5-28

DeskMate Help Editor - DMEDITOR.PDM

The help editor allows you to enter the information the user will see when help is requested.
Specific help given in the help window, help topics displayed on topic buttons, and procedural
help displayed on numbered buttons is all entered and edited using this tool. This documentation
assumes you will edit the help file created by DMHELP . UTL.

Working with rules

The default screen shows the current set of rules in the file. One rule is displayed at a time, use
the First, Next, Previous, and Last menu options from the F3 Menu to view other rules.

Editing a rule
The display shows the internal fields of a rule, the group number, the conclusion,
and each premise. Use the insert menu option in the F3 Menu to add a new
premise to the rule being viewed.
Adding a new rule
You can also add a new rule by selecting New from the F3 menu. If the rule's
conclusion is a help topic, the rule and its premises must be in group 0. !f not,
the rule WILL NOT fire.
Rules that chain
If the group number is 1 then this is a chaining rule. That is, this rule will fire
when a group 0 premise matches this rule's conclusion. This means that in order
to prove the premise of the group 0 rule, the group 1 rule must be proven as well.
Working with displayed text
To modify the text displayed use the Switch to text menu option in the File F2 Menu.
Size restrictions
The solution string can be up to 20 characters long.
The help text for one topic can be up to 900 bytes long.
Link to rules
The help text solution string must match a conclusion in one of the rules or a

conclusion returned by the internal rules. An entry is automatically added for any
rule created with the DMHELP . UTL utility. Rules added with this editor must also

have a corresponding text entry added.

Page 5-29

Working with solution extensions

A menu options's solutions is its return code, a hexidecimal number, for instance F158. For other
entries in the queue, attach the following extension

Menu Name.mm (for main menu)

Dialog Box Title.db

List Box Title.lb

Message Box Title.mb

Menu Option.g (for a grayed or disabled menu option)

Working with button topics
Use the Switch to groups menu option in the File F2 Menu to display the button topics and their

corresponding text. Use the Edit Topic option to give the topic a three line title, a solution string,
and select whether or not to number the button.

Page 5-30

Help File Compression Utility - TOKEN.PDM

This utility replaces common strings in the application help file with a number or token. The help
file is made smaller on the disk and is untokenized as it is accessed. To tokenize a file, do the

following:

1) Create your application help file, MYAPP .HLP, using the Help tools, DMHELP .UTL and
DMEDITOR.PDM.

2) Build an ASCII token file, MYAPP . TKN, that contains the list of tokens for your help file.
Use the following guidelines for building your token file.

a) The token records must fit within two database pages which are 1K bytes/page in size.
The format of each token record is

Token(N), Field Delimiter, Record Delimiter

where N in Token is the number of bytes in the Token, and the Delimiters are each
one byte.

b) Token strings should be 3 bytes or longer.

¢) Each token should be separated by a CR/LF, EXCEPT for the last token which should
terminate the file WITHOUT a CR/LF.

d) You must manually create a file of token strings for the TOKEN.PDM compression
utility. The following is a procedure to accomplish this task:

1.

Use the help editor to retrieve the application help file information. Use the F2
Menu to "Switch to text" and then “Print text..." to a file MYAPP . TKN.

Open the file with your text editor. At the beginning of each page in MYAPP . TKN
is a header describing the file, for instance,

Help Database Text in CAAPPHELP\MYAPP.HLP

Delete all occurances of this header. On the left of the page is a list of all the
solutions. Delete these solution strings and the "Solutions" header. Also delete
the "Text" header at the beginning of each page. Your file should now only
contain the actual help text.

On the occurance of every string three or more characters in length, do a "search
and replace" of the string, replacing it with a space, or nothing. If your editor
displays the number of replacements made, note that number. If there were at
least three occurances of the string, then you may enter it as a string to tokenize.
Each string must appear alone on a separate line, terminated by a carriage
return/line feed. As you repeat this process for every candidate string, the blanks
you have created will shrink the size of the file.

Page 5-31

4. In the case of strings being substrings of longer strings (such as in plural versions ‘
of a word), do a search for the longer string first, noting the number of y
occurances. If the longer string only occurs twice and the substring occurs four
times, use the substring as the string to tokenize. For example,

You search for the string "removed” and replaced it with nothing,
noting 2 occurances. This is not enough to take advantage of
compression. However, doing a search and replace of the string
"remove” produced 2 occurances. So you know that the string
"remove” occurred 4 times in the file, allowing TOKEN.PDM to do a
slight compression.

Since you are replacing strings with nothing as you go along, it is important to
replace the longer strings first if possible, in order not to miss the opportunity to
use both the longer string and the substring as tokens.

TOKEN . PDM distinguishes case, so capitalized versions of words will need to be
included as well as the lower-case word.

3) Run the DeskMate application TOKEN . PDM giving it the name of your application help file,
MYAPP .HLP. The help file and token file, MYAPP . TKN, must be in the current directory
with the utility.

4) Token creates a MYAPP . LST file when it has tokenized the file. This file lists the number of

bytes each token saved. If the number of bytes for a token is less than or equal to zero,
remove the token and retokenize the file. Remember to always retokenize from the

original untokenized file. ‘

Page 5-32

Help File Format

In order for you to better understand what information is stored in your help database file, the
database format for text and rules is outlined below.

There are two tables in your database file. The first is a TEXT table. It has the following columns:

Sol This is the Solution TAG. It is the solution that a rule produced.
Text The actual help that goes with this topic.
Fl The next help window to chain to when the user presses F1.

The second table is the table RULES. It has the following columns:

Grp A rule group. Group 0 is always the group in which rules are
placed that will give a solution. If these rules cause any other
rules to fire, these rules should be in another group.

Rule# The number of the rule. The rules are sorted by rule number,
because you may want to try to fire one rule before another.

PorC# A premise or conclusion number. The records in the table are
also sorted by PorC#. The conclusion is number 0 because it is
the first thing pulled out of the table when the inference engine
atarts to fire a rule. (This is because it is doing Backward
Chaining- start with the conclusion , and then prove the
premises).

Var# An identifier for the engine to do faster searching. Each new
variable added to the table has a unique identifier. The variables
are DeskMate components, like a dialog box.

Var The variable field is a string representing a variable for which a
value is expected such as "running.cmp" (DISABLED FIELD)

Value The String field for which contains a value. The if the value is the
current one for the variable, then the premise line will succeed.

Bind A variable to bind to like "X". If a rule has a binding, the variable
will bind to the currently known value of the variable. This
eliminates repetition of rules that do the same exact thing. Only
premises can bind.

KeyW A number indicating the negation (NOT) of a premise, or a
TEST or CALL. TEST will do number comparisons, and
_assumes the value string field is a numerical value. CALL is
used to execute a pre-defined function. The parameters of the
function are placed in the value field.

Page 5-33

o#

The number in the queue for which a premise line test applies. If
the queue number = 0, it is assumed the premise does not use
predefined facts.

Page 5-34

’

‘

Part 6
Writing Tutorials and Demos

"W,,ﬁ,;,j Totsrids aud Demos”

Contents

The DeskMate Tutorial Technologyeiviininnernnnannens 6-1
Authoring a Tutorial SCriptciiiiiiiiiiiii it rnnneannn 6-3
The DeskMate Introductory Tutorial - DMINTRO.TUT 6-5
DMINTRO.DOC . i ittt ittt ittt ittt ettavenaneenonanaeaenanonans 6-6
INTROZ2 . DOC vt iieit it iinnse e iereonnsneesennaneasenanenenns 6-14
INTROB. DO ittt ittt s iertenaenaeseoneneassonaenenns 6-19
OPTIONS.DOC .t ittt ittt it it enetasansenesssasaansasnsnsnnes 6-25
MOUSE.DOC &+ttt ittt ittt e inensenannsesasnsnsnssosasans 6-27
MOUSEL.DOC & ittt it ittt ittt teaateannoansoannoanensssns 6-37
Script Command ReferencCeiiiiiiiieinieeeenennennnsnnns 6-41
ALLOW INHIBIT ..vvttiennnunennnnnsnrnnnnstessnnnneeassssns 6-43
0 7 6-44
CHANGE DIR +tvinttnt ittt entntenne it ineannenneennannens 6-45
COUNT ABOVE ..ttt iiteaianeenaennnansnnens 6-46
COUNT BELOW .. .ttii ittt annaantannnonaannss 6-47
COUNT DEC .ttt ttutteateeateeateaeeaaeeeane e, 6-48
COUNT EQUAL .« iii ittt iietsnatenneeanatennaesanens 6-49
0701014 (o 6-50
07010)) 3 6-51
DELETE DIR ittt ittt etsnnnnteerennn 6-52
DELETE FILE ...ttt cooanans 6-53
DISK SPACE « e tveeeaeeteueneeeneeneae et eeenaanenns 6-54
ESC FLAG .« rvttttaneatteneenennenne et enneaneannennens 6-55
EXPECT KEY ..ttt iiiiitiiiiiiiiitititeenennennnsnnnns 6-56
FILE EXIST vvuvtuenuenetnenunsaneananeaneanoneaneanensnn, 6-57
GET ARROWS « v eveveettateten et et eneneasenanannanasenens 6-58
€125 0) etz o : G o - 6-59
GET KEY et tttnenetetit et et et eneneasananeeneenanns 6-60
GET LB ITEM ..ttt 6-61
120 <= T 6-62
€0 01 4 6-63
GET TO MENU .. .uiuenteneanereateananaeeneneaeaneanenesn 6-64

IF_FALSE GOTO &\ttt eeneneeetetreeenennneneaeannnanen, 6-66

IF_TRUE GOTO v uvtneeeetateteeeeeeetannnneananananen, 6-67
IGNORE_INHIBIT . .'ieiennenenenenenenananananananennn. 6-68
IN DLGBOX & et tveeeeeeeeeeete e e e ettt aeeananenenennn, 6-69
100 6 e 6-70
IN LISTBOX &t vrvuenensneaneenenennenenaneenanenanannenss 6-71
IN MSGBOX v et tteenenetenee et ene et eneenenenenanannss 6-72
18307400 o) 6-73
INVERT ON tovittetensteenetn e etetneeetannennannnnns 6-74
KEY INTERVAL & .vtotenenenetneeeneneeneneneaeannnanns. 6-175
KEY WITHIN ©ottnttteneneneneineeeneaeenenenenennannnnn. 6-76
117010) - (o 6-77
M _PROMPT ORG v vvettteeneteteeeteneenananaenenenannnn, 6-78
MESSAGE _BUFFER ..t ututntntenaneratenenaananananenenn. 6-79
MESSAGE OFF & tvtettt ettt etae et enen e enaeaeneenn, 6-80
MESSAGE ON .evvuvnrnnnnnenennnnn. R 6-81
ON_QUIT GOTO v vveteteneneteteeeeaeee et aeaeaeaeaeeneeannn, 6-82
ON_TIMEOUT CALL . eeeneteunetenneneneeneaaneeannennnnns 6-83
0] 0] < T 6-84
PASS KEY .ttt ttetetetetetete e et 6-85
PASS_WHILE .t vvesteeenetet et et e e eaenenennanans 6-86
PAUSE_MODE &« v et eteteteneeetneneeee e eneneaeaeneaeenannnn 6-88
3 (050123 o) 6-89
23 (040) 4 o) 6-90
=08 o S 6-91
PRESERVE DT CEG « v e tetveeeettneenenenenenenenenenennnss 6-92
PRESERVE_FILE .+ .t euerttentineneneenenenaeaenenanannanens 6-93
200001 6-94
RESTORE DT CFG .t utteteeeteaete e eeeteteaaeeeeneenns 6-95
RESTORE FILE .. teuetetenenneneneneeneteneeneaenanenann. 6-96
0040721 R P 6-97
RUN RESOURCE «+ v eetetee et et eteeeeeeneteeaeeneeeeenenn 6-98
S310:3=0 s 4 P 6-99
VTP 6-100
15723 Yor Qi 25 0 6-101

Keystroke Definitionsoeiiiiiiiiiiiiiiinnennn. 6-103

Tutorial Player - PLAY.PDM/DMPLAY.RESciiuiiinirennnnnns 6-105

Demo Launcher = DEMO.PDMuuiiiiiiennnnneensnnsnnnnnnnans 6-106
Event Recorder = RECORD.PDM/DMRECORD.RESvveeeennnnnnnnn 6-107

General Rules of Recordingciiiiiiiiiiinnnnnnnnnnnn 6-107
Script File Interpreter and Compiler - DMEI.EXE/DMEC.EXE..... 6-109

Tutorial Compression Tools - DMPACK.EXE/DMUNPACK.RES 6-110

The DeskMate Tutorial Technology

The DeskMate Tutorial Technology allows a programmer to create store-demos and application
tutorials which use the actual application to execute. A tutorial interacts with the user, allowing
the user to enter information and perform tasks which teach the user how to operate the
application. A demo demonstrates the functions of the application, explaining key functions of an
application without the user's intervention. The same technology is used to build and execute
both demos and tutorials. Tutorials will be discussed in this documentation since demos are
simply a tutorial without user interaction.

Tutorials are written usingscripts which are compiled into event files. Pictures and data files
needed by the tutorial are stored along with the event files in a compressed tutorial file . The
tutorials are launched from the Play portion of the technology. The application PLAY .PDM and its
resource, DMPLAY . RES, read in the tutorial file, extract files as needed or directed, interpret the
commands in the scripts, and send events to the application.

A comprehensive example of a tutorial is also included in this section. The DeskMate
Introductory Tutorial, DMINTRO. TUT, covers the key elements of a tutorial and makes a good

template or guide when writing your own tutorial. The actual "source" for the tutorial resides in the
SAMPLES\DMINTRO directory.

The script language used to write scripts is defined in the Script Command Reference. The
documentation for each of the tutorial tools provided with the kit follows the command reference.

Page 6-1

®

Authoring a Tutorial Script

Step 1 - Create the Storyboard

The first step in developing a tutorial is deciding what the tutorial should teach. Tutorials should
be broken down into lessons the user can take at different times. The first lesson should be
introductory in nature, the following lessons should cover specific areas of your application, each
lesson increasing in difficulty and building on the information learned in the previous lessons. The
number of lessons you supply with your application is dependent on how much time you want to
spend on the tutorial and how much disk space you choose to dedicate to this on-line
documentation.

Step 2 - Record the Storyboard

Once you have decided what your tutorial will cover and how it will be organized you can record
the initial events by using the Record portion of the technology. This step is optional and once
you are familiar with the structure of events and the authoring of scripts you probably will not
want to record the storyboard to create a tutorial. Once the first lesson is written, you will
probably use it to build the next one and so on. Use the application RECORD .PDM and its
resource, DMRECORD . RES to record the events you want executed in your tutorial. Use the
DMEI.EXE utility to create the initial script file. You will want to strip out most of the information
recorded and concentrate on the actual events recorded.

Step 3 - Develop and Test the Tutorial

Once the initial tutorial script file is built, you will then go into the development process which 1
involves editing the script, compiling it into a event file, packing the files into a tutorial file and ‘
actually running the tutorial. This is the longest process in building a tutorial. You may want to

make changes to the storyboard after using the tutorial. Considerable error checking and

processing must be done to insure the user does not perform actions which your tutorial does not

handle correctly.

Refer to the DeskMate Introductory Tutorial for examples of error handling and other tutorial
functions. Use the Script Command Reference for information about all the function commands
available in the tutorial technology.

Script Rules and Guidelines

The script files must contain only printable ASCH characters and 0DH for carriage
returns.

The TAR character is not allowed.

Commands and their parameters may be delimited by a space, comma, or carriage
return. The command descriptions use a space delimiterswhen the paramters are listed
on the same line as the command and a carriage return for string parameters. Multiple
commands appearing on the same line are delimited with commas.

Comment lines follow the C language convention, /* */. Embedded comment lines are
not supported.

Page 6-3

Text information, such as data for edit fields in dialog boxes is enclosed within brackets,
{} and should be on a line or lines by itself. Q

Never alter a user's data file.

For example, the Address Book tutorial does not alter a user's address book
data file, the cory_FILE command is used to save the original file before
the tutorial begins.

Always make sure there is enough disk space on the diskette to run the tutorial
before it begins.

The DISK_SPACE command is used to insure that the player has enough
room on the disk to create a working file.

Pauses should be added before the RETURN_KEY keystroke when selecting menu
options so that the viewer can detect which menu option was chosen. A delay of half a
second, 50 counts, is usually sufficient.

Tutorials should always tie up any loose ends prior to terminating, this inciudes
the removal of working files used by the tutorial.

The CHANGE DIR and DELETE_DIR commands are used to cleanup the
directory structure when a tutorial ends in an unknown state. QUIT OK
should be placed into the event sequence at any point where it is permissible
for the tutorial to end. Remember Esc will proceed until the next QUIT_OK is

encountered. Q
. X

Tutorial Guidelines
The maximum size of an individual event file is 10K bytes. Scripts which produce larger
event files should be divided into separate scripts and the event files should be “chained"”
together.

The maximum size of a picture in a tutorial is 8K bytes. Larger pictures will not be
displayed and an error condition will not be retumed.

Printing and task switching are not supported in tutorials.

Page 6-4

The DeskMate Introductory Tutorial - DMINTRO.TUT

The DeskMate tutorial DMINTRO. TUT was built using the Tutorial Technology. The files needed
to create the tutorial are included in the SAMPLES\DMINTRO directory. The tools needed to build
the tutorial are in the TOOLS directory.

The MK .BAT is used to build the tutorial file.

del dmintro.tut

dmec dmintro

dmec intro2

dmec intro3

dmec options

dmec mouse

dmec mouse1

dmpack dmintro.tut dmintro.evn intro2.evn intro3.evn options.evn bob.dft
dmpack dmintro.tut desktop.dft desktopd.dft dmcorkbd.dft desktext.fig
dmpack dmintro.tut mouse.evn mouse1.evn listbox.fig arrow.fig mouse.fig rat.fig
dmpack dmintro.tut help2.fig compass.fig powerful.fig superf1.fig magnify.fig
dmpack dmintro.tut start.fig waiter.fig explorer.fig

dmpack dmintro.tut /u findtut.fig

The tutorial uses the following event files (.EVN) , picture files (.FIG), and data files (.DFT):

DMINTRO.EVN , INTRO2.EVN, INTRO3.EVN, OPTIONS.EVN, MOUSE.EVN,
MOUSE1.EVN

LISTBOX.FIG, MOUSE.FIG, ARROW.FIG, DESKTEXT.FIG, RAT.FIG, FINDTUT.FIG,
COMPASS.FIG , POWERFUL.FIG, MAGNIFY.FIG, SUPERF1.FIG, HELP2.FIG,
EXPLORER.FIG , WAITER.FIG, START.FIG

BOB.DFT, DESKTOPD.DFT, USERDICT.DFT, DESKTOP.DFT, DMCORKBD.DFT

Page 6-5

DMINTRO.DOC .
/

PICTURE ON 0 0 0 "FINDTUT.FIG"
PRESERVE FILE 0 "desktopd.cfg"

TAG "stut"
COUNT SET 9 0
CTRL U

ON QUIT GOTO "end lesson"
SET HELP 1
GOTU "options" IN FILE "options.evn"”

K ————— e ————— */
/* clean up form parts ' */

TAG, "menu"
MESSAGE_OFF PICTURE_QFF

COUNT EQUAL 9 0
IF TRUE GOTO "menul"

RESTORE_FILE 0 "dmcorkbd”
TAG "menul"

GOTO "show menu" IN FILE "options.evn"

/* ___ */
B e e e e e e e e e e e o e e e e e o e v e e . S o o e i B e o S e e S B S o S */
/* PART ONE * /

TAG "Section 1"
ON_QUIT_GOTO—"menu"

M PROMPT ORG 2200 4400
PTICTURE ON 1 1900 1760 "start.fig"
EXPECT KEY {c}

M PROMPT ORG 2200 2750
POINT TO” 450, 250, 1, 2 /* point up */
PROMPT 1 1400, 2310, 5200, 1100 {c} "“C=continue"
"The top line on your screen is the \Cltitle line\CO. The
title line contains four items of information. The
first item reminds you which key to press when you
need Help. You will learn all about Help in Part 2
of this lesson."
MESSAGE_OFF

POINT TO 1600, 250, 1, 2 /* point up */
PROMPT 1 1200, 2640, 5500, 220 {c} "C=continue"”

"The second item on the title line is the date.”
MESSAGE_OFF '

@

Page 6-6

POINT TO 4100, 250, 1, 2 /* point up */
PROMPT 1 1200, 2530, 5500, 660 {c} "C=continue"”
"The third item of information is the application name
and \Clcurrent path\C0O. The current path is where DeskMate
is currently looking for data files on your disk.”
MESSAGE_OFF

POINT TO 7400, 250, 1, 2 /* point up */
PROMPT 1 1200, 2640, 5500, 220 {c} ™"C=continue"”

"The last item on the title line is the time."

MESSAGE OFF

POINT TO 2400, 1760, 1, 2 /* point up */
PROMPT 1 1100, 2640, 5800, 660 {c} "C=continue”

"The Desktop displays \Clapplication boxes\C0. Each application
box contains the name of one DeskMate application. This

box represents the Address Book application.”

PROMPT 1 1200, 2520, 5500, 880 {c} "“C=continue"
"The Address Book application is used to store and
organize information about people and businesses. You
can use the Address Book to print mailing labels and
form letters.”

MESSAGE OFF

POINT TO 4000, 1760, 1, 2 /* point up */

PROMPT 1 1200, 2640, 5600, 440 {c} "C=continue"

"Next is the Calendar application box. The Calendar
application helps you organize your personal schedule.”

MESSAGE_OFF

POINT TO 5600, 1760, 1, 2 /* point up */
PROMPT 1 1200, 2640, 5500, 440 {c} "C=continue"

"PC-Link is a telecommunication application that

provides access to a vast database of information.”

MESSAGE OFF

POINT TO 800, 2090, 1, 2 /* point up */
PROMPT 1 1200, 2530, 5500, 660 {c} "C=continue"
"Another type of application box appears in the form
of a list box. Using the arrow keys, you can scroll
through and choose from the items listed."
MESSAGE OFF

POINT TO 1400, 770, 1, 0 /* point left */
PROMPT 1 1200, 2520, 5500, 660 ({c} "C=continue"
"The top of an application list box contains the name
of the application. The Text application is used to
create and edit documents."
MESSAGE OFF

POINT TO 1500, 1430, 1, 0 /* point up */
PROMPT 1 1200, 2640, 5500, 440 {c} "C=continue"
"The bottom contains the names of the files stored on
your disk that were created by the application.”
MESSAGE OFF

POINT TO 1100, 935, 1, 2 /* point up */
PROMPT 1 1200, 2520, 5600, 660 TAB KEY "move highlight"
"R \ClhighligthCO is used to select The DeskMate application
that you wish to run. Currently, the Text application 1s
highlighted. Press TAB to move the highlight."”

MESSAGE OFF

PASS_KEY

Page 6-7

POINT TO 2400, 1540, 1, 2 /* point up */

PROMPT 1 1100, 2420, 5700, 880 {c} "C=continue”

"Great! The Address Book application is now highlighted.
Pressing ENTER will run the currently highlighted
application. You will run an application in Part 3 of
this lesson.”

MESSAGE_OFF

POINT TO 7200, 2100, 1, 2 /* point up */
PROMPT 1 1200, 2520, 5500, 660 {c} ™"C=continue"
"The Programs list box is unique; it displays a list
of all the applications on your disk. You can run any
application using the Programs list box."

PROMPT 1 1200, 2310, 5500, 1100 {c} ™"C=continue"
"The Programs list box is very useful because not
every application is represented on the Desktop with
an application box. In the lesson about Desktop, you
will learn how to customize your Desktop by adding
and deleting application boxes."

MESSAGE OFF

POINT TO 1600, 3960, 1, 3 /* point up */
PROMPT 1 1900, 2310, 5200, 1100 ({c} "C=continue"

"This is the Teach Me application box. When you run

Teach Me, it presents you with a list of lessons.

Fach lesson will guide you through one of the

DeskMate applications. You will learn how to run

Teach Me in Part 4 of this lesson."”
MESSAGE_OFF

POINT TO 6400, 3960, 1, 3 /* point up */
PROMPT 1 1300, 2310, 4500, 1100 F10 "press F10"
"The final box is the Month \Claccessory\Co0.
Accessories are special tools that can be
run anywhere within DeskMate. The F10 \Clmenu\CO
contains all the accessories that are
included with DeskMate.”
MESSAGE OFF
PICTURE OFF
PASS_KEY

M PROMPT ORG 2200 4400

PICTURE ON 1 700 1760 "waiter.fig”
EXPECT KEY {c}

PICTURE OFF

M _PROMPT ORG 2200 2750

PROMPT 1 1700, 2310, 4100, 660 {c} "C=continue”
"This is a menu. To pull down a menu, you

press the function key appearing after

the menu's name."

PROMPT 1 1700, 2310, 4100, 880 LEFT ARROW "use \5\6"
"Once a menu is pulled down, you can use

\5\6 and \6\7 to view neighboring menus.

Use \5\6 to view all the Desktop menus.

Stop when you get to the File menu."

Page 6-8

COUNT SET 5 6
TAG"MENU KEYS"

PASS KEY

PROMPT 1 2400 3080 3200 220 ABORT KEY "use \5\6"
"You're doing fine! Keep going." —

EXPECT KEY LEFT ARROW

LOOP TO 5 "MENU KEYS"

PASS KEY -

MESSAGE OFF
POINT TO 1600, 715, 1, 0 /* point up */
PROMPT 1 1200, 2750, 5600, 660 {c} ™"C=continue”
"Some options in a menu might be \Clshadowed\CO. The GET INFO
option in the File menu is shadowed. A shadowed
option is one that is not currently available.™
MESSAGE_OFF

POINT TO 2650, 2035, 1, 0 /* point up */
PROMPT 1 2900, 2750, 4400, 1100 DOWN ARROW "highlight option”
" Choose a Menu Option\r\n

To choose a menu option you highlight it

and then press ENTER. \A\B and \8\9 are used

to move the highlight. Use \A\B to highlight

the UPDATE SCREEN option.”

COUNT SET 5 5

TAG"US KEYS"

PASS KEY

PROMPT 1 2400 3300 3200 220 ABORT KEY "highlight option"
"You're doing fine! Keep going.” —

EXPECT KEY DOWN ARROW

LOOP TO 5 "US _KEYS"
PASS_KEY -

MESSAGE OFF

PROMPT 1 2900, 2640, 4500, 1320 RETURN KEY "press ENTER"
"The UPDATE SCREEN option is used to update

the contents of all the application list

boxes whenever you insert a different disk.

Press ENTER to choose the menu option.

Because we are merely teaching you about

menus, you SHOULD NOT insert another disk.”
MESSAGE OFF

PICTURE OFF

PASS_KEY
/* ON_QUIT GOTO "Q" */
POINT TO 400, 660, 1, 2 /* point up */

PROMPT 1 3000, 2420, 4500, 880 F2 "pull down menu"
"Did you notice that the screen was redrawn?
Let's look at the File Menu again. Use the
function key following the menu's name to
pull down the menu.”
MESSAGE OFF
PICTURE OFF
PASS KEY

POINT TO 2650, 2035, 1, 0 /* point up */
PROMPT 1 2900, 2750, 4300, 1100 {c} "C=continue"
"Notice that \"CTRL+U\" appears next to
the UPDATE SCREEN option. This is an
\Claccelerator key\CO. Accelerator keys allow
‘ you to choose a menu option without
pulling down the menu."

Page 6-9

MESSAGE_OFF

ESC FLAG 1
PROMPT 1 3000, 2640, 4500, 660 ESC KEY "press ESC"
"Let's use the accelerator to update The
screen again. First, remove the File menu
from the screen by pressing ESC."
PASS KEY
ESC FLAG 0
PICTURE OFF
/* ON_QUIT GOTO "Q" */

PROMPT 1 1200, 2640, 5500, 440 CTRL U "use accelerator"”
"Press CTRL+U to update the screen without pulling
down the File menu."
PICTURE OFF
MESSAGE OFF
PASS KEY

PROMPT 1 1100, 2640, 5800, 440 {c} "C=continue"
"Sometimes menu options need more information to complete

a task. When this occurs a dialog box will appear.”
MESSAGE OFF

M PROMPT ORG 2200 3960

PICTURE ON 1 2100 1870 "explorer.fig”
EXPECT KEY {c}

PICTURE OFF

PROMPT 1 1600, 3080, 4800, 220 ABRORT KEY "choose menu option”
"Choose the FORMAT option from the Disk menu."
GET _TO MENU 4, 2, "Disk" "FORMAT" SPACE KEY

POINT TO 3450, 1650, 1, 1 /* point right */
PROMPT 1 1200, 3850, 5500, 440 {c} "C=continue"
"The format option is used to format new diskettes so
that you can start storing information on them."
MESSAGE_OFF

POINT TO 3650, 2090, 1, 1 /* point up */
PROMPT 1 1100, 3850, 5800, 440 {c} "C=continue”

"The box next to the Drive: prompt is where you will type
the name of the drive you wish to use to format a disk."

MESSAGE OFF

PICTURE_OFF

PROMPT 1 1200, 3850, 5500, 660 {a} "type \"A\""
"The flashing cursor indicates that the box is active
and waiting for you to type a response. Let's pretend
that we aré going to format a disk on drive A."

PASS KEY

PROMPT 1 1200, 3850, 5500, 440 BKSPACE KEY "press BACKSPACE"
"The letter \"a\" appeared in the box. The BACKSPACE

key is used to correct mistakes. Try it.”

PASS KEY

PROMPT 1 1200, 3850, 5500, 440 TAB KEY "move cursor"
"The letter \"A\" was removed. The TAB key is used to
move the cursor to the next component. Try it."

MESSAGE OFF

PASS KEY

Page 6-10

POINT TO 5100, 2530, 1, 0 /* point up */
PROMPT 1 1200, 3850, 5500, 880 TAB KEY "move cursor"
"The cursor now appears in the box next to the Options
prompt. You do not need to type any options to do a
standard format. Use the TAB key to move the cursor
to the next component.”
MESSAGE OFF ,
PASS KEY

POINT TO 2700, 2970, 1, 1 /* point up */
PROMPT 1 1200, 3850, 5600, 660 SPACE KEY "press space bar"
"This is a \Clcheck box\CO0. If you want the diskette to
be a bootable diskette, you would check the INSTALL
OPERATING SYSTEM box by pressing the space bar."
MESSAGE OFF
PASS KEY

PROMPT 1 1100, 3850, 5700, 660 SPACE KEY "press space bar"
"The box is now checked. Since disks uséd to store files
created by DeskMate do not need the operating system,
uncheck the box by pressing the space bar again.”
MESSAGE OFF
PASS_KEY

POINT TO 3100, 3355, 1, 1 /* point up */
PROMPT 1 1200, 3850, 5500, 880 TAB KEY "move cursor"
"When you are done providing all the Information to

complete the task of formatting a disk, you would

push the OK button. Move the cursor to the OK button.

Can you guess what key to use?”
MESSAGE OFF

PASS KEY

POINT TO 5000, 3355, 1, 0 /* point up */
PROMPT 1 1200, 3850, 5500, 440 TAB KEY "move cursor"
"Since we are not actually going to format a disk,

push the CANCEL button instead.”
MESSAGE OFF

PICTURE OFF

PASS KEY

PROMPT 1 1200, 3850, 5500, 220 SPACE KEY "push CANCEL"
"Press space bar to push CANCEL and abort the format."
PASS KEY

M PROMPT ORG 2200 2750

PROMPT T 1200, 2310, 5500, 1100 {c} "C=continue”
"The ESC key could also be used to cancel a dialog
box. The ESC key is your exit key; it will quit
applications, menus, and dialog boxes. If you press
ESC now, you would exit DeskMate and return to DOS.
Now, let's review what you have learned.”

Page 6-11

PROMPT 1 1625, 1540, 4700, 2420 {c} "C=continue"”

" \ClPart 1: Lesson Summary\CO\r\n

- The Desktop is used to run DeskMate\r\n
applications.\r\n

- Accessories are special tools that can run\r\n
anywhere within DeskMate.\r\n

- The F10 menu contains all the accessories.\r\n

- Title line provides information about\r\n
DeskMate and the date and time.\r\n

- Menus contain the options available in an\r\n
application.\r\n

- Menus are displayed using function keys."

PROMPT 1 1625, 1430, 4700, 2640 {c} "C=continue”

" \ClPart 1: Lesson Summary\CO\r\n

- To choose a menu option, you pull down\r\n
the menu, highlight the option, and then\r\n
press ENTER.\r\n

- Accelerator keys are a quick way to choose\r\n
a menu option.\r\n

- Dialog boxes ask you for information to\r\n
complete a task.\r\n

- TAB moves the cursor to the next choice.\r\n

- Space bar checks boxes and pushes buttons.\r\n

- ESC exits menus, dialog boxes, and\r\n
applications."”

MESSAGE OFF

GOTO "menu"

it haly amonah T
ESC FLAG™1

GET KEY

KEY WITHIN DOWN ARROW []

IF FALSE GOTO "gha not dn arrow"”
PASS KEY - -
COUNT DEC 0

COUNT ABOVE 0 0

IF _TRUE GOTO "get_help arrows”

TAG "gha_no_more"

M PROMPT ORG 2100 2420

PROMPT 172000 2200 5000 440 ABORT KEY "press ESC"
"There are no more lines of information. Press
ESC to exit Help."

PAUSE MODE 200

EXPECT KEY ESC KEY

MESSAGE OFF PICTURE OFF

ESC_FLAG 0 -

TAG "gha exit"

PASS_KEY
ESC_FLAG 0

RETURN
TAG "gha not_dn_arrow"”
MESSAGE OFF

PICTURE OFF
KEY WITHIN ESC_KEY []

Page 6-12

IF TRUE GOTO "gha exit"
COUNT BELOW 0 -
IF_TRUE GOTO "gha no more"

M PROMPT ORG 2100 2420

PROMPT 1,2000,2200,5000,440,ABORT KEY,"read information"
"Press ESC to leave Help or press \A\B to continue
reading the information."

§OTO "get help arrows"”
5 _ _

--

TAG "e2"
ESC KEY
TAG "el"
ESC KEY
GOTO "menu"

TAG, "no_space"

PROMPT 1 2000 1760 4000 660 {c} "C=continue"
"There is not enough room on your disk

to run part one of this lesson.”

GOTO "teach play"

TAG,"to play"
MESSAGE_OFF

COUNT EQUAL 9 0
IF TRUE GOTO "teach play"

RESTORE FILE 1 "dmcorkbd"

TAG "teach play”
CALL "post tut" IN FILE "intro3.evn"
GOTO "menu™

TAG "end lesson"

TAG "end”

F2 {R} RETURN KEY {play.pdm} RETURN KEY
PICTURE ON 0 U 0 "FINDTUT.FIG" -
RESTORE FILE 0 "desktopd.cfg”
RESTORE DT CFG

Page 6-13

INTRO2.DOC

TAG "Introduction 2”
M PROMPT ORG 200074500
ON QUIT GOTO "return to main"

PICTURE ON 1 1900 1540 "help2.fig"
EXPECT KEY {c}
PICTURE OFF

PICTURE ON 1 1900 1540 "compass.fig"
EXPECT REY {c}
PICTURE OFF

POINT TO 1000 100 1 0 /* goint to Fl=Help */
PROMPT 1 2000,3000,4000,220 F1 "press F1"
"Let's try using DeskMate On-Line Help."
MESSAGE OFF PICTURE OFF

/* MESSAGE BUFFER 4200 1320 */

MESSAGE BUFFER 4200 2500

IF TRUETGOTO "nuf mem"

PROMPT T 1500,1547,5000,880 {c} "C=continue"
"There is not enough memory to run this lesson”
GOTO "return to main”

TAG "nuf mem™

PASS _KEY™

ON QUIT GOTO "in help"

PAUSE MODE 100 —

POINT TO 1000 3400 1 3 /* info.box */

PROMPT 1 1500,1540,5000,880 {c} "C=continue"

"Help is displayed in three types of boxes. One form of Help is an
\Clinformation box\CO. An information box provides detailed
"information about a specific topic.

PICTURE OFF

PROMPT 1 1900,1540,4200,1100 {c} "C=continue”

"Help is \Clcontext sensitive\CO. This means that no matter where you
are in DeskMate -- in an application or in an accessory --

'DeskMate provides \C3specific\CO advice for the task at hand.

POINT TO 1600 800 1 0 /* point to text appl box */

PROMPT 1 1900,1540,4200,1100 {c} "C=continue"

"In this case, the Text application box was highlighted.
Therefore, the information box contains specific instructions
pertaining to the Text application.

POINT TO 3000 5050 1 0 /* point to arrows=scroll */

PROMPT 1 1900,1540,4200,660 {c} "C=continue”

"When an information box contains more text than it can

display, the \8\9 and \A\B keys may be used to scroll the text.
n

PICTURE_OFF

PROMPT 1 1900,1540,4000,660 PGDN KEY "press PAGE DOWN"
"The PAGE UP and PAGE DOWN keys Can also be used to scroll
thru the text. Try pressing PAGE DOWN.

PASS_KEY

Page 6-14

POINT TO 250 4850 1 2 /* cursor */

PROMPT 1 1900,1540,4200,440 PGDN KEY "press PAGE DOWN"

"The cursor moved to the bottom Tine. Try pressing PAGE DOWN again."”
PASS KEY

PICTURE_OFF

PROMPT 1 1900,1540,4200,880 PGDN KEY "press PAGE DOWN"
"The cursor is still on the bottom line, but the text
scrolled up one page. When you finish reading the page,
press PAGE DOWN one more time.

PASS_KEY

POINT TO 1600 3950 1 0 /* point to [END] */

PROMPT 1 1900,1540,4200,660 {c} "C=continue”

"The word [END] has appeared, indicating that this is the last
'line of the Help information.

POINT TO 700 4860 1 3 /* point to fl=more Help */

PROMPT 1 1900,1540,4200,880 F1 "press F1"

"After reading the last line, you can either exit Help using ESC
or get Tore general help on the Desktop. To get additional help,
press Fl.

PICTURE OFF MESSAGE OFF
PASS_KEY -

POINT TO 4000 1000 1 0 /* goint to dotted box */

PROMPT 1 1900,2000,4200,1320 {c} "C=continue”

"General Help appears in the form of \Cltask/topic boxes\CO.
Each box contains a question you might have about the
current DeskMate application. The dotted box is the cursor;

"it is used to select the question you wish to have answered.

PICTURE OFF MESSAGE OFF

POINT TO 4000 2200 1 0 /* question box */

PROMPT 1 1900,4000,5000,660 TAB KEY "press TAB"
"let's find the answer to the question, \"What is an
application?\" Move the cursor to the question using
"the TAB key.

PICTURE OFF

PASS KEY

POINT TO 1000 4850 1 3 /* enter=more details */

PROMPT 1 3000,3100,4100,1320 RETURN KEY "press ENTER"

" And The Answer Is?\r\n\T\n

Pressing ENTER will either provide an answer to the question
or it will provide more specific questions on the topic.

PICTURE OFF MESSAGE OFF
PASS KEY -

POINT TO 1000 3400 1 3 /* info.box */

ESC FIAG 1

PROMPT 1 4500,1000,2200,1980 ESC KEY "press ESC"

"In this case, an information boX appeared with an answer
to the question. After reading the answer, press ESC to
return to the list of questions.

PICTURE_OFF MESSAGE_OFF

Page 6-15

PASS KEY
ESC FLAG 0

POINT TO 4000 3300 1 0 /* question box */

PROMPT 1 1900,1540,4200,880 DOWN ARROW "move cursor"
"Since our thirst for knowledge Knows no bounds,
let's seek out the answer to the next question.
"Another way to move the cursor is with \A\B.

PICTURE OFF MESSAGE_OFF
PASS_KEY -

PICTURE ON 1 1900 1540 "magnify.fig"
EXPECT KEY RETURN KEY

PICTURE OFF MESSAGE OFF

PASS KEY -

PROMPT 1 4500,1540,2200,880 {c} "C=continue"”
"Are you wondering why an information box did not
appear with an answer?

PROMPT 1 4500,1000,2200,2200 RETURN KEY "press ENTER"
"Well, Help sometimes provides a more detailed response
by asking more specific questions. Press ENTER again
to see if you will get an answer to the currently

"selected question.

PASS_KEY

PROMPT 1 4500,1000,2200,1760 {c} "C=continue"
"Eureka! You've discovered the third and final type
of Help. Instead of an information box, the answer
"is being displayed in step-by-step boxes.

POINT TO 1500 100 1 1 /* top line */

PROMPT 1 4500,1540,2200,880 {c} "C=continue"

"The question being answered is displayed at the top of
the screen."

PICTURE OFF

POINT TO 550 800 1 3 /* number of steps */

PROMPT 1 4500,1000,2200,1760 {c} "C=continue"

"Each step is numbered in the order that they are to
be completed. You will need to exit Help before you
can perform the instructions.

MESSAGE_OFF
PICTURE OFF

PICTURE ON 1 1900 1540 "powerful.fig"
EXPECT KEY RETURN KEY

PICTURE OFF MESSAGE OFF

PASS_KEY -

ESC FLAG 1

POINT TO 1000 3400 1 3 /* info.box */

PROMPT 1 4500,1540,2200,1100 ESC KEY "press ESC"
"The information box tells you how to perform the
first step - Choosing an application box.

PICTURE OFF
PASS_KEY

Page 6-16

ESC_FLAG 0

PROMPT 1 4000,1540,3800,1100 HOME KEY "press HOME"
" There's no place like Home.Xr\n\r\n

The HOME key will always take you back to the first
"set of questions. Try it.

MESSAGE OFF PICTURE OFF
PASS_KEY -

POINT TO 4700 4000 1 3 /* fl=more Help */

PROMPT 1 1900,1540,4200,660 F1 "press F1"

"If you do not see a question or topic of interest,
you can always press Fl to see additional task /
"topic boxes.

MESSAGE_OFF PICTURE_OFF
PASS KEY -

ESC FLAG 1

PROMPT 1 1500,4000,5500,880 ESC KEY "press ESC"

"Pressing F1l while in Help willTgive you additional

help. In this case, you were %iven six new topics

"to choose from. Let's exit Help and return to the Desktop.

MESSAGE OFF PICTURE OFF
PASS KEY -
ESC_FLAG 0

ON QUIT GOTQ "return to main"

POINT TO 7500 370 1 T /¥ menu bar £10 */

PROMPT 1 1900,1540,4200,880 F10 "pull down menu"

"Let's look at how useful Help can be to explore DeskMate.
Let's say you are curious about the F10 menu. To find
"out what it does, press F10.

MESSAGE OFF PICTURE_OFF
PASS KEY -

ON QUIT GOTO "kill menu”

POINT TO 1000 100 T 0 /* fl=Help on top line */
PROMPT 1 2500,1540,3000,660 F1 "use Help"

"Now, use Help to find out what the options in the
F10 menu are.

MESSAGE OFF PICTURE_OFF

MESSAGE BUFFER 4300 440
PASS_KEY

ESC FLAG 1

POINT TO 500 3400 1 3 /* info.box */

PROMPT 1 1900,1540,4300,440 ESC KEY "press ESC"
"Help informs you that this is The Accessories Menu.
Press ESC to exit Help.

MESSAGE OFF PICTURE OFF
PASS KEY -
ESC FLAG 0

F10™

{p}

Page 6-17

POINT TO 6000 1670 1 1 /* phone list option */
PROMPT 1 500,1540,4200,1100 F1 "use Help"

"Now, let's see what kind of help is available for

an individual menu option. We have already moved the
highlight to the PHONE LIST option, all you need to
"do is use Help.

MESSAGE_OFF PICTURE OFF
PASS_KEY -

ON QUIT GOTO "return to main"

POINT TO 500 3400 1 3 /¥ info.box */

ESC FLAG 1

PROMPT 1 1900,1540,4100,880 ESC KEY "press ESC"

"As you can see, Help provided you with more detailed
information on the Phone List accessory. Now, let's
"review what you have learned.

PICTURE OFF MESSAGE OFF
PASS KEY -
ESC_FLAG 0

PICTURE ON 1 1500 1200 "superfl.fig"
EXPECT REY {c}
GOTO “"Teturn_to main”

TAG "in help"
ESC_KEY™

TAG "return to main"
GOTO "menu" "IN FILE "dmintro.evn"

TAG "kill menu"”
GOTO "retUrn to_main"

Page 6-18

INTRO3.DOC

/K e e e e e e x/
/: Introductory Lesson - Third Part *;
__ *

TAG, "Introduction 3"

ON QUIT GOTO "ea"
M PROMPT ORG 2200 2460

PROMPT 1 1900 1980 4200 1540 {c} "C=continue"
(\ Part 3: Write a Note\r\n '
r\n

In this part we will write a short

note using the Text apglication, and
practice some of the things that you
have learned in the previous parts.”

PROMPT 1 1500 2200 5000 440 RETURN KEY "run TEXT box"
"The highlight is already on the TEXT box, so it is
ready to be run.”

MESSAGE_OFF
/* Setup files needed for part */

PICTURE ON 0 0 0 "findtut.fig"
DISK SPECE 2048
IF FALSE GOTO "no_space"

TAG "get withit"
RETURN_KEY

ON_QUIT GOTO "eb"

M PROMPT ORG 500 1540

PROMPT 17400 1320 5200 1320 ABORT KEY "type \"Hi Robert\""
"Type the greeting for the -

note. The exact words that we want you to type are

in the lower-right corner of this box enclosed in

quotes. Type the words exactly as they appear

there, but do not type the quotes. Remember, you

can correct mistakes with BACKSPACE."

M PROMPT ORG,200,1320
SPACE KEY BKSPACE KEY
ON_QUIT GOTO "ee"

GET TEXT 0 "Hi Robert"

END_KEY,LEFT_ARROW

M PROMPT ORG 500 1760

PROMPT 17400,1540,4700,660 ABORT KEY "erase \"Robert\""
"Very good. But let's make the greeting less

formal. Use BACKSPACE to erase Robert's name

so that you can change it to Bob."

COUNT SET,0,6

TAG, "erase loop"”

EXPECT KEY BKSPACE_KEY
IF_TRUE_GOTO "erase_do"

Page 6-19

BKSPACE KEY

PROMPT T 400 1540 3200 220 ABORT KEY "erase \"Robert\"”
"Keep pressing BACKSPACE." -

LOOP_TO 0 "erase_loop”

TAG "erase do"
BKSPACE_KEY

LOOP_TO 0 "erase_loop”
TAG "zzapped"

PROMPT 1 400 1540 3000 220 ABORT KEY "type \"Bob\""
"Now, type Robert's nickname.”

GET TEXT 0 "Bob"
ENDKEY

/* RAutotype the remainder of the message */

M PROMPT ORG 2200 2420

PROMPT 172000 2200 4000 440 {c} "C=continue"
"Great! Now let us type the rest of

the note for you.”

BKSPACE KEY {,}
MESSAGE OFF

KEY INTERVAL 2
RETURN KEY RETURN_KEY

MESSAGE OFF
PICTURE OFF

{I just got my new Tandy Computer and it's terrific.
Right now I am }

{learning how to use DeskMate. }

{With it, I can do many home and office tasks }
{without having to buy extra software. }

{Such a deal!}

RETURN KEY RETURN_KEY

MESSAGE OFF

TAB KEY TAB KEY TAB KEY TAB KEY
TAB KEY TABR KEY TAB KEY -
{Come and seé it!} -
KEY_INTERVAL 0

M PROMPT ORG 2200 3960

PROMPT 172000 3960 4000 880 ABORT KEY "choose menu option"
"Now that we have completed the note

you need to save it on the disk _

before you exit Text. Choose SAVE AS

from the File Menu.”

GET TO MENU 2 4 "File" "SAVE AS" SPACE_KEY
ON QUIT GOTO "ee”

Page 6-20

M PROMPT ORG 2200 3960

PROMPT 171900 3740 4200 880 ABORT KEY "type \"BOB\""
"The first step is to type the name of

the file to save the note te at the -

Save as: prompt. The cursor is already

there, so type the name of the file."

M _PROMPT ORG 2000 3300
GET TEXT 0 "Bob"

M PROMPT ORG 2200 3740

PROMPT 172200 3740 3600 440 TAB KEY "move cursor"
"Next, press TAB to move the cursor

to the SAVE button."

PASS KEY

PICTURE ON 0 0 0 "findtut.fig"

COUNT SET 7 2
FILE EXIST 0 "bob.doc”
IF FALSE GOTO "push ok"

PRESERVE FILE 0 "bob.doc”
DELETE FILE 0 "bob.S$bs"
COUNT SET 7 1

ON_QUIT GOTO "remove bob"

TAG "push ok”

PROMPT 1 1700 3740 4800 220 SPACE KEY "push button”
"Aand finally, press space bar to Save the note.”
PASS KEY

M PROMPT ORG 2000 3960

PROMPT 171200 3960 5600 880 ABORT KEY "choose menu option”
"Your note has been saved to disk. If there had been a
problem with the saving of the file DeskMate would

have notified you. Let's exit Text and go back to the
Desktop. Choose EXIT from the File Menu."

GET TO MENU 2 9 "File" "EXIT" SPACE KEY
ON_QUIT GOTO "ea" -

MESSAGE_OFF
LOOP TO 7 "delete saved"
RESTORE FILE 0 "bob.doc"
GOTO "DONE"

TAG "delete saved"
DELETE FILE 0 "bob.doc"

TAG "done"
ON QUIT GOTO "eb"

PICTURE ON 0 110 880 "desktext.fig" .
POINT TO 1400, 1100, 1, 0 /* Point to the left

M _PROMPT ORG 2200 2420 '
PROMPT 172000 2200 4000 440 {c} "C=continue"
"Notice that your note now appears in

the TEXT box as BOB.DOC."

Page 6-21

*/

PICTURE_OFF

PROMPT 1 1900 2200 5400 1100 {c} "C=lesson menu"

(IQ part three of this lesson, we have reviewed:\r\n
r\n
- How to use dialog boxes.\r\n
- How to choose an option from a menu.”

F2 {r} RETURN KEY ESC KEY
GOTO "ea" - -

TAG "no extra”
RETURN KEY

/* problems with lesson */
TAG "no_space"

PROMPT 1 880 2000 4100 440 {c} "C=lesson menu"
"There is not enough room on your disk
to run part three of this lesson.”

GOTO "exit"

TAG "remove bob"

MESSAGE OFF™

ESC KEY

IN MSGBOX "Save Changes"
IF FALSE GOTO "del bob"
ALT N — -

TAG "del bob"

LOOP TO 7 "delete saved q"
RESTORE FILE 0 "bob.doc"”
GOTO "ea”

TAG "delete saved "
DELETE FILE 0 "bob.doc"
GOTO "ea"

TAG "ef"
MESSAGE OFF
ESC_KEY

TAG "ee"

MESSAGE OFF

ESC KEY

ALT N

GOTO "menu" IN FILE "dmintro.evn"

TAG "ed"
MESSAGE OFF
ESC_KEY~

TAG "ec"
MESSAGE OFF
ESC_KEY

TAG "eb"
MESSAGE OFF
ESC_KEY™

TAG "ea"
MESSAGE OFF

Page 6-22

TAG "exit"
GOTO "menu" IN FILE “"dmintro.evn"

/
TAG "post tut"
ON QUIT GOTO "on their own"

M_PROMPT ORG 2100 2420

POINT TO 1600 3960 1 3
PROMPT 1 2000 2200 4900 1100 TAB KEY "move highlight”
: \ Part 4: Using Teach Me!\r\n

r\n :

To run other Teach Me lessons, first move the
highlight to the Teach Me box. Use TAB to move
the highlight."

PASS_KEY
COUNT_SET 0 4

TAG "to teach me loop”

POINT TU 160073950 1 3

PROMPT 1 400 2640 3300 220 TAB KEY "move highlight”
"You are doing fine. Keep going."

PASS KEY

LOOP™TO 0 "to teach me loop”

PICTURE OFF -

M PROMPT ORG 500 2860

PROMPT 17400 3080 5000 220 RETURN KEY "press ENTER"
"To run the Teach Me application, press ENTER."
MESSAGE OFF

PASS KEY

ON_QUIT GOTO "quit play”
HOME KEY HOME KEY HOME KEY HOME KEY HOME_KEY HOME_KEY

M PROMPT ORG 2200 2420

PROMPT 171400 2200 4900 660 {c} "C=continue"
"Teach Me lets you run other lessons. Each
lesson will guide you through the fundamentals
of a DeskMate application.”

MESSAGE_OFF

M PROMPT ORG 300 3080

POINT TO4000 2200 1 1

PROMPT 1 200 2860 3800 1100 {c} "C=continue"
"The list box to the right contains

a list of the available lessons.

To run a lesson, use \A\B to move

the highlight to the lesson that

you want and then press ENTER."

PICTURE OFF

MESSAGE OFF

Page 6-23

M PROMPT ORG 300 2200

PUINT TO 4100 1320 1 1

PROMPT 1 200 1980 4100 1100 {c} "C=continue"
"\ClDeskMate: An Introduction\CO is the
lesson that you are currently running.

Feel free to run it again or to run

any of the others that you see listed

after you have completed this lesson.”
PICTURE OFF

MESSAGE OFF

ESC FLAG 1

M PROMPT ORG 2200 2640

PROMPT 171400 2420 4000 660 ESC_KEY "press ESC"
"To exit Teach Me without running a

lesson, just press ESC. Try it now

to return to the Desktop application.”

MESSAGE OFF

PASS KEY

ESC_FLAG 0

ON QUIT GOTO "on their own"

PROMPT 1 1600 2200 4700 660 {c} "C=lesson menu”
"You can use Teach Me to become familiar with

a new DeskMate application and to get ideas
about what you can do with that application.”

GOTO "on_their own"

TAG "quit play”

MESSAGE OFF PICTURE OFF
ESC_KEY

TAG "on their own"

MESSAGE OFF PICTURE OFF
RETURN —

Page 6-24

OPTIONS.DOC
TAG "options"

LEFT ARROW LEFT ARROW RIGHT ARROW
DOWN_ARROW LEFT_ARROW LEFT ARROW
UP_ARROW CTRL_HOME KEY UP ARROW

ON QUIT GOTO "end lesson”
M PROMPT ORG 1000 1760

/* MESSAGE BUFFER 6400 3190 */

MESSAGE BUFFER 6400 2900

IF TRUE GOTO "MEMORY OK"

PRUMPT T 1300 1320 5500 1980 {c} "c=end lesson”

Not Enough Memory\r\n

Your computer does not have enough memory to complete
this lesson. You may be able to complete the lesson
using a lower resolution video mode (read dmvid.doc
to change the video mode). You can also save memory
by eliminating any programs that terminate, but stay
resident in memory. Also make sure that you do not
use the TASKSWITCH option from the Accessories Menu
before taking a lesson.

GOTO "end lesson"

TAG "MEMORY OK"

PROMPT 1 90T,1540,6200,2420 {c} "C=continue"
'ry Teach Me About DeskMate\r\n
r\n

This lesson will introduce you to the fundamentals of
DeskMate and give you a sampling of the things you can

do with it.\r\n

\r\n

First, let's see how to use this lesson. The lower right
corner of each instruction box (like this one) will tell you
how to get to the next step of the lesson. In this case,

the C=continue message means that you should press C on

your keyboard to continue. Please press it now."

M PROMPT ORG 1500 1760

PROMPT 171400 1540 5300 1760 {c} "C=continue"

"If you are new to DeskMate or computers, you are
going to make some mistakes. Don't worry about it,
making mistakes is an important part of learning.

In particular, don't worry about pressing the
wrong key. We will catch it and tell you what you
need to do next. If you are ever unsure of what

to do, try something and we will guide you through.
You can press the ESC key to quit during a lesson.”

MESSAGE_OFF

TAG "show menu"
ON QUIT GUTO "end lesson”

CTRL U

LEFT ARROW LEFT ARROW RIGHT ARROW
DOWN ARROW LEFT ARROW LEFT BRROW
UP ARROW CTRL_HOME KEY UP_ARROW
MOUSE ON

IF FATSE GOTO "no mouse opt"

MOUSE OFF

Page 6-25

OPTIONS 1 6 30 2400 1320

"1.
ll2.
"3
'l4.
"5.
"6,

Teach Me About DeskMate"
Desktop Basics"
Use Help"
Write a Note”
Run Other Lessons”
Use a Mouse"
Exit This Lesson”

TAG "no mouse opt"
OPTIONS 1 5 30 2400 1320

ll1.
"2.
"3,
"4.
"5,

Teach Me About DeskMate"
Desktop Basics"
Use Help”
Write a Note"
Run Other Lessons"
Exit This Lesson"

TAG "Section 1"
MESSAGE OFF PICTURE OFF
GOTO "Séction 1" IN FILE “"dmintro.evn”

TAG "Section 2"
MESSAGE OFF PICTURE OFF
GOTO "Ifntroduction Z" IN FILE "intro2.evn”

TAG "Section 3"
MESSAGE OFF PICTURE OFF
GOTO "Introduction 3" IN FILE "intro3.evn"

TAG "to play"
MESSAGE OFF PICTURE OFF
GOTO "t6 play" IN FILE "dmintro.evn"

TAG "A"
MESSAGE OFF PICTURE OFF
GOTO "A™ IN FILE "mouse.evn"

TAG "end lesson”
MESSAGE OFF PICTURE OFF
GOTO "end lesson” IN FILE "dmintro.evn"

"Section 1"
"Section™ 2"
"Section 3"
"to play™
"Al'—

"end lesson"

"Section 1"
"Section 2"
"Section™3"
"to play™

"end lesson"

Page 6-26

MOUSE.DOC

/********************/

[*mmmmmmm e * Mouse Lesson — *——————--—-mmoe————e */
/********************/

TAG "A"
M PROMPT ORG 2700 3300

MOUSE_ON
ON_QUIT GOTO "QQ1"

PICTURE ON 0 1000 440 "mouse.fig"
EXPECT KEY {c])

PICTURE ON 0 1000 440 “"rat.fig"
EXPECT KEY {c)

PICTURE ON 0 1000 440 "arrow.fig”
EXPECT KEY {c}

F2 {R} RETURN KEY {hangman} RETURN KEY
CTRL T - -

ON QUIT GOTO "Q"
PAUSE MODE 10
IN MSGBOX "Hangman"

IF_FALSE GOTO "Mcl"
TAB KEY SPACE KEY

TAG "Mcl”

TAB KEY SPACE KEY SPACE KEY SPACE KEY

TAR"KEY TAB KEY TAB KEY - /* 1 word per game */
POINT TO 3000, 3857, 1, 1 /* point to the right*/

PROMPT 1 800, 440, 6500, 1100 ABORT KEY "push OK"

"A mouse gives DeskMate and other popular business, educational,
and entertainment programs \"point and click\" convenience. To
see how, let's use the mouse to play Hangman. To start the

ame, move the mouse pointer to point to the OK button and
"push\" it by clicking one of the mouse's buttons.”

COUNT SET 1 3000, COUNT SET 2 3740, COUNT SET 3 900, COUNT SET 4 440
GET MOUSE 0 MS CLICK 1 7 3 4 - -

PICTURE OFF

MESSAGE OFF

IF FALSE GOTO "CL1"

PASS MOUSE

GOoTO "C2"

TAG"CLL"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF _TRUE GOTO "E10" ~

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF_TRUE GOTO "E11""

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF_TRUE GOTO "E12" —

WAS MOUSE 0 MS HOLD 1 2 3 4
IF_TRUE GOTO "AGAIN1"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF_TRUE GOTO "AGAIN1"™

Page 6-27

GOTO"E13" .
TAG"E10Q"

PROMPT 1 1500 4180 5000 660 ABORT KEY "click mouse"”

"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on OK."
GOTO"AGAIN1"

TAG"E1l"

PROMPT 1 1500 4180 5000 440 ABORT KEY "click mouse"
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on OK."
GOTO"AGAIN1"

TAG"E12"

PROMPT 1 1500 4180 5000 440 ABORT KEY "click mouse"”
"Do not press the SHIFT key when Clicking. Try
again to click on QOK."

GOTO"AGAIN1"

TAG"E13"

PROMPT 1 1500 4180 5000 660 ABORT KEY "click mouse”
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on OK."

TAG"AGAIN1"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE_GOTO"CLL"

MESSAGE_OFF
PASS_MOUSE

/

TAG"C2"

PROMPT 1 2000, 4290, 4000, 220 ABORT KEY "type your name"
"Type in your name and press enter."” -

COUNT SET 1 12

PASS WHILE 1 {A} .. {z} RIGHT ARROW LEFT ARROW BKSPACE KEY DELETE KEY []
MESSAGE OFF - - - -
RETURN_KEY

CTRL.W {mouse} RETURN KEY

ON QUIT GOTO "Q2" .
POINT TO 1450, 4510, 1, 1 /* Point to the right */

/.

Page 6-28

PROMPT 1 200, 3080, 2500, 660 ABORT KEY "click on \"A\""
"Let's try to guess the -
word. To start, click
on the letter ("A\"."

COUNT SET 1 1500, COUNT SET 2 4400, COUNT_SET 3 200, COUNT SET 4 320
GET MOUSE 1 MS CLICK 1 Z 3 4 - =

MESSAGE OFF —

PICTURE OFF

IF_TRUE_GOTO "C3"

TAG"CL2"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E20"

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E21"™

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E22" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "AGAIN2"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN2"™

GOTO"E23"

TAG"E20"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on \"A\"."
GOTO"AGAINZ"

. TAG"E21"
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"A\"."
GOTO"AGAIN2"

TAG"E22"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not press the SHIFT key when Clicking. Try
again to click on \"A\"."

GOTO"AGAIN2"

TAG"E23"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse”
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \"A\"."

TAG"AGAIN2"
GET MOUSE 0 MS CLICK 1 2 3 4
IF FALSE GOTO"CL2"

MESSAGE OFF
PASS_MOUSE

TAG"C3"
PROMPT 1 200, 3080, 2500, 660 ABORT KEY "click on \"E\""
"Try the letter \"E("

next. Click on the \"E\"

‘ button.”

Page 6-29

COUNT SET 1 3050, COUNT SET 2 4400, COUNT SET 3 200, COUNT_SET 4 320
GET MOUSE 1 MS CLICK 1234

MESSAGE OFF

IF_TRUE_CALL "C4"

TAG"CL3"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E30" —

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E31""

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E32" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "EAGAIN3"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN3"™

GOTO"E33"

TAG"E30"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse”
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on \"E\".”

GOTO"AGAIN3"

TAG"E31"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse”
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"E\"."
GOTO"AGAIN3"

TAG"E32"
PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse” ‘
"Do not press the SHIFT key when Clicking. Try
again to click on \"E\"."
GOTO"AGAIN3"

TAG"E33"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \"E\"."

TAG"AGAIN3"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE GOTO"TL3"

MESSAGE_OFF
PASS_MOUSE

/

TAG"C4"

PROMPT 1 200, 3080, 2500, 220 ABORT KEY "click on \"I\""
"Try the letter \"1{"."

COUNT SET 1 4650, COUNT SET 2 4400, COUNT SET 3 200, COUNT SET 4 320
GET MOUSE 1 MS CLICK 1 Z 3 4

MESSAGE OFF ~

IF_TRUE GOTO "C5"

Page 6-30

TAG"CL4"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E40"

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E41"™

WAS MOUSE Q0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E42" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "AGAIN4"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN4"™

GOTO"E43"

TAG"E40" .
PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on \"I\"."”

GOTO"AGAIN4"

TAG"E41"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"I\"."
GOTO"AGAIN4"

TAG"E42" '

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not press the SHIFT key when Clicking. Try
again to click on \"I\"."

GOTO"AGAIN4"

TAG"E43"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, positTIon the mouse
pointer so that it points to the center of the
button. Try again to click on \"I\"."

TAG"AGAIN4"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE_GOTO"CL4"

MESSAGE OFF
PASS_MOUSE

TAG"C5"
PROMPT 1 200, 3080, 2500, 220 ABORT KEY "click on \"O\""
"Try the letter \"O\"." -

COUNT SET 1 1850, COUNT SET 2 4840, COUNT SET 3 200, COUNT SET 4 320
GET MOUSE 1 MS CLICK 1 Z 3 4 -

MESSAGE OFF

IF_TRUE_GOTO "C6"

TAG"CLS"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "ES50"

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "ES51"™

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E52" —

WAS MOUSE 0 MS HOID 1 2 3 4

IF TRUE GOTO "AGAINS"

Page 6-31

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAINS"
GOTO"ES3"

TAG"E50"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on \"O\"."
GOTO"AGAINS"

TAG"E51"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse”
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"O\"."
GOTO"AGAINS"

TAG"E52"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not press the SHIFT key when Clicking. Try
again to click on \O\"."

GOTO"AGAINS"

TAG"ES3"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \"O\"."

TAG"AGAINS"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE_GOTO"CL5"

MESSAGE_OFF
PASS_MOUSE

/

TAG"C6"

PROMPT 1 200, 3080, 2500, 220 ABORT KEY "click on \"U\""
"Try the letter \"U\"." -

COUNT SET 1 4250, COUNT SET 2 4840, COUNT SET 3 200, COUNT_SET 4 320
GET MOUSE 1 MS CLICK 1 7 3 4 - -

MESSAGE OFF —

IF_TRUE GOTO "C7"

TAG"CL6"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E60"

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E61""

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E62" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "AGAING"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN6"™

GOTO"E63"

TAG"E6QO"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse”
"To click the mouse, briefly tap The mouse _
button; do not hold the button down. Try again

to click on \"U\"."

Page 6-32

GOTO"AGAING"

TAG"E61"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"U\"."
GOTO"AGAING"

TAG"E62"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not press the SHIFT key when Clicking. Try
again to click on \"U\"."

GOTO"AGAING"

TAG"E63"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse”
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \"U\"."

TAG"AGAING"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE_GOTO"CL6"

MESSAGE_OFF
PASS_MOUSE

TAG"CT"
PROMPT 1 200, 3080, 2500, 220 ABORT KEY "click on \"M\""
"Try the letter \"M\". "

COUNT SET 1 6300, COUNT SET 2 4400, COUNT SET 3 200, COUNT SET 4 320
GET MOUSE 1 MS CLICK 1 Z 3 4

MESSAGE OFF —

IF_TRUE GOTO "C8"

TAG"CL7"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E70" ™

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E71"™

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E72" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "AGAIN7"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAINT"™

GOTO"ET3"

TAG"E70Q"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse”
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on \"M\"."

GOTO"AGAINT"

TAG"E71"

PROMPT 1 1500 2200 5000 440 ABORT KEY “click mouse”
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"M\"."
GOTO"AGAINT"

Page 6-33

TAG"E72"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not press the SHIFT key when Clicking. Try
again to click on \"M\"."

GOTO"AGAINT"

TAG"E73"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"”
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \"M\".”

TAG"AGAINT"
GET MOUSE 0 MS CLICK 1 2 3 4
IF FALSE GOTO"TL7"

MESSAGE_OFF
PASS_MOUSE

TAG"C8"

PROMPT 1 200, 3080, 2500, 440 ABORT KEY "click on \"S\""

"You just about have it;
Try the letter \"S\"."

COUNT SET 1 3450, COUNT SET 2 4840, COUNT SET 3 200,
GET MOUSE 1 MS CLICK 1 Z 3 4 -

MESSAGE OFF ~

IF_TRUE_GOTO "C9"

TAG"CL8"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E80"

WAS MOUSE 0 MS DBL CLICK 1 2 3 4
IF TRUE GOTO "E81"™

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E82" ™

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "AGAINS"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN8"

GOTO"E83"

TAG"E80"

PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse"
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on \"S\"."
GOTO"AGAINS"

TAG"E81"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse"
"Do not double-click. Just briefly tap the mouse
button once. Try again to click on \"S\".”
GOTO"AGAINS"

TAG"E82"

PROMPT 1 1500 2200 5000 440 ABORT KEY "click mouse”
"Do not press the SHIFT key when Clicking. Try
again to click on \"S\"."

GOTO"AGAINS8"

Page 6-34

COUNT SET 4 320

TAG"E83"

‘ PROMPT 1 1500 2200 5000 660 ABORT KEY "click mouse”
"Before clicking the mouse, position the mouse
pointer so that it points to the center of the
button. Try again to click on \"S\"."

TAG"AGAINS"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE GOTO"CL8"

MESSAGE_OFF
PASS_MOUSE

TAG"CO"
IN MSGBOX "Hangman®
IF_FALSE GOTO "C9"

ON QUIT GOTO "N1"

PROMPT ~0 1400, 4400, 5000, 440 ABORT KEY "push NO"
"Click on NO to exit Hangman and we'll show you
how to use the mouse in other ways.”

COUNT SET 1 4500, COUNT SET 2 3190, COUNT_SET 3 700, COUNT_SET 4 330
GET MOUSE 0 MS CLICK 1 Z 3 4
IF_TRUE_GOTO "CA2"

TAG"CL9”

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E90" —

WAS MOUSE 0 MS DBL CLICK 1 2 3 4

IF TRUE GOTO "E91"™
WAS MOUSE 0 MS SHFT CLICK 1 2 3 4

IF TRUE GOTO "E92"

WAS MOUSE O MS HOID 1 2 3 4

IF TRUE GOTO "AGAIN9"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAIN9"™
GOTO"E93"

TAG"ESQ”
PROMPT 1 1400 4400 5000 660 ABORT KEY "click mouse"
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on NO."
GOTO"AGAINI"

TAG"E91"

PROMPT 1 1400 4400 5000 440 ABORT KEY "click mouse"
"Do not double~click. Just briefly tap the mouse
button once. Try again to click on NO."
GOTO"AGAINI"

TAG"E92"

PROMPT 1 1400 4400 5000 440 ABORT KEY "click mouse"”
"Do not press the SHIFT key when clicking. Try
again to click on NO."

GOTO"AGAINY”

TAG"E93"

PROMPT 1 1400 4400 5000 660 ABORT KEY "click mouse"

"Before clicking the mouse, position the mouse
‘ pointer so that it points to the center of the

button. Try again to click on NO."

Page 6-35

TAG"AGAINY"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE GOTO ™CL9"

TAG"CA2"

MESSAGE OFF

PASS MOUSE

GOTO "CA" IN FILE "MOUSEl.DOC"

/**************************************/

[Fmmmmm e * Exit Tutorial (From Lesson Menu) *--—-=c--—---

/**************************************/

TAG "DE" /* EXIT APP
PROMPT 1 1500 4180 5000 440 {c} "C=continue"
"There is not enough space on this disk space to
run this tutorial..”
GOTO "Q1"

TAG "Q3" /* EXIT APP
MESSAGE OFF PICTURE OFF

ESC KEY -

GOTU "Q"

TAG "Q2" /* EXIT APP
MESSAGE OFF PICTURE OFF
ESC KEY™ -

TAG "N1"
MESSAGE_OFF PICTURE OFF
ALT N — -

*/

*/

*/

TAG "Q" /* EXIT TUTORIAL */

MESSAGE_OFF PICTURE OFF
MOUSE_OFF -

TAG "01" /* EXIT */
TAG "Q01"

MESSAGE_OFF PICTURE OFF

F2 {R} RETURN KEY ESC_KEY

TAG "END"
GOTO "menu" IN FILE "dmintro.evn"

Page 6-36

MOUSE1.DOC

Y — e e
TAG"CA"

ON QUIT GOTO "Q" IN FILE e

POINT TO 1400, 770, 0, O /* Point to the left

PROMPT 1 1200, 2640, 5600, 1100 ABORT KEY "double-click mouse™
"Let's go into the Text application. TO run a program

from the Desktop with the mouse, you must double- click

on the application name. Position the mouse pointer on

the word \"TEXT\" and click one of the buttons

twice without pausing between clicks."

TAG"DX2"

COUNT SET 1 300, COUNT SET 2 715, COUNT SET 3 1000, COUNT_SET 4 220
GET MOUSE 0 MS DBL CLICK 1 2 3 4

IF_TRUE GOTO "DX" ~

WAS MOUSE 0 MS CLICK 1 2 3 4
IF_TRUE GOTO "DX1"

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF_TRUE GOTO "DX1" ~

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF_TRUE GOTO "DX1" ~

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF_TRUE GOTO "DX1"

WAS MOUSE 0 MS HOLD 1 2 3 4
IF_TRUE_GOTO "DX1"

PROMPT 1 1500 4180 5000 440 ABORT KEY "double-click mouse"
"position the mouse on the word \"TEXT\" before
double-clicking."

GOTO "DX2"

TAG"DX1"

PROMPT 1 1500 4180 5000 880 ABORT KEY "double-click mouse"
"To double-click the mouse, briefly tap the mouse

button twice; do not pause between clicks and do

not hold the mouse button down. Try again to
double-click on \"TEXT\"."

GOTO "DX2"

TAG "DX"
MESSAGE OFF
PASS MOUSE

ON QUIT GOTO "Q3" IN FILE "MOUSE.DOC"
CTRL_HOME KEY

POINT TO 500, 660, 1, /* Point to the rlght x/
PROMPT 1 2650, 3300, 5200, 880 ABORT KEY "click on file menu”
"Let's change the document we created “earlier in

Text. Retrleve this file using the OPEN option

from the File Menu. To choose the menu option with

a mouse, first, click on the File Menu."

COUNT SET 1 100, COUNT SET 2 330, COUNT_SET 3 600, COUNT SET 4 220
GET MOUSE 0 MS CLICK 172 3 4
IF_TRUE_GOTO "TD"

Page 6-37

TAG"CL9"

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "E90" —

WAS MOUSE 0 MS DBL CLICK 1 2 3 {4
IF TRUE GOTO "E91"

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "E92" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "AGAIN9”"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "AGAINO"™

GOTO"E93"

TAG"E90"
PROMPT 1 1400 4400 5000 660 ABORT KEY "click mouse"
"To click the mouse, briefly tap The mouse

button; do not hold the button down. Try again

to click on the File Menu."
GOTO"AGAINO"

TAG"E91"

PROMPT 1 1400 4400 5000 440 ABORT KEY "click mouse™
"Do not double-click. Just briefly tag the mouse
button once. Try again to click on the File Menu."
GOTO"AGAINI"

TAG"E92"

PROMPT 1 1400 4400 5000 440 ABORT KEY "click mouse”
"Do not press the SHIFT key when Tlicking. Try
again to click on the File Menu.”

GOTO"AGAINI"

TAG"E93"

PROMPT 1 1400 4400 5000 660 ABORT KEY "click mouse™
"Before clicking the mouse, positIon the mouse
pointer so that it points to the center of the
menu. Try again to click on File Menu."

TAG"AGAIN9"
GET MOUSE 0 MS CLICK 1 2 3 4
IF_FALSE_GOTO "CL9"

TAG "CD"

MESSAGE OFF
PICTURE_OFF
PASS_MOUSE

PICTURE ON 0 0 0 "FINDTUT.FIG"
DISK SPACE 1024
IF_FALSE_GOTO "DE”

PROMPT 1 2650, 3300, 5200, 220 ABORT KEY "choose menu option"
"To choose the OPEN option, double-click on OPEN."

TAG"DE2"

COUNT SET 1 0, COUNT SET 2 880, COUNT SET 3 2600, COUNT SET 4 220
GET MOUSE 0 MS DBL CLICK 1 2 3 4 -

IF_TRUE_GOTO "DJ" ~

WAS MOUSE 0 MS CLICK 1 2 3 4

IF TRUE GOTO "DEl1"

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "DE1" ™

Page 6-38

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "DE1"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "DEL" —

WAS MOUSE 0 MS HOLD 1 2 3 4

IF TRUE GOTO "DE1"

PROMPT 1 1500 4180 5000 440 ABORT KEY "double-click mouse"”
"Position the mouse on the OPEN option before
double-clicking."

GOTO "DE2"

TAG"DE1"

PROMPT 1 1500 4180 5000 880 ABORT KEY "double-click mouse"
"To double-click the mouse, briefly tap the mouse

button twice; do not pause between clicks and do

not hold the mouse button down. Try again to
double~click, on File Menu."

GOTO "DE2"

TAG "DJ"

MESSAGE OFF

PASS MOUSE

PICTURE ON 0 2400 2255 "listbox.fig"

PROMPT 1 1200, 4520, 5600, 220 ABORT KEY "choose list box option"
"Open BOB.DOC by double-clicking on the filename."

TAG"DZ2"

COUNT SET 1 2900, COUNT SET 2 2695, COUNT SET 3 1200, COUNT SET 4 220
GET MOUSE 0 MS DBL CLICK 1 2 3 4

IF_TRUE_GOTO "DZ"

WAS MOUSE 0 MS CLICK 1 2 3 4

IF TRUE GOTO "Dz1"

WAS MOUSE 0 MS SHFT CLICK 1 2 3 4
IF TRUE GOTO "Dz1" —

WAS MOUSE 0 MS BUTTON DOWN 1 2 3 4
IF TRUE GOTO "Dz1"

WAS MOUSE 0 MS BUTTON UP 1 2 3 4
IF TRUE GOTO "Dz1" —

WAS MOUSE (0 MS HOLD 1 2 3 4
IF_TRUE_GOTO "Dz1"

PROMPT 1 1500 4180 5000 440 ABORT KEY "double-click mouse”
"Position the mouse on BOB.DOC before

double-clicking."

GOTO "DZ2"

TAG"DZ1”

PROMPT 1 1500 4180 5000 880 ABORT KEY "double-click mouse”
"To double-click the mouse, briefly tap the mouse

button twice; do not pause between clicks and do

not hold the mouse button down. Try again to
double-click on BOB.DOC."

GOTO "DZ2"

TAG "DZ"
MESSAGE_OFF

PRESERVE FILE 0 "BOB.DOC"

Page 6-39

INVERT ON 0 2900 2695 1200 220
TAB KEY {BOB.DOC}

INVERT OFF

RETURN_KEY

ON_QUIT GOTO"Q3"

K e e ———— —_— - o e */

PROMPT 1 1000, 3200, 6000, 1320 ABORT KEY "select Text"
"Let's change the greeting in this letTer from \"Hi Robert\"
to \"Hi Bob\". To correct the greeting, select \"Robert\"
by pointing the mouse pointer to the \"R\". Press and hold
the mouse button down while moving the mouse pointer right
until \"Robert\" and only \"Robert\" is selected. When the

entire word is selected, release the mouse button.”

HOLD SEQ 300 660 100 220, 880 660 120 220, 0 220 6400 4400
- 1 "the start of \"Robert\"" "the end of \"Robert\""

/

M PROMPT ORG 2000 3300

PROMPT T 1200, 3200, 5500, 220 ABORT KEY "type \"Bob\""
"Replace the selected text by typing \™Bob\"."

GET_TEXT 0 "Bob"
PAUSE_MODE 120

/
PROMPT 0 1000, 1320, 6000, 3080 {c} "C=lesson menu"
(\ Lesson Summary\r\n

r\n

Congratulations, you have completed the mouse lesson.
\Ygu have learned in this lesson:\r\n
r\n
\ \— How to point the mouse pointer.\r\n
r\n
\ \— How to press a button by \"clicking\".\r\n
r\n
\ \— How to choose an option by \"double-clicking\".\r\n
r\n
- How to select an item by \"dragging\" the mouse\r\n
pointer.”

TAG nQ3u

MESSAGE OFF PICTURE OFF
ESC KEY -

IN MSGBOX "Save Changes"
IF FALSE GOTO "Q2"
ALT N

TAG "Q2"

RESTORE_FILE 0 "BOB.DOC"
MOUSE_OFF

GOTO"Q1" IN_FILE "MOUSE.DOC"

Page 6-40

Command Index:

ALLOW_INHIBIT
CALL
CHANGE_DIR
COUNT_ABOVE
COUNT_BELOW
COUNT_DEC
COUNT_EQUAL
COUNT_INC
COUNT_SET
DELETE_DIR
DELETE_FILE
DISK_SPACE
ESC_FLAG
EXPECT_KEY
FILE_EXIST
GET_ARROWS .
GET_DLGBOX_CMP
GET_KEY
GET_LB_ITEM
GET_RB
GET_TEXT
GET_TO_MENU
GOTO
IF_FALSE_GOTO
IF_TRUE_GOTO
IGNORE_INHIBIT
IN_DLGBOX
IN_FILE
IN_LISTBOX
IN_MSGBOX
INVERT_OFF
INVERT_ON
KEY_INTERVAL
KEY_WITHIN
LOOP_TO
M_PROMPT_ORG
MESSAGE_BUFFER
MESSAGE_OFF
MESSAGE_ON
ON_QUIT_GOTO
ON_TIMEOUT_CALL
OPTIONS
PASS_KEY
PASS_WHILE
PAUSE_MODE
PICTURE_OFF
PICTURE_ON
POINT_TO
PRESERVE_DT_CFG

Script Command Reference

. suspend during unexpected events

call a subroutine

change the current directory

test for counter above a value

test for counter below a value
decrement the counter

test for counter at a value

increment the counter

set the counter to a value

delete a directory

delete a file

check for room on the disk

allow the script to expect Escape

get a key from the user and check it
check for a file's existence

get arrows to the specified location
get keys to dialog box component

get any key from the user

get keys to list box item

get keys to the radio button

get the string from the user

get keys to the specified menu
transfer control fo the label

transter if the last check was FALSE
transfer if the last check was TRUE
do not suspend on unexpected events
is the dialog box active?

specifies the file a TAG is in

is the list box active?

is the message box active?

turn off any INVERTIng region

invert a region of the screen

pause a time period between events
check if the key is in a list

decrement count and loop if not zero
specify origin of automatic messages
preallocate memory for screen saves
restore the screen under the message
put a message on the screen
designate transfer on quit

designate transfer on timeout
process a menu of options

pass a retrieved key to the application
pass matching keys to the application
pause for a time period

restore the screen under the picture
put a picture on the screen

point to a spot with the hand icon
substitute DESKTOP.DFT for the .CFG

Page 6-41

PRESERVE_FILE
PROMPT
RESTORE_DT_CFG
RESTORE_FILE
RETURN
RUN_RESOURCE
START_IN

TAG

UNPACK_FILE

subtitute a .DFT file for another
prompt the user for input

restore DESKTOP.CFG

restore a preserved file

return from a subroutine

run a DeskMate resource

start in a PDM other than DeskTop
mark routine

unpack a file

Page 6-42

ALLOW_INHIBIT

ALLOW_INHIBIT is no longer supported.

Page 6-43

CALL "iabel”

CALL is used to call a script subroutine.
Parameters

“label” is the name of the routine.
Special Notes

The script return stack only has room for eight (8) entries. Calls must not be nested more than
eight deep. If the subroutine is not in the current file, the label must be followed by the proper

IN_FILE designation.

Example
CALL "query user",IN FILE "user.evn"

Page 6-44

@

e

CHANGE_DIR "directory”

CHANGE_DIR is used to force your tutorial or demo to execute from the designated directory.
Parameters

"directory” is the destination directory.

Special Notes

The directory must exist. The directory must either contain the entire pathname, or it must be a
direct descendent of the current directory.

Example
CHANGE DIR “test"

Page 6-45

COUNT_ABOVE counter value .

COUNT_ABOVE sets the TRUE condition if the count is greater than the specified value, FALSE
otherwise.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal number.

Special Notes

The general purpose counter can be used to keep track of errors and for looping. See also,
COUNT_BELOW and COUNT_EQUAL.

Example

COUNT_ABOVE 1 2
IF_TRUE GOTO "end"

Page 6-46

COUNT_BELOW counter value

COUNT_BELOW sets the TRUE condition if the count is less than the specified value, FALSE
otherwise.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal number.

Special Notes

The general purpose counter can be used to keep track of errors and for looping. See also
COUNT_ABOVE and COUNT_EQUAL.

Example

COUNT_BELOW 1 2
IF_TRUE_GOTO "end"

Page 6-47

COUNT_DEC counter . , .

COUNT_DEC decrements the counter value. Sets the TRUE condition if the result is not negative,
FALSE otherwise.

Parameter

counter is the number of the counter from 0 through 9.
Special Notes
The general purpose counter can be used to keep track of errors.

Example

COUNT_DEC 9
IF_TRUE_GOTO "end"

Page 6-48

COUNT_EQUAL counter value

COUNT_EQUAL sets the TRUE condition if the count is equal to the specified value, FALSE
otherwise.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal number.

Special Notes

The general purpose counter can be used to keep track of errors and for looping. See also
COUNT_ABOVE and COUNT_BELOW.

Example

COUNT EQUAL 1 2
IF_TRUE_GOTO "end”

Page 6-49

COUNT_INC counter
COUNT_INC increments the count value.
Parameters

counter is the number of the counter from 0 through 9.

Special Notes

The general purpose counter can be used to keep track of errors.

Example

COUNT INC 4
COUNT EQUAL 4 3
IF_TRUE_GOTO "end"

Page 6-50

COUNT_SET counter value
COUNT_SET sets the count value.

Parameters

counter is the number of the counter from 0 through 9.
value is a decimal value.

Special Notes
The general purpose counters can be used to keep track of errors.

Example

COUNT SET 9 3

TAG "loop"
GET_KEY
COUNT DEC 9
IF_TRUE GOTO "loop"

Page 6-51

DELETE_DIR "directory” ‘

DELETE_DIR is used to delete directories which you may have created during your tutorial or
demo.

rameter
"directory" is the directory to be deleted.
Special Notes

The directory must either contain the entire pathname, or it must be a direct descendent of the
current directory. The directory must of course be empty.

Example
DELETE DIR "test"

Page 6-52

DELETE_FILE DMCONFIG_flag "filename"
DELETE_FILE is used to delete a file.

Parameters

DMCONFIG_flag is 0 (zero) if the file to be deleted is in the current directory, 1 if the file is in
the DMCONF IG directory.
"filename" is the pathname of the file to be deleted.

Special Notes

If “filename” does not contain path information, the file will be deleted within the current
directory.

Exampie
DELETE_FILE 0 "test.doc"

Page 6-53

DISK_SPACE number_of_bytes .

DISK_SPACE is used to verify the indicated amount, number_of_bytes, of free space required
by the tutorial or demo exists on the disk.

Parameters

number_of_bytes is the decimal number of bytes of the disk space required.

Special Notes

If DISK_SPACE is immediately followed by IF_TRUE_GOTO or IF_FALSE_GOTO playback
execution will resume based on the returned state. If DISK_SPACE is not asscociated with a
conditional GOTO, playback execution will terminate if the number of bytes indicated does not
exist on the disk. The minimum number of bytes to check for is 1024 since modifying the
directory structure can cause the directory information itself to grow by 512 bytes.

Example
DISK SPACE 1024

Page 6-54

ESC_FLAG Flag
ESC_FLAG allows the script to accept an escape key without quitting.

Parameters

Flag is set to one if ESC_KEY is expected, zero otherwise.

Special Notes

Be sure to set ESC_FLAG to zero when ESC_KEY is not expected, as there is no way to quit
when ESC_FLAG is one.

Example

ESC_FLAG 1
EXPECT KEY ESC_KEY
ESC_FLAG 0

Page 6-55

EXPECT_KEY KEY

EXPECT_KEY will get keystrokes from the user until the correct key is input. If the key matches
on the first try the TRUE condition will be set, if not FALSE will be set. If FALSE is set, any

previously drawn message will have been removed.
Parameters

KEY is the value of the key expected.

Special Notes

EXPECT_KEY combines the functions of GET_KEY and KEY_WITHIN in a single call. If a
specific key is expected, this call is more efficient.

EXPECT_KEY will prompt the user if the correct key is not typed. If the user types the wrong key
twice, the keyboard is displayed with a finger pointing to the appropriate key.

Example

MESSAGE ON 1 1000 1100 2000 440
"Press ENTER to continue"
EXPECT KEY RETURN KEY
MESSAGE_OFF

Page 6-56

FILE_EXIST "filename"
FILE_EXIST is used to verity the existence of a file.
Parameters
"filename" is the pathname of the file to be located.
ial Not
If "filename™ does not contain path information, the file will be searched for within the current
directory. If FILE_EXIST is immediately followed by IF_TRUE_GOTO or IF_FALSE_GOTO

playback execution will resume based on the returned state. If FILE_EXIST is not asscociated
with a conditional GOTO and the file does not exist, playback execution will terminate.

Example
FILE EXIST "test.doc"

Page 6-57

GET_ARROWS X Y X0 YO0 X1 Y1

GET_ARROWS will get arrows from the user until the location is reached. Keys which would
cause the user to leave the bounding area will be accepted. Non-arrow keys will cause an error
message to be displayed.

Parameters

X is the number of horizontal arrows, negative number for left arrows and positive for right
arrows.

Y is the number of vertical arrows, negative numbers for up arrows and positive for down arrows.
X0 YO0 X1 Y1 designates the bounding area within which arrowing is allowed. The current cursor
position should be thought of as (0, 0) . X0 and Y0 should be less than or equal to zero. X1 and

Y1 should be greater than or equal to zero.
ial Not
You must specify the bounding area correctly or the counters will get confused For instance, if

the cursor in on the last line in Text, down arrows produce no action, so 'Y1 must be zero.

l
Example

GET ARROWS 3 4 -2 -1 4 5 |

Allows arrowing within 2 columns left and 1 line above and 4 columns Ieft and 5 lines below
of the point 3 columns right and 4 lines down.

Page 6-58

GET_DLGBOX_CMP tab# "string"”

GET_DLGBOX_CMP will pass keys from the user which move the focus to the specified dialog
box component. |f the component is a push button, this call will not return until the push button
has been "pressed.”

Parameters

tab# is the number of TABs which must be pressed to get to the component.
"string" is used to identify the component in any prompting messages caused by the user.
entering destructive keys.

Special Notes

The dialog box must be the selected component prior to this call. GET_DLGBOX_CMP will use
the push button accelerator if the component is a push button. UP_ARROWS and DOWN_ARROWS

will be accepted only when the current component is not a list box. _ This call should pot be used if
the dialog box has side scrolling list boxes.

Example

/* Display the Open dialog box */
F2 {o} RETURN KEY

/* Go to the extension field */
GET _DLGBOX CMP 2 "Extension Editfield"”

Page 6-59

GET_KEY

GET_KEY will get a keystroke from the user.

GET_KEY is used when we do not know what to expect from the user. It is more efficient to use
EXPECT_KEY if a preferred key is known. GET_KEY should generally be followed by
KEY_WITHIN.

Example

GET KEY
KEY WITHIN {a} .. {z} [] |
IF_TRUE GOTO "label" !

Page 6-60

GET_LB_ITEM "string"”
GET_LB_ITEM will pass keys from the user which lead to selecting a list box item.
Parameters

“string” is the exact string contained within the list box. The length of the string must not be
greater than 32 characters.

jial Not

The list box must be the selected component prior to this call. GET_LB_ITEM will accept
UP_ARROWS, DOWN_ARROWS, and character keys. This call cannot be used for side scrolling list
boxes.

If the user types any improper keys, the following message will appear:
To go to the "string" option,
press the "appropriate arrow" key,

or press the "first letter of string” key
until the option is highlighted.

Example
GET LB ITEM "PR DOC.DOC"

Page 6-61

GET_RB button_number "string"
GET_RBT will accept arrow keys to move the focus to a particular radio button.

Parameters

button_number is the integer from 0 to nButtons-1 that specifies the button.
string” is used by the automatic prompts when the user presses an unacceptable character.
The string length must not be greater than 32 characters.

jal Not

Control returns when the focus is on the desired radio button. If the user types something other
than a valid key, a message stating "Please use only [appropriate] keys to get
to the [string]" will be displayed, where [appropriate] lists the proper arrow keys and
[string] is the user defined string.

Example !

M _PROMPT ORG 0 4000

F2 {r} RETURN KEY {draw} RETURN KEY
F6 {p} RETURN KEY

GET RB 14 "Brick Pattern"

Page 6-62

GET_TEXT flag "string"
GET_TEXT will get a string from the user.
Parameters

flag is the integer 0 if you wish to be case insensitive, 1 if you wish to be case sensitive, and 2 if
you only wish to accept 0 through 9.
"string" may be up to 63 printable characters.

Special Notes

All printable characters will be passed to the application until the length of the string is reached.
The input will then be compared to the desired string, and a message asking the user to try again
will be displayed if the result was not obtained. The routine will not end until the correct string is
entered. RIGHT ARROW, LEFT ARROW, BKSPACE KEY, and DELETE_KEY are accepted to aid
the user in editing. Note that the cursor position is not known when the routine returns. If the user
mistypes the phrase, the user will be prompted to correct the mistakes. If the user continues to
make mistakes, or pauses too long between keystrokes, the user can press the space bar to
have the string auto-typed.

Example
GET TEXT 1 "Zimbabwe is a nice place to live."

Page 6-63

GET_TO_MENU function_key item_number "menu string" "item string"”
accelerator_key

GET_TO_MENU will get keystrokes from the user until the desired menu item is reached.

Parameters

function_key is the number of the function key which pulls down the menu.

item_number is the number of the item on the menu.

"menu string" is the string which will be used in all messages guiding the user to the menu.
The string must not exceed 32 characters.

"“item string" is the string which will be used in all messages guiding the user to the item. The
string must not exceed 32 characters.

accelerator_key is the menu item accelerator, use SPACE_KEY if none exists.

Special Notes

Messages will be displayed to guide the user to the correct menu item if any keys are detected
which do not lead to the correct destination.

Example !

GET_TO MENU 4 4 "Text" "Center" CTRL C

If the user enters keys which other than those which lead to the proper menu option, the following
messages will appear:

To choose Center from the Text Menu,

first find the word Text on the menu bar across the top of the
screen. Following it is the function key which pulls' down the Text
menu. Press that function key now.

The next step to choose Center from the Text Menu, is to highlight
it. Press down arrow until the Center option is hlghllghted

To choose the Center option,
press ENTER.

Page 6-64

. GOTO "label"

\ GOTO forces script event execution to resume after the corresponding label.
Parameters
"label” is the string associated with the TAG where event execution is to resume.
Special Notes

If associated TAG statement does not exist within the same event file, the IN_FILE option should
be used. If the TAG cannot be located, execution will terminate.

Example
GOTO "Run_ Text”

F2 {r} RETURN_KEY
{draw} RETURN KEY

TAG "Run_Text"
F2 {r} RETURN KEY
Q\ {text} RETURN KEY

/. §
=

CJ

Page 6-65

IF_FALSE_GOTO "label" ‘
-

IF_FALSE_GOTO forces script event execution to resume after the corresponding label if a
previous command has resuited in the FALSE condition.

Parameters

"label” is the string associated with the TAG where event execution is to resume.
Special Notes

If associated TAG statement does not exist within the same event file, the IN_FILE option should
be used. If the TAG cannot be located, execution will terminate.

Example

FILE_EXIST "test.doc”
IF_FALSE_GOTO "Run_Text"

F2 {r} RETURN KEY
{draw} RETURN_KEY

®

TAG "Run_Text"
F2 {r} RETURN KEY
{text} RETURN_KEY |

Page 6-66

IF_TRUE_GOTO "label”

IF_TRUE_GOTO forces script event execution to resume after the corresponding label if a
previous command has resulted in the TRUE condition.

Parameters
"label” is the string associated with the TAG where event execution is to resume.
Special Noteg

If associated TAG statement does not exist within the same event file, the IN_FILE option should
be used. If the TAG cannot be located, execution will terminate.

Example

FILE_EXIST "test.doc"
IF_TRUE_GOTO "Run_Text

GOTO "doesn't exist", IN FILE "test2.evn"
TAG "Run_Text"

F2 {r} RETURN_KEY
{text} RETURN KEY

Page 6-67

IGNORE_INHIBIT

IGNORE_INHIBIT is no longer supported

Page 6-68

e

®

[

MESSAGE_ON ScreenSave Xorg Yorg Xext Yext
"Text of message"

MESSAGE_ON displays an information box on the screen.

Parameters

ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.
Xorg and Yorg specify the world coordinate origin of the information box.

Xext and Yext specify the world coordinate dimensions of the box.

"Text of message” is the string to be displayed in the box.

ial Not

MESSAGE_ON is used to communicate with the viewer . The message will remain on the
screen until a MESSAGE_OFF or another MESSAGE_ON command is encountered.

The screen background of the message box will be preserved. If the size of the box exceeds the
available memory for storing the background, the box will not be drawn and the FALSE condition
will be set.

To place a message box on the screen during recording, use the "shift-F1 m" command. A
default size INFO_BOX will appear on the screen. The arrow keys are used to reposition the box.
The CTRL+ARROW keys are used to resize the box. To edit the message press [TAB], to cancel
it press [ESC], to accept it without a message press [TAB] [TaB]. When editing the
message NEVER have two carriage returns in succession. If this is necessary use: [ENTER],
SPACE, [ENTER] instead. To accept the message press [TAB], to cancel press [EsC]. This
procedure will write the MESSAGE_ON, it's maprect, the message, a long pause (700 which is 7
seconds), and a MESSAGE_OFF command.

If you wish to use the arrow icons in your messages, use the string "\5\6" for a left arrow, "\6\7"
for a right arrow, "\8\9" for an up arrow, and "\A\B" for a down arrow.

The accessory icon is "\T".

If you wish to specify a function key, you may use "\E\F" for F1, "E\10" for F2,"\E\11" for
F3,"E\12" for F4,"E\13" for F5, "E\14" for F6,"\E\15" for F7,"\E\16" for F8, "\1B\1C" for F10.

Example

A message box starting at column 10, row 5 and is 40 columns wide and 2 rows tall would have
the following map rectangle (characters are 100 world coordinates wide and 220 world
coordinates tall).

MESSAGE _ON 0 1000 1100 4000 440
"This is a message box"

PAUSE_MODE 700,MESSAGE_OFF

Page 6-81

ON_QUIT_GOTO *"iabel"”

ON_QUIT_GOTO forces script event execution to resume after the corresponding label when
user presses Esc.

Parameters
"label" is the string associated with the TAG where event execution is to resume.
ial Not

This instruction affects all following events until another ON_QUIT_GOTO is encountered.
Example

ON_QUIT GOTO "End"

/* Any user quits after this point will goto the end */
F2 {r} RETURN KEY

{draw} RETURN_KEY

TAG "End"

Page 6-82

®

@

IN_DLGBOX "Title String"

IN_DLGBOX returns TRUE if the specified dialog box is active.
r ter

"Title String" is the title displayed in the dialog box frame.

Special Notes

The "Title String™ must match exactly.

Example

F2 {r} RETURN KEY
IN DLGBOX "Run File", IF FALSE_GOTO "something wrong"

Page 6-69

IN_FILE "filename.ext"

IN_FILE is associated with any label not within the current file.
r ter

"filename.ext"” is the name of the file containing the label.

Special Notes

IN_FILE should immediately follow a branching label.

Example

GOTO "label”,IN FILE "test.evn”

IF FALSE GOTO "label",IN FILE "test.evn"
ON QUIT GOTO "label,IN FILE "test.evn"
IF_TRUE GOTO "label",IN FILE "test.evn"
CALL "label", IN FILE "test.evn"

Page 6-70

IN_LISTBOX "Title String"”

IN_LISTBOX returns TRUE if the specified list box is active.
Parameters

"Title String"” is the title of the list box.

Special Notes

The "Title String" must match exactly.

Example

TAG "get to text list box"
IN_LISTBOX "TEXT", IF_TRUE_GOTO "on text list box"
EXPECT KEY TAB KEY
GOTO "get to text list box"

TAG "on text list box"

Page 6-71

IN_MSGBOX "Title String"

IN_MSGBOX returns TRUE if the specified message box is active.

Parameters

"Title String” is the title of the message box.
Special Notes
The "Title String” must match exactly.

Example

F2 {r} RETURN KEY
IN MSGBOX "Save Changes", IF FALSE GOTO "something wrong"

Page 6-72

INVERT_OFF
INVERT_OFF is used to restore an inverted area of the screen.
Parameters
None.
ial Not
INVERT_OFF will assure that the area is not left inverted if the area was flashing.

Example

INVERT ON 1 1000 1000 4000 220
PAUSE_MODE 500
INVERT OFF

Page 6-73

INVERT_ON FlashFlag Xorg Yorg Xext Yext

INVERT_ON is used to invert an area of the screen.

Parameters

FlashFlag is 1 if you want the area to flash, 0 otherwise.
Xorg and Yorg are the world coordinate origins of the area to INVERT.
Xext and Yext are the extents of the area.

Special Notes

INVERT_ON will invent the specified area once a second.

Example

INVERT ON 0 1000 1000 4000 220
PAUSE_MODE 500
INVERT OFF

Page 6-74

KEY_INTERVAL Interval

KEY_INTERVAL sets the time delay between the playback of each recorded event.
Parameters

Interval specifies the number of hundredths of seconds to pause between each playback event.
Special Notes

KEY_INTERVAL is used to pace the playback of recorded events. If the playback is terminated
by the user pressing Esc, the pauses will be ignored.

Example
KEY INTERVAL 50 /* Pause for 1/2 second between each event */

Page 6-75

KEY_WITHIN token list ‘

KEY_WITHIN will compare a keystroke from the user to the values in a token list. If the key is
within the token list, the TRUE condition will be set, if not FALSE will be set.

Parameters

token list contains all of the values expected for the key. All tokens must be seperated by
spaces or commas, and the list must be terminated by the end of block token '[]'. The range

token '..' may be contained within the token list.

Special Notes

KEY_WITHIN will operate on the last key retrieved. It should follow GET_KEY or
EXPECT_KEY.

Example

GET KEY

KEY WITHIN {a} .. {z} SPACE KEY []

/* returns true if a key from a to z is typed, or */
/* a space key is typed */
IF_FALSE GOTO “label"

MESSAGE ON 1 1000 1100 2000 440
"You have hit an alpha key"
GET_KEY RETURN KEY

MESSAGE_OFF

TAG "label”

Page 6-76

‘ LOOP_TO counter "label" -

LOOP_TO decrements the COUNT and forces script event execution to resume after the
corresponding label if the COUNT is greater than zero.

Parameters

counter is the number of the counter from 0 through 9.
"label" is the string associated with the TAG where event execution is to resume.

Special Notes

The COUNT is used for looping, any instructions which affect it should be used inside the loop
with great care. Loops can be nested.

If associated TAG statement does not exist within the same event file, the IN_FILE option should
be used. If the TAG cannot be located, execution will terminate.

Example

COUNT SET 2 3

TAG "loop 3 times™
GET KEY PASS_KEY
LOOP_TO 2 "loop 3 times”

Page 6-77

M_PROMPT_ORG Xorg Yorg

M_PROMPT_ORG sets the origin for all automatically displayed messages.
Parameters

Xorg and Yorg are the world coordinate origins of the messages.

Special Notes

This call should be made prior to EXPECT_KEY, GET_ARROWS, GET_TO_MENU or any other
self prompting call.

Example

M _PROMPT ORG 2000 4000
EXPECT KEY {k)

Page 6-78

MESSAGE_BUFFER Xext Yext

MESSAGE_BUFFER preallocates memory for subsequent MESSAGE_ON and PICTURE_ON
calls.

\

Parameters

Xext is the world coordinate width of the largest message or picture you plan on displaying.
Yext is the world coordinate height of the largest message or picture you plan on displaying.

Special Notes
PICTURE_ON and MESSAGE_ON can both save screen backgrounds if memory is available to
do so. MESSAGE_BUFFER allows you to "set aside" memory for this purpose if your

application allocates all of available memory. If the size of the box exceeds the available memory
for storing the background, the FALSE condition will be set.

Example
MESSAGE BUFFER 2000 440

Page 6-79

MESSAGE_OFF ‘
MESSAGE_OFF removes the current message, and restores the screen background.

Parameters

None.

Special Notes

PICTURE_OFF and MESSAGE_OFF both restore screen backgrounds. Great care should be
taken in the order of restoration when message boxes and pictures overlap.

The screen background of the message box will be preserved. If the size of the box exceeds the
available memory for storing the background, the box will not be drawn.

Example

MESSAGE ON 0 1000 1100 2000 440
"This is a message box"
PAUSE_MODE 700,MESSAGE OFF

Page 6-80

MESSAGE_ON ScreenSave Xorg Yorg Xext Yext
"Text of message"”

MESSAGE_ON displays an information box on the screen.

Parameters

ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.

Xorg and Yorg specify the world coordinate origin of the information box.
Xext and Yext specify the world coordinate dimensions of the box.
"Text of message"” is the string to be displayed in the box.

ial Not

MESSAGE_ON is used to communicate with the viewer . The message will remain on the
screen until a MESSAGE_OFF or another MESSAGE_ON command is encountered.

The screen background of the message box will be preserved. If the size of the box exceeds the
available memory for storing the background, the box will not be drawn and the FALSE condition
will be set.

To place a message box on the screen during recording, use the "Shift-F1 m” command. A
default size INFO_BOX will appear on the screen. The arrow keys are used to reposition the box.
The CTRL+ARROW keys are used to resize the box. To edit the message press [ENTER], to
cancel it press [ESC], to accept it without a message press [TAB]. When editing the message
NEVER have two carriage returns in succession. If this is necessary use: CR, SPACE, CR
instead. To accept the message press (TAB], to cancel press [ESC]. The MESSAGE_ON will
write the MESSAGE_ON, it's maprect, the message, a long pause (700 which is 7 seconds), and
a MESSAGE_OFF command.

if you wish to use the arrow icons in your messages, use the string "\5\6" for a left arrow, "\6\7"
for a right arrow, "\8\9" for an up arrow, and "A\B" for a down arrow.

The accessory icon is "\T".

If you wish to specify a function key, you may use "E\F" for F1, "\E\10" for F2,"\E\11" for
F3,"E\12" for F4,"\E\13" for F5, "E\14" for F6,"\E\15" for F7,"\E\16" for F8, "\1B\1C" for F10.

Example

A message box starting at column 10, row 5 and is 40 columns wide and 2 rows tall would have
the following map rectangle (characters are 100 world coordinates wide and 220 world
coordinates tall).

MESSAGE ON 0 1000 1100 4000 440
"This is a message box"
PAUSE MODE 700,MESSAGE OFF

Page 6-81

ON_QUIT_GOTO "label" ‘

ON_QUIT_GOTO forces script event execution to resume after the corresponding label when
user presses Esc.

Parameters

"label" is the string associated with the TAG where event execution is to resume.
Special Notes

This instruction affects all following events until another ON_QUIT_GOTO is encountered.

Example

ON QUIT GOTO "End"
/* Bny user quits after this point will goto the end */
F2 {r} RETURN KEY
{draw} RETURN KEY

TAG "End"

Page 6-82

ON_TIMEOUT_CALL seconds "label"

ON_TIMEOUT_CALL forces script event execution to call the corresponding label when lack of
user input results in the TIMEOUT condition.

Parameters

seconds in the time period to wait for a key.
"label” is the string associated with the TAG where event execution is to resume.
Special Notes

To disable the timeout function, set the "seconds” length to zero, and supply any string as the
label. This instruction affects all following events until another ON_TIMEOUT_CALL is
encountered.

Example

GOTO "Start"
TAG "Prompt"
MESSAGE ON 0 1000 1000 1000 1000
" Are you there?"
GET KEY
MESSAGE OFF
RETURN

TAG "Start"
ON_TIMOUT CALL 5 "Prompt"
/* Bny user timeout after this point will call */
/* the prompt routine * /
GET KEY
/* If the user doesn't enter a key in 5 seconds, */
/* Prompt will be executed. */

Page 6-83

OPTIONS ScreenSave number max_length Xorg Yorg
"Title String"
"Option1” "Tag1"

"OptionN" "TaghN"
OPTIONS displays a menu of options, and processes it.

Parameters

ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.
number is the number of options to be presented.

max_length is the length of the longest option.

Xorg and Yorg specify the origin to display the menu.

"Title String” is displayed on the first line of the menu.

"OptionN" is the string to be displayed for the option.

"TagN" is a TAG within the current event file to which control will transfer if the option is
selected.

Special Notes

A string giving selection instructions will be displayed at the- bottom of the box. Any previously
displayed messages will be removed by this command.

Example

OPTIONS 1 3 20 1000 2000
"DeskMate Lessons"

"one" "first"
"two" Ysecond”
"three” "third"

TAG "first"
GOTO "end"

TAG "second”
GOTO "end"

TAG "third"”
GOTO "end"

TAG "end"
MESSAGE OFF

Page 6-84

PASS_KEY

PASS_KEY will pass a "key" to the user.

Parameters

None.

Special Notes

PASS_KEY should generally follow GET_KEY or EXPECT_KEY. The key passed will be the

last key value set by one of these instructions. If a key has not been previously retrieved,
garbage may be passed to the application.

Example
GET KEY,PASS_KEY

Page 6-85

PASS_WHILE counter_number token_list ‘

PASS_WHILE will compare keystrokes from the user to the values in a token list. Keys will be
obtained from the user and passed on to the application as long as they appear in the token list,
or the maximum is not exceeded. if the max is exceeded, the counter will contain zero. If the
key is not within the token list, FALSE will be set. The KEY value will be set to the last key and

processing of the Script file will continue.

Parameters

counter_number is the counter to be used.
token list contains all of the values expected for the key. All tokens must be seperated by
spaces or commas, and the list must be terminated by the end of block token ' []'. The range

token '..' may be contained within the token list.

Special Notes
PASS_WHILE acts as if it were the following sequence:

TAG "start"
GET KEY KEY WITHIN token list IF FALSE GOTO "continue"

PASS KEY -
COUNT DEC n COUNT EQUAL n 0 IF FALSE GOTO "start”
TAG "Continue" - -

Example

COUNT SET 1 10 ‘

TAG "arrows"

PASS WHILE 1 RIGHT ARROW []

IF_TRUE GOTO "enough keys?"

PROMPT 2000 2000 2000 660 {c} "Any Key" "You Pressed A Wrong Key"
PAUSE MODE 100

MESSAGE OFF

TAG "enough keys?"
COUNT EQUAL 1 0 IF TRUE GOTO "good job"

TAG "prompt"

PROMPT 0 2000 2000 2600 440 RIGHT ARROW "Right Arrow"
"Press #1 more right arrows”

IF_FALSE GOTO "prompt"

MESSAGE_OFF

PASS_KEY -
COUNT DEC 1 ’

Page 6-86

. COUNT_EQUAL 1 0

IF_TRUE_GOTO "good job"
GOTO "arrows"

Page 6-87

PAUSE_MODE Duration

PAUSE_MODE pauses the playback for the indicated time period.

Parameters

Duration specifies the number of hundredths of seconds to pause the playback.

Special Notes
To pace the playback of recorded events, see KEY_INTERVAL. If the playback is terminated by
the user pressing Esc, the pauses will be ignored.

Example

PAUSE MODE 700
/* Palse for seven seconds */

Page 6-88

PICTURE_OFF

PICTURE_OFF removes the current picture and restores the screen background.
Parameters

None.

Special Notes

PICTURE_OFF and MESSAGE_OFF both restore screen backgrounds. Great care should be
taken in the order of restoration when message boxes and pictures overlap.

Example

PICTURE ON 0 1000 1100 "picture.fig"
PAUSE_MODE 700
PICTURE OFF

Page 6-89

PICTURE_ON ScreenSave Xorg Yorg "picture.ﬁg"
PICTURE_ON displays a graphics form on the screen.
r ter
ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.

XORG and Yorg specify the world coordinate origin of the picure.
"picture.fig" is the pathname of the Draw compatible file containing the Form to be displayed.

Special Notes

PICTURE_ON is used to communicate with the viewer. The picture will remain on the screen
until a PICTURE_OFF or another PICTURE_ON command is encountered.

Example

PICTURE ON 0 1000 1100 "picture.fig"
PAUSE_MODE 700
PICTURE OFF

Page 6-90

POINT_TO Xorg Yorg ScreenSave Direction

POINT_TO displays a hand icon with the index finger pointing to the designated coordinate.
Parameters

Xorg and Yorg specify the world coordinate origin of the picure.

ScreenSave determines if the background will be preserved, 1 for preserve, 0 for overwrite.
Direction is the direction the hand points, 0 is a left poining hand, 1 is a right pointing hand, 2 is
an up pointing hand, 3 is a down pointing hand.

Special Notes

If the screen background is saved, any previously displayed picture will be removed. The hand
will remain on the screen until a PICTURE_OFF or another PICTURE_ON command is
encountered.

If the size of the hand exceeds the available memory for storing the background, the hand will not
be drawn and the FALSE condition will be set.

Example

POINT TO 1000 1100 1 1
PAUSE MODE 700
PICTURE_OFF

Page 6-91

PRESERVE_DT_CFG .

PRESERVE_DT_CFG makes an alias copy of the DESKTOP . CFG file in the DMCONF IG directory,
and vectors all file i/o to the alias file.

Parameters

None.

Special Notes

PRESERVE_DT_CFG must be executed prior to the termination of PLAY . PDM.
Any combination of START_IN, PRESERVE_FILE, and COPY_FILE may precede it in the event
file, but nothing else.

The file DESKTOP . DFT will be searched for in the current . TUT file, and copied to filename
DESKTOP . $BS in the DMCONF IG directory. If this can be done successfully, all file i/o calls to
DESKTOP .CFG will be rerouted to DESKTOP . $BS. If not, playback will terminate with an error.
Re-routing will continue until the RESTORE_DT_CFG command is encountered, or playback
terminates.

Example
PRESERVE DT CFG

Page 6-92

PRESERVE_FILE DMCONFIG_flag "filename.ext"

PRESERVE_FILE copies the associated .DFT file in the .TUT file to filename. $BS in the
current directory. All file /O calls to the original will be rerouted to the alias.

Parameters

DMCONFIG_flag is set to 1 if the file to be preserved is in the DMCONF IG directory. If the file to
be preserved is in the current directory, set this to 0.

"filename.ext" is the name of the file in the DMCONF IG or current directory which you wish to
preserve.

Special Notes
The indicated files .DF T counterpart will be searched for in the current . TUT file, and copied to
filename. B in the current directory if it exists. After this is done, all file I/O calls referencing

the original will be re-routed to the alias. PLAY . PDM will terminate if the required .DFT file is not
located in the . TUT file.

Example

PRESERVE FILE 1 "PERSONAL.ADR"

Page 6-93

PROMPT ScreenSave Xorg Yorg Xext Yext key_value
"key string” '
"Text of message”

PROMPT displays an information box on the screen and pauses until the user enters a key.

Parameters

ScreenSave is 0 if you do not want to save the screen background, 1 otherwise.

Xorg and Yorg specify the world coordinate origin of the information box.

Xext and Yext specify the world coordinate dimensions of the box. An extra line will always be
added to the box to display the quit and key strings.

key_value is the key expected from the user. If this is ABORT_KEY, no EXPECT_KEY will be
performed.

"key string" is the string to be displayed in the bottom right hand corner of the box.

"Text of message" is the string to be displayed in the box.

Special Notes

PROMPT adds the ability to specify a variable value in messages. If the character '#' is
encountered in the text string, followed by a number from 0 through 9, the contents of the
corresponding counter will be substituted for the two characters.

If you wish to use the arrow icons in your messages, use the string "\5\6" for a left arrow, "\6\7"
for a right arrow, "\8\9" for an up arrow, and "A\B" for a down arrow.

The accessory icon is "\T".

If you wish to specify a function key, you may use "\E\F" for F1, "\E\10" for F2,"\E\11" for
F3,"E\12" for F4,"\E\13" for F5, "\E\14" for F6,"\E\15" for F7,"\E\16" for F8, "\1B\1C" for F10.

"\C4" can be used to turn Highlight on.
"C1" can be used to turn Bold on.

"\C3" can be used to turn Underline on.
"\C0" turns any of the above attributes off.

"Esc=quit" will always be displayed in the bottom left hand corner of the box.

Example
PROMPT 1 1000 1000 2600 440 {c} "C=continue" "This is an example”

Page 6-94

RESTORE_DT_CFG

RESTORE_DT_CFG deletes the alias file DESKTOP . $BS in the DMCONF IG directory, and
restores DESKTOP .CFG as the primary file.

Parameters
None.
Special Notes

The DESKTOP . $BS file will be deleted from the DMCONF IG directory. After this is done, file i/o to
DESKTOP .CFG will return to normal.

WARNING ... Although RESTORE_DT_CFG will close the temporary environment files
associated with DESKTOP .PDM, DESKTOP .PDM will use the current screen configuration to write

out DESKTOP .CFG when it exits. Therefore, playback must not exit while running Desktop, or the
"real” configuration will be overwritten.

Example
RESTORE DT _CFG

Page 6-95

RESTORE_FILE DMCONFIG_flag "tilename.ext" '

RESTORE_FILE finds the alaised copy of the indicated file in the current directory, and deletes
it. It then restores the original as the primary file.

Parameters

DMCONFIG_flag is set to 1 if the file to be restored is in the DMCONFIG directory. If the file to be
restored is in the current directory, set this to 0.
"filename.ext" is the name of the file in the DMCONF IG directory which you wish to restore.

Special Notes

The alaised . $BS file will be located in the current directory. After this is done, filename. $BS will
be deleted and"filename.ext" will be accesed on all subsequent file calls.

gxamplg
RESTORE FILE 1 "PERSONAL.ADR"

Page 6-96

RETURN

RETURN is used to return from a Script subroutine.
Parameters

None.

Special Notes

The script return stack only has room for eight (8) entries. Calls must not be nested more than
eight deep.

Example
RETURN

Page 6-97

RUN_RESOURCE function_number "RES" "Parameter String"”

RUN_RESOURCE executes the indicated function within the specified resource. The return
value of the function will be stored in the KEY variable.

Parameters
function number is an integer specifying which of the resources routines to execute.

"RES" is the filename of the resource, you must not specify the extension.
"Parameter String" is an up to 64 character string which is passed to the resource.

Special Notes
The function number will be passed to the resource in the ax register. A short pointer to the

parameter string will be at SS:BP. Playback will be suspended while the resource runs. The
returned parameter from the resource will be placed into the global KEY variable.

Example

RUN RESOURCE 0 "RES" "This is a string”
KEY WITHIN {q} [] IF_TRUE GOTO "quit"

Page 6-98

START _IN "program.pdm” "data.fil"

START_IN causes PLAY.PDM to call dm_SetNextApp to the specified program, rather than
returning to DeskTop.

Parameters

"program.pdm" must be the name of the DeskMate application you wish to run.

“data.fil" should be the filename of the data file you wish to begin in. This should be setto " " if
no file is desired.

sSpecial Notes
START_IN must be executed prior to the termination of PLAY . PDM. Any combination of

PRESERVE_DT_CFG, PRESERVE_FILE, and COPY_FILE may precede it in the event file, but
nothing else.

Example
START IN "TEXT.PDM" "MYFILE.DOC"

Page 6-99

TAG "label”
TAG marks a point in the script where event execution may be transfered.

Parameters

"label" is the string associated with the TAG where event execution is to resume.
Special Notes
The "label” strings of TAG statements should be unique within the event file.

Example

FILE EXIST "test.doc"
IF FALSE GOTO "Run Text"
F2 {r} RETURN KEY {draw} RETURN KEY

TAG "Run_Text"
F2 {r} RETURN KEY {text} RETURN KEY

Page 6-100

UNPACK_FILE DMCONFIG_flag “filename1” "tilename2"
UNPACK_FILE is used to unpack a file from the compressed TUT file to disk.

Parameters

DMCONFIG_flag is 0 if the file is to be copied to the current direstory, 1 if the file is to be copied
to the DMCONF IG directory.

“filename1" is the pathname of the file to be copied.
"filename2" is the name to copy the file to.

Special Notes
If "filename1" or "filename2" do not contain path information, the files will be copied within the

current directory. Path information will be used if it is supplied. If "filename2" already exists, it
will be overwritten.

You should always use FILE_EXIST to insure that the source file exists, as well as
DISK_SPACE to insure that sufficient space exists on the disk.

Example
UNPACK FILE 0 "test.doc" "test.bak”

Page 6-101

Keystroke Definitions

/* CTRL'ed A-Z */
CTRL A ... CTRL Z

/" ALT'ed A-Z */
ALT A ... ALT 2

/* Arrow keys */
UP ARROW
DOWN ARROW
LEFT ARROW
RIGHT ARROW

SHET UP ARROW

SHFT DOWN_ARROW
SHFT LEFT_ARROW
SHFT RIGHT ARROW

CTRL_UP_ARROW

CTRL DOWN ARROW
CTRL_LEFT_ARROW
CTRL RIGHT ARROW

ALT UP_ARROW

ALT DOWN_ARROW
ALT LEFT ARROW)
ALT RIGHT ARROW

SHFT CTRL UP ARROW

SHFT CTRL"DOWN ARROW
SHFT”CTRL LEFT ARROW
SHFT_CTRL_RIGHT ARROW

/* Function keys */
F1l ... F10

SHFT F1 ... SHFT F10
CTRL F1 ... CTRL F10
ALT F1 ... ALT F10

/* HOME, END, PGUP and PGDN keys */

HOME KEY
END KEY
PGUP_KEY
PGDN_KEY

SHFT HOME KEY
SHFT_END KEY

SHFT PGUP_KEY
SHFT PGDN_KEY)

CTRL HOME KEY
CTRL_END KEY

CTRL_PGUF KEY
CTRL_PGDN_KEY

SHFT CTRL HOME KEY
SHFT CTRL_END REY

SHFT CTRL_PGUP_KEY
SHFT_CTRL_PGDN_KEY

/* INSERT and DELETE keys */

Page 6-103

INSERT KEY
DELETE KEY

SHFT INSERT KEY
SHFT DELETE KEY

CTRL_INSERT KEY
CTRL DELETE KEY)

/* ENTER, ESC, SPACEBAR, BACKSPACE and TAB keys */
RETURN KEY |

ESC_KEY

SPATE KEY

BKSPACE KEY

TAB KEY ™

SHET RETURN KEY
SHFT SPACE KEY
SHFT BKSPACE KEY
SHFT TAB KEY

CTRL SPACE KEY

ALT SPACE KEY
ALT BKSPACE KEY
ALT TAB KEY

/* Miscellaneous keys */
BRK KEY

PRINT KEY
ABORT KEY
ALT EQUAL

/* Big select keys */

BIG SLCT UP ARROW
BIG SLCT DOWN ARROW
BIG SLCT LEFT ARROW
BIG SLCT RIGHT ARRCW
BIG SLCT HOME REY
BIG_SLCT_END KREY

Page 6-104

Tutorial Player - PLAY.PDM and DMPLAY.RES

Use the DeskTop's File Run command to play back a tutorial or demo. From a runtime execution,
you may chose to provide the user with a tuterial and demo menu option which will invoke the
tutorial or demo. Run PLAY.PDM and enter the base file name used in the tutorial. !f you do not
specify a file name for the tutorial, a screen will appear presenting all available tutorial files.

Pictures used in tutorials or demos can be a maximum size of 8K bytes. Larger pictures
will simply not display and an error condition is not retumed.

Page 6-105

Demo Launcher - DEMO.PDM

The source file MODIFY.C in the TOOLS\DEMO directory must be modified to create a customized
DEMO.PDM demo launcher for your demo. The LOADMSG.H include file contains an array of
characters which define a Form Manager draw list that displays a message while the demo is
loading.

To create your customized DEMO . PDM file, do the following:

1) To customize the graphics form for your demo

a) run Draw and open the file LOADMSG.FIG, change the string as required, and
copy the revised picture to the clipboard.

b) run Drawlist, at the prompt, type the name of the array, 'loadmsg' (this
string must be spelled exactly as shown here). Press the OK pushbutton to
accept the name. A message box will display size information. Press the OK
pushbutton to remove the message box. Use 'Save as...' on the ‘File' menu
to save the file under the name, 'loadmsg.h’.

2) To name the demo to be launched, in MODIFY.C change the following string to the
name of your demo:

char sIntroTut({] = "DEMO.TUT";

3)' If you must change the size of the box containing the message, you may want to
change the world coordinates at which it is displayed.

19 * CHAR XEXT / 2;

int x origin
5 * CHAR_YEXT;

int yTorigin

won

4) If your demo is so large that all of the files will not fit on one disk, by not putting the
demo file, the user will be prompted for a second disk which must contain the file.
Change the message box strings if your demo requires this message box.

char InsertDisk2TitleStr{] = "Ready For Disk 2";

char InsertDisk2MsgStr{] = "Please insert disk 2 of the Your Name \
Demonstration.";

Page 6-106

®

®

o

Event Recorder - RECORD.PDM and DMRECORD.RES

The recording application, RECORD . PDV, is used to record a sequence of keystrokes or events
which are played back at a later time. The playback application, PLAY . PDM, will simply playback
the keystrokes entered during the recording session. If PLAY is begun at a state other than
where RECORD was begun, the events issued will not correspond to what was recorded.

Use the File Run command from the DeskMate DeskTop to initiate a recording session. Run
RECORD.PDM and enter the base file name of the file which will hold your recorded events, the
extension will default to "EVN". If you do not use the proper extension, RECORD will issue an error

message and terminate. If you do not specify a file name, you will be prompted to enter a file
name.

The screen will be redrawn to erase the Run dialog box, all keystrokes are recorded until the
session is terminated with the ALT+F10 key combination.

Special commands are provided during recording to enhance a script. These commands are
described in detail in the Script Command Reference of Part 6, Writing Tutorials and Demos.

Shift+4F1 M allows you to create a message box for display during playback. See
the MESSAGE_ON command description for details.

Shift+Fl C allows you to add a comment to the event file to aid in the editing of
the event file at a later time.

Shift+F1 F allows you to chain event files together. This is most useful for
creating a sequence of demos, and also allows you to chain event
files to themselves for continuously running of demos.

General Rules of Recording:

A recording session should always be issued from the DeskMate DeskTop to guarantee
a stable start.

We recommend the environment variable DMCONFIG point to a separate demo directory

to insure that the user's data files such as calendar information, address books, etc. are
not lost.

The RECORD application requires that a copy of the DESKTOP.CFG configuration file
named DESKTOP .DFT reside in the directory pointed to by the environment variable
DMCONFIG. The DESKTOP.CFG file is saved and replaced by DESKTOP.DFT during
recording and playback. This insures that the playback sequence always begins from the
same DeskTop configuration as the recording and does not alter the user's working
DeskTop configuration. Store Demos should use the default DeskMate DeskTop
configuration, otherwise simply copy your DESKTOP .CFG to DESKTOP .DFT.

To avoid having a playback session fail because of different DeskTop configurations, run
applications from the DeskTop menubar rather than arrowing or tabbing to application
boxes on the screen to execute the application. You can never be sure that the player's
screen layout will match the recorder's.

Page 6-107

Script File Interpreter and Compiler - DMEIL.EXE and DMEC.EXE

The utility programs, DMEI.EXE and DMEC.EXE, allow for the editing of script files which are
compiled into event files. The new script or event file will have the same name as the event or
document file, and will destroy any file which has the same name without asking for verification to
overwrite. The maximum size for an event file is 10K bytes.

DMEI TUTOQORIAL will create a script file TUTORIAL.DCC from the event file
TUTORIAL.EVN.

DMEC TUTORIAL will create an event file TUTORIAL.EVN from the script file
TUTORIAL.DOC.

The script file can be modified to add new events, delete events, remove or add pauses or
messages, or perform any of the recording commands. When you have completed your
modifications, run DMEC . EXE on the document file to create a new event file with your changes.

By editing your event files, you can verify that necessary files exist, that there is sufficient disk
space to execute, copy files, delete files, change directories, and delete directories. These
commands are provided to insure that your demo will run properly, and to insure that it restores
the state of the machine to what it was before you began.

Page 6-108

Tutorial Compression Tools - DMPACK.EXE and DMUNPACK.RES

The Tutorial Compression Utility merges all of the files needed by a tutorial into one tutorial file.
The only rule is that the first event file to be executed must have the same base name as the
tutorial file. For instance, for the DMINTRO. TUT tutorial the first event file executed is
DMINTRO.EVN. The order files are packed into a tutorial is not important. The syntax for the
command is

DMPACK tutorial file <list of files in tutorial>

where tutorial file is the name of the resultant tutorial file. Subsequent calls to DMPACK
with the same tutorial file name will add the files to the tutorial. For this reason, you should
always delete the old tutorial file BEFORE creating a new one.

The fist of files in the tutorial follows, each file is delimited by a space.

The decompression algorithm resides in the DMUNPACK . RES resource which should be
distributed with your product.

Page 6-109

Appendix A
DeskMate 3 File Formats

%/»/; endix "

Contents

55U o8 ofo Yo LT ol o) o P A-1
Address BOOK/Phone LiSt ...ciiiiiiinniniieeennnnnneeeseenos A-3
0= T 1S 5 T - A-5
) o= A-9
F1ler/FOIM SELUD + v vt et eeiee ettt eeeenennsnnnnns A-11
= o A-15

Introduction

This document contains the file formats for the basic DeskMate 3.0 applications. The Address
Book application and Phone List accessory share the same file. The Filer and Form Setup
applications also share data files. The Address Book, Calendar, and Filer applications all use the
Database Resource for their file input/output. The Draw application using the Form Manager in
the Core Services Resource. Refer to the DeskMate Technical Reference for more information.

Each file contains a 22-byte Page Setup information header.

Byte Description

0 Application identifier (*see defines below)

1 ->3 Default file extension

4 => 21 PGSETUP data structure (** see definition below)

*Application Identifiers

FILER FILE 3
OFFICE_TEXT FILE 13
WORKSHEET FILE 14
DRAW_FILE 16
CALENDAR FILE 17
DRAWS8 FILE 20

** Page Setup Data Structure Definition

struct margin defn

char left; /* left margin (in characters) */
char lnwidth; /* line width (in characters) */
char linepp; /* total lines per page */
char plinepp; /* printed lines per page */

}i
typedef struct margin defn MARGIN;
?truct pgsetup_defn

char mode; /* NOTEBOOK, LANDSCAPE, PORTRAIT */
MARGIN mNotebk; /* notebook margin defines */
MARGIN mLandscp; /* landscape margin defines */
MARGIN mPortrait; /* portrait margin defines */
char bDspace; /* double space boolean flag */
char bPgpause; /* pause between pages flag */
char bScontrol; /* send control sequences flag */
char bGraphic; /* graphic mode boolean flag */
char bText; /* text mode boolean flag */

)7
typedef struct pgsetup defn PGSETUP;

Page A-1

Address Book/Phone List

The data file (PERSONAL.ADR) contains three (3) tables.
definitions are static (their column definitions do not change).
dynamic and controlled by the user.

The CONFIG and NAMES table
The DATA table's definition is

CONFIG :

This table contains the user's (or users' in the Shared file) configuration information.

UserId Unique network user id, up to 10 characters.
LastList Name of list last accessed by the user, up to 20
characters.
ConfigInfo User's address book configuratio information, up to
200 characters.
NAMES :

This table contains the internal column names and the external names, those the user sees when
building a form letter, for the address book data file.

Internal Internal column names for the first 15 columns of
the DATA table, up to 20 characters.
Users Names the user sees for the first 15 columns of the
DATA table, up to 20 characters.
DATA :

This table contains the user's address and phone numbers. The first 15 columns are static.
Columns 16 through 40 are used for the user-defined lists. The table is sorted by the fields
LastName/FirstName. The Database Manager call GET COLUMN NAMES may be used to
retrieve the names of all the columns in the table. The return value is the number of columns in
the table. The number of columns minus 15 is the number of user-defined lists in the Address
Book.

Title 5 character title field (Mr., Mrs., etc.).
(10 in DeskMate 3.3)
FirstName 18 character first name field.
LastName 20 character last name field.
Address 38 character street address field.
(43 in DeskMate 3.3)
City 20 character city field.
State 8 character state field.
Zip 10 character zip code field.
CompanyName 29 character company name field.
WorkPhone 20 character work phone number field.
HomePhone 20 character home phone number field.
DateOne 8 character julian date format (stored) field.
NoteOne 12 character notes field.
DateTwo 8 character julian date format (stored) field.
NoteTwo 12 character notes field.
Notes 40 character notes field. ‘
First List 1 character (Y/N is entry assigned to list).
Last List 1 character (Y/N is entry assigned to list).

Page A-3

Calendar

The data file (PERSONAL . CAL) contains one table for every calendar of information stored in the
file up to a maximum of 20 calendars. The default file contains one calendar table named
PERSONAL. All newly created calendar tables are given user defined names.

Each time CALENDAR.PDM is run, a check is made to see which table was open the last time the
program was exited. The bText element of the PGSETUP structure (struct pgsetup_defn) stored
with the file PERSONAL .CAL is used as an index to the calendar table to open. The index should
be greater than or equal to 1 and less than or equal to the number of tables minus 1 (DBCOLS
table should not be included in the number of calendar tables) and correlate to the order of the
table names returned by the call db_mgr (GET _TABLE NAMES, &pInfo). DBCOLS table is the

first table name returned in the buffer with an index of 0 and thus an index of 1 would relate to the
first valid calendar table name.

Each calendar table contains 7 columns.

Column name Length Type

Date 3 C (character)

DayOfWeek 1 C (character)

Duration 1 C (character) (NOT USED)
StartTime 1 C (character)

EndTime 1 C (character)

Protected 1 C (character)

Description 120 K (international character)

The table sort order is by Date/DayOfWeek/StartTime/EndTime/Description.

Each calendar table has a configuration record. The configuration record is stored with data in
the following three columns:

Date
Protected
Description

The Date column of the configuration record has the following values: 0x20, 0x20, OxFF

The Protected column of the configuration record has the following value: 0x30

The Description column of the configuration record has values from the following
cal config data data structure:

struct cal config data

char StartHour; /*first hour displayed on weekly grid */
char Screen; /* screen last displayed */

char NumChanges; /* number of changes made to calendar */
char Date([3]; /* date of last change */

char ChangedByName[8]; /: user name who made changes */

char Code[11]; code to identify password */
char CalendarPassword{16]; /* password associated with calendar */

}i

Because the database cannot store values less than 0x07, we add a constant ot 0x61 to all
values which may be out of valid range.

Page A-5

The first byte of the configuration record Description column (StartHour) will be the
constant value 0x61 added to the starting hour displayed on the weekly screen graph. The
default value in a new file is 8, thus 0x69 would be stored in the database if this value has not
changed.

The second byte of the configuration record Description column (Screen) will be the
constant value 0x61 added to a constant for the screen type as follows:

YEARLY SCREEN 1
MONTHLY SCREEN 2
WEEKLY SCREEN 3
DAILY SCREEN 4

Thus the second byte will be 0x62, 0x63, 0x64, or 0x65 depending on which screen was
displayed when CALENDAR . PDM was last exited.

The third byte of the configuration record Description ¢olumn (NumChanges) will be the
constant 0x61. This value will not change and is not used.

The fourth, fifth, and sixth bytes of the configuration record Description column
(Date [3]) will all be the constants 0x61. These values will not change and are not used.

The next eight bytes of the configuration record Description column
(ChangedByName {8]) will all be the constants 0x61. These values will not change and are
not used.

The next eleven bytes of the configuration record Description column (Code [117]) will be
the hex values representing the string "@PaSsWoRd@=". These values will not change and
are not used.

No data is written to the configuration record Description column for the
CalendarPassword([16] element of the structure.

There are three other types of records that may be added to the file: (1) events, (2) reminders,
and (3) annual occasions

A maximum of 20 events per day may be added to each calendar table. A maximum total of 70
reminders and annual occasions may be added to each calendar table. The Description column
is limited to 120 characters for events, 60 characters for reminders, and 30 characters for annual
occasions.

The event, reminder, and annual occasion records are stored with data in the following six (6)
columns:

Date
DayOfWeek
StartTime
EndTime
Protected
Description

Page A-6

Event records:

The Date column of an event record has the constant values of 0x61 added to the values for

year, month, and day. The value for year will be the actual year minus 1980 (thus 8 for 1988),
while the value for month will be between 1 and 12, and the value for day will be between 1 and
31. The Date column will is stored as: 0x61 + year, 0x61 + month, 0x61 + day

The DayOfWeek column of an event record has the constant value of 0x61 added to a value
between 1 and 7 (1 = Sun, 2 = Mon, etc.). The value is stored as: 0x61 + DayOfWeek

The StartTime and EndTime columns of an event have the following value if both the start time
and end time were blank in the dialog box: 0x80

If only the end time was blank in the dialog box, the EndTime column is stored as: 0xF0

All valid times stored in Start Time and EndTime columns will be stored as follows (where bit 7
is the most significant bit):

bit 7 - value 1
bits 6,5,4,3, and 2 - value representing hours 0 through 24
bits 1 and 0 - value representing quarter hours (0 = 0 minutes,

1 = 15 minutes, 2 = 30 minutes, 3 = 45 minutes)

The time 12:00 am (midnight) is stored as 0x80 if it is a start time and OxEQ if it is an end time.
All other times have only one value regardless of whether the time is a start time or end time.
Examples follow:

12:15 am 0x81
01:00 am 0x84
11:45 pm 0xDF

The Protected column of an event record has the following value if there is not an alarm
associated with the event: 0x31

The Protected column of an event record has the following value if there is an alarm
associated with the event: 0x71

The Description column of an event record has values from a string which is limited in length
to 120 characters.

Annual Occasion records:

The Date column of an annual occasion record has the constant values of 0x61 added to the
values for year, month, and day. The value for year will be 0, while the value for month will be
between 1 and 12, and the value for day will be between 1 and 31. The Date column will thus be

stored as: 0x61, 0x61 + month, 0x61 + day

The DayOfWeek column of an annual occasion record has the constant value of 0x61 added to
the value 8 which identifies the record to not be an event (which has values between 1 and 7).
Thus the value is stored as: 0x69

Page A-7

The StartTime column of an annual occasion record has the value 0x80 and the EndTime

column has the value 0xBC if the annual occasion date is not February 29 of a leap year. Iif the
date of the annual occasion is February 29 of a leap year, the value in both the StartTime and

EndTime column will be 0x80 added to the value of the year (4 for 1984, 8 for 1988, etc.). Thus
the stored values for Start Time and EndTime will be:

0x80 (or 0x80 + year) StartTime
0xBC (or 0x80 + year) EndTime

The Protected column of an annual occasion record has the following value: 0x31

The Description column of an annual occasion record has values from a string which is limited in
length to 30 characters.

Reminder records:

The Date column of a reminder record has the constant values of 0x61 added to 0 for year,
month, and day and is thus stored as: 0x61, 0x61, 0x61

The DayOfWeek column of a reminder record has the constant value of 0x61 added to the value
8 which identifies the record to not be an event. Thus the value is stored as: 0x69

The StartTime and EndTime columns of a reminder record has the following value in each
column: 0x80

The Protected column of a reminder record has the following value: 0x31

The Description column of a reminder record has values from a string which is limited in
length to 60 characters.

Page A-8

Draw

A Draw data file consists of the Page Setup header followed by a FORM HEADER which describes
the graphics form which follows. Following the graphics form is the palette information for the
picture. The GUF Resource High-level File I/O calls are used to access the file, see the File /O
Manager section of the DeskMate Technical Reference for details.

See the Introduction section of this document for information on the Page Setup header.

See the Form Manager section of the DeskMate Technical Reference for more information about
graphics forms.

See the Video Manager section of the DeskMate Technical Reference for information on
retrieving and setting the video palettes.

Byte Description
0 -> 21 File header.
22 -> 39 FORM HEADER data structure.
40 -> 43 FORM SIZE BUF data structure.
44 -> eoform Graphics Torm information (*see below).
eoform+l -> eoformt+64 Palette information (**see below).

* How to determine the size of the form
eoform = FORM SIZE BUF.list + FORM SIZE BUF.strokes + 44;

** Palette information format

Byte Description
0 Palette number (COLOR1).
1 Red value (0-255).
2 Green value (0-255).
3 Blue value (0-255).
60 Palette number (COLOR16).
61 Red value (0-255).
62 Green value (0-255).
63 Blue value (0-255).

Page A-9

Filer/Form Setup

Each file contains either two (2) or three (3) tables, depending on whether the file contains
graphics or not. The LAYOUTS and GRAPHICS table definitions are static. The DATA table's
definition is dynamic and controlled by the user.

LAYOUTS :

This table contains the descriptions of the Record and Report forms. It is made up of thirteen
(13) columns. It is sorted by START ROW/START COL.

ITEM# Unique sequential number (0-999), order items were
added to the table.
FIELDID Unique sequential number (0-999), order the fields

were added to the table.

For summary fields, contains the field id of the
field being summarized.

For report markers, id of marker (Header (0), Body
(1), Summary (2), Footer (3)).

TYPE Type of item (see Table A)

FORMAT1 Format Information (see Table B)

FORMAT2 Format Information (see Table C)

FMT CHARS For fields and summaries, the format string used

when editing the field information in Filer.
For static text, the text string.

DESCRIP For fields and summaries, the name of the user gave
the field or summary.
START COL For all items except report markers, contains the
- igifting column of the item on the layout (0-
For report markers, unused.
START ROW For all items except report markers, contains the

starting row of the item on the layout (0-22).
For items in the report, starting row is
relative to the section item appears in.

For report markers, line of form actual marker is

on.

NUM COLS For all items, the number of columns used by the
- item (1-131).

NUM ROWS For all items except report markers, the number of

rows used by the item (1-22).
For report markers, number of lines in the section.
COL OFFSET Not used.
ROW OFFSET For fields and report fields, number of decimal
- places to the right of the decimal. For all
other items, unused.

DATA:

This table may contain up to 22 columns which are defined by the user. Each column in this
table is represented by a field entry in the LAYOUTS table. The Database Manager call
GET_COLUMN NAMES may be used to retrieve the names of all the columns in the table. The
return value is the number of columns in the table. The table's sort order is determined by the
user, the name of the index is "DATAINDEX".

Page A-11

GRAPHICS :

This table contains the binary graphics data in an encrypted format since the Database may
contain only ASCII data.

RECORD
BITS

Table A

101 Static text

102 Field

103 Not used

104 Summary Field

105 Date template

106 Page number template
107 Report Marker

108 Report static text
109 Report field

Table B

Static text Text attribute

Field Label location and outlining

Summary Field Label location and outlining

Date Not used

Page number Not used

Report Marker Nbr of blank lines at top of section
Report static text Text attribute

Report field Label location and outlining

Table C

Static text Always 1 (for Body section)

Field Type of field

Summary Field Type of summary field

Date Not used

Page number Not used

Report Marker Nbr of blank lines at bottom of section
Report static text Section of report its in (0-3)
Report field Type of field

Text attribute :
NORMAL
BOLD
UNDERLINE

Label Location and Qutlining :
100 Label to the left of field
101 Label centered at top of field
102 No label appears
103 Qutlined field, label to the left of field
104 OQutlined field, label centered at top of field
105 Outlined field, no label appears

Page A-12

201 Single-line, left justified

202 Single-line, right justified

203 Numeric

204 Multi-line

205 Internal use

206 Numeric with fixed decimal point

mmary Field T
401 Summation
402 Average
403 Count

Fikr uses ffe sune format J%ﬂz'?vs as ap elioell w He
CO/"/)oncm‘L maﬁajeﬁ. Sce /)ajc '/@)

Page A-13

Text

The Text application can create an ASCII file as well as its own non-ASCII data file. The GUF
Resource High-level File I/0 calls are used to access the file, see the File I/O Manager section of
the DeskMate Technical Reference for details.

See the Introduction section of this document for information on the Page Setup header.

ASCI (and IBM extended) characters:

0D 0A Carriage return line feed combination used to:
1. terminates a line in program source code or batch
files
2. end a paragraph in documents
1A EOF End of file marker

20 -> FF Visible or printable characters

Note 1: 09 (Tab), 0C (Form Feed), and other values below 20 are not allowed in the file.
When reading in a file which is not a "Text application” file (does not include a Text
application header at beginning of file), any characters other than 0D and 0A in the
range between 00 and 1F inclusive will be converted to a space.

Note 2: ASCII files use default page setup settings. A header is not stored at the beginning
of ASClI| files.

A Text application file becomes a non-ASCI! file once any of the following actions have been
taken upon a previously ASCII file:

Merge in a non-ASCIl Text application document.

Change the Page Setup information from the default settings.
Paste in text which contains underlined or bold characters.
Paste in a Draw application picture.

Make selected text bold.

Make selected text underlined.

Indent or center a paragraph.

Create a header or footer.

Insert a page number field which will automatically number pages.
Insent a today's date field which will print the system date.
Insert a database field which will allow printing form letters.

Note: The above actions result in control characters being stored in the file. The file can be
restored to an ASCII file with the "To ASCII" menuitem (i.e all non-ASCII modifications
to the file will be removed).

Non-ASCI! files have the following format:

Byte Description

0 ->3 Four byte Text application identifier (0D 44 4F 43)
4 -> 21 18 (decimal) bytes of page setup information

22 => EQF All ASCII and control data other than page setup

Page A-15

HEADERS AND FOOTERS

After reading in a non-ASCI! file, you must determine if the file has a header, a footer, or both.
This is done by searching the file for the EOF marker (1A). If an EOF marker is found before
reaching the last byte of the file (excluding 1A's representing control information within pictures
and margin settings), there is a header or footer. If two EOF markers are found before the last
byte in the file, there is both a header and a footer. Following is a dump of four very simple files
with different combinations of headers and footers:

File with no header or footer:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..+--.d--.FB*
0010 3C 00 00 00 00 01 54 68 69 73 20 69 73 20 74 68 *<..... This is th*
0020 65 20 64 6F 63 75 6D 65 6E 74 2E 1A 00 00 00 00 *e document...... *

At byte 16 hex, the document starts. This is the only case where there is no control information
preceding the document text (note the two 0D's in the following three examples which precedes
the document text). At byte 2B, the file ends with the EOF marker (1A).

File with a header, but no footer:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..+--.d--.FB*
0010 3C 00 00 00 00 01 48 0D OD 54 68 69 73 20 69 73 *<..... H..This is*
0020 20 74 68 65 20 68 65 61 64 65 72 2E 1A 0D 0D 54 * the header....T*
0030 68 69 73 20 69 73 20 74 68 65 20 64 6F 63 75 6D *his is the docum*
0040 65 6E 74 2E 1A 00 00 00 00 00 00 00 00 00 00 00 *ent............. *

At byte 16 hex, the control information for the header starts. The first byte will be either ‘H' or 'h’ ‘
followed by two OD's. At byte 19 hex, the text of the header starts. At byte 2C, the header ends

with an EOF marker. At byte 2D, two 0D's provide control information before the start of the

document which is at byte 2F. The document ends at byte 44 with an EOF marker.

File with a footer, but no header:

0000 OD 44 4F 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..+--.d--.FB*
0010 3C 00 00 00 00 01 46 OD OD 54 68 69 73 20 69 73 *<..... F..This is*
0020 20 74 68 65 20 66 6F 6F 74 65 72 2E 1A 0D OD 54 * the footer....T*
0030 68 69 73 20 69 73 20 74 68 65 20 64 6F 63 75 6D *his is the docum*
0040 65 6E 74 2E 1A 00 00 00 00 00 00 00 00 00 00 00 *ent............. *

At byte 16 hex, the control information for the footer starts. The first byte will be either 'F' or 'f'
followed by two 0D's. At byte 19 hex, the text of the footer starts. At byte 2C, the footer ends
with an EOF marker. At byte 2D, two 0D's provide control information before the start of the
document which is at byte 2F. The document ends at byte 44 with an EOF marker.

File with a header and a footer:

0000 OD 44 4r 43 00 01 2B 2D 2D 05 64 2D 2D 05 46 42 *.DOC..+--.d--.FB*
0010 3C 00 00 00 00 01 48 OD OD 54 68 69 73 20 69 73 *<..... H..This is*
0020 20 74 68 65 20 68 65 61 64 65 72 2E 1A 46 0D OD * the header..F..*
0030 54 68 69 73 20 69 73 20 74 68 65 20 66 6F 6F 74 *This is the foot*
0040 65 72 2E 1A OD 0D 54 68 69 73 20 69 73 20 74 68 *er....This is th*
0050 65 20 64 6F 63 75 6D 65 6E 74 2E 1A 00 00 00 00 *e document...... *

At byte 16 hex, the control information for the header starts. The first byte will be either 'H' or 'h’
followed by two 0D's. At byte 19 hex, the text of the header starts. At byte 2C, the header ends <
with an EOF marker. At byte 2D, the control information for the footer starts. The first byte will

Page A-16

be either 'F or 'f' followed by two 0D's. At byte 30, the text of the footer starts. At byte 43, the
footer ends with an EOF marker. At byte 44, two 0D's provide control information before the start
of the document which is at byte 46. The document ends at byte 5B with an EOF marker.

The following is a sample of code used to determine if a header and/or footer exists:

/* ________________________ *

unsigned int num bytes read; /* size of file excluding header, number */
/* of bytes in text buffer, returned from */
/* fil menu open{) */

3n51gned char *save orlglna} tbuf; /* ptrTto beginning of the text buffer */

unsigned char *get EOF pointer{ptr) /*called by check for _header and footer()*/
unsigned char *ptry

register unsigned char *p;

p = ptr;
while (TRUE)
?witch { *p)
case END OF FILE:
return(p);
break;

case START PICTURE:
E PICTURE _END_POINTER(p);
reak

case START MARGIN:
MARGIN END POINTER(p};

reak
default:
break;
++p;
}
/-k ________________________ */
K e e *

?heck for header and footer() /* called after opening a non-ASCII file */

un51gned char *p;
unsigned char *tbuf;

/* initialize fla s to assume there is no header or footer */
header exists = HEADER;
footer exists = NO:FOOTER,

/* initialize tbuf to point to the beginning of the text buffer*/
tbuf = save_original_tbuf;

/* find the first EOF marker in the file */
p = get EOF pointer (tbuf);

/*if the EOF marker is not the last byte read, we have a header or footer*/
if ((unsigned) (p - tbuf) + 1 < num bytes read)

if (*tbuf == 'H')
header exists = HEADER ON ALL_PAGES;
else if (Ftbuf == 'h'
header exists = HEADER _ON_ALL PAGES EXCEPT 1ST;
else if { Ftbuf == 'F')
footer exists = FOOTER ON ALL PAGES;
else if (*tbuf == 'f' - - =

footer exists = FOOTER ON_ALL_PAGES EXCEPT 1ST;
num bytes read -= (unsigned) (p - tbuf) + 1;
tbuf = p ¥ 1; . i .
p = get _EOF p01nter(tbuf), /* find the 2nd EOF marker in the file */

/* if the EOF marker is not the last byte read, we have a footer */
if ((unsigned) (p - tbuf) + 1 < num bytes_ read)
{

if (*tbuf == 'F')

Page A-17

footer exists = FOOTER ON_ALL _PAGES;
else if (Ftbuf == 'f')
footer exists = FOOTER ON_ALL PAGES_EXCEPT_1ST;

Following is a list if #defines used in the above code and in future examples for the Text
application:

/* ________________________ */

/* Character attribute switches */
#define BOLD ON 0x13
#define BOLD OFF 0x12
#define UNDERLINE ON 0x11
ﬁdeflne UNDERLINE_OFF 0x19

/* ________________________ */

#define START PICTURE 1

#define END PICTURE 2

#define PICTURE CLIP LENGTH (p) (*(int *)(p + sizeof(char)))
#define PICTURETCOLUFN (p) (*(int *) (p + sizeof (char) +

. 51zeof(1nt)))
$define PICTURE WIDTH WORLD COORDS(p) (*{int *)(p + sizeof(char) + 12 *
- - - 51zeof}1nt) + sizeof (FORM HDR)) + 100)
) 00 kludges for fat lines */
§define PICTURE HEIGHT WORLD COORDS (p) (*(int *) (p + sizeof(char) + 14 *
- - - sizeof (int) + sizeof (FORM HDR)) + 100)
/* 100 kludges for~fat lines */

#define PICTURE START POINTER(p) {p - (*(int *)(p - sizeof(int))) - 3 *
- - sizeof (int) - sizeof (char})
#define PICTURE END POINTER(p) {p + PICTURE CLIP LENGTH(p) +
i -~ siz@of (char) + 3 * sizeof(int})
#define PICTURE DRAW POINTER(p) (p + sizeof({char) + 2 * sizeof(int})

P
#define PICTURE_HEIGHT CHAR BLOCKS(p) (PICTURE_HEIGHT WORLD COORgagp) / 1
- - - R YEXT +
#define PICTURE WIDTH CHAR BLOCKS (p}) (PICTURE_WIDTH_WORLD COORDS(p) =/

. y CHAR XEXT + 1)
#define START MARGIN 3

#define END MARGIN 4

#define MARGIN START POINTER (p) (p - 4 * sizeof(char))

#define MARGINTEND PUINTER (p) (p + 4 * sizeof(char))

#define MARGIN"FIRST LINE INDENT (p) (*(p + 1 * sizeof(char)))

#define MARGIN LEFT INDENT (p) (*{(p + 2 * sizeof(char)))

#define MARGIN RIGHT INDENT(p) (*{p + 3 * sizeof (char)))

?truct paragraph margin defn

unsigned char first line indent; /* # of chars from left margin */
unsigned char left indent; /* 4 of chars for all lines except 1lst*/
unsigned char right 1ndent /* # of chars from right margin */

)i
t¥pedef struct paragraph ma;gln defn PARAGRAPH MARGIN;
/* START FIELD and END FIELD enclose Date, Page #, and Address Book fields */
#define START FIELD 5
#define END FIELD)

/* these values are stored as lst byte after START FIELD - identify field type*/
#define DATE FIELD TYPE 0

$define DATE FIELDTTYPE™1 8

#deflne PAGE_NUMBER_FIELD . 9

Page A-18

CHARACTER ATTRIBUTES

The Text application supports boldfaced and underlined text. Character attribute control
characters are embedded between the characters where the change in character attribute is to
take place. All characters following a 13 (BOLD_ON) will be displayed/printed in boldface and all
characters following a 12 (BOLD OFF) will be displayed/printed in normal type. All characters
following a 11 (UNDERLINE ON) will be displayed/printed with an underline and all characters
following a 10 (UNDERLINE OFF) will be displayed/printed without an underline.

DRAW APPLICATION PICTURES

Draw application pictures pasted into a Text application file are surrounded by the control
characters 01 (START PICTURE) at the beginning of the picture and 02 (END PICTURE) at the
end of the picture. The 01 (START PICTURE) must be preceded by a 0D 0A (carriage return line
feed combination) or a 02 (END_PICTURE). This is because each picture is considered to be a
paragraph and thus must be preceded by one of these two end-of-paragraph markers.

The first two bytes after the 01 (START PICTURE) are used to store (as an integer) the length of
the picture data as it was copied from the clipboard. Use PICTURE CLIP LENGTH (p), where p
is the pointer pointing to the 01 (START PICTURE), to access this value.

The third and fourth bytes after the 01 (START PICTURE) are used to store (as an integér) the
column position at which the picture is to be displayed. Use PICTURE_COLUMN (p), where p is
the pointer pointing to the 01 (START _PICTURE), to access this value.

The fifth byte after the 01 (START PICTURE) is the first byte of the actual Draw application
picture data. Use PICTURE DRAW POINTER(p), where p is the pointer pointing to the 01
(START PICTURE), to access this pointer. For example, to display the picture in the Text
application, the following call is made:

vid draw form(PI(iTURE DRAW POINTER (p),

CTURE COLUMN (p) - First _column_displayed) * CHAR XEXT,
*row * CHAR YEXT);

At the end of the actual Draw application picture data, there are another two bytes of data which
are used to store the length of picture data as it was copied from the clipboard. These length
bytes are followed by the 02 (END_PICTURE).

Because the data used to draw a picture will most likely contain data which could be confused
with control codes used for other purposes, it is necessary to skip over the entire picture when
searching for specific control characters (such as the 1A end of file marker). Use
PICTURE END POINTER(p), where p is the pointer pointing to the 01 (START_ PICTURE), to
find the address of the corresponding 02 (END PICTURE). If searching backwards through the
fle, use PICTURE START POINTER(p), where p is the pointer pointing to the 02
(END_PICTURE), to find the address of the corresponding 01 (START_PICTURE).

PARAGRAPH MARGINS
Paragraph margin information is stored between 03 (START MARGIN) and 04 (END_ MARGIN)

control characters. Margin information is always stored before the first visible/printable character
(including spaces) of the paragraph.

Page A-19

The first byte after the 03 (START MARGIN) is used to store first line indention. Use
MARGIN FIRST LINE INDENT(p), where p is the pointer pointing to the 03 (START MARGIN),
to access this value.

The second byte after the 03 (START MARGIN) is used to store the left margin indention of all
lines other than the first line of the paragraph. Use MARGIN LEFT INDENT (p), where p is the
pointer pointing to the 03 (START MARGIN), to access this value.

The third byte after the 03 (START MARGIN) is used to store right margin indention. Use
MARGIN RIGHT INDENT (p), where p is the pointer pointing to the 03 (START MARGIN), t
access this value.

Because the data used to control margin settings may likely contain data which could be
confused with control codes used for other purposes, it is necessary to skip over the margin
when searching for specific control characters (such as the 1A end of file marker). Use
MARGIN END POINTER (p), where p is the pointer pointing to the 03 (START_MARGIN), to find
the address of the corresponding 04 (END MARGIN). If searching backwards through the file,
use MARGIN START POINTER(p), where p is the pointer pointing to the 04 (END_MARGIN), to
find the address of the corresponding 03 (START MARGIN).

FIELDS

The Text application uses 05 (START FIELD) and 06 (END_FIELD) to enclose control

data that is to be used as a single piece of data. There are fifteen Address Book database fields,
two date fields, and a page number field. Fields can be stored anywhere in the document, but
data within a field is treated as a unit and may not be modified.

For Address Book fields, the 05 (START FIELD) is always followed by an asterisk, which is
followed by the name of one of the Address Book field, which is followed by another asterisk,
which is followed by the 06 (END_FIELD). If the user prints form letters, actual data from the
database will be substituted (at print time only) for the data between the 05 (START FIELD) and
06 (END_FIELD) inclusive for each letter to be printed.

In the date fields, the 05 (START FIELD) is followed by either 07 (DATE_FIELD TYPE 0) or 08
(DATE_FIELD TYPE 1)which is followed by a string which represents the form the date will print
out as, which is followed by the 06 (END FIELD). At print time the data between the 05
(START FIELD) and 06 (END_FIELD) inclusive will be substituted with the system date in the
form specified (MM-DD-YYYY or MMM DD, YYYY).

In the page number field, the 05 (START FIELD) is followed by 09 (PAGE NUMBER FIELD),
which is followed by the string "###", which is followed by the 06 (END_FIELD). At print time the
data between the 05 (START FIELD) and 06 (END_FIELD) inclusive will be substituted with the
page number of the current page being printed.

Page A-20

‘ Worksheet

A Worksheet data file consists of the Page Setup header followed by a description of the pad, an
array of the five (5) list structures, the cell definitions, and the ascii string data. The GUF
Resource High-level File /O calls are used to access the file, see the File /O Manager section of
the DeskMate Technical Reference for details.

See the Introduction section of this document for information on the Page Setup header.

Byte Description
0 -> 21 File header.
22 -> 121 Column Widths for columns 0-99 (4 to 77)
122 Extreme row of pad (0-99)
123 Extreme column of pad (0-99)
124 -> 125 Ignore
126 -> 175 Array of 5 TOPLIST structures*
176 -> eof cells Cell information structures**

eof cells + 1 -> eof String data

*TOPLIST data structure

?truct
char *start; /* address of the first cell in the list */
char *end; /* address of the first unused byte after the
last entry in the list
int size; /* the size of the cell in bytes */
' int status;
int num; /* the number of entries in the list */

}:
The lists, and their respective cells, are in the following order :

1) labels

2) numbers
3) formulas
4) inputs

5) text blocks

Ignore the start and end elements, they are the actual addresses of the data in memory when
the file was last saved; these addresses must be resolved at load time.

The number of entries in the list num will always include the extra "dummy"” cell entry which
terminates each list of cell definitions. Therefore an empty worksheet will have one (1) cell of
each type located at R100,C100.

**Cell Data Structures.

struct
char row; /* Cell row */
char col; /* Cell column */
int status; .
char *strPtr; /* offset to string */

.\ } STRING CELL;

Page A-21

struct

char row; /* Cell row x/
char col; /* Cell column x/
int status;

char *strPtr; /* offset to string */
char rows; /* Number of rows */
char cols; /* Number of columns */

} TEXT CELL;

The CELL structure is used for formula, input, and numeric cells.

struct
char row; /* Cell row */
char col; /* Cell column */
int status;
char *strPtr; /* offset to string */
double wvalue; /* value of the cell */
} CELL;

The string stored is the ascii representation of (1) the label the user entered in a text cell, (2) the
text the user entered in a text block, (3) the number entered in a numeric cell, (4) the formula
entered by the user in a formula cell, and (5) the name of an input cell.

The offset to the string is from the start of the TOPLIST array (byte 126).

The strings are all null-terminated and start immediately after the last cell structure. To
determine the end of the cells, sum the size of each of the lists (number of cells in list times the
size of the cell type in bytes).

The following is an example of a worksheet file with one cell of each data type.

931:0100 OE 57 4B 53 00 05 1E 28-1E 05 46 28 1E 05 46 42 .WKS...(..F(..FB
931:0110 38 00 00 00 00 01 OA OA-OF 14 OA OA OA QA QA OA 8........... ...,
931:0120 OA OA OA OA OA OA OA OA-OA OA OA OA OA QA OA QAouvns
931:0130 OA OA OA OA OA OA OA OA-OA OA QA OA OA OAOA OA

2
2
%
2931:0140 0A OA OA OA OA OA OA OA-OA QA QR OA QA QR OA QAc.oevvvnnn
2931:0150 OA OA OA OA CA OA OA OA-OA OA OA OA QA QR QA QA
2931:0160 OA OA OA OA OA OA OA OA-OA OA OA OR OA OA OA QAccuvenn
2931:0170 OA OA OA OA OA OA OA OA-0A QA 09 04 1D 02 00 67ceunnn. g
2931:0180 0C 67 06 00 OA 00 02 00-0C 67 28 67 OE 00 02 00 .g....... gl{g....
2931:0190 02 00 28 67 44 67 OE 00-02 00 02 00 44 67 60 67 ..{(gDg...... Dg g
2931:01A0 OE 00 02 00 02 00 60 67-70 67 08 00 00 00 02 00 ‘gpg
2931:01B0 01 01 0A 00 AF 01 64 64-75 72 00 00 02 02 02 00/.ddur......
2931:01C0 A7 01 77 BE 9F 1A 2F DD-5E 40 64 64 75 6D 00 00 '.w>../]"@ddum..
2931:01D0 20 69 6E 20 74 68 65 20-04 04 D5 00 91 01 3C DF in the ..U...<
2931:01E0 4F 8D 97 EE 6B 40 64 64-65 74 00 00 29 2E OD 0A O..nk@ddet..).."
2931:01F0 46 69 72 73 03 03 92 00-9B 01 00 00 00 00 00 00 Firs............
2931:0200 59 40 64 64 20 20 00 00-32 30 20 63 68 61 72 61 Y@dd ..20 chara
2931:0210 06 01 01 00 A2 00 03 03-64 64 74 20 00 00 64 72"...ddt ..dr
2931:0220 54 68 69 73 20 69 73 20-62 6C 6F 63 6B 20 6F 66 This is block of
2931:0230 20 74 65 78 74 20 64 65-66 69 6E 65 64 20 69 6E text defined in
2931:0240 20 74 68 65 20 73 70 72-65 61 64 73 68 65 65 74 the spreadsheet
2931:0250 2E 20 20 54 68 65 20 0A-74 65 78 74 20 69 73 20 . The .text is

2931:0260 77 6F 72 64 2D 77 72 61-70 70 65 64 20 61 75 74 word-wrapped aut
2931:0270 6F 6D 61 74 69 63 61 6C-6C 79 20 62 79 20 74 68 omatical { by th
2931:0280 65 20 65 64 69 74 66 69-65 6C 64 20 QA 63 6F 6D e editfield .com
2931:0290 70 6F 6E 65 6E 74 2E 01-01 01 01 01 01 01 01 01 ponent..........
2931:02a0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01cvuvueennn
2931:02B0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01
2931:02C0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01
2931:02D0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01c.......
2931:02E0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01cunnnn
2931:02F0 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01u..nnn
2931:0300 01 01 01 01 01 01 01 01-01 01 01 01 01 02 00 72ecouecnnen r
2931:0310 32 63 32 2B 72 33 63 33-00 49 6E 70 75 74 20 46 2c2+r3c3.Input F
2931:0320 69 65 6C 64 00 31 32 33-2E 34 35 36 00 4C 61 62 ield.123.456.Lab
2931:0330 65 6C 00 C4 0C 8B OE C6-0C 8B 16 C8 0C 8E 1E C2 el.D...F...H...B

Page A-22

	Addendum for DeskMate 3.05
	Addendum for DeskMate Users
	The DeskMate System Architecture
	Memory Map Example
	DeskMate Functions
	General Design of a DeskMate Application
	System Overview
	 DeskMate 3.3 Modifications and Enhancements
	 Introduction
	 Compatibility and Programming Issues
	 The DeskMate Checklist
	 Installation and Upgrade Procedures
	 Determining DeskMate Product Versions
	 Runtime Distribution Guidelines

	About This Kit
	Chapter 1 - Introduction
	 Contents of the Kit
	 Using the Kit

	Chapter 2 - System Overview
	 Technical Overview
	 DeskMate 3.05 Modifications and Enhancements
	 DeskMate 3.03 Modifications and Enhancements

	Chapter 3 - Getting Started
	Chapter 4 - Registration and Technical Support
	Chapter 5 - The DeskMate Runtime License
	Appendices

	DeskMate Style Guide
	Contents
	Chapter 1 - Introduction
	 How to Use This Manual
	 Before You Begin

	Chapter 2 - The Keyboard and the Mouse
	 Special Keys
	 Basic Mouse Operation
	 Cursors and Pointers
	 Selecting Data
	 Scrolling
	 Text Entry and Editing

	Chapter 3 - Screen Design
	 General Guidelines
	 Parts of the DeskMate Screen
	 Some Special-Purpose Screens
	 Screen Design for 40-Column Applications

	Chapter 4 - Menu Bars and Menus
	 What Are Menu Bars and Menus?
	 When to Use a Menu Bar
	 General Rules and Guidelines for Menu Bars
	 Rules and Guidelines for Application Menu Bars
	 Rules and Guidelines for Accessory Menu Bars
	 Rules and Guidelines for Menu Bar Components
	 Menu Bar Examples

	Chapter 5 - The Interface Components
	 General Guidelines
	 Component Classes
	 Interactive Components
	 Static Components
	 Using Components in the Work Area

	Chapter 6 - Pop-Ups
	 When to Use a Pop-Up
	 Types of Pop-Ups
	 Rules and Guidelines for Pop-Ups
	 Pop-Up Operation
	 User Interfaces to Pop-Up Windows

	Chapter 7 - Special Menus
	 Message
	 Accessories
	 File
	 Edit

	DeskMate Development Guide
	About the Guide
	Contents
	Part 1 - Getting Started
	 Contents
	 Introduction
	 Memory Models and Development Tools
	 DeskMate Coordinate Systems
	 Compatibility and Programming Issues
	 Overview of the Tools, Utilities, and Examples

	Part 2 - Programming Examples
	 Contents
	 WELCOME.PDM
	 VIDEO.PDM
	 High-Level File I/O - FILEIOHL.PDM
	 Low-Level File I/O - FILEIOLL.PDM
	 Database File I/O - DBCARS.PDM
	 Page Printing - DEVICE.PDM
	 Direct Printing - DIRECT.PDM
	 FORMS.PDM
	 Running Components in the Work Area - COMPS.PDM
	 Managing Windows and Events
	 Interfacing with the Clipboard
	 Writing a 40 Column Application
	 Writing a DeskMate Resource
	 Writing a DeskMate Accessory

	Part 3 - Tools and Utilities
	 Contents
	 Menu bar Builder - MENUBLD.PDM
	 Dialog Box Builder - DLGBUILD.PDM
	 Bitmap Editor - HYPERBIT.PDM
	 Graphics Form Generator - DRAWLIST.PDM
	 Clipart File Builder - CLIPART.PDM
	 Stroke Font Editor - STROKE.PDM
	 Memory Map Generator - MEMMAP.PDM
	 The Desk Header Utility - DESKHDR.EXE
	 Disk Label Generator - DMLABEL.PDM
	 Customized Runtime Utility - RUNTMBLD.PDM
	 Customized Installation Launcher Utility - INSTLBLD.PDM

	Part 4 - Distributing Your Application
	 Contents
	 The DeskMate Checklist
	 Installation and Upgrade Procedures
	 Determining DeskMate Product Versions
	 Runtime Distribution Guidelines

	Part 5 - DeskMate Help Systems
	 Contents
	 Overview
	 Writing the Application Help File
	 Writing the Help Window Text
	 Writing the Help Screen Text
	 Creating the Sample Help File VIDEO.HLP
	 Help Rule Base Utility - DMHELP.UTL
	 DeskMate Help Editor - DMEDITOR.PDM
	 Help File Compression Utility - TOKEN.PDM
	 Help File Format

	Part 6 - Writing Tutorials and Demos
	 Contents
	 The DeskMate Tutorial Technology
	 Authoring a Tutorial Script
	 The DeskMate Introductory Tutorial - DMINTRO.TUT
	 Script Command Reference
	 Keystroke Definitions
	 Tutorial Player - PLAY.PDM and DMPLAY.RES
	 Demo Launcher - DEMO.PDM
	 Event Recorder - RECORD.PDM and DMRECORD.RES
	 Script File Interpreter and Compiler - DMEI.EXE and DMEC.EXE
	 Tutorial Compression Tools - DMPACK.EXE and DMUNPACK.EXE

	Appendix A - DeskMate 3 File Formats
	 Contents
	 Introduction
	 Address Book/Phone List
	 Calendar
	 Draw
	 Filer/Form Setup
	 Text
	 Worksheet

